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Abstract. Algorithmic debugging is a semi-automatic debugging technique that
is present in practically all mature programming languages. In this paper we claim
that the state of the practice in algorithmic debugging is a step forward compared
to the state of the theory. In particular, we argue that novel techniques for algorith-
mic debugging cannot be supported by the standard internal data structures used
in this technique, and a generalization of the standard definitions and algorithms
is needed. We identify two specific problems of the standard formulation and im-
plementations of algorithmic debugging, and we propose a reformulation to solve
both problems. The reformulation has been done in a paradigm-independent man-
ner to make it useful and reusable in different programming languages.

1 Introduction

One of the most important semi-automatic debugging techniques is algorithmic debug-
ging (AD) [27]. This technique has experienced a significant advance in the last decade.
Concretely, new techniques have been proposed to improve performance [9, 15], to im-
prove scalability [11], to improve interaction with the user [6], and to improve GUIs [12,
13]. The maturity of these techniques has eventually lead to the integration of algorith-
mic debuggers into sophisticated programming environments. Two interesting cases are
[12] and [11], which combine AD with the standard debugging perspective of Eclipse
[1]. The main advantage of AD is its high level of abstraction. It is even possible to
debug a program without looking at the source code.

Example 1. Let us assume the existence of a buggy Java code composed of three meth-
ods: int add(int x, int y) sums its two arguments, boolean isEven(int x) re-
turns true if its only argument is even, or false otherwise; and, int sumNumbers(int[]
array, String eo) takes an array of integers and sums the elements that are even or
odd depending on the value of the second argument. Therefore, with the following
method invocation:

i n t [ ] a r r a y = { 1 , 2 , 3 } ;
i n t sum = sumNumbers ( a r r a y , " odd " ) ;

the result should be 4. Nevertheless, due to a bug in the code, the result is 3.
Thanks to AD, with only this information (without knowing anything about the

source code) we can identify the buggy method. For instance, if we debug this program



with the Declarative Debugger for Java (DDJ),1 we obtain the following debugging
session (questions are generated by DDJ, and answers are provided by the user):

Starting Debugging Session:

(1) sumNumbers({1,2,3},"odd")=3? No

(2) isEven(2)=true? Yes

(3) isEven(3)=false? Yes

(4) add(0,3)=3? Yes

Bug found in method "sumNumbers".

Hence, an AD session is just a dialogue where the debugger asks questions and the
user answers them. The Java code associated with this debugging session is depicted in
Figure 1.

i n t add ( i n t x , i n t y ) {
re turn x + y ;

}

boolean i s Ev en ( i n t x ) {
i f ( ( x % 2) == 0)

re turn true ;
re turn f a l s e ;

}

i n t sumNumbers ( i n t [ ] a r r a y s , S t r i n g eo ) {
i n t sum = 0 ;
f o r ( i n t i = 1 ; i <= a r r a y s . l e n g t h ; i ++) {

i f ( eo . e q u a l s ( " even " ) && i sEv en ( a r r a y s [ i ] ) )
sum = add ( sum , a r r a y [ i ] ) ;

i f ( eo . e q u a l s ( " odd " ) && ! i sEv en ( a r r a y s [ i ] ) )
sum = add ( sum , a r r a y [ i ] ) ;

}
re turn sum ;

}

Fig. 1. Java program to sum even or odd numbers in an array

What the debugger internally does, is to generate a data structure that represents the
execution of the program. This data structure, often called Execution Tree (ET), is de-
picted in Figure 2. The ET has a node for each method invocation.2 Each node normally
contains a reference to the method that is being executed, the value of its arguments,
the old and new values of the variables that may be changed within the execution, and
its returned value. The debugger just traverses the ET asking the user about the validity
of the nodes (i.e., nodes are marked as correct or wrong) until a buggy node is found. A
node is buggy when it is wrong, and all of its children (if any) are correct.

