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1. Introduction and Preliminaries

In this paper we shall investigate the existence and uniqueness of common
fixed point of mappings via implicit relations in the setting of Gp - metric
spaces, inspired from the notion of Gp -metric spaces [25],[4],[6],[7] and other
papers. We remind that Gp - metric is inspired from the notions of G - metric
([15],[16],[1],[3],[14] and other papers) and partial metric ([13], [1], [2], [8], [9],
[10], [11], [12] and other papers).

Several classical fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit relation in [17], [18].
Some fixed point theorems for mappings satisfying a implicit relation
in G - metric spaces are established in [19] - [22]. Recently, fixed point for
mappings satisfying implicit relation in partial metric spaces are obtained in
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[5], [9], [10], [24]. Quite recently, a fixed point result for mappings satisfying
an implicit relation in Gp - metric spaces is obtained in [23]. We first recall the
notion of Gp - metric.

Definition 1.1 ([25]). Let X be a nonempty set. A function Gp : X3 → R+

is called a Gp - metric on X if the following conditions are satisfied:

(Gp1) : x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z),
(Gp2) : 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X , with

y 6= z,
(Gp3) : Gp(x, y, z) = Gp(y, z, x) = ... (symmetry in all three variables),
(Gp4) : Gp(x, y, z) ≤ Gp(x, a, a)+Gp(a, y, z)−Gp(a, a, a) for all x, y, z, a ∈ X .

The pair (X,Gp) is called a Gp - metric space.

Definition 1.2 ([25]). Let (X,Gp) be a Gp - metric space and {xn} a sequence
in X . A point x ∈ X is said to be the limit of the sequence {xn} or xn → x

({xn} is Gp - convergent to x) if limn,m→∞ Gp(x, xn, xm) = Gp(x, x, x).

Theorem 1.3 ([4]). Let (X,Gp) be a Gp - metric space. Then, for any {xn} ∈
X and x ∈ X, the following conditions are equivalent:

a) {xn} is Gp - convergent to x,
b) Gp(xn, xn, x) → Gp(x, x, x) as n → ∞,
c) Gp(xn, x, x) → Gp(x, x, x) as n → ∞.

Definition 1.4 ([25]). Let (X,Gp) be a Gp - metric space.
1) A sequence {xn} of X is called a Gp - Cauchy sequence in X if

limn,m→∞ GP (xn, xm, xm) exists and is finite.
2) A Gp - metric space is said to be Gp - complete if every Gp - Cauchy

sequence in X , Gp - converges to x ∈ X such that limn,m→∞ Gp (xn, xm, xm) =
Gp(x, x, x).

Lemma 1.5 ([4]). Let (X,Gp) be a Gp - metric space. Then:
1) If Gp(x, y, z) = 0 then x = y = z,
2) If x 6= y then Gp(x, x, y) > 0.

Lemma 1.6. Let (X,Gp) be a Gp - metric space and {xn} is a sequence in
X which is Gp - convergent to a point x ∈ X with Gp (x, x, x) = 0. Then,
limn→∞ G (xn, y, z) = G (x, y, z) for all y, z ∈ X.

Proof. By (Gp4)

(1.1)
Gp (x, y, z) ≤ Gp (x, xn, xn) +Gp (xn, y, z)−Gp (xn, xn, xn)

≤ Gp (x, xn, xn) +Gp (xn, y, z) ,

which implies

Gp (x, y, z)−Gp (x, xn, xn) ≤ Gp (xn, y, z)

≤ Gp (xn, x, x) +Gp (x, y, z) .

By Theorem 1.3,

Gp (xn, x, x) → Gp (x, x, x) = 0
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and
Gp (x, xn, xn) → Gp (x, x, x) = 0.

Letting n tends to infinity in (1.1) we obtain

lim
n→∞

Gp (xn, y, z) = Gp (x, y, z) .

�

Quite recently, Meena and Nema [14] initiated the study of fixed points for
sequences of mappings in G - metric spaces.

2. Implicit relations

Definition 2.1. Let FGp be the set of all continuous functions F (t1, ..., t5) :
R

5
+ → R satisfying the following conditions:

(F1) : F is non - increasing in variables t2, t3, t4, t5,
(F2) : There exists h ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, u, v, u+ v) ≤ 0

implies u ≤ hv.

In the following examples, the proofs of property (F1) are obviously.

Example 2.2. F (t1, ..., t5) = t1 − at2 − bt3 − ct4 − dt5, where a, b, c, d ≥ 0 and
a+ b+ c+ 2d < 1.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+ v) = u− av− bu− cv− d (u+ v) ≤ 0,
which implies u ≤ hv, where 0 ≤ h = a+c+d

1−(b+d) < 1.

