

Two general fixed point theorems for a sequence of mappings satisfying implicit relations in Gp - metric spaces

Valeriu Popa a and Alina-Mihaela Patriciu b

Abstract

In this paper, two general fixed point theorem for a sequence of mappings satisfying implicit relations in Gp - complete metric spaces are proved.

2010 MSC: 47H10; 54H25.

Keywords: Gp - complete metric space; sequence of mappings; fixed point; implicit relation.

1. Introduction and Preliminaries

In this paper we shall investigate the existence and uniqueness of common fixed point of mappings via implicit relations in the setting of Gp - metric spaces, inspired from the notion of Gp -metric spaces [25],[4],[6],[7] and other papers. We remind that Gp - metric is inspired from the notions of G - metric ([15],[16],[1],[3],[14] and other papers) and partial metric ([13], [1], [2], [8], [9], [10], [11], [12] and other papers).

Several classical fixed point theorems and common fixed point theorems have been unified considering a general condition by an implicit relation in [17], [18]. Some fixed point theorems for mappings satisfying a implicit relation in G - metric spaces are established in [19] - [22]. Recently, fixed point for mappings satisfying implicit relation in partial metric spaces are obtained in

^a "Vasile Alecsandri" University of Bacău, 600115 Bacău, Romania (vpopa@ub.ro)

^b Department of Mathematics and Computer Sciences, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galați, 800201 Galați, Romania (Alina.Patriciu@ugal.ro)

[5], [9], [10], [24]. Quite recently, a fixed point result for mappings satisfying an implicit relation in Gp - metric spaces is obtained in [23]. We first recall the notion of Gp - metric.

Definition 1.1 ([25]). Let X be a nonempty set. A function $Gp: X^3 \to \mathbb{R}_+$ is called a Gp - metric on X if the following conditions are satisfied:

$$(Gp_1): x = y = z \text{ if } Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z),$$

$$(Gp_2): 0 \le Gp(x,x,x) \le Gp(x,x,y) \le Gp(x,y,z)$$
 for all $x,y,z \in X$, with $y \ne z$,

$$(Gp_3): Gp(x, y, z) = Gp(y, z, x) = \dots$$
 (symmetry in all three variables),

$$(Gp_4): Gp(x, y, z) \le Gp(x, a, a) + Gp(a, y, z) - Gp(a, a, a) \text{ for all } x, y, z, a \in X.$$

The pair (X, Gp) is called a Gp - metric space.

Definition 1.2 ([25]). Let (X, Gp) be a Gp - metric space and $\{x_n\}$ a sequence in X. A point $x \in X$ is said to be the limit of the sequence $\{x_n\}$ or $x_n \to x$ $(\{x_n\} \text{ is } Gp \text{ - convergent to } x) \text{ if } \lim_{n,m\to\infty} Gp(x,x_n,x_m) = Gp(x,x,x).$

Theorem 1.3 ([4]). Let (X, Gp) be a Gp - metric space. Then, for any $\{x_n\} \in$ X and $x \in X$, the following conditions are equivalent:

- a) $\{x_n\}$ is Gp convergent to x,
- b) $Gp(x_n, x_n, x) \to Gp(x, x, x)$ as $n \to \infty$,
- c) $Gp(x_n, x, x) \to Gp(x, x, x)$ as $n \to \infty$.

Definition 1.4 ([25]). Let (X, Gp) be a Gp - metric space.

- 1) A sequence $\{x_n\}$ of X is called a Gp Cauchy sequence in X if $\lim_{n,m\to\infty} GP(x_n,x_m,x_m)$ exists and is finite.
- 2) A Gp metric space is said to be Gp complete if every Gp Cauchy sequence in X, Gp - converges to $x \in X$ such that $\lim_{n,m\to\infty} Gp(x_n,x_m,x_m) =$ Gp(x, x, x).

Lemma 1.5 ([4]). Let (X, Gp) be a Gp - metric space. Then:

- 1) If Gp(x, y, z) = 0 then x = y = z,
- 2) If $x \neq y$ then Gp(x, x, y) > 0.

Lemma 1.6. Let (X, Gp) be a Gp - metric space and $\{x_n\}$ is a sequence in X which is G_p - convergent to a point $x \in X$ with $G_p(x, x, x) = 0$. Then, $\lim_{n\to\infty} G(x_n,y,z) = G(x,y,z)$ for all $y,z\in X$.