The main properties of AD are the following:

Theorem 1 (Correctness of AD [23]). Given an ET with a buggy node n, the method
associated with n contains a bug.

Theorem 2 (Completeness of AD [27]). Given an ET with a bug symptom (i.e., the
root is wrong), provided that all the questions generated by the debugger are correctly
answered, then, a bug will eventually be found.

1 http://www.dsic.upv.es/~jsilva/DDJ/
2 In the ET, nodes represent computations. Hence, depending on the underlying paradigm, they

can represent methods, functions, procedures, clauses, etc. Our discussions in this paper can
be applied to any paradigm, but, for the sake of concreteness, we will center the discussion on
the object-oriented paradigm and our examples on Java.



Fig. 2. ET generated for the program in Figure 1

1.1 Motivation

We have been actively working in the area of AD for the last 10 years. This paper
somehow summarizes and criticizes our own work to make a step forward. We claim
that almost all current algorithmic debuggers—at least all that we know, including the
most extended, which we compared in [7], and including our own implementations—
have fundamental problems that were somehow inherited from the original formulation
of AD [27].

In particular, we claim that the original formulation of AD, and most of the later
definitions and implementations are obsolete with respect to the last advances in the
practical side of AD. For instance, two important problems of standard definitions of
AD are the granularity and the static nature of the errors found (AD reports a whole
routine as buggy). We can illustrate these problems observing again the debugging ses-
sion of Example 1: The whole method sumNumbers is pointed as buggy. This is very
imprecise specially if sumNumbers was a big method with a lot of code. However, AD
researchers and implementors are used to this behavior, and they could answer that this
is the normal output of any algorithmic debugger. However, from an engineering per-
spective, this is quite surprising because the analysis performed by the debugger is by
definition dynamic (in fact, the whole program is actually executed). Thus, the debugger
should know that lines 36-39 are never executed, and thus they should not be reported
as buggy. This lead us to our first proposition: The information reported by an algorith-
mic debugger should be dynamic and not static. That is, the output should be the part
of a method that has been actually executed to produce the bug, instead of the whole
method.

We think that this problem comes from the first implementations of AD and it has
been inherited in latter theoretical and practical developments. In fact, if we execute
this program with the debuggers: Buddha [26], DDT [4], Freja [21], Hat-Delta (and its
predecessor Hat-Detect) [8], B.i.O. [3], Mercury’s Algorithmic Debugger [19], Münster
Curry Debugger [18], Nude [20], DDJ [13], and HDJ [11], they all would output the
whole sumNumbers as buggy.

Traditionally, AD reports a whole method as buggy. To reduce the granularity of
errors, new techniques have appeared (see, e.g., [16, 5]) that allow us to debug inside
a method. Unfortunately, the standard definition of ET is not prepared for that. In fact,
some of the recent transformations defined for AD do not fit in the traditional definition
of the data structures used in this discipline. For instance, the Tree Balancing technique
presented in [15], or the zooming technique presented in [5] cannot be represented with
standard AD data structures such as the Evaluation Dependence Tree [24].

This lack of a common theoretical framework with standard data structures that
are powerful enough as to represent recent developments makes researchers to reinvent



the wheel once and again. In particular, we have observed that researchers (including
ourselves) have produced local and partial formalizations to define their systems for a
particular language and/or implementation. These theoretical developments are hardly
reusable in other languages, and thus, they only serve as a formal description of their
system, or as a means to prove results.

1.2 Contributions

In this work, we propose a new redefinition of AD in such a way that:

1. It is paradigm- and language-independent, and thus it is reusable by other re-
searchers.

2. It is a conservative generalization of the traditional formulation of AD, in such a
way that many previous AD techniques are a particular case of this new formula-
tion.

3. It is formulated in a way that definitions of the data structures, properties, strate-
gies, and algorithms are specified separately, so that they can be reused and/or con-
cretized to a particular case.

