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Feel the ocean as it breathes, 

shivering teeth. 

See the mountains where they meet, 

smothering me. 

As the wind fends off the waves, 

I count down the days 

heavy stones fear no weather. 

 

And from the rain  

comes a river running wild 

that will create an empire for you. 

Illuminate! 

 

Empire, Of Monster and Men (2015) 
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Water is the foundation for all biological life on Earth and one of the basic links 

between the biosphere and atmosphere. It is equally fundamental for humans 

and nature (Tolba, 1982). In an environment of growing scarcity and competition 

for water, increasing the understanding of all fluxes of the water cycle lies at the 

heart of the scientific community’s goals. Traditionally, water and vegetation have 

been considered as different systems. However, it is necessary to take a holistic 

approach which considers the question of the water cycle in an integrated 

manner by taking into account both: blue water and green water (Birot et al., 

2011). Around this idea, the new discipline Ecohydrology emerged in the early 

20th century and, from then; it has grown steadily as shown by the increasing 

number of research lines and scientific papers related to this new field. 

The necessity of this new discipline is even more evident in arid and semiarid 

regions where the hydrological cycle and the vegetation dynamics are tightly 

interconnected. That’s why a coupled modeling of these two systems is needed 

to fully reproduce the ecosystems’ behavior over time and to predict possible 

future responses to climate change.  

However, most of the current hydrological models includes the vegetation as 

static parameter and not as state variable. In fact, most of them are able to 

represent fairly well the observed discharge at the catchment outlet, but usually 

including the vegetation as a static parameter (Quevedo and Francés, 2008). 

There are some exceptions taking explicitly the vegetation as state variable but in 

those cases, the models’ complexity and parametrical requirements increase 

substantially. Hence, a lot of information is required to implement them and that 

information is not always available. In fact, in practice, we have to deal against 

the ‘data scarcity – high parametrical requirements’ issue really often. 

To reduce that issue, two strategies can be applied: (1) simplification of the 

models’ conceptual scheme and (2) increase of data availability by incorporating 

new sources of information. In this thesis, we explored the use of a distributed 

parsimonious ecohydrological modelling (with low parametrical requirements) 

calibrated and validated exclusively with remote sensing data. 

First, we used the parsimonious ecohydrological model proposed by Pasquato et 

al. (2015) in an experimental plot located in a semi-arid Mediterranean forest. 

Due to its simplicity, some processes are neglected in its conceptualization 

because only the main processes are included. That’s why it was important to 

test their accuracy and reliability. To address this issue, we decided to compare 
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the results provided by this parsimonious model against the corresponding ones 

provided by a complex physically-based ecohydrological model. The results in 

this previous stage suggested that the model was able to adequately reproduce 

the dynamics of vegetation as well as the soil moisture variations. In other words, 

it has been shown that a parsimonious model with simple equations can achieve 

good results in general terms. But, as long as we applied the model at plot scale, 

the challenging task to reproduce the spatial variation of the vegetation and water 

cycle remained. 

To explore the spatio-temporal variation of the vegetation and the water cycle, 

the distributed version of the parsimonious ecohydrological model used 

previously was applied in a basin located in Kenya, concretely in the Upper 

Ewaso Ngiro River basin. In order to explore the potential applicability of the 

satellite data, we calibrated the model using exclusively the NDVI provided by 

NASA. First of all, we had to deal with the fact that we were not calibrating the 

model with only one temporal series such as historical streamflow as usual. In 

fact, satellite data is composed by one temporal series per pixel. We had to 

identify how to use spatio-temporal (and not only temporal) data during models’ 

calibration and validation. In that sense, unfortunately, there is still a deep lack in 

literature. 

A methodology based on the use of Empirical Orthogonal Function analysis was 

proposed and successfully applied. This experience provided amazing and 

promising results. The obtained results demonstrated that: (1) satellite data of 

vegetation dynamics contains an extraordinary amount of information that can be 

used to implement ecohydrological models in scarce data regions; (2) the 

proposed semi-automatic calibration methodology works satisfactorily and it 

allows to incorporate spatio-temporal data in the model parameterization and (3) 

the model calibrated only using satellite data is able to reproduce both the spatio-

temporal vegetation dynamics and the observed discharge at the outlet point. It is 

important to highlight the positive consequences of this last result particularly in 

ungauged basins where the use of satellite data could be an alternative in order 

to obtain a proxy of the streamflow at outlet point. 
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El agua es la base de toda vida biológica en la Tierra y uno de los enlaces 

básicos entre la biosfera y la atmósfera. Es igualmente fundamental para los 

seres humanos y la naturaleza (Tolba, 1982). En un entorno de creciente 

escasez de agua y de mayor competencia por conseguirla, una mayor 

comprensión y conocimiento de todos los flujos del ciclo del agua se encuentran 

entre los objetivos claves de la comunidad científica. Tradicionalmente, el agua y 

la vegetación se han considerado como sistemas diferentes pero es claramente 

necesario tomar un enfoque holístico que considere la cuestión del ciclo del agua 

de una manera integrada, teniendo en cuenta tanto el agua azul como el agua 

verde (Birot et al., 2011). Alrededor de esta idea surgió la nueva disciplina 

llamada Ecohidrología a principios del siglo XX y desde entonces, no ha dejado 

de crecer tal y como demuestran el creciente aumento de líneas de investigación 

y publicaciones científicas relacionadas con este nuevo campo. 

