

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA AEROESPACIAL

ANÁLISIS AEROELÁSTICO DE UN ALA OBLICUA

Autor: Guillermo Antoine Ponsoda

Tutor: Mario Lázaro Navarro

→ 1. Introducción

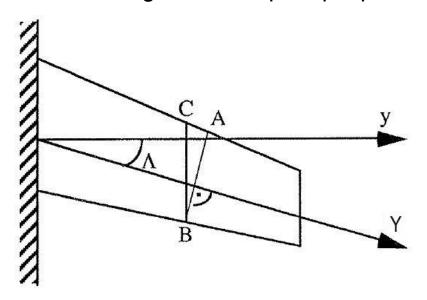
- 2. Breve historia y motivación
- 3. Análisis realizados y Resultados
- 4. Conclusiones
- 5. Presupuesto

1. Introducción

- Proyecto teórico sobre alas oblicuas
- Análisis aeroelástico estático (DIVERGENCIA)
- 2 métodos: Analítico y Teórico

OBJETIVOS

- Obtener presión dinámica de divergencia
- Influencia de la flecha (Λ)
- Influencia de los parámetros geométricos y estructurales
- Limitaciones del ala oblicua



1. Introducción

DEFINICIÓN DE DIVERGENCIA

- Qué es: Fenómeno de inestabilidad estática
- Que lo produce :Interacción entre fuerzas aerodinámicas y estructurales
- Que causa: Modifica el ángulo de ataque, que puede llegar a divergir

- 1. Introducción
- → 2. Breve historia y motivación
 - 3. Análisis realizados y Resultados
 - 4. Conclusiones
 - 5. Presupuesto

2. Breve historia y motivación

- Diseño de ala oblicua fue propuesto en 1912, aunque hasta 1940 no empezaron los estudios en túnel de viento
- 2 proyectos muy importantes (OWRA Y AD-1)

OWRA

- 1970
- Análisis características aerodinámicas y control de vuelo
- No tripulado

2. Breve historia y motivación

- Diseño de ala oblicua fue propuesto en 1912, aunque hasta 1940 no empezaron los estudios en túnel de viento
- 2 proyectos muy importantes (OWRA Y AD-1)

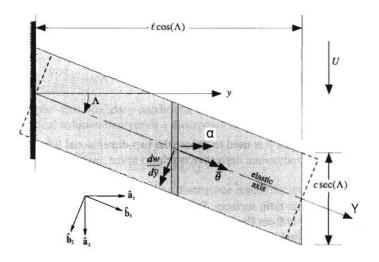
AD-1

- 1979
- Análisis a bajas velocidades
- Tripulado

2. Breve historia y motivación

- Las alas oblicuas poseen mayores eficiencias que las alas en flecha simétricas en muchos casos
- Pueden llegar a ser una revolución en el futuro
- Interacción entre ambas alas que pueden afectar de un modo distinto a alas en flecha tradicionales

Escuela Técnica Superior de Ingeniería del Diseño

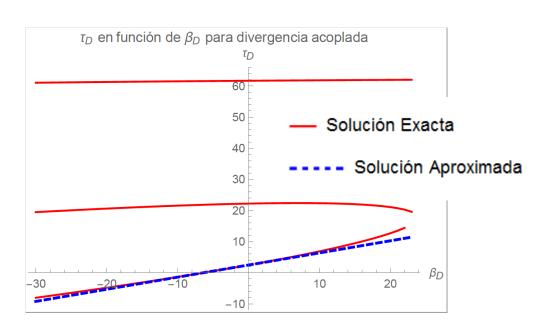

- 1. Introducción
- 2. Breve historia y motivación
- 3. Análisis realizados y Resultados
- i. Análisis analítico (Strip-Theory)
 - ii. Análisis numérico
 - Modelo Estructural
 - b. Modelo Aerodinámico
 - iii. Resultados
 - 4. Conclusiones

3.i. Análisis analítico (Strip-Theory)