4. It states that the output of an algorithmic debugger should contain dynamic infor-
mation (i.e., it should not include non-executed code).

5. It allows the debugger to ask questions about the code inside a method (and not
only about the whole methods).

We do not claim that our definitions cannot be further generalized, but we do claim
that this generalization is appropriate and enough for the current state of the art (con-
trarily to the current formulation). We also provide some UML models to clarify and
categorize different ideas introduced in the recent bibliography, so that AD techniques
can be classified with them. Finally, we provide properties that researchers should re-
port about their AD techniques, because these properties allow other researchers and
developers to know whether a given technique is useful for a particular application or
not.

1.3 Outline of the Paper

The rest of the paper is structured as follows: First, in Section 2 we discuss the related
work. Then, in Section 3 we present our new formulation of AD. It is structured in four
parts: the ET, search strategies for AD, transformations for AD, and an AD scheme.
Finally, Section 4 concludes.

2 Related Work

Algorithmic debugging has been applied to all mature languages. All current implemen-
tations use a sort of ET to represent computations. Even in those lazy implementations
of AD where the execution of the front-end and the back-end is interleaved (see, e.g.,
[22]), the construction of the ET is needed before debugging. Along the years each
paradigm has adopted a well-defined and studied data structure to implement the ET.



2.1 A Little Bit of History

The first notion of ET appeared in the seminal work by Shapiro [27] in the context of
the logic paradigm. Shapiro used refutation trees as ETs. Later implementations of AD
in the logic paradigm such as NU-Prolog [29, 2] also used refutation trees.

In the context of the functional paradigm, the data structure used was proposed
by Henrik Nilsson and Jan Sparud: The Evaluation Dependence Tree (EDT). They first
proposed this data structure as a record of the execution [24], and then, as an appropriate
ET for AD [25]. The EDT is particularly useful to represent lazy computations by hiding
non-computed terms. In fact, the own EDT can be computed lazily as in [22]. The most
successful implementations of AD for the functional paradigm are based on the EDT.
Notable cases are the debuggers Freja [21], Hat-Delta [8], and Buddha [26].

In multi-paradigm languages such as Mercury, TOY, or Curry, the ET is also a proof
tree, or an EDT. Examples of debuggers for these languages are the Mercury Debugger
[19], the Münster Curry Debugger [18], DDT [4], and B.i.O [3].

In the imperative paradigm, a redefinition of the EDT was used. It has been often
called Execution Tree [10, 13], but, conceptually, it is equivalent to the EDT, and it can
be seen as a dynamic version of the Call Graph where every single call uses a different
node in the graph, and thus no cycles are possible (i.e., it is a tree).

2.2 Modern Implementations

All the debuggers mentioned in previous sections are somehow “standard” in the sense
that they are based on the standard definition of ET (either refutation trees or the EDT).
However, in the last 5 years, there has been a new trend in AD tools: They implement
new techniques that go beyond the standard definition of ET. Contrarily to the previ-
ously described tools, modern algorithmic debuggers are not standalone tools. They
are plugins that can be integrated as part of an IDE. Examples of these debuggers
are JHyde [12] and HDJ [11], being both of them part of Eclipse. Precisely because
they are integrated into a development environment, they have direct access to dynamic
information—they can even manipulate the JVM at runtime—that can be used to en-
hance the debugging session. In particular, the following techniques go beyond standard
ETs: (i) Tree compression hides nodes of the ET (it breaks the standard parent-child re-
lation in the ET). (ii) Tree balancing introduces new artificial nodes in the ET (it breaks
the standard definition of ET node). (iii) Loop expansion and (iv) ET zooming decom-
pose ET nodes (they break the standard definition of ET node). We are not aware of any
definition of ET able to represent the previous four techniques.