Example 2.3. F (t1, ..., t5) = t1 − kmax{t2, t3, t4, t5}, where k ∈
[

0, 12
)

.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+ v) = u− k (u+ v) ≤ 0 which implies

u ≤ hv, where 0 ≤ h = k
1−k

< 1.

Example 2.4. F (t1, ..., t5) = t1 − kmax
{

t2, t3,
t4+t5

2

}

, where k ∈ [0, 1).

(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+ v) = u − kmax
{

u, v, u+2v
3

}

≤ 0. If
u > v, then u (1− k) ≤ 0, a contradiction. Hence u ≤ v, which implies u ≤ hv,
where 0 ≤ h = k < 1.

Example 2.5. F (t1, ..., t5) = t21 − at2t3 − bt3t4 − ct4t5, where a, b, c ≥ 0 and
a+ b+ 2c < 1.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+ v) = u2− auv− buv− cv (u+ v) ≤ 0.
If u > v, then u[1 − (a + b + 2c)] ≤ 0, a contradiction. Hence u ≤ v, which
implies u ≤ hv, where 0 ≤ h =

√
a+ b+ 2c < 1.

Example 2.6. F (t1, ..., t5) = t1 − at2 − bmax{2t3, t4 + t5}, where a, b ≥ 0 and
a+ 3b < 1.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+ v) = u− av− bmax{2v, u+2v} ≤ 0.
If u > v, then u[1− (a+ 3b)] ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ hv, where 0 ≤ h = a+ 3b < 1.

Example 2.7. F (t1, ..., t5) = t1−at2−bmax {t3 + t4, 2t5}, where a, b ≥ 0 and
a+ 4b < 1.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, u+v) = u−av−bmax{u+v, 2 (u+ v)} =
u− av − 2b (u+ v) ≤ 0. Hence u ≤ hv, where 0 ≤ h = a+2b

1−2b < 1.
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Example 2.8. F (t1, ..., t5) = t21 − at22 − bt23 − ct4t5, where a, b, c ≥ 0 and
a+ b+ 2c < 1.

(F2) : Let u, v ≥ 0 be and F (u, v, u, v, u+v) = u2−av2−bu2−cv (u+ v) ≤ 0.
If u > v, then u2[1 − (a + b + 2c)] ≤ 0, a contradiction. Hence u ≤ v, which
implies u ≤ hv, where 0 ≤ h =

√
a+ b+ 2c < 1.

Example 2.9. F (t1, ..., t5) = t1 − amax{t2, t3}− bmax{t4, t5}, where a, b ≥ 0
and a+ 2b < 1.

(F2) : Let u, v ≥ 0 be and F (u, v, u, v, u+v) = u−amax{u, v}−b (u+ v) ≤ 0.
If u > v, then u[1− (a+ 2b)] ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ hv, where 0 ≤ h = a+ 2b < 1.

3. Main results

Theorem 3.1. Let (X,Gp) be a Gp - complete metric space and {Tn}n∈N :
(X,Gp) → (X,Gp) be a sequence of mappings such that for all x, y, z ∈ X and
i, j, k ∈ N:

(3.1)
F (Gp(Tix, Tjy, Tkz), Gp(x, y, z), Gp(Tix, y, Tkz),

Gp(Tix, z, Tjy), Gp(Tjy, Tkz, x)) ≤ 0

where F ∈ FGp. Then, {Tn}n∈N has a unique common fixed point.

Proof. Let x0 be any arbitrary point of X . We define a sequence {xn} in S

such that xn+1 = Tn+1xn, n = 0, 1, 2, ... .
By (3.1) we have successively

F (Gp(Tnxn−1, Tn+1xn, Tn+2xn+1), Gp(xn−1, xn, xn+1), Gp(Tnxn−1, xn, Tn+2xn+1),
Gp(Tnxn−1, xn+1, Tn+1xn), Gp(Tn+1xn, Tn+2xn+1, xn−1)) ≤ 0

(3.2)
F (Gp(xn, xn+1, xn+2), Gp(xn−1, xn, xn+1), Gp(xn, xn, xn+2),

Gp(xn, xn+1, xn+1), Gp(xn+1, xn+2, xn−1)) ≤ 0.

By (Gp2),

Gp(xn, xn, xn+2) ≤ Gp(xn, xn+1, xn+2)

and

Gp(xn−1, xn, xn) ≤ Gp(xn−1, xn, xn+1).