Esta nueva disciplina es todavía más necesaria en regiones áridas y semiáridas, 

donde el ciclo hidrológico y la dinámica de la vegetación están estrechamente 

interconectados. Es por eso que es necesaria una modelización acoplada de 

estos dos sistemas para reproducir totalmente el comportamiento de los 

ecosistemas a través del tiempo y predecir posibles futuras respuestas al cambio 

climático. 

Sin embargo, la mayoría de los modelos hidrológicos actuales incluye la 

vegetación como un parámetro estático y no como una variable de estado. De 

hecho, la mayoría de ellos son capaces de representar bastante bien el caudal 

observado en el punto de desagüe de la cuenca, pero por lo general incluyendo 

la vegetación como un parámetro estático (Quevedo y Francés, 2008). Hay 

algunas excepciones que toman explícitamente la vegetación como variable de 

estado, pero en esos casos, la complejidad y el número de parámetros a 

determinar de los modelos aumentan sustancialmente. Por lo tanto, se requiere 

una gran cantidad de información para utilizar dichos modelos y esa información 

no siempre está disponible. De hecho, en la práctica, tenemos que hacer frente  

a la temible combinación de "escasez de datos – alto número de parámetros a 

determinar” con mucha frecuencia. 

Para reducir este problema, se pueden aplicar dos estrategias: (1) simplificar la 

complejidad conceptual de los modelos y así reducir el número de parámetros a 

calibrar, y/o (2) aumentar la disponibilidad de datos mediante la incorporación de 

nuevas fuentes de información. En esta tesis, hemos explorado el uso de un 

modelo ecohidrológico distribuido y parsimonioso (con pocos parámetros a 
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determinar) que ha sido completamente calibrado y validado exclusivamente con 

datos de teledetección. 

En primer lugar, se utilizó el modelo ecohidrológico parsimonioso propuesto por  

Pasquato et al. (2015) en una parcela experimental situada en un bosque 

mediterráneo semiárido. Debido a su simplicidad, algunos procesos se asumen 

despreciables y no se incluyen en su conceptualización. De hecho, sólo los 

procesos principales se incluyen. Es por eso que resultaba de vital importancia 

comprobar su fiabilidad e idoneidad. Para abordar esta cuestión, decidimos 

comparar los resultados proporcionados por este modelo parsimonioso contra 

los correspondientes resultados generados por un modelo ecohidrológico 

basado físicamente y con una conceptualización muy compleja. Los resultados 

obtenidos en esta primera etapa de la tesis sugirieron que el modelo era capaz 

de reproducir adecuadamente la dinámica de la vegetación, así como las 

variaciones de humedad del suelo. En otras palabras, se pudo demostrar que un 

modelo parsimonioso con ecuaciones simples puede lograr buenos resultados 

en términos generales. Pero, como el modelo había sido aplicado a escala de 

parcela, todavía quedaba como tarea pendiente reproducir la variación espacial 

de la vegetación y del ciclo hidrológico. 

Para explorar la variación espacio-temporal de la vegetación y del ciclo del agua, 

se aplicó la versión distribuida del modelo ecohidrológico y parsimonioso 

utilizado previamente en una cuenca situada en Kenia, concretamente en la 

cuenca alta del río Ewaso Ngiro. Al mismo tiempo, con el fin de explorar la 

posible aplicabilidad de los datos de satélite, calibramos el modelo utilizando 

exclusivamente el NDVI proporcionada por la NASA. En primer lugar, tuvimos 

que lidiar con el hecho de que no estábamos calibrando el modelo con una sola 

serie temporal como se hace habitualmente usando el los datos históricos de 

caudal observado. De hecho, los datos de satélite están compuestos por una 

serie temporal por píxel. Así que fue completamente necesario proponer e 

identificar una metodología que diera respuesta a cómo usar los datos espacio-

temporales (y no sólo temporales) durante la calibración y validación de 

modelos. En ese sentido, existe todavía una profunda falta de trabajos y líneas 

de investigación en literatura. 

Se propuso y se aplicó con éxito una metodología basada en el uso de la 

identificación de las funciones ortogonales empíricas (EOF por sus siglas en 

inglés). Esta última prueba proporcionó resultados sorprendentes y 

prometedores. De hecho, los resultados obtenidos demostraron que: (1) los 
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datos de satélite contienen una cantidad extraordinaria de información que 

puede ser usado para implementar modelos ecohidrológicos en regiones donde 

no se dispone de tal cantidad de información; (2) la metodología de calibración 

propuesta funciona satisfactoriamente y permite incorporar datos espacio-

temporales en el proceso de parametrización del modelo, y (3) el modelo 

calibrado sólo con datos de satélite es capaz de reproducir tanto la dinámica 

espacio-temporal de la vegetación así como el caudal observado en el punto de 

desagüe de la cuenca. Es importante destacar las consecuencias positivas de 

este último resultado sobre todo en cuencas no aforadas, donde el uso de datos 

de satélite podría ser una alternativa para obtener una aproximación del recurso 

en el punto de desagüe. 
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L'aigua és la base de tota vida biològica a la Terra i un dels enllaços bàsics entre 