- Se basa en la resolución directa de la ecuación de equilibrio
- El ala se modela como una viga empotrada en la raíz y libre en punta de ala
- El ángulo de ataque varía por la deformación tanto a flexión como a torsión

$$\alpha = \theta \cos(\Lambda) - w' \sin(\Lambda)$$

$$\alpha''' + \tau \alpha' + \beta \alpha = 0$$



3.i. Análisis analítico (Strip-Theory)

$$\alpha''' + \tau \alpha' + \beta \alpha = 0$$

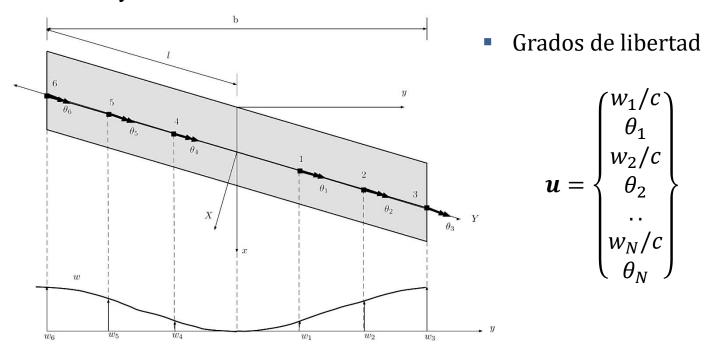
$$\int \tau = \frac{q e c a l^2}{GJ} \cos^2(\Lambda)$$

$$\beta = \frac{q c a l^3}{EI} \sin(\Lambda) \cos(\Lambda)$$

Aproximación

$$\tau_D = \frac{\pi^2}{4} + \frac{3 \pi^2}{76} \beta_D$$

$$\frac{q_D}{q_{D0}} = \frac{1 + \tan^2(\Lambda)}{1 - \frac{3\pi^2}{76} \frac{l}{e} \frac{GJ}{EI} \tan(\Lambda)}$$


- 1. Introducción
- 2. Breve historia y motivación
- 3. Análisis realizados y Resultados
 - Análisis analítico (Strip-Theory)
- ii. Análisis numérico
 - Modelo Estructural
 - b. Modelo Aerodinámico
 - iii. Resultados
 - 4. Conclusiones

3.i. Análisis numérico

- Se basa en la resolución de las ecuaciones de Lagrange $\frac{\partial U}{\partial u} = Q$
- Se realiza de modo matricial
- Incluye el efecto 3D de la sustentación

3.i. Análisis numérico (Modelo Estructural)

- Cada semiala se analiza por separado
- La respuesta viene definida por funciones de forma poliinómicas

$$w(Y) = N_{w_{1,4}} w_{1,4} + N_{w_{2,5}} w_{2,5} + N_{w_{3,6}} w_{3,6}$$

$$\theta(Y) = N_{\theta_{1,4}} w_{1,4} + N_{\theta_{2,5}} w_{2,5} + N_{\theta_{3,6}} w_{3,6}$$

$$cc \begin{cases} w(0) = 0 & deflexión nula \\ w'(0) = 0 & giro nulo \\ w''(l) = 0 & momento flector nulo \\ w'''(l) = 0 & cortante nulo \\ \theta(0) = 0 & giro nulo \\ \theta'(0) = 0 & momento torsor nulo \end{cases}$$
 y $w(Y_k) = w_k$ $\theta_k(Y_k) = \theta_k$

Una vez obtenidas las funciones de forma se agrupan matricialmente

•
$$w_{D,I}(Y) = c N_{\boldsymbol{w}_{D,I}}^T(Y) \boldsymbol{u}$$

•
$$\theta_{D,I}(Y) = N_{\theta_{D,I}}^T(Y) u$$

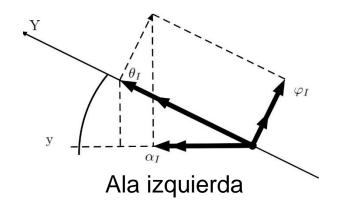
MATRIZ DE RIGIDEZ

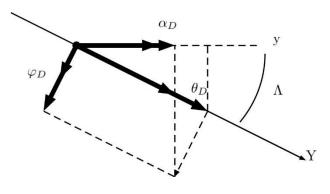
$$K_{w} = \int_{0}^{l} EI\left(\frac{\partial^{2} w_{D,I}}{\partial Y^{2}}\right) \left(\frac{\partial^{2} w_{D,I}}{\partial Y^{2}}\right)^{T} dY$$