3 Paradigm-Independent Redefinition of Algorithmic Debugging

Some of our last developments for AD cannot be formalized with the standard AD
formulation. In a few cases, we just skipped the formalization of our technique and
provided an implementation. In other cases we wanted to prove some properties, and
thus we formalized (for one specific language, e.g., Java) the part of the system affected
by those properties. Other developments were done for other paradigms, e.g., the func-
tional paradigm, and we also formalized a different part of the system with different



data structures. We have observed other researchers doing the same, and clearly, this is
due to the lack of a standard solution.

We want to provide a definition of AD that is paradigm-independent (i.e., it can be
used by either imperative- or declarative- languages). From the best of our knowledge,
there does not exist such a formal definition of algorithmic debugging. Hence, in this
section we formulate algorithmic debugging in an abstract way. The main generalization
of our new formulation is considering that ET nodes are not necessarily routines as
in previous definitions (see, e.g., [24]). Contrarily, we allow ET nodes to contain any
piece of code. This permits AD to report any code as buggy, and not only routines, thus
potentially reducing the granularity of errors to single expressions.

In the following, we will only call Execution Tree to our new definition, and we
will call Routine Tree (RT) to the traditional definition (that we also formalize in the
next sections). Because our new definition is a conservative generalization, the RT is a
particular case of the ET as it can be observed in the UML model of Figure 3.

Fig. 3. Debugging Hierarchy

Observe that an execution node can be specialized depending on the piece of code
it represents. In particular, we specialize three kinds of execution nodes named Rou-
tine Node, Projection Node, and Collapse Node. They correspond to definitions already
existing in the literature (see [10, 15]), but other kinds of nodes could appear in the
future.

3.1 The Execution Tree

In this section we introduce some notation and formalize the notion of Execution Tree
used in the rest of the paper. We want to keep the discussion and definitions in this sec-
tion paradigm-independent. Hence, we consider programs as state transition systems.

Definition 1 (Program). A program P = {W, I,R} consists of:

– W: A set of states.
– I: A set of starting states, such that I ⊆W.
– R: A transition relation, such that R⊆W ×W.

Definition 2 (Computation). A computation is a maximal sequence of states s1,s2, . . .
such that:



– s1 is a starting state, i.e., s1 ∈ I.
– (si,si+1) ∈ R for all i≥ 1 (and i≤ n−1, if the sequence is of the finite length n).

A finite segment si,si+1, . . . ,s j where 1≤ i < j ≤ n is called a subcomputation.

In the source code of a program, we consider statements3 as the basic execution unit.
Therefore, in the following, the source code of a program P is a set of statements
st1,st2, . . . ,stn that produces the computation s0,s1, . . . ,sm for a given starting state s0.
We also use the notion of code fragment of a program P, which refers to any subset
of statements in the source code of P that produces a subcomputation si, . . . ,s j with
0 ≤ i < j ≤ m. Code fragments often represent functions or loops in a program, but
they can also represent blocks, single statements, or even function calls together with
the whole called function.

We assume that each state in W is composed of pairs variable-value. The initial and
final states, si and s j, describe the effects of a given code fragment c. All three together
form a code behavior.

Definition 3 (Code Behavior). Given a code fragment c and a computation Cc =
s0, . . . ,sn of c for a given initial state s0, the code behavior of Cc is a triple (s0,PCc(c),sn),
where PCc(c) is the projection of c modulo Cc that contains the minimum subset of c
needed to produce the computation s0, ...,sn.

Code behavior corresponds to the questions asked by the debugger. These questions
are along the lines of Should the code c with the initial state s0 produce the final state
sn?, or Code c produced sn from s0, is that correct?. Many previous definitions of AD
defined the code behavior as the triple (s0,c,sn), which corresponded to the execution
of a routine c, and usually the debugger only needed to show the call to c instead of
showing both the call to c and the own routine c. This definition, however, introduces
two important novelties:

– It allows c to be any code fragment, and not only a routine.
– It substitutes c by a projection of c modulo Cc, thus the code associated to a code

behavior only contains the code needed to execute that behavior.

