
Submitted to:
PROLE 2014

c© R. Gutiérrez & S. Lucas
This work is licensed under the
Creative Commons Attribution License.

Towards an Incremental and Modular Termination Analysis
of Context-Sensitive Rewriting Systems (Work in Progress)∗

Raúl Gutiérrez
DSIC, Universitat Politècnica de València, Spain

rgutierrez@dsic.upv.es

Salvador Lucas
DSIC, Universitat Politècnica de València, Spain

slucas@dsic.upv.es

Modularity is essential in software development, where a piece of software is often designed and
implemented as a composition of simpler modules. So, if we want to prove that a program satisfies a
given property, a modular approach becomes natural. With the development and successful use of the
Dependency Pair Framework, which rather focuses on the decomposition of termination problems,
less attention has been payed to modularity issues (which rather require the opposite approach). But
the modular analysis of termination is still paramount for software developers. In this paper, we
analyze modularity of context-sensitive rewrite systems. A modularity analysis was carried out by
Gramlich and Lucas in 2002, but a correct notion of context-sensitive dependency pair (CS-DP) was
not obtained until 2006. In this paper, we analyze modularity using CS-DPs.

1 Introduction

Term rewriting systems (TRSs) with many rules are frequently specified following a modular and incre-
mental pattern and using well-known constructions such as if-then-else or while statements or generic
modules (mathematical operands, functions that operate with lists, etc.) that are combined and reused
many times to obtain the final program. When we try to prove computational properties on these systems
with many rules, it is helpful to get use of the modular decomposition given by the developer to check
properties by decomposition.

Termination is a fundamental property in programming languages, which allows us to know if for
every computation the system will return in a finite time. The main problem dealing with termination
from a modular perspective is that termination is not modular, even the union of two terminating TRSs
that share no function symbol can be a non-terminating TRS, as shown by Toyama in 1987 [16].

Example 1 ([16]) Toyama’s example:

R1 = { f(0,1,x) → f(x,x,x)} R2 = { c(x,y) → x
c(x,y) → y}

The TRS R = R1∪R2 resulting from the union of these two terminating TRSs can generate the follow-
ing infinite rewrite sequence:

f(c(0,1),c(0,1),c(0,1))→R2 f(0,c(0,1),c(0,1))→R2 f(0,1,c(0,1))→R1 f(c(0,1),c(0,1),c(0,1))→R2 · · ·

∗Partially supported by the EU (FEDER), MINECO projects TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and
project PROMETEO/2011/052. Salvador Lucas’ research was developed during a sabbatical year at the CS Dept. of the
UIUC and was also partially supported by NSF grant CNS 13-19109, Spanish MECD grant PRX12/00214, and GV grant
BEST/2014/026. Raúl Gutiérrez is also partially supported by a Juan de la Cierva Fellowship from the Spanish MINECO, ref.
JCI-2012-13528.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

190 Towards an Incremental and Modular Termination Analysis of CS-TRS

This problem appears when combining duplicating and collapsing rules. A rule is duplicating if the
number of occurrences of a variable in the right-hand side is greater than in the left-hand side, and a rule
is collapsing if its right-hand side is a variable.

To obtain a modular analysis of termination, a more restrictive notion of termination is imposed:
Cε -termination [10]. A system is Cε -terminating if it is still terminating after adding the rules in R2,
called Cε -rules. These rules are used to simulate the behavior of the problematic collapsing rules. Cε -
termination is a modular property for constructor sharing TRSs.

Context-sensitive rewriting (CSR [14, 15]) extends the signature of a rewrite system with a replace-
ment map. A replacement map is a mapping µ : F →℘(N) satisfying µ(f) ⊆ {1, . . . ,ar(f)} for every
function symbol f in the signature F [14], where ar(f) means the arity of f . We use it to discriminate the
argument positions in which the rewriting steps are allowed; rewriting at the topmost position is always
possible. In this way, a restriction of the rewrite relation is obtained. CSR has shown useful to model
evaluation strategies in programming languages and also to achieve a terminating behaviour by prun-
ing (all) infinite rewrite sequences. In particular, it is an essential ingredient to analyze the termination
behavior of programming languages like CafeOBJ, Maude, OBJ, etc. [8, 12].

Example 2 Consider the following context-sensitive term rewriting system (CS-TRS) from [9] that com-
putes the list of all prime numers using the sieve of Eratosthenes in a lazy way:

if(true,x,y) → x sieve(x:y) → x:sieve(filter(x,y))
if(false,x,y) → y from(x) → x:from(s(x))
filter(x,y:z) → if(divides(x,y),filter(x,z),y:filter(x,z)) primes → sieve(from(s(s(0))))

together with µ(if) = µ(:) = {1} and µ(f) = {1, . . . ,ar(f)} for all other symbols f . Function from is
used to generate an infinite list of natural numbers and function sieve filters those that are primes. The
replacement restriction on the second argument of (:) avoids an infinite computation. This system was
proved µ-terminating in [2] showing that the dependency graph has no cycles. The reason is that divides
rule was not defined and the term divides(s(s(x)),y) could not be rewritten to true or false. But, if we
define divides in a standard way:

zero(0) → true x−0 → x
zero(s(x)) → false s(x)− s(y) → x− y

mod(0,s(x)) → 0 s(x)≤0 → false
mod(s(x),s(y)) → if(y≤ x,mod(x− y,s(y)),s(x)) 0≤ x → true

divides(x,y) → zero(mod(y,x)) s(x)≤ s(y) → x≤ y

There is no tool for proving termination that can prove this system µ-terminating although we know that
these new rules are µ-terminating.