la biosfera i l'atmosfera. És igualment fonamental per als éssers humans i la 

naturalesa (Tolba, 1982). En un entorn de creixent escassetat d'aigua i de major 

competència per aconseguir-la, una major comprensió i coneixement de tots els 

fluxos del cicle de l'aigua es troben entre els objectius claus de la comunitat 

científica. Tradicionalment, l'aigua i la vegetació s'han considerat com a sistemes 

diferents però és clarament necessari prendre un enfocament holístic que 

considere la qüestió del cicle de l'aigua d'una manera integrada, tenint en compte 

tant l'aigua blava com l'aigua verda (Birot et al., 2011). Al voltant d'aquesta idea 

va sorgir la nova disciplina anomenada Ecohidrología a principis del segle XX i 

des de llavors, no ha deixat de créixer tal com demostren el creixent augment de 

línies de recerca i publicacions científiques relacionades amb aquest nou camp. 

Aquesta nova disciplina és encara més necessària en regions àrides i semi-

àrides, on el cicle hidrològic i la dinàmica de la vegetació estan estretament 

interconnectats. És per això que és necessària una modelització acoblada 

d'aquests dos sistemes per reproduir totalment el comportament dels 

ecosistemes a través del temps i predir possibles futures respostes al canvi 

climàtic. 

No obstant això, la majoria dels models hidrològics actuals inclou la vegetació 

com un paràmetre estàtic i no com una variable d'estat. De fet, la majoria d'ells 

són capaces de representar suficientment be el cabal observat en el punt de 

desguàs de la conca, però en general incloent la vegetació com un paràmetre 

estàtic (Quevedo i Francès, 2008). Hi ha algunes excepcions que prenen 

explícitament la vegetació com a variable d'estat, però en aquests casos, la 

complexitat i el nombre de paràmetres a determinar dels models augmenten 

substancialment. Per tant, es requereix una gran quantitat d'informació per 

utilitzar aquests models i aquesta informació no sempre està disponible. De fet, 

en la pràctica, hem de fer front a la temible combinació de "escassetat de dades 

– alt nombre de paràmetres a determinar” amb molta freqüència. 

Per reduir aquest problema, es poden aplicar dues estratègies: (1) simplificar la 

complexitat conceptual dels models i així reduir el nombre de paràmetres a 

calibrar, i/o (2) augmentar la disponibilitat de dades mitjançant la incorporació de 

noves fonts d'informació. En aquesta tesi, hem explorat l'ús d'un model 

ecohidrològic distribuït i parsimoniòs (amb pocs paràmetres a determinar) que ha 

estat completament calibrat i validat exclusivament amb dades de teledetecció. 
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En primer lloc, es va utilitzar el model ecohidrològic i parsimoniòs proposat per 

Pasquato et al. (2015) en una parcel·la experimental situada en un bosc 

mediterrani semi-àrid. A causa de la seva simplicitat, alguns processos 

s'assumeixen menyspreables i no s'inclouen en la seva conceptualització. De fet, 

només els processos principals s'inclouen. És per això que resultava de vital 

importància comprovar la seva fiabilitat i idoneïtat. Per abordar aquesta qüestió, 

decidim comparar els resultats proporcionats per aquest model parsimoniòs 

contra els corresponents resultats generats per un model ecohidrològic basat 

físicament i amb una conceptualització molt complexa. Els resultats obtinguts en 

aquesta primera etapa de la tesi van suggerir que el model era capaç de 

reproduir adequadament la dinàmica de la vegetació, així com les variacions 

d'humitat del sòl. En altres paraules, es va poder demostrar que un model 

parsimoniòs amb equacions simples pot aconseguir bons resultats en termes 

generals. Però, com el model havia estat aplicat a escala de parcel·la, encara 

quedava com a tasca pendent reproduir la variació espacial de la vegetació i del 

cicle hidrològic. 

Per explorar la variació espai-temporal de la vegetació i del cicle de l'aigua, es va 

aplicar la versió distribuïda del model ecohidrològic i parsimoniòs utilitzat 

prèviament en una conca situada a Kenya, concretament en la conca alta del riu 

Ewaso Ngiro. Al mateix temps, amb la finalitat d'explorar la possible aplicabilitat 

de les dades de satèl·lit, calibrem el model utilitzant exclusivament el NDVI 

proporcionat per la NASA. En primer lloc, vam haver de bregar amb el fet que no 

estàvem calibrant el model amb una sola sèrie temporal com es fa habitualment 

usant les dades històriques de cabal observat. De fet, les dades de satèl·lit estan 

compostes per una sèrie temporal per píxel. Així que va ser completament 

necessari proposar i identificar una metodologia que donase resposta a com usar 

les dades espai-temporals (i no només temporals) durant el calibratge i validació 

de models. En aquest sentit, existeix encara una profunda falta de treballs i línies 

de recerca en literatura. 