This dynamic notion is much more precise than the usual static notion that considers
(the complete code of) a routine. For the sake of clarity, we sometimes use (s0,d,sn)
meaning (s0,PCc(c),sn) when talking about a generic code behavior.

Definition 4 (Oracle Answers Set). Given a code fragment c, and the universe U of
all possible subcomputations of c (for all possible initial states), the oracle answers set
A of c is a set that contains one tuple (B,a) for each subcomputation Cc ∈U where:

1. B is the code behavior of Cc, and
2. a is a boolean.

3 Note the careful use of the word “statement" to refer to either imperative instructions, declar-
ative expressions, etc.



Intuitively, the oracle answers set represents the gold standard that determines whether
any code behavior is correct. It is used as a reference point against which one can
compare computations to determine whether they are correct or wrong.
We are now in a position to define the nodes of an execution tree.

Definition 5 (Execution Node). Let Cc be a computation of a code fragment c. In ad-
dition, let A be the oracle answers set of c. The execution node associated with Cc is a
pair (B , S ) where:

1. B is the code behavior of Cc and
2. S is the state of the node, which can be either:

– undefined, or

– the correctness of Cc with respect to A:
{

correct if (Cc, true) ∈ A
wrong if (Cc, f alse) ∈ A

Observe that an execution node contains (inside B) the source code PCc(c) responsible
of the computation it represents. Hence, if this node is eventually declared as buggy, its
associated code is uniquely identified. Observe also that this code determines whether
the node is a routine node or another kind of node depending on the code fragment that
it represents.

In order to properly define execution trees, we need to define first a relation between
execution nodes that specifies the parent-child relation.

Definition 6 (Execution Nodes Dependency). Let N be a set of execution nodes. Given
a computation Cc with associated execution node nc ∈ N, and a subcomputation Cc′

of Cc with associated execution node nc′ ∈ N, we say that nc directly depends on nc′

(expressed as nc
N→ nc′ ) if and only if there does not exist a subcomputation Cc′′ of Cc

with associated execution node nc′′ ∈ N such that Cc′ is a subcomputation of Cc′′ .

Observe that this dependency relation is intransitive, which is needed to define the
parent-child relation in a tree. Hence, provided that we have three execution nodes,
n1,n2,n3, if n1

N→ n2
N→ n3 then n1 6

N→ n3. Finally, we define an execution tree. It essen-
tially represents the execution of a code in a structured way where each node represents
a sub-execution of its parent. Formally,

Definition 7 (Execution Tree). Let Cc be a computation of a code fragment c. An Ex-
ecution Tree (ET) of Cc is a tree T = (N,E) where:

– ∀n ∈ N, n is the execution node associated with a subcomputation of Cc,
– The root of the ET is the execution node associated with Cc,
– ∀(n1,n2) ∈ E . n1

N→ n2.

This definition is a generalization of the usual call tree (CT), which in turn comes from
the refutation trees initially defined for AD in [27]. One important difference between
them is that, given a computation Cc of a code fragment c, the CT associated with Cc is
unique because it is only formed of routine nodes. In contrast, there exist different valid
ETs associated with Cc due to the flexibility introduced by execution nodes (i.e., with
routine nodes only one set N is possible, while with execution nodes different sets N



are possible). This relation 1 to n is interesting because it leaves room for transforming
the ET and still being valid. Contrarily, the CT cannot be transformed because it would
stop being a valid CT.

Once the ET is built, the debugger traverses the ET asking the oracle about the
correctness of the information stored in each node. Using the answers, the debugger
identifies a buggy node that is associated with a buggy code of the program.

Definition 8 (Buggy Node). Let T = (N,E) be an execution tree. A buggy node of T
is an execution node n = (B,S) ∈ N where:

(i) S = wrong, and
(ii) ∀n′ = (B ′,S ′) ∈ N, (n,n′) ∈ E . S ′ = correct.