In [11], a modularity analysis of termination of CSR was carried out, but since there was no correct
definition of CS-DP until [1], a modular analysis of termination based on CS-DPs was not possible. In
this paper, we exploit the modular behaviour of CS-DPs to obtain modularity results from a different
perspective of the obtained by Gramlich and Lucas.

2 Preliminaries

See [7] and [14] for basics on term rewriting and CSR, respectively. Throughout the paper, X denotes a
countable set of variables and F denotes a signature, i.e., a set of function symbols each having a fixed

R. Gutiérrez & S. Lucas 191

arity given by a mapping ar : F → N. The set of terms built from F and X is T (F ,X). Terms
are viewed as labelled trees in the usual way. The symbol labeling the root of the term s is denoted as
root(s). Positions p,q, . . . are represented by chains of positive natural numbers used to address subterms
of s. Given positions p,q, we denote its concatenation as p.q. We denote the empty chain by Λ. The
set of positions of a term s is Pos(s). For a replacement map µ , the set of active positions Posµ(s) of
s ∈ T (F ,X) is: Posµ(s) = {Λ}, if s ∈X and Posµ(s) = {Λ}∪

⋃
i∈µ(root(s)) i.Posµ(s|i), if t 6∈X .

Let V ar(s) = {x ∈X | ∃p ∈Pos(s),s|p = x}, V arµ(s) = {x ∈ V ar(s) | ∃p ∈Posµ(s),s|p = x} and
V ar�µ(s) = {x ∈ V ar(s) | s�

�µ
x}. We say that s�µ t if there is p ∈Posµ(s) such that t = s|p. We write

s�µ t if s�µ t and s 6= t. Moreover, s�
�µ

t if there is a frozen position p, i.e. p ∈Pos(s)−Posµ(s),
such that t = s|p. A rewrite rule is an ordered pair (`,r), written `→ r, with `,r ∈ T (F ,X), ` /∈X
and V ar(r) ⊆ V ar(`). A TRS is a pair R = (F ,R) where R is a set of rewrite rules. Given R =
(F ,R), we consider F as the disjoint union F = C]D of symbols c ∈ C , called constructors and
symbols f ∈ D , called defined functions, where D = {root(`) | `→ r ∈ R} and C = F −D . We say
that t ∈ T (F ,X)−X is a hidden term of s, t ∈ HT(s,µ), if s�

�µ
t and root(t) is defined. Given a

CS-TRS (R,µ), we have s ↪→R,µ t (alternative s
p
↪→R,µ t if we want to make the position explicit) if

there are `→ r ∈ R, p ∈Posµ(s) and a substitution σ with s|p = σ(`) and t = t[σ(r)]p. We write

s
>q
↪−→R,µ t if s

p
↪→R,µ t and q > p. A rule `→ r is conservative if V arµ(r) ⊆ V arµ(`). A rule `→ r

is strongly conservative if it is conservative and V arµ(`)∩V ar�µ(`) = V arµ(r)∩V ar�µ(r) = ∅. R is
conservative (resp. strongly conservative) if all rules in R are. A CS-TRS (R,µ) is terminating if ↪→R,µ

is well-founded. A CS-TRS (R,µ) is Cε -terminating [11] iff (R]Cε ,µ] µCε
) is terminating, where

Cε = ({c},{c(x,y)→ x,c(x,y)→ y}) (with c being a fresh symbol) and µCε
(c) = {1,2}.

2.1 Context Sensitive Dependency Pairs

Dependency pairs [6] describe the propagation of function calls in rewrite sequences. In CSR, we have
two kind of (potential) function calls: direct calls, i.e., calls at active (replacing) positions and delayed
calls, i.e., calls at frozen (non-replacing) positions that can be activated in forthcoming reduction steps.
These function calls are captured in two different ways. For rules `→ r such that r contains some defined
symbol g at an active position, the function call to g is represented as a new rule u→ v (called dependency
pair) where u= f](`1, . . . , `k) if `= f(`1, . . . , `k) and v= g](s1, . . . ,sm) if g(s1, . . . ,sm) is an active subterm
of r and g is defined. The notation f] for a given symbol f means that f is marked. In practice, we often
capitalize f and use F instead of f] in our examples. Function calls to g which are at frozen positions of
r cannot be issued ‘immediately’, but could be activated ‘in the future’. This situation is carried out by
the migrating variables and modeled by collapsing DPs. Given a rule `→ r, x is a migrating variable if
x is at an active position in r but not in ` [1]. For rules `→ r, collapsing DPs are pairs of the form u→ x
where u = f](`1, . . . , `k) if ` = f(`1, . . . , `k) and x is a migrating variable. The idea is that calls which
can eventually be activated are subterms of σ(x) for σ being the matching substitution of the rewriting
step involving the rule `→ r. Formally, DP(R,µ) = DPF (R,µ)∪DPX (R,µ) where DPF (R,µ) =
{`]→ s] | `→ r ∈ R,r�µ s,root(s) ∈D}, DPX (R,µ) = {`]→ x | `→ r ∈ R,x ∈ V arµ(r)−V arµ(l)}
and µ](f) = µ(f) if f ∈F , and µ](f]) = µ(f) if f ∈D .