Es va proposar i es va aplicar amb èxit una metodologia basada en l'ús de la 

identificació de les funcions ortogonals empíriques (EOF per les seues sigles en 

anglès). Aquesta última prova va proporcionar resultats sorprenents i 

prometedors. De fet, els resultats obtinguts van demostrar que: (1) les dades de 

satèl·lit contenen una quantitat extraordinària d'informació que pot ser usada per 

implementar models ecohidrològics en regions on no es disposa de tal quantitat 

d'informació; (2) la metodologia de calibratge proposat funciona satisfactòriament 
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i permet incorporar dades espai-temporals en el procés de parametrització del 

model, i (3) el model calibrat només amb dades de satèl·lit és capaç de reproduir 

tant la dinàmica espai-temporal de la vegetació així com el cabal observat en el 

punt de desguàs de la conca. És important destacar les conseqüències positives 

d'aquest últim resultat sobretot en conques no aforades, on l'ús de dades de 

satèl·lit podria ser una alternativa per obtenir una aproximació del recurs en el 

punt de desguàs. 
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CHAPTER 1. INTRODUCTION 
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1. INTRODUCTION 
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 General introduction 

A better understanding of the components of catchments’ water balance has 

traditionally been one of the main objectives of the hydrological community 

(Gerten et al., 2004). To this end, it is certainly well-known that the vegetation 

plays a key role in a catchment’s water balance particularly in semi-arid regions 

(Laio et al.,2001). In these water-controlled ecosystems, the vegetation key role 

on controlling the hydrological cycle is such that the actual evapotranspiration 

may account for more than 90% of the precipitation (Pilgrim et al., 1988; Huxman 

et al., 2005; Andersen, 2008). 

In spite of this, traditionally, very few hydrological models have incorporated 

vegetation dynamics as a state variable, neglecting in this way most of the 

interactions of water with vegetation and vegetation dynamics themselves 

(Snyder et al., 2000; Aydin et al., 2005 and others). In fact, most of them are able 

to represent fairly well the observed discharge at the catchment outlet, but 

usually including the vegetation as a static parameter (Quevedo and Francés, 

2008).  

However, in the last decades, considerable efforts have been made to 

understand and reproduce adequately the interactions between the vegetation 

and the water cycle and the number of hydrological models which explicitly take 

into account the vegetation development as a state variable has increased 

substantially: RHESSyS (Tague and Band, 2004), SWIM (Krysanova et al., 

2005), GEOTOP (Rigon et al., 2006), LG-TM (Wolf, 2011), etc. A fairly discussion 

about the evolution of the ecohydrological models as well as a classification 

according to their conceptualization is given in the next chapter. 

In practice, most of the time, these models are difficult to operate because of the 

high number of parameters that are required to be estimated (Quevedo and 

Francés, 2008). This represents a particularly challenging task, especially 

considering that in operational applications the available information is frequently 

quite limited, in particular for arid and semi-arid regions which often could be 

categorized as ungauged basins (Andersen, 2008). In those cases, two different 

strategies could be applied in order to, at least, reduce the problem caused by 

the combination of complex models together with data scarcity: (1) simplifying 

models’ complexity and (2) increasing data availability by incorporating new 

sources of information (e.g. remote sensing). In fact, according to Arnold et al. 
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(2011), the critical challenge is to build minimalistic still realistic models and, we 

add, whose requirements and complexity match data availability. 

Previous works in this issue have focused on strategies for simplifying 

ecohydrological models in semiarid regions. Again, a deep discussion and a 

compilation of papers focused on this strategy are given in the next chapter. 

Particularly in this study, we have focused on the use of the parsimonious and 

dynamic vegetation LUE-Model proposed by Pasquato et al. (2015). Briefly, the 

parsimonious LUE-model simulates gross primary production (GPP) as a function 

of absorbed photosynthetically active radiation (APAR) and the vegetation light 

use efficiency (LUE). Net primary production (NPP) is then calculated taking into 

account maintenance respiration. This model is focused particularly on simulating 

foliar biomass, which is obtained from NPP through an allocation equation based 

on the maximum LAI sustainable by the system (Pasquato et al., 2015). The Light 

Use Efficiency models have been posited as attractive candidates for coupling 

with conceptual hydrological models due to their nature and low number of 

parameters (Arora, 2002).  

However, since the LUE-Model is a parsimonious and conceptual model, some 

vegetation processes are neglected. That’s why it is important to check that the 

most relevant processes are being captured by the model. For this reason, the 

present study compared the capability of this parsimonious model against a 

physically-based model reproducing the interaction between vegetation and 

water. The selected physically-based model was the well-known Biome-BGC 

(Thorton et al., 2002). Both models were applied in a semi-arid forest 

experimental plot (East of Spain) and their performances were analyzed against 

field data (daily soil water content and transpiration).  

At the same time, we wanted to know if the use of remote sensing data with this 

parsimonious model could be an option comparable to that of using the 

physically-based model together with field observations. For this reason, the 

parsimonious LUE-Model was calibrated using exclusively remote sensing data 

and validated using field observations, while the BIOME-BGC model was 

implemented using field measurements as usual. The question of using satellite 

data alone clearly is crucial in those cases in which there are not field 

measurements.  