Moreover, we say that a buggy node n is traceable if and only if:
(iii) ∀n′ = (B ′,S ′) ∈ N, (n′,n) ∈ E∗ . S ′ = wrong.

We use E∗ to refer to the symmetric and transitive closure of E. This is the usual def-
inition of buggy node (see, e.g., [23]): a wrong node with all its children correct. We
also introduce the notion of traceable. Roughly, traceable buggy nodes are those buggy
nodes that can be directly responsible of the wrong behavior of the program (their ef-
fects are visible in the root of the tree), or at least, there is a path of wrong nodes from
the root (which must be wrong) to them. This property makes them debuggable by all
AD strategies that are variants of Top-Down (see [28]).

Lemma 1 (Buggy Code). Let T be an ET with a buggy node ((s,d,s′),S) whose chil-
dren are ((s1,d1,s′1),S1), ((s2,d2,s′2),S2) . . . ((sn,dn,s′n),Sn). Then d\

⋃
1≤i≤n

di contains

a bug.

Proof (Buggy Code). Trivial adaptation from the proof by Lloyd [17] for Prolog.

3.2 Routine Tree

In this section we formalize the notion of RT used in most AD literature as a particular
case of the ET. We call routine tree to this specialization of the ET to make explicit its
multi-paradigm nature, because routines can refer to functions, procedures, methods,
predicates, etc. We first define a routine node, which is a specialization of an execution
node.

Definition 9 (Routine Node). A routine node is an execution node ((s0,PCc(c),sn),S)
where code fragment c only contains:

– a routine call r, together with
– all the code of the routines directly or indirectly called from r.

Therefore, in a routine node, s0 and sn are, respectively, the states just before and after
the execution of the routine called. Almost all implementations reduce c to the routine
call, and they skip the code of the own routine.

Definition 10 (Routine Tree). A routine tree is an execution tree where all nodes are
routine nodes.



3.3 Search Strategies for AD

Once the ET is built, AD uses a search strategy to select one node. During many years,
the main goal of most AD researchers has been the definition of better strategies to re-
duce the search space after every answer, and to reduce the complexity of the questions.
A survey of search strategies for AD can be found in [28]. In our formalization, a search
strategy is just a function that analyzes the ET and returns an execution node (either the
next node to ask, or the buggy node).

Definition 11 (Strategy). A search strategy is a function whose input is an execution
tree T = (N,E) and whose output is an execution node n = (B,S) ∈ N such that:

1. S = undefined, or
2. n is a buggy node.

3.4 AD Transformations

Some of the last research developments in AD have been focussed on the definition of
transformations of the ET. The goal of these transformations is to improve its structure
before the debugging session so that search strategies become more efficient. Some of
these transformations cannot be represented with a routine tree. For this reason, we want
to include this section to classify the kinds of transformations that have been defined so
far, and establish a hierarchy so that future transformations can be also classified.

There exist three essential elements in the front-end of an algorithmic debugger. The
modification of any of them can lead to a different final output of the front-end (i.e., a
different ET). Therefore, we classify the transformations in three different levels:

– Transformations of the source code: Transformations of the source code such as
inlining are used to reduce the size of the ET by hiding routines. Contrarily, trans-
formations such as loops to recursion [14] are used to augment the size of the ET
to reduce the granularity of the buggy code reported (a loop instead of a routine).
In general, users should not be aware of the internal transformations applied by the
debugger, thus the code fragment shown to the user should be the original code.

– Transformations of the execution: Transforming the way in which the source code
is executed can change the ET generated. One example is changing eager evalua-
tion by lazy evaluation. Another example is passing arguments by value instead of
passing them by reference. We are not aware of any implementation that includes
transformations of this kind.

– Transformations of the ET: Transforming the ET can significantly reduce the num-
ber of questions generated. In general, the ET is transformed with the aim of mak-
ing search strategies to behave as a dichotomic search. Hence, they try to produce
balanced ETs [15], or also deep trees that can be cut in the middle. Other transfor-
mations such as Tree compression [9] try to avoid the repetition of questions about
the same routine.