192 Towards an Incremental and Modular Termination Analysis of CS-TRS

Example 3 In Example 2, we obtain the following set of CS-DPs:

PRIMES → SIEVE(from(s(s(0)))) IF(true,x,y) → x
PRIMES → FROM(s(s(0))) IF(false,x,y) → y

FILTER(x,y:z) → IF(divides(x,y),filter(x,z),y:filter(x,z)) DIVIDES(x,y) → ZERO(mod(y,x))
FILTER(x,y:z) → DIVIDES(x,y) DIVIDES(x,y) → MOD(y,x)

MOD(s(x),s(y)) → y≤]x s(x)−]s(y) → x−]y
MOD(s(x),s(y)) → IF(y≤ x,mod(x− y,s(y)),s(x)) s(x)≤]s(y) → x≤]y

together with µ(IF) = µ(:) = {1} and µ(f) = {1, . . . ,ar(f)} for all other symbols f .

To prove termination, we have to show that there is no infinite chain of CS-DPs. A sequence u1→ v1,
u2 → v2, . . . of CS-DPs is a chain if there is a substitution such that for all i ≥ 1, (1) if ui → vi is not
collapsing, then σ(vi) ↪→∗R,µ σ(ui+1) or (2) if ui→ vi is collapsing, then there is a term wi such that (2a)

σ(vi)�µ wi and (2b) w]
i ↪→∗R,µ σ(ui+1). From now on, we assume that all CS-TRSs are finite.

3 Rewriting Modules

In programming, the idea of module comes in a natural way. A programmer groups in a module defini-
tions of functions having something in common (not necessarily among them; often as a set of services
provided to external users –i.e., other modules–). Then new modules which use these functions are writ-
ten. In term rewriting, modules arise in a natural way, when rules defining a given function symbol f
(by means of rules f (`1, . . . , `k)→ r) are collected together, and they are used by other rules from other
modules. This modular and hierarchical approach is exploited in [17] to prove termination in a modular
and incremental way. Although termination is not modular (in general), the author succeeded thanks
to imposing a harder termination condition for modules: the Cε -termination. The notion of module is
introduced by Urbain using the following notation.

Definition 1 [17] Let R1 = (F1,R1) be a TRS. A module extending R1 is a pair [F2 |R2] such that:

1. F1∩F2 =∅;

2. R2 is a TRS over F1∪F2;

3. For all `→ r ∈ R2, root(`) ∈F2.

Then, R1∪R2 over F1∪F2 is a hierarchical extension of R1 with module [F2 |R2], written:

R1←− [F2 |R2]

Note that D2 ⊆F2. Roughly speaking, the notation [F |R] behaves as an interface of R where F
represents the symbols that can be imported by other modules. Context-sensitive rewriting extends the
signature of TRSs with a replacement map. Then, if we want to extend the previous modular approach
to CSR, we impose an agreement among the replacement maps of the shared symbols between modules.
For that reason we require the replacement maps for the modules to be compatible in the following sense.

Definition 2 (Compatibility [11]) A replacement map µ1 on F1 is compatible with a replacement map
µ2 on F2 if they have the same replacement restrictions for shared function symbols, i.e., if µ1(f) =
µ2(f) for every f ∈F1∩F2.

Now, we are going to extend Definition 1 for taking into account the replacement restrictions.

R. Gutiérrez & S. Lucas 193

Definition 3 Let R1 = (F1,R1) be a TRS and µ1 a replacement map on F1. A module extending
(R1,µ1) is a pair [F2 | (R2,µ2)] such that:

1. F1∩F2 =∅;

2. R2 is a TRS over F1∪F2 and µ2 is a replacement map on F1∪F2;

3. µ1 are µ2 are compatible;

4. for all `→ r ∈ R2, root(`) ∈F2.
System (R1 ∪R2,µ1 ∪ µ2) over F1 ∪F2 is a hierarchical extension of (R1,µ1) with module [F2 |
(R2,µ2)] and we write it like:

(R1,µ1)←− [F2 | (R2,µ2)]

Note that symbols from F1 can appear in rules from R2, but not as root symbols on the left-hand side
of the rules. With this notation, we can also describe the union of composable systems. For the sake of
readability, we denote [F0 | (R0,µ0)]←− [F1 | (R1,µ1)] the hierarchical extension with [F1 | (R1,µ1)]
of the whole hierarchy extended with [F0 | (R0,µ0)].
Definition 4 We say that a module [F2 | (R2,µ2)] extends a hierarchy headed by [F0 | (R0,µ0)] inde-
pendently of a module [F1 | (R1,µ1)] if:

1. F1∩F2 =∅;

2. [F0 | (R0,µ0)]←− [F1 | (R1,µ1)] and

3. [F0 | (R0,µ0)]←− [F2 | (R2,µ2)].

3.1 Modular Decomposition

As for TRSs, we show how to decompose a CS-TRS into a ‘canonical’ modular hierarchy, a hierarchy
of minimal modules which cannot be split up further. In order to do that, we follow the graph of purely
syntactical dependency relation between symbols given in [17].
Definition 5 (Dependency) Given a TRS R = (F ,R), we say that f ∈F directly depends on g ∈F ,
written f 3g, if and there is a rule `→ r ∈ R with

• f = root(`) and

• g occurs in ` or r.

