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Abstract 
The Dynamic Relaxation Method (DRM) is an interesting alternative to solve complicated 
nonlinear equilibrium problems, solved via a pseudo-dynamic analysis, with explicit time 
integration, carried out exclusively by fast vector manipulations. In the current paper, we 
present the theoretical formulation and the implementation of the load vectors of a class of 
finite elements capable of representing the slippage between border cables and membrane 
sheaths, without friction. The paper also details some improvements in a procedure to 
search geodesic lines onto triangle-faceted surfaces, relating the expression of the internal 
load vector of the geodesic string element to the internal vector of a sliding-cable super-
element, and proposing a new average nodal normal vector, insensitive to the arbitrary 
division of a given geometry into different triangular meshes. 
 
Keywords: dynamic relaxation, geodesic-string super-element, sliding-cable super-
element. 

1. Introduction 
Slippage between border cables and membrane sheaths is usually disregarded in finite 
element analysis of membrane structures, since these cables are commonly represented by a 
sequence of no-compression truss elements, connected to the membrane elements by their 
end nodes. In this way any possible sliding between cables and membrane is overruled. 
Some preliminary numerical investigations suggest, however, that disregarding the slippage 
between border cables and membrane sheaths may lead to underestimation of membrane 
stresses, close to the membrane vertices, as well as concealing regions were the membrane 
goes slack, under the action of wind loads.  
A general problem of sliding between cable and membrane would be provided, for instance, 
by a stabilizing cable sliding over a membrane surface in a generic way, creasing the 
membrane as it moved, perhaps even locally loosing contact, when the membrane surface 
becomes concave. In this paper, however, we restrict ourselves to study the cases where the 
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cable is transversally constrained by the membrane surface, in such a way that sliding is 
only possible tangentially to the cable development. This is the case of the cables 
commonly used along the border of the membranes, as well as of internal ridge or valley 
cables. We will refer to all of these cables, generically, as “border cables”.  
For small to medium size structures, when the cable diameters are small and the fabrics 
more flexible, a practical solution to transfer the transversal loads from the membrane to the 
border cables is the use of sheaths, welded or sewn directly to the membrane fabric. For 
larger spans, such as in Denver’s Airport, less flexible fiberglass fabrics and larger cable 
diameters are required, so the border cable is positioned externally to the membrane, and a 
more complicated detailing is required to guarantee slippage and avoid stress 
concentrations, as described in [1]. 
Even thou Newton’s method usually yields the fastest algorithm for the solution of 
nonlinear static equilibrium of cable and membrane structures, the dynamic relaxation 
method may be an interesting alternative to solve complicated nonlinear equilibrium 
problems, especially when derivatives of the force vectors are not available. The DR 
Method also provides a tool for the heuristic validation of the more exacting 
implementations of Newton’s Method. Thus, results obtained in the current paper are used 
to validate those obtained for the same models, but solved via Newton´s Method, as also 
described in [1]. 

1.1. Dynamic Relaxation 
In the DR method, the problem of the static equilibrium is solved via a dynamic analysis, 
with explicit time integration, and fictitious diagonal mass and damping matrices, 
arbitrarily chosen to control the stability of the time integration process, according to  

 ( ) , , 1, ,i i i i i j im c i j n+ + = =u u p u f�� � …  (1) 

where ( ), , , ,i i i i j im c u p u f , are respectively the mass, the viscous damping, displacements, 
internal and external nodal forces of the ith (or jth) node of the (already discretized) 
structure. This pseudo-dynamic system can be solved exclusively by vector manipulations, 
which render very fast the calculation of every time-step. However, precision is usually 
obtained after a large number of time increments, since explicit time integration is only 
conditionally stable. Pauletti [2] refers to some pioneering and recent literature on the 
dynamic relaxation method, pointing out that although the dynamic relaxation method 
shows no advantage for small to medium sized typical membrane problems, compared to 
Newton’s Method, there may be economy for very large problems. 

The system of n  nodal equations given by (1) can be grouped in a single matrix equation, 
according to  
 ( )+ + =Mu Cu P u F�� �  (2) 

where M and C are diagonal matrices which collect the nodal masses and viscous 
dampers, and P  and F are respectively the global internal and external force vectors, 
which collect the forces acting on every node of the structure. Instead of using a viscous 
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damping matrix, however, we consider the process of kinetic damping [3], with the 
undamped ( =C 0 ) movement of the structure being followed until a maximum of the total 
kinetic energy of the system is observed, and all the velocity components of the structure 
are cancelled, keeping the current geometry. The dynamic analysis is then restarted until 
new kinetic energy maxima (usually smaller than the precedent ones) are found, and all 
velocities are zeroed again. The process is repeated until all kinetic energy is dissipated, 
thus reaching a static equilibrium configuration.  The transient of the system’s kinetic 
energy provides a visual criterion for convergence. 