Fig. 4. Transformations Hierarchy

Given a computation Cc of a code fragment c, being T = (N,E) the execution tree
of Cc, we represent with T (T ) either: (i) a transformation T ′ of T , (ii) the ET of a
computation C ′c transformed from Cc, or (iii) the ET of a computation Cc′ of a code
fragment c′ transformed from c. Hence, T (T ) is the ET produced after applying one or
more of the previously described transformations. Note that we use T to refer to the ET
that would have been generated without applying any transformation. A transformation
must have some specific properties to be useful, otherwise, we have the risk of improv-
ing the structure of the ET at the cost of losing buggy nodes. We propose four different
properties to measure the impact of a transformation on a given ET: Buggy Node Com-
pleteness, Buggy Code Completeness, Buggy Code Reduction, and Bug Existence. The
last one must be satisfied by any transformation to ensure that AD is still able to find at
least one bug. All of them are formally presented bellow.

Property 1 (Buggy Node Completeness). Given an ET T = (N,E), and its transformed
version T (T ) = (N′,E ′), ∀n ∈ N, if n is a buggy node in T then n is a buggy node in
T (T ).

Because all buggy nodes belong to both ETs, then, by Definition 7, the same buggy
code behaviors are detectable. Hence, all bugs that can be localized in the ET generated
before applying the transformation are still detectable after applying the transformation.
Many transformations cannot satisfy Property 1, but they can satisfy a relaxed version:

Property 2 (Buggy Code Completeness). Given an ET T = (N,E), and its transformed
version T (T ) = (N′,E ′), ∀n = ((s0,d,sn),S) ∈ N, n is a buggy node in T . ∃n′ =
((s′0,d

′,s′n) ∈ N′, n′ is a buggy node in T (T ) and d = d′.

This property ensures that all the code that can be reported as buggy in the original
ET, can be also reported as buggy in the transformed ET. However, the specific context
that produced the bug is not necessarily the same in the original and in the transformed
version. There exist transformations that violate the last condition (d = d′). However,
this is not a problem provided that d′ is a subset of d, because this means that the



code reported as buggy is smaller in the transformed code (i.e, precision is increased by
reducing the granularity of the bug found).

Property 3 (Buggy Code Reduction). Given an ET T = (N,E), and its transformed
version T (T ) = (N′,E ′), ∀n = ((s0,d,sn),S) ∈ N, n is a buggy node in T . ∃n′ =
((s′0,d

′,s′n) ∈ N′, n′ is a buggy node in T (T ) and d ⊆ d′.

Sometimes, these properties are further relaxed to a bug existence property.

Property 4 (Bug Existence). Given an ET T = (N,E), and its transformed version
T (T ) = (N′,E ′), If ∃n ∈ N, n is a buggy node in T , then ∃n′ ∈ N′, n′ is a buggy node
in T (T ).

Property 4 is the minimum exigible requirement to ensure that the transformation has
not hidden all bugs. Thus, all transformations must satisfy Property 4.

In Figure 4 we classify three transformations in the state of the art. Two of them,
tree balancing and loop expansion produce ETs that are not routine trees. The technique
tree balancing satisfies Property 1, except for collapse nodes that only satisfy Property
2, thus, all buggy nodes (except those replaced by collapsed nodes) are preserved. How-
ever buggy nodes can stop being traceable after this transformation. The technique loop
expansion satisfies Property 3, but not Property 2 (and thus, nor Property 1). The reduc-
tion in the buggy code is obtained introducing the ability in the ET of detecting bugs
inside loops. The technique tree compression satisfies Property 2, but not Property 1.

3.5 An AD Scheme

Finally, we describe Algorithm 1, a general schema of an algorithmic debugger that
includes all phases, from the generation of the ET to the bug reported. This algorithm
gives an idea of how and when, the ET, the transformations, the oracle, and the search
strategies participate in the whole debugging process.