Besides the original dependency relation in [17], our dependency relation also considers the symbols in
the left-hand side of the rule. Using this relation, the decomposition is done in two steps:
Definition 6 (Modular Decomposition of a TRS) For a TRS R = (F ,R):

1. we build a graph G the nodes of which are symbols of F and such that there is an arc from a node
x to a node y if and only if x3 y

2. we pack together symbols of strongly connected components of G , i.e., symbols f and g such that:

f 3∗ g and g3∗ f

In the obtained hierarchy there is no cycle because symbols of mutually recursive functions appear in the
same module. Thus, they belong to the same modules. In the dependency pair framework, a similar graph
is constructed for decomposing a DP problem into smaller DP problems, but the dependency relation is
more involved because the idea is to capture possible infinite chains between pairs. Dealing with CSR,
the replacement restrictions do not change the natural decomposition of the modules.
Example 4 Figure 1 shows the modular decomposition of Example 2.

194 Towards an Incremental and Modular Termination Analysis of CS-TRS

F{:}
∅

F{0,s}
∅

F{true,false}
∅

F{−}
R{−}

??

F{≤}
R{≤}

__ ==

F{zero}
R{zero}

OO
gg

F{if}
R{if}

__

F{from}
R{from}

HHOO

F{mod}
R{mod}

gg

WW

OO
77

F{divides}
R{divides}

OO

FF

F{filter}
R{filter}

UU

??

GG

F{sieve}
R{sieve}

OO

F{primes}
R{primes}

RR

??

Figure 1: Modular decomposition of Example 2

4 Incremental and Modular Termination

Modular decomposition is quite natural, but from a CS-DP and CS-DP chain point of view, dependencies
between modules differ. In this section, we define the notions of CS-DP of a module and relative CS-DP
chain.

4.1 CS-DPs of Modules

In CSR, we have to consider two kinds of dependency pairs, the DPs that represent direct calls and the
DPs that represent activations of function calls. When dealing with modules, the notion of collapsing DP
is still important.

Example 5 [18] (Example 5 modified) Let us consider the following example:

R1 = {if(true,x,y) → x R2 = {f(x) → if(x,c, f(false))}
if(false,x,y) → y}

R. Gutiérrez & S. Lucas 195

where µ2(f) = {1}, µ1(if) = µ2(if) = {1,2}, and µ2(c) = µ1(true) = µ1(false) = µ2(false) =∅. We can
see (R1∪R2,µ1∪µ2) over F1∪F2 as a hierarchichal extension of (R1,µ1) with module [F2 | (R2,µ2)]
(i.e., (R1,µ1)← [F2 | (R2,µ2)]). The set of CS-DPs of (R1,µ1) is DP1 = {IF(false,x,y)→ y} and the
set of CS-DPs of (R2,µ2) is DP2 = ∅ (if is not a defined function in R2). Both CS-TRSs are Cε -
terminating independently, but if we consider the union of these two CS-TRSs (R1 ∪R2,µ1 ∪ µ2), the
set of CS-DPs of (R1∪R2,µ1∪µ2) is DP3 = {IF(false,x,y)→ y,F(x)→ IF(x,c, f(false))} (a new CS-DP
is considered) and an infinite CS-DP chain exists:

F(false)→DP3 IF(false,c, f(false))→DP3 F(false)→DP3 · · ·

where the new CS-DP appeared by the union is relevant to capture the infinite computation.

The original notion of DP of module only considers DPs appeared in the module, but as we have seen in
the example this is not the case when dealing with CS-DPs. To obtiain a similar notion of DP of module,
we have to work with conservative CS-TRSs, i.e., CS-TRSs without function call activations (collapsing
CS-DPs).

Definition 7 Let M = [FM | (R,µ)] be a module where R = (F ,R) = (C]D ,R) is a TRS, FM ⊆F ,
µ a replacement map on F and (R,µ) is conservative. We define MDP(M) = MDPF (M) to be the
set of conservative context-sensitive dependency pairs1 of module M where:

MDPF (M) = {`]→ s] | `→ r ∈ R,r�µ s, root(s) ∈D ∩FM }

We extend µ into µ] by µ](f) = µ(f) if f ∈F and µ](f]) = µ(f) if f ∈D ∩FM .

4.2 Relative CS-DP Chains

From the definition of CS-DPs of a module, we define CS-DP chains relative to some CS-TRS.

Definition 8 Let M = [F1 | (R1,µ1)] be a module where (R1,µ1) is conservative and (R2,µ2) an
arbitrary CS-TRS where µ1 and µ2 are compatible. A CS-DP chain of MDP(M) relative to (R2,µ2)
is a sequence of pairs ui → vi ∈ MDP(M) together with a substitution σ such that for all i ≥ 1, We
assume that different occurrences of pairs do not share any variable. A CS-DP chain is minimal iff σ(vi)
is (R2,µ2)-terminating.

Most recent notion of chain, the (P,R,S ,µ)-chain, contains three TRSs: P models the behaviour of
CS-DPs; R models the behaviour of the rules; and S models the subterm and marking in CS-DP chains.
But the given definition is enough for the purpose of the paper because we are dealing with conservative
CS-TRSs.