$$K_{\theta} = \int_{0}^{l} GJ\left(\frac{\partial \theta_{D,I}}{\partial Y^{2}}\right) \left(\frac{\partial \theta_{D,I}}{\partial Y^{2}}\right)^{T} dY$$

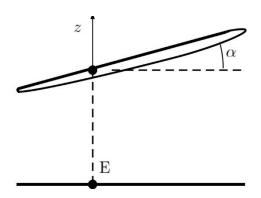
 La matriz de rigidez cendrá definida por la matrices de flexión y torsión de cada semiala

$$K = \frac{GJ}{l} K = K_{w_D} + K_{w_I} + K_{\theta_D} + K_{\theta_I}$$


$$EI = \beta GJ$$

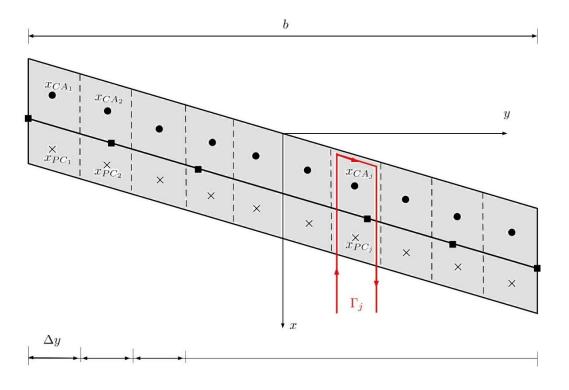


• ÁNGULO DE ATAQUE $\alpha(y) = N_{\alpha}^{T}(y) u$


$$\alpha(y) = N_{\alpha}^{T}(y) u$$

Ala derecha

DESPLAZAMIENTO VERTICAL


$$z(y) = c \, N_A^T(y) \, \boldsymbol{u}$$

3.i. Análisis numérico (Modelo Aerodinámico)

- Se basa en el método de los paneles.
- La sustentación se genera mediante torbellinos en herradura

NODOS

- Cada panel esta delimitado por 4 nodos (Matriz de Conexiones)
- Se calcula la posición de cada nodo (Matriz de nodos)

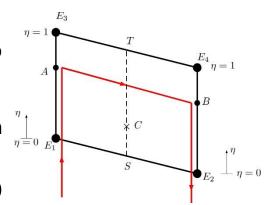
PANELES

- Con las posiciones de nodos se determina α y variación en z de cada panel
 - D_{α} , Primera Matriz de Acoplamiento
 - D_z , Segunda Matriz de Acoplamiento

Indican el ángulo de ataque y el desplazamiento vertical de los paneles en función de u Respectivamente

$$\begin{cases} z_{A1} \\ \vdots \\ z_{Aj} \\ \vdots \\ z_{AN} \end{cases} = c \begin{bmatrix} \boldsymbol{N}_{\boldsymbol{A_I}}^T(y_{A1}) \\ \vdots \\ \boldsymbol{N}_{\boldsymbol{A}}^T(y_{Aj}) \\ \vdots \\ \vdots \\ \boldsymbol{N}_{\boldsymbol{A}D}^T(y_{AN}) \end{bmatrix} \boldsymbol{u}_{12x1}$$

a , Vector de la pendiente de los puntos de control



FUERZAS EXTERNAS

- Se calculan mediante las condiciones de contorno definida por velocidad vertical $w_k = V_\infty \frac{\partial z_P}{\partial x}|_k$
- Ley de Biot Savart → Velocidad vertical en función de torbellinos

$$V_C = V(\infty \to A) + V_P(A \to B) + V_P(B \to \infty)$$

$$H \Gamma = V_{\infty} a$$

Aplicando Kutta-Joukovsk

$$L = \rho V_{\infty} \Gamma$$

Trabajo virtual

$$\partial W = \sum L_j \, \Delta y_j \, \partial z_{Aj} \qquad \rightarrow \qquad Q = c l^2 q(\boldsymbol{f_r} + \boldsymbol{A} \cdot \boldsymbol{u})$$