By (Gp4) and (Gp2)

Gp(xn−1, xn+1, xn+2) ≤ Gp(xn−1, xn, xn) +Gp(xn, xn+1, xn+2)

≤ Gp(xn−1, xn, xn+1) +Gp(xn, xn+1, xn+2).

By (3.2) and (F1) we obtain

F (Gp(xn, xn+1, xn+2), Gp(xn−1, xn, xn+1), Gp(xn, xn+1, xn+2),

Gp(xn−1, xn, xn+1), Gp(xn−1, xn, xn+1) +Gp(xn, xn+1, xn+2)) ≤ 0.

By (F2) we obtain

Gp(xn, xn+1, xn+2) ≤ hGp(xn−1, xn, xn+1)
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which implies

(3.3) Gp(xn, xn+1, xn+2) ≤ hnGp(x0, x1, x2).

Now for any integers k ≥ m ≥ n ≥ 1 we obtain by (Gp4) that

Gp (xn, xm, xk) ≤ Gp (xn, xn+1, xn+2) +Gp (xn+1, xn+2, xn+3) + ...+

+ Gp (xk−2, xk−1, xk)

≤ hn
(

1 + h+ ...+ hk−n
)

Gp (x0, x1, x2)

≤ hn

1− h
G (x0, x1, x2) → 0 as n → ∞.

Since by (Gp2), Gp (xn, xm, xm) ≤ Gp (xn, xm, xk) it follows that
Gp (xn, xm, xm) → 0 as n, m → ∞ and thus, {xn} is a Gp - Cauchy
sequence. Since (X,Gp) is a Gp - complete metric space, by Theorem 1.5, (3.3)
and Definition 1.4, there exists u ∈ X such that limn,m→∞ Gp (xn, xm, xm) =
limn→∞ Gp (u, xn, xn) = Gp (u, u, u) = 0.

Now we prove that u is a common fixed point of {Tn}n∈N.
By (3.1) we have successively

F (Gp(Tnxn−1, Tju, Tku), Gp(xn−1, u, u), Gp(Tnxn−1, u, Tku),
Gp(Tn−1xn−1, u, Tju), Gp(Tju, Tku, xn−1)) ≤ 0,

(3.4)
F (Gp(xn, Tju, Tku), Gp(xn−1, u, u), Gp(xn, u, Tku),

Gp(xn, u, Tju), Gp(Tju, Tku, xn−1)) ≤ 0.

Letting n tends to infinity we obtain

F (Gp(xn, Tju, Tku), 0, Gp(u, u, Tku),
Gp(u, u, Tju), Gp(u, Tju, Tku)) ≤ 0.

By (Gp2) and (F1) we obtain

F (Gp(u, Tju, Tku), Gp(u, Tju, Tku), Gp(u, Tju, Tku),
Gp(u, Tju, Tku), Gp(u, Tju, Tku) +Gp (u, Tju, Tku)) ≤ 0.

By (F2) it follows that

Gp(u, Tju, Tku) ≤ hGp(u, Tju, Tku)

which implies

Gp(u, Tju, Tku) = 0.

By Lemma 1.5 (1), u = Tju = Tku. Thus, u is a common fixed point of
{Tn}n∈N.

Suppose that {Tn}n∈N has another common fixed point v.
Then by (3.1) we have successively

F (Gp(Tiu, Tju, Tkv), Gp(u, u, v), Gp(Tiu, u, Tkv),
Gp(Tiu, v, Tju), Gp(Tju, Tkv, u)) ≤ 0,

F (Gp(u, u, v), Gp(u, u, v), Gp(u, u, v),
Gp(u, v, v), Gp(u, v, v)) ≤ 0.
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By (F1) we have

F (Gp(u, u, v), Gp(u, u, v), Gp(u, u, v),
Gp(u, u, v), Gp(u, v, v) +Gp (u, u, v)) ≤ 0.

By (F2) we have
Gp(u, u, v) ≤ kGp(u, v, v),

which implies
G(u, v, v) = 0.

By Lemma 1.5 (1), u = v.
Hence, u is the unique common fixed point. �

Theorem 3.2. Let (X,Gp) be a Gp - complete metric space and {Tn}n∈N :
(X,Gp) → (X,Gp) be a sequence of mappings such that for all x, y, z ∈ X and
i, j, k ∈ N:

(3.5)
F (Gp(Tix, Tjy, Tkz), Gp(x, y, z), Gp(Tix, y, z),

Gp(x, Tjy, z), Gp(x, y, Tkz)) ≤ 0

where F ∈ FGp. Then, {Tn}n∈N has a unique common fixed point.

Proof. The proof is similar to the proof of Theorem 3.1. �
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