Proposition 1 A conservative CS-TRS (R,µ) where R = (F ,R) is Cε -terminating if and only if there
is no infinite minimal chain of MDP([F | (R,µ)]) relative to (R ∪Cε ,µ ∪µCε

).

Proof 1 Since c does not belong to F , and since µCε
(c)= {1,2} then DP(R∪Cε ,µ∪µCε

)=DP(R,µ),
where DP is a function that obtains the CS-DPs of a CS-TRS. So, MDP([F | (R,µ)]) = DP(R∪Cε ,µ∪
µCε

). Therefore, proving the termination of MDP([F | (R,µ)]) relative to (R∪Cε ,µ∪µCε
) is the same

as proving termination of DP(R ∪Cε ,µ ∪ µCε
) relative to (R ∪Cε ,µ ∪ µCε

), that is proving the Cε -
termination of (R,µ). �

1In [3], the notion of CS-DP includes some extra conditions to discard CS-DPs that, by construction, are not involved in
infinite chains (narrowability and subterm conditions). To ease readability, we do not include these extra conditions, but the
results obtained in the paper are still applicable adding these conditions.

196 Towards an Incremental and Modular Termination Analysis of CS-TRS

4.3 Termination with modules

In contrast to the unrestricted approach (pure term rewriting), in CSR a chain is possible in a hierarchical
extension even being impossible for the specific component (Example 5). The following modularity
result can be extracted when the pairs are not collapsing.

Lemma 1 Let (R1,µ1) be a CS-TRS where R1 = (F1,R1) and [F2 | (R2,µ2)] be a module such that
[F1 | (R1,µ1)]←− [F2 | (R2,µ2)]. Then, for any two pairs u1 → v1 ∈ MDPF1([F1 | (R1,µ1)]) and
u2→ v2 ∈MDP([F2 | (R2,µ2)]), there is no substitution σ such that:

σ(v1)
>Λ

↪−−−−→
R1∪R2

∗
σ(u2)

Proof 2 Since root(σ(u2)) = root(u2) ∈D]
2 ⊆F]

2 , root(σ(v1)) = root(v1) ∈D]
1 ⊆F]

1 and D]
1∩D]

2 =
∅, we obtain that root(v1) 6= root(u2). Hence, σ(v1) cannot be rewritten below the root to σ(u2). �

In [17] the termination of modules is based on the following two theorems:

Theorem 1 [17, Theorem 1] Let [F1 |R1]←− [F2 |R2] be a hierarchical extension of R1 = (F1,R1);
if

• R1 is Cε -terminating, and

• there is no infinite dependency chain of [F2 |R2] relative to R1∪R2,

then R1∪R2 is terminating.

Theorem 2 [17, Theorem 2] Let [F1 |R1]←− [F2 |R2] be a hierarchical extension of R1 = (F1,R1),
and [F3 |R3] be a module extending R1 independently of R2. If

• R1∪R2 is Cε -terminating, and

• there is no infinite dependency chain of [F3 |R3] relative to R1∪R3∪Cε ,

then R1∪R2∪R3 is Cε -terminating.

But as we have seen before in the previous examples, the adaptation of these theorems to CSR needs to
consider more conditions to safely extend hierarchical extensions to CSR. The key idea behind the results
on hierarchical extensions is the possibility of building an infinite CS-DP chain of MDP([F1 | (R1,µ1)])
relative to (R1∪Cε ,µ1∪µCε

) from an infinite minimal CS-DP chain of MDP([F1 | (R1,µ1)]) relative
to (R1 ∪R2,µ1 ∪ µ2). In [13], a couple of interpretations are presented to simulate rewriting steps on
(R2,µ2) by rewriting steps on (Cε ,µCε

) when (R2,µ2) is terminating, but none of them are suitable
for just conservative CS-TRSs. In order to obtain a result similar to the previous theorems we have
to impose a stronger statement (strongly conservative) to get use of the basic µ-interpretation in [13].
Basic µ-interpretation simulates rewriting steps on a terminating CS-TRS (R2,µ2) as rewriting steps
using Cε -rules.

Definition 9 [13] (Basic µ-interpretation) Let (R,µ) be a CS-TRS over F and ∆ ⊆F . Let > be an
arbitrary total ordering over T (F]∪{⊥,c},X) where ⊥ is a new constant symbol and c is a new
binary symbol. The interpretation Φ∆,µ is a mapping from µ-terminating terms in T (F],X) to terms
in T (F]∪{⊥,c},X) defined as follows:

Φ∆,µ(t) =

t if t ∈X
f (Φ∆,µ, f ,1(t1), . . . ,Φ∆,µ, f ,n(tn)) if t = f (t1 . . . tn) and f ∈ ∆

c(f (Φ∆,µ, f ,1(t1), . . . ,Φ∆,µ, f ,n(tn)), t ′) if t = f (t1 . . . tn) and f /∈ ∆

R. Gutiérrez & S. Lucas 197

where Φ∆,µ, f ,i(t) =

{
Φ∆,µ(t) if i ∈ µ(f)

t if i /∈ µ(f)
t ′ = order

(
{Φ∆,µ(u) | t ↪→R,µ u}

)
order(T) =

{
⊥, if T =∅

c(t,order(T −{t})) if t is minimal in T w.r.t. >

Termination is crucial to obtain a correct approach.

Lemma 2 [13] For each µ-terminating term s, the term Φ∆,µ(s) is finite.