Proof. By (Gp_4)

$$(1.1) Gp(x,y,z) \leq Gp(x,x_n,x_n) + Gp(x_n,y,z) - Gp(x_n,x_n,x_n)$$

$$\leq Gp(x,x_n,x_n) + Gp(x_n,y,z),$$

which implies

$$Gp(x, y, z) - Gp(x, x_n, x_n) \le Gp(x_n, y, z)$$

 $\le Gp(x_n, x, x) + Gp(x, y, z).$

By Theorem 1.3,

$$Gp(x_n, x, x) \rightarrow Gp(x, x, x) = 0$$

and

$$Gp(x, x_n, x_n) \rightarrow Gp(x, x, x) = 0.$$

Letting n tends to infinity in (1.1) we obtain

$$\lim_{n\to\infty} Gp(x_n, y, z) = Gp(x, y, z).$$

Quite recently, Meena and Nema [14] initiated the study of fixed points for sequences of mappings in G - metric spaces.

2. Implicit relations

Definition 2.1. Let \mathfrak{F}_{Gp} be the set of all continuous functions $F(t_1,...,t_5)$: $\mathbb{R}^5_+ \to \mathbb{R}$ satisfying the following conditions:

 (F_1) : F is non - increasing in variables t_2, t_3, t_4, t_5 ,

 (F_2) : There exists $h \in [0,1)$ such that for all $u, v \geq 0$, $F(u, v, u, v, u + v) \leq 0$ implies $u \leq hv$.

In the following examples, the proofs of property (F_1) are obviously.

Example 2.2. $F(t_1,...,t_5) = t_1 - at_2 - bt_3 - ct_4 - dt_5$, where $a,b,c,d \ge 0$ and a+b+c+2d<1.

 (F_2) : Let $u, v \ge 0$ and $F(u, v, u, v, u + v) = u - av - bu - cv - d(u + v) \le 0$, which implies $u \le hv$, where $0 \le h = \frac{a + c + d}{1 - (b + d)} < 1$.

Example 2.3. $F(t_1,...,t_5) = t_1 - k \max\{t_2,t_3,t_4,t_5\}$, where $k \in [0,\frac{1}{2})$. $(F_2): \text{Let } u,v \geq 0 \text{ and } F(u,v,u,v,u+v) = u-k(u+v) \leq 0 \text{ which implies}$

 $u \le hv$, where $0 \le h = \frac{k}{1-k} < 1$.

Example 2.4. $F(t_1,...,t_5)=t_1-k\max\left\{t_2,t_3,\frac{t_4+t_5}{2}\right\}$, where $k\in[0,1)$. $(F_2):$ Let $u,v\geq 0$ and $F(u,v,u,v,u+v)=u-k\max\left\{u,v,\frac{u+2v}{3}\right\}\leq 0$. If u > v, then $u(1-k) \le 0$, a contradiction. Hence $u \le v$, which implies $u \le hv$, where $0 \le h = k < 1$.

Example 2.5. $F(t_1,...,t_5) = t_1^2 - at_2t_3 - bt_3t_4 - ct_4t_5$, where $a,b,c \ge 0$ and a + b + 2c < 1.

 (F_2) : Let $u, v \ge 0$ and $F(u, v, u, v, u + v) = u^2 - auv - buv - cv(u + v) \le 0$. If u > v, then $u[1 - (a + b + 2c)] \le 0$, a contradiction. Hence $u \le v$, which implies $u \leq hv$, where $0 \leq h = \sqrt{a+b+2c} < 1$.

Example 2.6. $F(t_1,...,t_5) = t_1 - at_2 - b \max\{2t_3, t_4 + t_5\}$, where $a, b \ge 0$ and a + 3b < 1.

 (F_2) : Let $u, v \ge 0$ and $F(u, v, u, v, u + v) = u - av - b \max\{2v, u + 2v\} \le 0$. If u > v, then $u[1 - (a + 3b)] \le 0$, a contradiction. Hence $u \le v$, which implies $u \leq hv$, where $0 \leq h = a + 3b < 1$.

Example 2.7. $F(t_1,...,t_5) = t_1 - at_2 - b \max\{t_3 + t_4, 2t_5\}$, where $a, b \ge 0$ and a + 4b < 1.

 (F_2) : Let $u, v \ge 0$ and $F(u, v, u, v, u+v) = u - av - b \max\{u+v, 2(u+v)\} = u - av - b \max\{u+v, 2(u+v)\}$ $u - av - 2b(u + v) \le 0$. Hence $u \le hv$, where $0 \le h = \frac{a+2b}{1-2b} < 1$.