The results in this first application suggested that the parsimonious model was 

able to adequately reproduce the dynamics of vegetation and it also was able to 
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reproduce properly the soil moisture variations. All this work is described more 

accurately in Chapter 3 and it was published in the journal Ecological Modelling 

(Ruiz-Pérez et al., 2016b). Although it showed great results in relation to the use 

of satellite information, all this research was done at plot scale so the challenge 

to include the spatial information provided by the satellite data remained. 

In that sense, understanding and predicting vegetation patterns and their 

response to climate and other environmental stressors is a critical research 

challenge (Aber et al., 2001). It is recognized that many outstanding issues in 

Plant Ecology and Ecohydrology are directly related to an incomplete 

understanding of the spatial and persistence of spatial patterns (Caylor et al., 

2005). Precisely, one of the great advantages of using satellite data is that it 

provides not only temporal variation but also spatial distribution of the 

observations. That’s why we wanted to apply the proposed ecohydrological 

model at catchment scale using its distributed version and, at the same time, to 

develop a methodology in order to include spatio-temporal data such as satellite 

data in model’s calibration and validation. 

The model was used in a basin located in Kenya, concretely in the Upper Ewaso 

Ngiro River basin. This experience provided amazing and promising results. The 

model was capable to produce daily LAI (Leaf Area Index) maps (spatio-temporal 

series of LAI) and, also, discharge at the outlet point with a good accuracy in both 

cases. Therefore, the results highlighted the enormous utility of satellite data. It 

was possible to completely implement the hydrological and the vegetation 

components of TETIS-VEG daily model only using NDVI data and the model 

validation can be considered satisfactory. This fact is a promising conclusion 

particularly in ungauged basins such as most of the basins located in developing 

countries. It means that satellite data could be used in order to obtain, at least, a 

proxy of the observed discharge. At the same time, this result also showed the 

key role played by vegetation in water-controlled areas such as the upper Ewaso 

Ngiro River basin in Kenya.  

On the other hand, the use of remote sensing data together with a distributed 

model at catchment scale has the great advantage of including not only temporal 

information but also spatial information. One useful way to investigate the 

spatiotemporal relations between the spatio-temporal patterns of fluxes and 

states in the soil-vegetation-atmosphere continuum is applying the method of 

empirical orthogonal functions (EOF, Fang et al., 2015). To our knowledge, the 

EOF analysis has not been applied in an automatic calibration yet. In this thesis, 
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we did use the EOF analysis during the automatic calibration process. All this 

work is described deeply in Chapter 4 and it was submitted for publication in the 

Journal of Hydrology (still under revision). 

 Main objectives 

As mentioned in the general introduction and deeply discussed in the next 

Chapter 2, there exists a lack in terms of hydrological models which explicitly 

incorporate the vegetation dynamics as state variable although it is well-known 

the importance of the vegetation in the water cycle. That’s why the research 

group in which this thesis was developed (Research Group of Hydrological and 

Environmental Modelling) showed interest in understanding how vegetation and 

water are interconnected and how this link can be modelled specially in arid and 

semi-arid environments. 

This research line started with the contribution of Quevedo (2010) and, later, 

followed by Pasquato (2013). Both these were focused on the development of a 

parsimonious ecohydrological model to be used in water-controlled areas 

(nutrients cycle was not included). But, in both these, the different proposed 

parsimonious ecohydrological models were applied at plot scale. That’s why the 

first task of the current thesis was to adapt this model in order to be used at basin 

scale and, at the same time, to explore if a distributed parsimonious model can 

provide good results or more complexity is required when it is used at catchment 

scale. 

Additionally, Pasquato (2013) took the first steps to analyze the potential utility of 

remote sensing data in ecohydrological modelling. She focused on the analysis 

of some vegetation indexes provided by satellite and their relation with vegetation 

dynamics. A revision of practical experiences using remote sensing data in 

ecohydrological modelling was not conducted because she was more focused on 

the identification of the advantages and disadvantages of each analyzed 

vegetation index. In this thesis, this revision was carried out due to the increasing 

quantity and quality of the available remote sensing data. 

All this work was motivated by the fact that the use of this kind of data is 

promising especially in such areas where there is not information. In that sense, 

most of catchments in developing countries can be categorized as ungauged 

and, precisely in developing countries, it seems that the worrying state of 
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resources availability could become even worse due to the Global Change impact 

(IPCC, 2007). 

Although there exist some researches using satellite data in model’s calibration 

and validation (more information and references in Chapter 2), the proper use of 

this kind of data still remains as a challenging task. In fact, in all reviewed papers, 

authors used the temporal information provided by the remote sensing data but, 

in most cases, they did not use properly the spatial information contained in this 

kind of data. At this point, the research questions are: could satellite products be 

used to implement a distributed ecohydrological model or are field measurements 

totally necessary?  If so, how do this spatio-temporal data have to be used? And, 

keeping in mind that an automatic calibration is essential in modelling when a 

conceptual model is used, which mathematical methodology can be used in order 

to calibrate automatically the proposed ecohydrological model using spatio-

temporal data? 