The main function performs the two phases of AD (Lines 1-2) and then returns
a buggy code of the program (Line 3). In the first phase (function getExecutionTree)
the ET is created performing all possible transformations in the source code (Line 1),
in the execution (Line 3) and in the ET (Line 5). Once the ET is created, the second
phase (function debugTree) starts. During this phase, the debugger traverses the ET
selecting nodes with a search strategy (Line 2). Function (selectNode) implements one
of the search strategies in the literature. There has been a lot of research for more than
a decade concerning which should be the node to ask. A survey can be found in [28].
No matter what strategy is used, selectNode returns a node to ask (the state of the
node is undefined), or a buggy node (the state of the node is wrong (Line 3)). Once
a node has been selected, the debugger asks the oracle about its correctness (Line 5).
With the answer of the oracle, the debugger updates the state of the nodes of the ET
(Lines 5-7). Note that the answer of the oracle can affect the state of several nodes.
This can effectively change the structure of the ET, and thus, at this moment, a new ET
transformation could be used to optimize the ET (Line 8). Then, the process is repeated
selecting more nodes. When the strategy finds a buggy node (Lines 3-4) or it cannot
select more nodes (Line 1) the second phase finishes and the debugger returns (see



Algorithm 1 Main algorithm of an Algorithmic Debugger

Input: A program P and its input i.
Output: A buggy code C in P, or ⊥ if no bug is detected in P.
Initializations: A = /0 // Set of answers provided by the oracle

begin
1) T = getExecutionTree(P, i)
2) n = debugTree(T )
3) return getCode(n)

end

function debugTree(T = (N,E))
begin
1) while (∃(B ′,S ′) ∈ N,S ′ = undef ∨wrong)
2) (B,S) = selectNode(T ) // Strategy
3) if (S = wrong) then
4) return (B,S)
5) answer = askOracle(B)
6) A = A ∪ (B,answer)
7) updateStates(A ,N)
8) T = executionTreeTransformations(T )
9) return ⊥

end

function getExecutionTree(P, i)
begin
1) P′ = sourceCodeTransformations(P)
2) EP′ = executeProgram(P′, i)
3) E ′P′ = executionTransformations(EP′)
4) T = generateExecutionTree(E ′P′)
5) T ′ = executionTreeTransformations(T )
6) return T ′

end

function getCode(n)
begin
1) if (n = ((s0,d,sn),S)) then
2) return d
3) return ⊥

end

getCode function) the buggy code associated with the buggy node found, or it returns a
message indicating that there does not exist a bug, respectively. The last case happens,
e.g., when all nodes are reported as correct (it is indicated with ⊥ in Line 3).

4 Conclusion

In this paper we report about some of the problems identified in the current state of
the art of AD. One of the problems identified is that much of the recent work in the
area does not fit into the standard notions and definitions of AD. In particular, we claim
that practically all current definitions of the ET are obsolete with respect to the new
techniques proposed.

To solve this situation we propose a generalization of AD able to represent all ex-
istent AD transformations. We make this abstraction considering theoretical develop-
ments done for a particular language or technique that are generalized, but also con-
sidering novel implementations of AD that include techniques that have not been for-
malized. We also propose some properties useful to classify the recently proposed AD
transformations, and also future developments.

The main objectives of this work are two: First, putting together different ideas that
have appeared in many works of AD. Putting these ideas together provides a wide per-
spective that allows us to make a step forward in the abstraction and generalization of
the theoretical side of AD. In addition, it allows us to provide classifications and tax-
onomies to help understanding the state of the art. Second, our new formulation of AD



tries to save time. Many researchers have defined once and again similar concepts used
in different languages and tools. We provide a paradigm-independent definition that is
general enough to represent all current techniques, and it can be easily instantiated to
any particular language.
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