Example 2.8. $F(t_1,...,t_5) = t_1^2 - at_2^2 - bt_3^2 - ct_4t_5$, where $a,b,c \ge 0$ and a + b + 2c < 1.

 (F_2) : Let $u, v \ge 0$ be and $F(u, v, u, v, u + v) = u^2 - av^2 - bu^2 - cv (u + v) \le 0$. If u > v, then $u^2[1 - (a + b + 2c)] \le 0$, a contradiction. Hence $u \le v$, which implies $u \leq hv$, where $0 \leq h = \sqrt{a+b+2c} < 1$.

Example 2.9. $F(t_1,...,t_5) = t_1 - a \max\{t_2,t_3\} - b \max\{t_4,t_5\}$, where $a,b \ge 0$ and a + 2b < 1.

 (F_2) : Let $u, v \ge 0$ be and $F(u, v, u, v, u+v) = u-a \max\{u, v\} - b(u+v) \le 0$. If u > v, then $u[1 - (a + 2b)] \le 0$, a contradiction. Hence $u \le v$, which implies u < hv, where 0 < h = a + 2b < 1.

3. Main results

Theorem 3.1. Let (X, Gp) be a Gp - complete metric space and $\{T_n\}_{n\in\mathbb{N}}$: $(X,Gp) \rightarrow (X,Gp)$ be a sequence of mappings such that for all $x,y,z \in X$ and $i, j, k \in \mathbb{N}$:

(3.1)
$$F(Gp(T_ix, T_jy, T_kz), Gp(x, y, z), Gp(T_ix, y, T_kz), Gp(T_ix, z, T_jy), Gp(T_jy, T_kz, x)) \le 0$$

where $F \in \mathfrak{F}_{Gp}$. Then, $\{T_n\}_{n \in \mathbb{N}}$ has a unique common fixed point.

Proof. Let x_0 be any arbitrary point of X. We define a sequence $\{x_n\}$ in S such that $x_{n+1} = T_{n+1}x_n$, n = 0, 1, 2,

By (3.1) we have successively

$$F(Gp(T_nx_{n-1}, T_{n+1}x_n, T_{n+2}x_{n+1}), Gp(x_{n-1}, x_n, x_{n+1}), Gp(T_nx_{n-1}, x_n, T_{n+2}x_{n+1}), Gp(T_nx_{n-1}, x_{n+1}, T_{n+1}x_n), Gp(T_{n+1}x_n, T_{n+2}x_{n+1}, x_{n-1})) \le 0$$

(3.2)
$$F(Gp(x_n, x_{n+1}, x_{n+2}), Gp(x_{n-1}, x_n, x_{n+1}), Gp(x_n, x_n, x_{n+2}), Gp(x_n, x_{n+1}, x_{n+1}), Gp(x_{n+1}, x_{n+2}, x_{n-1})) \le 0.$$

By (Gp_2) ,

$$Gp(x_n, x_n, x_{n+2}) \le Gp(x_n, x_{n+1}, x_{n+2})$$

and

$$Gp(x_{n-1}, x_n, x_n) \le Gp(x_{n-1}, x_n, x_{n+1}).$$

By (Gp_4) and (Gp_2)

$$Gp(x_{n-1}, x_{n+1}, x_{n+2}) \leq Gp(x_{n-1}, x_n, x_n) + Gp(x_n, x_{n+1}, x_{n+2})$$

$$\leq Gp(x_{n-1}, x_n, x_{n+1}) + Gp(x_n, x_{n+1}, x_{n+2}).$$

By (3.2) and (F_1) we obtain

$$F(Gp(x_n, x_{n+1}, x_{n+2}), Gp(x_{n-1}, x_n, x_{n+1}), Gp(x_n, x_{n+1}, x_{n+2}), Gp(x_n, x_{n+1}, x_{n+2}, x_{n+2}), Gp(x_n, x_{n+1}, x_{n+2}, x_{n+2}, x_{n+2}, x_{n+2}), Gp(x_n, x_{n+1}, x_{n+2}, x_{n+2},$$

$$Gp(x_{n-1}, x_n, x_{n+1}), Gp(x_{n-1}, x_n, x_{n+1}) + Gp(x_n, x_{n+1}, x_{n+2})) \le 0.$$