Hence, the main question of this project is how to properly use existing remotely 

sensed information for calibration and validation of distributed ecohydrological 

models. To address this question, a parsimonious distributed ecohydrological 

model was tested in different places (experimental plot located in Spain and a 

poorly gauged basin in Kenya) and at different working scales (plot and basin 

scale) and a methodology to tackle the spatio-temporal data provided by satellite 

was developed and applied.  
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CHAPTER 2. RESEARCH FRAMEWORK 
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2. RESEARCH FRAMEWORK 
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 Ecohydrology: a brief history 

In the early 20th century, the first scientific investigations focused on 

understanding the linkages between vegetation-water relationships and the 

hydrological response of the basins were conducted (e.g. Engler, 1919; Hursh 

and Brater, 1941).  The reason was that scientific community started to realize 

that sustainable development of freshwater resources should move beyond 

conceptual theories to practice in an age where the need for effective water 

resource management had reached a critical threshold (Zalewski et al., 1997). 

According to this movement, the new discipline Ecohydrology, should involve the 

understanding of hydrologic, social and biotic mechanisms of the catchment 

(Zalewski et al. 1997). In the last 20th century, multiple agencies and the scientific 

community in general already recognized the necessity and the potential benefits 

accruing from environmental research that crossed traditional disciplines 

(Newman et al., 2006). Specifically, Ecohydrology was largely originated from 

improved understanding of the interactions between water and terrestrial 

ecosystems facilitated by the United Nations Educational, Scientific and Cultural 

Organization (UNESCO) Man and the Biosphere Programme (MAB) Programme 

“Role of land/inland water ecotones in water management and restoration”’ (e.g., 

Zalewski 1992; Naiman et al. 1995). Further development of the concept was 

made by the UNESCO International Hydrological Programme (IHP) where large 

scale and long term hydrological processes were integrated with biota dynamics 

and social aspects in a catchment (Zalewski et al. 1997).  

Thanks to this great effort in the past, this discipline seeks (1) how hydrological 

processes influence the distribution, structure, function and dynamics of 

biological communities and (2) how feedbacks from biological communities affect 

the water cycle (in-depth discussions of the Ecohydrology definition are given by 

Baird and Wilby (1999), Rodriguez-Iturbe (2000), Nuttle (2002), Porporato and 

Rodirguez-Iturbe (2002), etc.). The common aspect between all of the cited 

publications is that the merger of Ecology and Hydrology into a science of 

Ecohydrology was aimed at understanding environmental systems in a more 

integrated or comprehensive way (Newman et al., 2006). 

Once the Ecohydrology discipline was defined, it has grown steadily as a 

scientific discipline in the twenty years since its inception in 1996 (IHP) and 

formulation in 1997 (Zalewski et al. 1997). Research at the hydrology-ecology 

interface has a long tradition, beginning with seminal work on vegetation and 

hydrology (e.g. Hack and Goodlett, 1960; Eagleson, 1978). But, the ecohydrology 
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field increased substantially when some authors (e.g. Baird and Wilby, 1999; 

Bond, 2003; Rodriguez-Iturbe, 2000) embraced the ‘new’ ecohydrological 

paradigm. This increase can be proved by the increasing number of research 

papers as well as the increasing number of seminars and courses about 

Ecohydrology as discussed in the next section. 

 Ecohydrology: bibliographic search data 

The more or less recently established journal Ecohydrology, together with several 

foundational textbooks (e.g. Eagleson, 2002; Porporato and Rodriguez-Iturbe, 

2002), have undoubtedly propelled the discipline forward through interdisciplinary 

collaboration and the formation of several echohydrology-centered graduate 

research and degree programs worldwide. Furthermore, a bibliographic survey of 

the ISI Web of Knowledge Science Citation Index database was undertaken 

using the following words in the topic search: ecohydrology. This search looked 

for each term in the title, abstract and keyword lists of millions of publications (i.e. 

articles, letters and book reviews) in ISI-rated journals and conference 

proceedings since 1981. Unfortunately, this bibliographic approach is likely to 

provide an underestimate of the true extent of ecohydrological research because 

some publications with ecohydrology as the main topic do not use this term. 

Notwithstanding the limitation of the bibliographic analyses, it is obvious that the 

use of such term has increased strongly since the early 1990s until now. For 

example, there was only one publication during 1991 while, in 2015, there were a 

total of 106 publications (Figure 2-1). 