Load contributions from every element are added to the global internal force vector 
according to  

 
1

nel
eT e

e=
= ∑P A p  (3) 

where eA  is a convenient Boolean incidence matrix of the eth element, which relates the 
element’s local degrees of freedom to the global ones. Of course, it is not convenient to 
perform the matrix multiplications presented in (3), being quite more economical to add the 
element contributions directly to the global stiffness matrix, as explained in standard FEM 
textbooks.  

2. Internal load vector for a cable element 
Consider that cables are approximated by an assemblage of truss elements. Figure 1 depicts 
a generic, eth element in a current configuration, with nodes indexed as i and j, in the global 
structural system, and as 1 and 2, in the element numeration system. 

1
e

ix x=
G G

2
e

jx x=
G G1 i≡

2 j≡
( )e

ijP
G

jiP
G

O  
Figure 1: A truss element, with local and global nodal indexes. 

Keeping implicit the element index e, for basic quantities, we define the vector 2 1= −l x x , 
and the current element length is given by = lA , whilst /=v l A  is the unit vector 
directed form node 1 to node 2,  the element is described in an initial configuration, already 
under a normal force 0N . Thus the reference, zero-stress element length, is given by 

( )0 0/r EA EA N= +A A  and the normal force acting on the element, at each instant, is given 

by ( ) /r rN EA= −A A A , if r>A A , or 0N = , r≤A A , since a cable cannot withstand 
compression.  
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The internal forces vector for a truss element is given by 

 e N
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

v
p

v
 (4) 

The contribution of a generic element defined by nodes { },i j  to the global internal load 

vector is given by (3), with 1 2 3
e e
i j= =A A I  and 1 2

e e
m m= =A A O , { } { }1, 2, \ ,nm n i j∈ … , 

where 0  and 3I  are, respectively, the null and identity matrices of order three, and nn  is 
the number of nodes of the whole structure.  

3. Internal load vector for a membrane element 
The Argyris’ natural triangular membrane finite element ([4], [5], [6]) is defined in an 
initial configuration, in which it is already under a given stress field. Element nodes and 
edges are numbered anticlockwise, with edges facing nodes of same number. Nodal 
coordinates are referred to a global Cartesian system, and a local coordinate system, 
indicated by an upper hat, is adapted to every element configuration, such that the x̂  axis is 
always aligned with edge 3, oriented from node 1 to node 2, whilst the ẑ  axis is normal to 
the element plane.  
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Figure 2: (a) Unit vectors , 1,2,3i i =v , along the element edges; (b) internal nodal forces 

ip , decomposed into natural forces i iN v . 

Current global coordinates of the element nodes, are given by 0 1, 2, 3,i i i i == +x x u , where 

iu  are the nodal displacements. The lengths of element edges are given by 

i i k j= = −l x xA , with indexes , , 1, 2, 3i j k =  in cyclic permutation. Unit vectors parallel 

to the element edges are denoted by i i i=v l l . With these definitions, the vector of 
internal nodal forces can be decomposed into forces parallel to the element edges, 
according to 

 
1 2 2 3 3 2 3 1

2 3 3 1 1 1 3 2

3 1 1 2 2 1 2 3

e

N N N
N N N
N N N

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p v v 0 v v
p p v v v 0 v CN

p v v v v 0
 (5) 
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where C is a geometric operator, which collects the unit vectors parallel to the element 
edges and [ ]1 2 3

TN N N=N is the vector of natural forces.  

If linear kinematic relationships hold, there exists also a linear relationship 0
r
n= +N k a N , 

where [ ]1 2 3
T= ∆ ∆ ∆a A A A , is the vector of natural displacements (with 

0 1, 2, 3,i i i i =∆ = −A A A ) and the element  natural stiffness is a constant matrix given by 
-1 1 -1ˆr T

n r r r r rV − −=k T TL LD ,  where rV  is the element volume, { }diag r
r i= AL , D̂ collects the 

coefficients of Hooke’s law for plane stresses, such that ˆˆ ˆσ ε=D  and, finally, rT  is a 

transformation matrix, relating the linear Green strains ε̂  to the natural strains 1

rn
−= aε L , 

i.e., ˆ
rn = T εε , highlighting the fact that Argyris’ natural membrane element is akin to a 

strain gauge rosette  [6].  
Since r

nk  has only six independent components, its storage is usually economic, reducing 
the number of operations required to calculate the internal loads, and thus the overall 
computing time. The vector of internal forces at each configuration is then given by  
 e r

n=p Ck a .  (6) 

The contribution of (6) to the global internal load vector is again given by (3), now with 
1 2 3 3
e e e
i j k= = =A A A I  and 1 2 3

e e e
m m m= = =A A A O , { } { }1, 2, , \ , ,nm n i j k∈ … . 