Imposing that all the rules are strongly conservative we ensure that a variable appearing at a frozen
position in the left-hand side of the rule never appears at an active position in the right-hand side of the
rule (conservative property is not enough to ensure this statement).

Theorem 3 (Strongly Conservative Hierarchical Extension) Let [F1 | (R1,µ1)]←− [F2 | (R2,µ2)]
be a hierarchical extension of (R1,µ1) where R1 = (F1,R1); if

• (R1,µ1) is strongly conservative and Cε -terminating, and

• (R2,µ2) is strongly conservative, and

• there is no infinite minimal CS-DP chain of MDP([F2 | (R2,µ2)]) relative to (R1∪R2,µ1∪µ2),

then (R1∪R2,µ1∪µ2) is terminating.

Proof 3 (Sketch) By contradiction. Let us suppose that there is an infinite minimal CS-DP chain of
(R1∪R2,µ1∪µ2), then:

• there is an infinite minimal CS-DP chain of MDP([F2 | (R2,µ2)]) relative to (R1∪R2,µ1∪µ2).

• (R1,µ1) is not Cε -terminating, contradicting the hypothesis.

We suppose that (R1 ∪R2,µ1 ∪ µ2) is non-terminating, so there is an infinite minimal CS-DP chain of
MDP([F1∪F2 | (R1∪R2,µ1∪µ2)]) relative to (R1∪R2,µ1∪µ2). CS-DPs consist of:

1. CS-DPs from MDP([F1 | (R1,µ1)]);

2. CS-DPs from MDP([F2 | (R2,µ2)]);

3. CS-DPs `]→ s] such that `→ r ∈R2, r�µ s and root(s) ∈F1.

Using Lemma 1, we get an infinite minimal CS-DP chain where CS-DPs are:

i. from (2) only,

ii. from (1) only,

iii. from (2) in a finite number, then one pair from (3) and infinitely many pairs from (1).

• Case (i): an infinite minimal CS-DP chain of MDP([F2 | (R2,µ2)]) relative to (R1∪R2,µ1∪µ2)
exists, contradicting the hypothesis.

• Cases (ii)-(iii): an infinite minimal CS-DP chain of MDP([F1 | (R1,µ1)]) relative to (R1 ∪
R2,µ1 ∪ µ2). In a similar way to [13], using Definition 9, we can construct an infinite CS-DP
chain of MDP([F1 | (R1,µ1)]) relative to (R1 ∪Cε ,µ1 ∪ µCε

) from an infinite minimal CS-DP
chain of MDP([F1 | (R1,µ1)]) relative to (R1 ∪R2,µ1 ∪ µ2) where only F2 symbols are not in
∆.

�

198 Towards an Incremental and Modular Termination Analysis of CS-TRS

Independent hierarchical extensions allow us to represent the union of composable CS-TRSs.
Theorem 4 (Independent Strongly Conservative Hierarchical Extension) Let [F1 | (R1,µ1)]←− [F2 |
(R2,µ2)] be a hierarchical extension of (R1,µ1) where R1 = (F1,R1), and [F3 | (R3,µ3)] be a module
extending (R1,µ1) independently of (R2,µ2). If
• (R1∪R2,µ1∪µ2) is strongly conservative and Cε -terminating,

• (R1∪R3,µ1∪µ3) is strongly conservative, and

• there is no infinite minimal CS-DP chain of MDP([F3 | (R3,µ3)]) relative to (R1∪R3∪Cε ,µ1∪
µ3∪µCε

),
then (R1∪R2∪R3,µ1∪µ2∪µ3) is Cε -terminating.

Proof 4 (Sketch) By contradiction. Let us suppose that (R1∪R2∪R3,µ1∪µ2∪µ3) is non-terminating,
so there is an infinite minimal CS-DP chain of MDP([F1 ∪F2 ∪F3 | (R1 ∪R2 ∪R3,µ1 ∪ µ2µ3)])
relative to (R1∪R2∪R3,µ1∪µ2∪µ3). Using Lemma 1, we know that CS-DP chains are:

1. CS-DP chains of MDP([F3 | (R3,µ3)]) relative to (R1∪R2∪R3,µ1∪µ2∪µ3);

2. CS-DPs chains of MDP([F1∪F2 | (R1∪R2,µ1∪µ2)]) relative to (R1∪R2∪R3,µ1∪µ2∪µ3);

3. CS-DPs chains relative to (R1∪R2∪R3,µ1∪ µ2∪ µ3) consisting of a finite number of CS-DPs
in MDP([F3 | (R3,µ3)]) relative to (R1 ∪R2 ∪R3,µ1 ∪ µ2 ∪ µ3), a CS-DP `] → s] such that
`→ r ∈ R3, r �µ s and root(s) ∈F1 ∪F2 and infinitely many CS-DPs from MDP([F1 ∪F2 |
(R1∪R2,µ1∪µ2)]).

Using Lemma 1, we get an infinite minimal CS-DP chain where CS-DPs are:
• Case (1): an infinite minimal CS-DP chain of MDP([F3 | (R3,µ3)]) relative to (R1 ∪R2 ∪

R3,µ1∪µ2∪µ3). In a similar way to [13], using Definition 9, we can construct an infinite CS-DP
chain of MDP([F3 | (R3,µ3)]) relative to (R1∪R3∪Cε ,µ1∪µ3∪µCε

) from an infinite minimal
CS-DP chain of MDP([F3 | (R3,µ3)]) relative to (R1 ∪R2 ∪R3,µ1 ∪ µ2 ∪ µ3) where only F2
symbols are not in ∆.