Hannah et al. (2004) analyzed the content of the papers about ecohydrology and 

classified them based upon the dominant subject matter: (1) ecology-flora, (2) 

ecology-fauna, (3) ecology-flora and fauna, (4) hydrology-water resource 

management, (5) hydrology-ecosystem response, (6) hydrology- water resources 

management and ecosystem response and, (7) discussion papers. The majority 

of papers focused on plant-soil-water interactions (ecology-flora) while hydrology-

water resources management was the next most common subject area. More 

recently, Westbrook et al. (2013) analyzed two independent data sets. The first 

set was articles indexed in Science Direct, published between January 2000 and 

December 2011, that contained the terms ‘ecohydrology’ or ‘eco-hydrology’ in 

their key words, titles or abstracts. The second data set was papers published in 

Ecohydrology (the journal) from its first issue to December 2011. They 

categorized all papers into four different groups: (1) fauna, reports of hydrological 
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impacts on fauna and fauna (excluding humans) impacts on hydrological 

processes and patterns; (2) biogeochemistry, articles reporting how soil 

properties are affected by climate; (3) human impact, studies that examined 

ecohydrology of crops or changes in land use; and (4) flora, studies exploring 

natural plant-water relationship. Of the 339 articles reviewed by them, they found 

that 72% of these articles was focused on flora, 17% on fauna, 10% on 

biogeochemical and 9% of the articles on human impact. The sum is more than 

100% because some articles belonged to different groups simultaneously. 

 

Figure 2-1. Published items with the term ecohydrology in the title, abstract and keyword lists from 1991 to 2016 

The two most cited publications were written by Rodriguez-Iturbe et al. (2001) 

and Laio et al. (2001) respectively. Both authors belonged to the same research 

team and both papers were included in a serial of publications about water-

controlled ecosystems. In fact, they were really useful during the elaboration of 

this doctoral thesis because we focused on water-controlled ecosystem as they 

did. As shown in the next section, the integral vision of Ecology and Hydrology is 

really important particularly in water-controlled areas due to the key role played 

by vegetation in the water cycle. 
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 Plants and water-controlled ecosystems 

The role of plant-water relations is of central interest to the field of ecohydrology 

because plants occupy a key component of the hydrologic cycle. On one hand, 

we know that plants need water to survive, and thus, the distribution, composition 

and structure of plant communities are directly influenced by spatiotemporal 

patterns in water availability. On the other hand, plants are a primary conduit for 

returning terrestrial water to the atmosphere (Chapin et al., 2000) mediating 

albedo and roughness (Pielke et al., 1998), thereby exerting a strong effect on 

hydrologic fluxes of the terrestrial-atmospheric system. The pivotal role plants 

play in modulating many hydrologic processes, which will be deeply explained 

below, has long been recognized by both ecologists and hydrologists, leading to 

efforts to refine and deepen understanding of water fluxes, flows and transport 

within these respective disciplines.  

This plant’s key role is even more important in water-controlled ecosystems. 

Water-controlled environments include arid, semiarid, and subhumid regions 

(sometimes collectively called drylands), and occupy approximately 50% of the 

global land area (Parsons and Abrahams, 1994). These environments are 

considered water limited because annual precipitation (P) is typically less than 

annual reference evapotranspiration (ET0), such that the ratio of P to ET0 ranges 

from about 0.03 to 0.75, and because extreme temporal variability results in 

extended periods with little to no precipitation (Parsons and Abrahams, 1994; 

Guswa et al., 2004). Although variable with respect to physiography, geology, 

soils and vegetation, these environments are often sensitive and prone to change 

because of limitations in water, which dictate fluxes and transport in the critical 

zone.  

Therefore, water-controlled ecosystems are complex, evolving structures whose 

characteristics and dynamic properties depend on many interrelated links 

between climate, soil and vegetation. In these particular regions, the connections 

between the role of plants in the water balance and their water-stress response is 

a fascinating topic which has been explored during the last years and it is still 

being explored nowadays. In the next paragraphs, the following concepts will be 

described: (1) how water availability affects plants survival strategies and, (2) 

how the distribution of the plants affects water fluxes and vice versa. 

On one hand, plants adapted to water limited environments have evolved 

different strategies to cope with water restrictions. According to Lubczynski 
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(2009) the plant adaptation mechanisms are manifested by the following 

properties in order to increase the efficiency of water use: (1) small leaves with 

efficient internal structure minimizing loss of water due to evaporation, (2) small 

above-ground biomass compared to below-ground biomass (some trees that are 

only a few meters tall, often have roots expanding several tens of meters down 

below the surface), (3) specific root patterns allowing to search for water, (4) 

seasonal, water dependent flowering, and (5) the ability to capture soil moisture 

from the air, from the shallow subsurface and from the deep subsurface including 

groundwater and to redistribute water using roots. Nonetheless, the main and 

common strategy developed by plants is related to the stomata closure. In a brief 

summary, transpiration is a consequence of stomata opening which is needed to 

acquire CO2 from the atmosphere. Plants can regulate stomata opening, 

depending on ambient light, CO2 intercellular partial pressure and cellular turgor. 

Particularly, partial or total stomatal closure is a fundamental protection 

mechanism of plants against desiccation when soil water is scarce (Laio et al., 

2001). In consequence, water limitation reduces the ability of leaves to take up 

CO2, even under conditions of sufficient light, due to a restriction in stomatal 

conductance and limited root water (van der Molen et al., 2011). 

On the other hand, plants have an important effect over the water cycle and the 

distribution of the fluxes (Breshears and Barnes, 1999). Jasechko et al. (2013) 

used distinct isotope effects of transpiration and evaporation to show that 

transpiration is by far the largest water flux from Earth’s continents, representing 

80 to 90% of terrestrial evapotranspiration. On the basis of their analysis of a 

global data set of large lakes and rivers, they concluded that transpiration 

recycles 62,000±8,000 km3 of water per year to the atmosphere, using half of all 

solar energy absorbed by land surfaces in the process.  