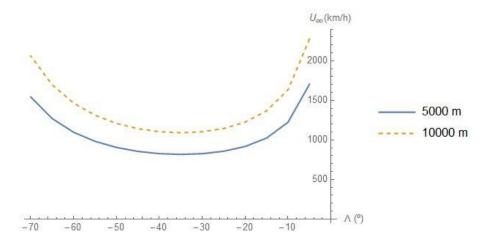
$$(\mathbf{K_{adi}} - {^{q_D}}/{q_{D0}}\mathbf{A}) = q_{D0}\mathbf{f}_r \qquad \rightarrow \qquad (\mathbf{K_{ad}} - \lambda\mathbf{A}) = 0$$

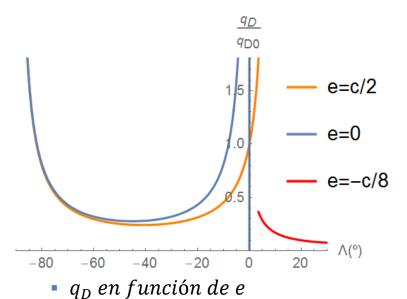
- 1. Introducción
- 2. Breve historia y motivación
- 3. Análisis realizados y Resultados
 - i. Análisis analítico (Strip-Theory)
 - ii. Análisis numérico
 - Modelo Estructural
 - b. Modelo Aerodinámico
- → iii. Resultados
 - 4. Conclusiones

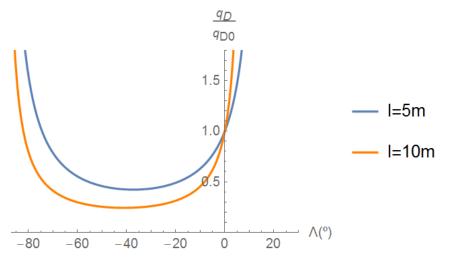
3.iii. Resultados

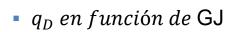
 Presión dinámica de divergencia adimensional según el modelo utilizado

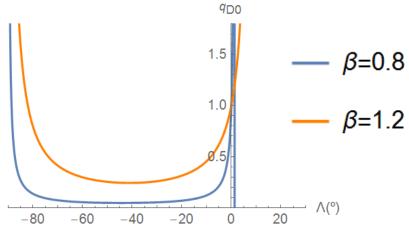
				9D0		
				1.6 - 1.4 - 1.2 - 1.0 -	-	Analítico - Numérico
-80	-60	-40	-20		\(\(\epsilon\)	


Característica	Valor		
Cuerda (c)	0,9 m		
Envergadura (b)	20 m		
е	c/4		
α_R	2 °		


3.iii. Resultados


Presión dinámica de divergencia adimensional en función de la velocidad


 Para mejorar la respuesta ante la divergencia se estudia la influencia de distintos parámetros estructurales



• q_D en función de l

 q_D

Escuela Técnica Superior de Ingeniería del Diseño

- 1. Introducción
- 2. Breve historia y motivación
- 3. Análisis realizados y Resultados
- → 4. Conclusiones

4. Conclusiones

- Las discrepancias entre los modelos vienen dadas por las simplificaciones realizadas en el modelo analítico
- El modelo numérico permite abarcar problemas mas complejos
- La presión dinámica límite viene marcada por el ala con flecha negativa
- Para poder retrasar la entrada en divergencia existen varios métodos:
 - > Acercar lo máximo posible el eje elástico y el aerodinámico
 - Conseguir el mínimo alargamiento posible
 - > Aumentar la rigidez a torsión frente a la de flexión

Autor: Guillermo Antoine Ponsoda

Tutor: Mario Lázaro Navarro