• Cases (2)-(3): an infinite minimal CS-DP chain of MDP([F1∪F2 | (R1∪R2,µ1∪µ2)]) relative
to (R1 ∪R2 ∪R3,µ1 ∪ µ2 ∪ µ3). In a similar way to [13], using Definition 9, we can construct
an infinite CS-DP chain of MDP([F1∪F2 | (R1∪R2,µ1∪µ2)]) relative to (R1∪R2∪Cε ,µ1∪
µ2∪µCε

) from an infinite minimal CS-DP chain of MDP([F1∪F2 | (R1∪R2,µ1∪µ2)]) relative
to (R1∪R2∪R3,µ1∪µ2∪µ3) where only F3 symbols are not in ∆.

�

Without the strongly conservative restriction (even considering only conservative rules) we cannot ensure
the previous results.
Example 6 [4] Consider the following conservative CS-TRS:

R1 = {f(c(x),x) → f(x,x)} R2 = {b → c(b)}
where µ1(f) = {1,2}, µ1(c) = µ2(c) = µ2(b) =∅. We can see (R1∪R2,µ1∪µ2) as a hierarchichal ex-
tension of (R0,µ0) = (({c},∅),µ0) with module [F1 |R1] and [F2 |R2] is a module extending (R0,µ0)
independently of (R1,µ1). The set of CS-DPs of (R1,µ1) is DP1 = {F(c(x),x)→ F(x,x)} and the set of
CS-DPs of (R2,µ2) is DP2 =∅. Both conservative CS-TRSs are Cε -terminating independently, but the
union of these two CS-TRSs (R1∪R2,µ1∪µ2) generates an infinite CS-DP chain:

F(c(b),b)→DP1 F(b,b) ↪→R2,µ2 F(c(b),b)→DP1 · · ·

R. Gutiérrez & S. Lucas 199

The following example shows an application of our result.
Example 7 [5] Consider the following example:

R1 = {length(nil) → 0 R2 = {from(x) → x:from(s(x))}
length(x:y) → s(length1(y))
length1(x) → length(x)}

where µ2(from) = µ1(:) = µ2(:) = µ1(s) = µ2(s) = {1} and µ1(length) = µ1(length1) = µ1(nil) =
µ1(0) = ∅. We can see (R1 ∪R2,µ1 ∪ µ2) as a hierarchichal extension of (R0,µ0) = (({:,s},∅),µ0)
with module [F1 |R1] and [F2 |R2] is a module extending (R0,µ0) independently of (R1,µ1). The set
of CS-DPs of (R1,µ1) is DP1 = {LENGTH(x:y)→ LENGTH1(y),LENGTH1(x)→ LENGTH(x)} and
the set of CS-DPs of (R2,µ2) is DP2 =∅. Both CS-TRSs are Cε -terminating independently and we can
use the results of the paper to conclude that the union (R1∪R2,µ1∪µ2) is terminating.
However, we still cannot deal with the leading example of the paper and we must overcome problems as
the one showed in the following example.
Example 8 Let us consider the following example:

R1 = {take(x:y) → take(y)} R2 = {from(x) → x:from(s(x))}

where µ1(take) = µ1(:) = µ2(:) = µ2(from) = µ2(s) = {1}. We can see (R1∪R2,µ1∪µ2) as a hierar-
chichal extension of (R0,µ0)= (({:},∅),µ0) with module [F1 |R1] and [F2 |R2] is a module extending
(R0,µ0) independently of (R1,µ1). The set of CS-DPs of (R1,µ1) is DP1 = {TAKE(x:y)→ TAKE(y)}
and the set of CS-DPs of (R2,µ2) is DP2 =∅. Both CS-TRSs are Cε -terminating independently, but the
union of these two CS-TRSs (R1∪R2,µ1∪µ2) generates an infinite CS-DP chain:

TAKE(x:from(s(x)))→DP1 TAKE(from(s(x))) ↪→R2,µ2 TAKE(s(x):from(s(s(x))))→DP1 · · ·

where rules from (R2,µ2) are an important actor in the non-termination of the union of CS-TRSs.
In a hierarchical extension, when we consider a terminating module which is nonterminating without the
replacement map, the nonterminating behaviour can be due to new rules in the extended modules. These
new rules take an important role in the adaptation of hierarchical extensions to arbitrary CS-TRSs.

5 Related Work

In [11], two results about modularity of CS-TRSs were given. One for the union of CS-TRSs with
disjoint signatures and one for the union of CS-TRSs with shared constructors. In our work disjoint
signature unions are not considered. For constructor sharing unions, they obtained the following result:
Theorem 5 [11] Let (R1,µ1), (R2,µ2) be two constructor sharing, compatible, terminating CS-TRSs:

1. (R1∪R2,µ1∪µ2) terminates if (R1,µ1) and (R2,µ2) are layer-preserving.

2. (R1∪R2,µ1∪µ2) terminates if (R1,µ1) and (R2,µ2) are non-duplicating.