3.1. A simple wrinkling model 
Equation (6) holds for a linear-elastic isotropic material, working both in tension and 
compression. Since r

nk is constant, it provides the fastest way to compute the internal nodal 
element loads, when the membrane is fully under tension. However, a membrane wrinkles 
instead of developing compressive stress. Thus, when wrinkling is detected, equation (6) 
has to be replaced for a lengthier calculation.  
For linear isotropic materials, the principal stress and strain directions are parallel, and 
stress, strain or mixed wrinkling criteria are equivalent [7]. We choose a stress criterion 
and, instead of using (6), we first decompose the element  natural stiffness into two 
different 3 x 3 constant matrices,  according to  

 ( )( )-1 1 -1ˆr T r r
n r r r r r aV σ

− −= =k T T k kL LD . (7) 

In order to speed-up calculations, matrices -1r T
r r rVσ

−=k TL  and 

( )1 -1 1ˆ ˆ Tr r
a r r rV σ

− −= =k T kLD D can be stored from the start. We then calculate element stresses 
according to 
 0ˆ ˆr

a +σ k a σ= , (8) 
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and, after determining the principal stresses 1,2σ and the “principal angle” 1θ  associated to 
σ̂ , we modify stresses according to the following criterion: 

 ( ) ( ) ( )
1

1
2 1 1 1

1,2

ˆ0

ˆ0 1 cos 1 cos sin 2
2

ˆ ˆ0

T

σ
σ

σ θ θ θ

σ

′≤ ⇒ =⎧
⎪⎪ ′≤ ⇒ = + −⎡ ⎤⎨ ⎣ ⎦
⎪

′> ⇒ =⎪⎩

σ 0

σ

σ σ

 (9) 

Thereafter, we replace (6) by  
 ˆe r

σ ′=p Ck σ  (10) 

4. Internal load vector for aufare’s sliding-cable element 
An ideal (or ‘frictionless’) three-node sliding-cable element (Figure 3), was initially 
considered by Aufaure [8]. Pauletti [9] generalized Aufare’s element to include non-ideal 
sliding, and recast the formulation in a different notation. When non-ideal sliding is 
considered, the problem is no longer conservative. In the present work, however, only ideal 
sliding is considered.  

1P

2P

3P

1N

2N

3
1

2

 
Figure 3: An Aufare’s cable sliding without friction, or a cable passing through a pulley. 

Keeping implicit the element index e, for basic quantities, the total length of the cable, in 
the current configuration, is given by the addition of the lengths of the two segments, 

( ) ( )
1 1
2 2

1 1 2 2
T T= +l l l lA , where 0 0

1 1 1 3 3= + − −l x u x u and 0 0
2 2 2 3 3= + − −l x u x u . The element is 

defined in an initial configuration, already subject to a normal force 0N . The initial length 

0A  is obtained from 0 0 0
1 1 3= −l x x  and 0 0 0

2 2 3= −l x x . The stress-free, reference length, 
considering linear-elastic behavior is given by ( )0 0/r EA EA N= +A A , and thus the normal 
load in the current configuration is ( ) /r rN EA= −A A A . 

The Aufare’s element internal forces vector is given by 

 
( )

1 1

2 2

3 1 2

e N N
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

p v
p p v C

p v v
, (11) 
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where the normal load N is uniform along the element, 1v  e 2v  are unit vectors supported 
by segments 1 and 2, and matrix C  is a geometric operator. The contribution of (11) to the 
global internal load vector is again given by (3), now with 1 2 3 3

e e e
i j k= = =A A A I  and 

1 2 3
e e e
m m m= = =A A A O , { } { }1, 2, , \ , ,nm n i j k∈ … . 

5. Internal load vector for a sliding-cable super-element 
The ideal (frictionless) sliding-cable super-element, connects nse nodes in a chain, as shown 
in Figure 4.  