By (F_2) we obtain

$$Gp(x_n, x_{n+1}, x_{n+2}) \le hGp(x_{n-1}, x_n, x_{n+1})$$

which implies

(3.3)
$$Gp(x_n, x_{n+1}, x_{n+2}) \le h^n Gp(x_0, x_1, x_2).$$

Now for any integers $k \geq m \geq n \geq 1$ we obtain by (Gp_4) that

$$Gp(x_{n}, x_{m}, x_{k}) \leq Gp(x_{n}, x_{n+1}, x_{n+2}) + Gp(x_{n+1}, x_{n+2}, x_{n+3}) + \dots + Gp(x_{k-2}, x_{k-1}, x_{k})$$

$$\leq h^{n} (1 + h + \dots + h^{k-n}) Gp(x_{0}, x_{1}, x_{2})$$

$$\leq \frac{h^{n}}{1 - h} G(x_{0}, x_{1}, x_{2}) \to 0 \text{ as } n \to \infty.$$

Since by (Gp_2) , $Gp(x_n, x_m, x_m) \leq Gp(x_n, x_m, x_k)$ it follows that $Gp(x_n, x_m, x_m) \to 0$ as $n, m \to \infty$ and thus, $\{x_n\}$ is a Gp-Cauchy sequence. Since (X, Gp) is a Gp - complete metric space, by Theorem 1.5, (3.3) and Definition 1.4, there exists $u \in X$ such that $\lim_{n,m\to\infty} Gp(x_n,x_m,x_m) =$ $\lim_{n\to\infty} Gp(u,x_n,x_n) = Gp(u,u,u) = 0.$

Now we prove that u is a common fixed point of $\{T_n\}_{n\in\mathbb{N}}$.

By (3.1) we have successively

$$F(Gp(T_nx_{n-1}, T_ju, T_ku), Gp(x_{n-1}, u, u), Gp(T_nx_{n-1}, u, T_ku), Gp(T_{n-1}x_{n-1}, u, T_ju), Gp(T_ju, T_ku, x_{n-1})) \le 0,$$

(3.4)
$$F(Gp(x_n, T_j u, T_k u), Gp(x_{n-1}, u, u), Gp(x_n, u, T_k u), Gp(x_n, u, T_j u), Gp(T_j u, T_k u, x_{n-1})) \le 0.$$

Letting n tends to infinity we obtain

$$F(Gp(x_n, T_ju, T_ku), 0, Gp(u, u, T_ku), Gp(u, u, T_ju), Gp(u, T_ju, T_ku)) \le 0.$$

By (Gp_2) and (F_1) we obtain

$$F(Gp(u, T_ju, T_ku), Gp(u, T_ju, T_ku), Gp(u, T_ju, T_ku), Gp(u, T_iu, T_ku), Gp(u, T_iu, T_ku) + Gp(u, T_iu, T_ku)) \le 0.$$

By (F_2) it follows that

$$Gp(u, T_i u, T_k u) \le hGp(u, T_i u, T_k u)$$

which implies

$$Gp(u, T_i u, T_k u) = 0.$$

By Lemma 1.5 (1), $u = T_i u = T_k u$. Thus, u is a common fixed point of $\{T_n\}_{n\in\mathbb{N}}.$

Suppose that $\{T_n\}_{n\in\mathbb{N}}$ has another common fixed point v.

Then by (3.1) we have successively

$$F(Gp(T_{i}u, T_{j}u, T_{k}v), Gp(u, u, v), Gp(T_{i}u, u, T_{k}v), Gp(T_{i}u, v, T_{j}u), Gp(T_{j}u, T_{k}v, u)) \leq 0,$$

$$F(Gp(u, u, v), Gp(u, u, v), Gp(u, u, v), Gp(u, v, v), Gp(u, v, v)) \leq 0.$$

By (F_1) we have

$$F(Gp(u, u, v), Gp(u, u, v)) \le 0.$$

By (F_2) we have

$$Gp(u, u, v) \le kGp(u, v, v),$$

which implies

$$G(u, v, v) = 0.$$

By Lemma 1.5 (1), u = v.

Hence, u is the unique common fixed point.

Theorem 3.2. Let (X, Gp) be a Gp - complete metric space and $\{T_n\}_{n\in\mathbb{N}}$: $(X,Gp) \rightarrow (X,Gp)$ be a sequence of mappings such that for all $x,y,z \in X$ and $i, j, k \in \mathbb{N}$:

(3.5)
$$F(Gp(T_ix, T_jy, T_kz), Gp(x, y, z), Gp(T_ix, y, z), Gp(x, T_iy, z), Gp(x, y, T_kz)) \le 0$$

where $F \in \mathfrak{F}_{Gp}$. Then, $\{T_n\}_{n \in \mathbb{N}}$ has a unique common fixed point.