3. (R1∪R2,µ1∪µ2) terminates if (R1,µ1) or (R2,µ2) is both, layer-preserving and non-duplicating.
Layer preserving means that there is no rule `→ r such that r is a variable or rooted by a shared con-
structor. This condition excludes rules like R1-rules in Example 8. A rule `→ r is non-duplicating if for
every x ∈ V ar(`) the multiset of replacing occurrencies of x in r is contained in the multiset of replacing
occurrences of x in `. A rule like f(x)→ g(x,x) where µ(f) = {1} and µ(g) = {1,2} is strongly con-
servative but duplicating, hence, our results on strongly conservative modules are complementary to the
ones obtained in [11].

200 Towards an Incremental and Modular Termination Analysis of CS-TRS

6 Conclusions

In this paper we analyze modularity of termination for combinations of context-sensitive rewrite modules
from the perspective of CS-DPs. The analysis shows that only in a very restrictive case (strong conser-
vative hierarchical extension), the modularity results for term rewriting extends to CSR. When trying
to generalize modularity results to arbitrary CS-TRSs, we find some counterexamples that force us to
consider new restrictions in order to obtain a correct result. The main problem comes from modules that
are nonterminating when removing the replacement map (those modules contain potential nonterminat-
ing µ-rewrite sequences that can appear by means of module hierarchical extensions). These modules
with potential nonterminating rules must be considered to obtain a complete incremental and modular
termination framework for CSR because these rules cannot be simulated by Cε -rules. Future work aims
to analyze those problems and obtain a correct hierarchical extension results on arbitrary modules.

References

[1] B. Alarcón, R. Gutiérrez & S. Lucas (2006): Context-Sensitive Dependency Pairs. In S. Arun-Kumar &
N. Garg, editors: Proc. of the 26th Conference on Foundations of Software Technology and Theoretical
Computer Science, FST&TCS’06, LNCS 4337, Springer-Verlag, pp. 297–308.

[2] B. Alarcón, R. Gutiérrez & S. Lucas (2007): Improving the Context-Sensitive Dependency Graph. Elec-
tronic Notes in Theoretical Computer Science 188, pp. 91–103. Proc. of the 6th Spanish Conference on
Programming and Languages, PROLE’06.

[3] B. Alarcón, R. Gutiérrez & S. Lucas (2010): Context-Sensitive Dependency Pairs. Information and Compu-
tation 208, pp. 922–968.

[4] B. Alarcón & S. Lucas (2007): Termination of Innermost Context-Sensitive Rewriting Using Dependency
Pairs. In F. Wolter, editor: Proc. of the 6th International Symposium on Frontiers of Combining Systems,
FroCoS’07, LNAI 4720, Springer-Verlag, pp. 73–87.

[5] M. Alpuente, S. Escobar, B. Gramlich & S. Lucas (2010): On-Demand Strategy Annotations Revisited: An
Improved On-Demand Evaluation Strategy. Theoretical Computer Science 411(2), pp. 504–541.

[6] T. Arts & J. Giesl (2000): Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer
Science 236(1–2), pp. 133–178.

[7] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[8] F. Durán, S. Lucas, C. Marché, J. Meseguer & X. Urbain (2008): Proving Operational Termination of Mem-
bership Equational Programs. Higher Order Symbolic Computation 21(1-2), pp. 59–88.

[9] J. Giesl & A. Middeldorp (1999): Transforming Context-Sensitive Rewrite Systems. In P. Narendran &
M. Rusinowitch, editors: Proc. of the 10th International Conference on Rewriting Techniques and Applica-
tions, RTA’99, LNCS 1631, Springer-Verlag, pp. 271–285.

[10] B. Gramlich (1994): Generalized Sufficient Conditions for Modular Termination of Rewriting. Applicable
Algebra in Engineering, Comunication and Computing 5, pp. 131–151.

[11] B. Gramlich & S. Lucas (2002): Modular Termination of Context-Sensitive Rewriting. In: Proc. of the 4th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, PPDP’02,
ACM Press, pp. 50–61.

[12] R. Gutiérrez (2010): Automatic Proofs of Termination of Context-Sensitive Rewriting. Ph.D. thesis, Dept. de
Sistemes Informàtics i Computació, Universitat Politècnica de València, Valencia, Spain.

[13] R. Gutiérrez, S. Lucas & X. Urbain (2008): Usable Rules for Context-Sensitive Rewrite Systems. In
A. Voronkov, editor: Proc. of the 19th International Conference on Rewriting Techniques and Applications,
RTA’08, LNCS 5117, Springer-Verlag, pp. 126–141.

R. Gutiérrez & S. Lucas 201

[14] S. Lucas (1998): Context-Sensitive Computations in Functional and Functional Logic Programs. Journal of
Functional and Logic Programming 1998(1), pp. 1–61.

[15] S. Lucas (2002): Context-Sensitive Rewriting Strategies. Information and Computation 178(1), pp. 293–343.
[16] Y. Toyama (1987): Counterexamples to Termination for the Direct Sum of Term Rewriting Systems. Informa-

tion Processing Letters 25, pp. 141–143.
[17] X. Urbain (2004): Modular & Incremental Automated Termination Proofs. Journal of Automated Reasoning

32(4), pp. 315–355.
[18] H. Zantema (1997): Termination of Context-Sensitive Rewriting. In H. Comon, editor: Proc. of the 7th

International Conference on Rewriting Techniques and Applications, RTA’97, LNCS 1232, Springer-Verlag,
pp. 172–186.