 
Figure 4: A super-element with nse nodes sliding over nse-2 pulleys. Numbers inside bullets 
refer to segments, numbers without bullets refer to nodes. 
 
Associated to each segment 1,..., 1sek n= −  we obtain a vector 0 0

1 1k k k k k+ += + − −l x u x u , 

and the total current cable length is given by 
1 1

1 1

se sen n

k k
k k

− −

= =

= =∑ ∑ lA A . The element is defined in 

an initial configuration, already under a normal force 0N , uniform along the cable, since 
ideal, frictionless sliding is assumed.  Defining 0 0 0

1k k k+= −l x x , the cable length at the initial 

configuration is given by  
1

0 0
1

sen

k

−

=

= ∑ lA . Once again, for a linear-elastic material, the total 

reference (undeformed) cable length can be calculated by ( )0 0/r EA EA N= +A A , and the 

normal load at the current configuration is given by ( ) /r rN EA= −A A A .  

The internal loads acting on the nodes 1,..., sei n=  of the super-element, at the current 
configuration, are given by ( )1

se
i i iN −= −p v v , where /i i i=v l A . Further 

defining 0 sen= =v v 0 , the vector of internal nodal loads of the sliding-cable super-element 
is given by  

 

1 0 1

1

1se se se

se se
i i i

n n n

N N−

−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

p v v

p v vp C

p v v

# #

# #
,  (12) 
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where seC is a geometric operator, with the upper or lower indexes ‘se’ added up to 
differentiate the sliding-cable super-element from a geodesic string, as discussed in the 
sequel. The contribution of (12) to the global internal load vector is again given by (3), now 
with 3

e
im =A I , if 1,2, nm n= … is equal the global node number of local node 1, 2, sei n= … , 

and e
im =A O , otherwise. 

6. Internal load vector for geodesic strings 
It is a well known property that a cable sliding with no friction over a given surface will 
assume a geodesic configuration, with constant normal load acting along its full extension 
[10]. Thus a sequence of nodes, connected by truss elements of constant normal load, will 
rest along a geodesic line provided that, at each node, the component of the internal forces 
produced by these elements, normal to the membrane surface, is disregarded (otherwise the 
line would still accommodate to a (different) geodesic line, but the surface itself would be 
distorted). This sequence of nodes is called a geodesic string [11].  
For both end-nodes of the geodesic string the internal load is kept zero, that is 

1
gs gs

n= =p p 0 , whilst for each intermediate node of the geodesic string, the inner load 
vector is modified according to  

 ( ) ( )gs se T se T se gs se
i i i i i i i i i i= − = − =p p ν ν p I ν ν p M p ,  (13) 

where gs T
i i i= −M I ν ν , and iν is the unit vector normal to the surface, at the ith node. 

Therefore, defining 1 gs

gs gs
n= =M M 0 , we have, for the whole geodesic-string, with n nodes: 

                                            

1 1

2 2

gs gs

gs se

gs se
gs gs se

gs se
n n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M 0 0 0 p
0 M 0 0 p

p M p
0 0 0
0 0 0 M p

% #
, (14) 

 where gsM is the “projection matrix” for the geodesic-string element.  
It is seen that the internal load vector due to a geodesic string, equation (14), can be 
calculated in two steps: initially, an internal load  vector sep , equivalent to a sliding-cable 
super-element is assembled; thereafter, at each node, the normal (to the surface) 
components is removed. Null operations in (14) are never performed. Finally, the 
contribution of  (14) to the global internal load vector is again given by (3), now with 

3
e
im =A I , if 1,2, nm n= … is equal to the global numbering of local node 1,2, gsi n= … , and  
e
im =A O , otherwise. 

The normal vector iν  at a given node depends on the layout of all the facets converging to 
that node, and therefore the internal load vector associate to a geodesic-string cannot be 
computed without a loop over the adjacent membrane elements. Besides, since faceted 
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surfaces are not differentiable at edges and vertices, calculation of an “average normal 
vector” depends on some arbitrary definitions.  
In Figure 5(a), symmetry requires iν at apex of the pyramid to be parallel to the vertical 
axis.  If each lateral face of the pyramid is represented by one triangular facet, a simple 
average of the normal vectors belonging to the four faces returns the correct normal at the 
apex node. However, if one face is divided into two areas, the simple average distorts the 
normal at the apex, as shown in figure 5(b). An area-weighted averaging again returns the 
correct normal as shown in figure 5(c), but if the face is further divided, even this criterion 
fails, as shown in Figure 5(d).  
We have thus defined a new average nodal normal vector iν , according to  

 i
i

i

=
w

ν
w

 ,         where 
( )

1

ein i

i k k
k

θ
=

= ∑w n , (15) 

and where ( ), 1, ,k eik n i=n …  are the normal vectors of the surface elements incident to 
node i, whilst kθ  are the internal angles of that elements, at the incident vertices. It turns 
out that this angle-weighting provides an average normal vector which is invariant to the 
discretization, and returns a symmetric normal vector, as shown in figure 5(e).  