Proof. The proof is similar to the proof of Theorem 3.1.

ACKNOWLEDGEMENTS. The authors thank the anonimous reviewers for their valuable comments, which improved the initial version of the paper.

References

- [1] T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of common fixed points on partial metric spaces, Applied Math. Lett. 24 (11) (2011), 1894-1899.
- [2] I. Altun, F. Sola and H. Simsek, Generalized contractive principle on partial metric spaces, Topology Appl. 157, no. 18 (2010), 2778–2785.
- [3] M. Asadi, E. Karapinar and P. Salimi, A new approach to G metric spaces and related fixed point theorems, J. Ineq. Appl. (2013), 2013:454.
- [4] H. Aydi, E. Karapinar and P. Salimi, Some fixed point results in Gp-metric spaces, J. Appl. Math. (2012), Article ID 891713.
- [5] H. Aydi, M. Jellali and E. Karapinar, Common fixed points for α implicit contractions in partial metric spaces. Consequences and Applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. (DOI: 10.1017/s13398-014-0187-1).
- [6] M. A. Barakat and A. M. Zidan, A common fixed point theorem for weak contractive maps in Gp-metric spaces, J. Egyptean Math. Soc. (DOI: 10.1016/j.joems.2014.06.008).
- [7] N. Bilgili, E. Karapinar and P. Salimi, Fixed point theorems for generalized contractions on Gp-metric spaces, J. Ineq. Appl. (2013), 2013:39.
- [8] R. Chi, E. Karapinar and T. D. Than, A generalized contraction principle in partial metric spaces, Math. Comput. Modelling 55, no. 5-6 (2012), 1673–1681.
- [9] S. Guliaz and E. Karapinar, Coupled fixed point results in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat. 429, no. 4 (2013), 347–357.

- [10] S. Guliaz, E. Karapinar and I. S. Yuce, CA coupled coincidence point theorem in partially ordered metric spaces with an implicit relation, Fixed Point Theory Appl. (2013), 2013:38.
- [11] Z. Kadelburg, H. K. Nashine and S. Radanović, Fixed point results under various contractive conditions in partial metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. **10** (2013), 241–256.
- [12] E. Karapinar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (11) (2011), 1894–1899.
- [13] S. Matthews, Partial metric topology and applications, Proc. 8th Summer Conf. General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183–197.
- [14] G. Meena and D. Nema, Common fixed point theorem for a sequence of mappings in G-metric spaces, Intern. J. Math. Computer Research 2, no. 5 (2014), 403–407.
- [15] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proc. Conf. Fixed Point Theory Appl., Valencia (Spain) (2003), 189-198.
- [16] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7, no. 2 (2006), 289–297.
- [17] V. Popa, Fixed point theorems for implicit contractive mappings, St. Cerc. Stiint.. Ser. Mat. 7 (1997), 129-133.
- [18] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32, no. 1 (1999), 157-163.
- [19] V. Popa and A.-M. Patriciu, Two general fixed point theorems for pairs of weakly compatible mappings in G - metric spaces, Novi Sad J. Math. 42, no. 2 (2013), 49–60.
- [20] V. Popa and A.-M. Patriciu, A general fixed point theorem for mappings satisfying an φ - implicit relation in complete G-metric spaces, Gazi Univ. J. Sci. 25, no. 2 (2012), 403-408
- [21] V. Popa and A.-M. Patriciu, A general fixed point theorem for pair of weakly compatible mappings in G - metric spaces, J. Nonlinear Sci. Appl. 5, no. 2 (2012), 151–160.
- [22] V. Popa and A.-M. Patriciu, Fixed point theorems for mappings satisfying an implicit relation in complete G - metric spaces, Bul. Instit. Politehn. Iaşi 50 (63), Ser. Mat. Mec. Teor. Fiz., 2 (2013), 97-123.
- V. Popa and A.-M. Patriciu, Well posedness of fixed point problem for mappings satisfying an implicit relation in Gp-metric spaces, Math. Sci. Appl. E-Notes 3, no. 1 (2015), 108-117.
- [24] C. Vetro and F. Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl. 6 (2013), 152-161.
- [25] M. R. A. Zand and A. N. Nezhad, A generalization of partial metric spaces, J. Contemporary Appl. Math. 1, no. 1 (2011), 86–93.