      
(a) simple average (b) simple average (c) area-weighted (d) area-weighted (e) angle-weighted 

Figure 5: Average normal vectors at the apex of the same pyramid, due to different average criteria 

7. Applications 
Pauletti [2] applied the DRM to the processes of shape finding and patterning of the 
membrane roof of the “Memorial dos Povos de Belém do Pará” (MPBP), shown in Figure 
6, using the actual design data to validate the implementation of the DRM into the program 
SATS – A System for the Analysis of Taut Structures [12]. An account on the design and 
construction of this 400m2 membrane, located at the main city of the State of Pará, Brazil, 
is given in [13]. 

 
Figure 6: Membrane roof of the Memorial dos Povos of Belém do Pará. 
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In the present work, we investigate the response of a rough model of the MPBP membrane, 
under a uniform wind load 2286 /p N m= , acting upwardly over the whole membrane 
surface.  All analyses were started from the same viable configuration (comprising 
geometry and stress field) determined in the phase of shape finding. The model had 120 
nodes and 196 membrane elements, and the six vertices of the membrane were assumed to 
be fixed.  

Results obtained with the SATS program, via dynamic relaxation, for both the “ideal-
sliding” and the  “fully-adherent” models were also compared with the results obtained for 
the same problem, still solve in SATS but via Newton iterations (as described in [1]. We 
have also used Ansys to solve the “fully-adherent” model and verify our wrinkling model, 
as also shown in [1].  

Table 1 compares some selected results obtained with both the ideal-sliding and the fully-
adherent models. All results presented very good agreement. Consideration of frictionless 
slippage led to an increase of only about 10% in maximum membrane displacements, but 
doubled the maximum first principal stresses (

I
σ ). Thus, results suggest that even if the 

global deformation of the membrane is little altered by the sliding conditions on the border 
cables, local stress concentrations can be considerably under-estimated, if sliding is 
disregarded. Of course, more numerical and experimental investigation is required before 
more definitive conclusions can be proposed, and that will be pursued in future works. 
As a final example of application of the DRM, we consider the definition of some geodesic 
lines onto the membrane of the MPBP. The actual pattering used in MPBP, shown in 
Figure 8(a), was non-geodesic. A comparison with geodesic lines using a pure geometric 
algorithm was given in [14]. Figure 8(b) shows some geodesic lines obtained by means of 
the geometric procedure presented in that reference.  
It was already pointed in [2] that when the geodesic line is distant from the initial string 
configuration, adjacent membrane elements may become quite distorted, due to large 
displacements of the string nodes. On the other hand, when the geodesic line is close to a 
line o element edges, the geometric procedure yields quite distorted elements, as can be 
seen in figure 8(b). Thus, geodesic strings can be quite convenient to adjust a mesh 
according to geodesic lines, shown in figure 8(c), which presents the geodesic lines 
obtained by means of geodesic strings. 
 

Table 1. Comparison of selected results 
Fully adherent model Ideal sliding model 

SATS- Newton SATS- Relax Ansys SATS- Newton SATS- Relax 

Maximum Membrane Displacement [m] 0.40403 0.40343 0.40285 0.46468 0.46605 

Maximum First Principal Stress 
I

σ  [MPa] 13.60974 13.59338 13.6 26.49613 26.54674 

Minimum Second Principal Stress 
II

σ  [MPa] 0 0 0.000142 0 0 

Maximum Second Principal Stress 
II

σ  [MPa] 5.37598 5.37532 5.37 6.71951 6.73104 
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Figure 7: 1st column: ideal sliding model; 2nd column: fully adherent model. 

1st row: kinetic energy transients; 2nd row: displacement norm fields; 3rd row: 
I

σ fields; 4th row: 
II

σ  fields 
(wrinkled elements shown in grey) 
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Figure 8: (a) MPBP non-geodesic patterns;  (b) geodesic lines obtained via a geometric procedure (in 
blue) (c) geodesic lines obtained via a dynamic relaxation (in red); (d) kinetic energy transient. 
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