But the effect of plants is not only in terms of amount of water transpired by them; 

species composition and structure also affect the water availability (Asbjornsen et 

al., 2011). In fact, the amount of a particular event’s available water is ultimately 

defined by the ability of ‘water users’ to initiate and maintain higher/lower 

metabolic rates (Schwinning and Sala, 2004). Therefore, the soil moisture 

remains more or less time depending on the different users. For example, surface 

dwelling organisms only consume the water of the immediate soil surface, while 

for higher plants the water provided by an event remains available until soil water 

potentials throughout the rooted portion of the infiltration depth drop below some 

plant-extractable level.  
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Yet in the late 1990s, some authors showed that the position of a site along the 

grassland/forest continuum characteristic of most of water-controlled 

environments, and the associated relative proportions of the two types of cover, 

affect many ecosystem properties – including near-ground energy input 

(Breshears et al., 1997, 1998), water balance (Aguiar et al., 1996; Schulze et al., 

1996), erosion rates (Ludwig and Tongway, 1995; Reynolds et al., 1997; 

Davenport et al., 1998), and nutrient cycling (Padien and Lajtha, 1992). Tromp-

van Meerveld and McDonnell (2006) demonstrated that vegetation has a larger 

influence on soil moisture patterns than local surface or subsurface topography. 

Vegetation can exert effect on the vertical and horizontal distribution of water in 

the soil water column (Caylor et al., 2006). Plant water uptake patterns from 

different soil depths, which often vary spatially and temporally between different 

plant functional types, can also directly influence soil water dynamics during the 

growing season (Asbjornsen et al., 2008; Dalsgaard et al., 2011; Lu et al., 2011; 

Schwinning 2010). Furthermore, plants can directly influence soil water dynamics 

through the active redistribution of water by plant roots. This hydraulic 

redistribution has been shown to occur in a wide range of ecosystems (Bleby et 

al., 2010; Domec et al., 2010; Oliveira et al., 2005). 

Hence, their results did show that the heterogeneity of soil moisture (vertical and 

horizontally) depends on the distribution of plant types. At the same time, 

particularly in semiarid and arid regions, heterogeneity in soil moisture is the key 

factor that determines the distribution of plant types (Breshear and Barnes, 

1999). In fact, more recently, Piedallu et al. (2013) demonstrated how soil water 

content spatial distribution improves the performance of the models by refining 

the prediction of the spatial distributions of species compared with the predictions 

made using simple climatic water proxies. Definitely, the spatial structure of soil 

moisture and its evolution in time is both cause and consequence of vegetation 

(Rodriguez-Iturbe, 2000). 

Precisely, soil moisture, plants and their coupling are at the heart of ecohydrology 

and the soil water balance (Tromp-van Meerveld and McDonnell, 2006). Taking 

into account that scientists use models as hypotheses in order to understand the 

behavior of the real world’s functioning (Savenije, 2009), integral ecohydrological 

models should now be used and developed. This last question will be discussed 

in the following section. 
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 Ecohydrological modelling 

In spite of this deeply demonstrated important plants’ role, traditionally, very few 

hydrological models have incorporated vegetation dynamics as a state variable, 

neglecting in this way most of the interactions of water with vegetation and 

vegetation dynamics themselves (Snyder et al., 2000 and Aydin et al., 2005 and 

others) as mentioned in the General Introduction in Chapter 1. 

However, in the last decades, considerable efforts have been made to 

understand and reproduce adequately the interactions between the vegetation 

and the water cycle and the number of hydrological models which explicitly take 

into account the vegetation development as a state variable has increased 

substantially: RHESSyS (Tague and Band, 2004), SWIM (Krysanova et al., 

2005), GEOTOP (Rigon et al., 2006), LG-TM (Wolf, 2011), etc. 

Regarding ecological models, in the past, most of them incorporated the 

hydrological components just by including the ratio between actual and reference 

evapotranspiration, such as the Sim-CYCLE model (Ito and Oikawa, 2000) and 

Frankfurt Biosphere Model (Lüdeke et al., 1994). Others also incorporated the 

soil moisture just as an empirical function, such as the Carbon Exchange 

Between Vegetation, Soil and Atmosphere model (CEVSA, Cao and Woodward, 

1998). Nowadays, most of them have a more accurate description of the 

hydrological components, such as the BIOME-BGC model (Thorton et al., 2002), 

which is used in the present work and is explained below, the Gotilwa+ model 

(Gracia et al., 1999) which calculates the soil moisture by mass balance or, 

Tethys-Clorhis (Fatichi et al., 2012) which is a physically-based model that 

incorporates even the snow dynamics and their effects on the vegetation.  

Other current option is the use of a hydrological model coupled to an ecological 

model (or viceversa). Some examples are: FOREST-BGC plus TOPMODEL 

(Band et al., 1993) or, more recently, LPJ-GUESS plus TOPMODEL (Wolf, 

2011). 

In this point, it would be interesting to present a classification of ecohydrological 

models. But, in Ecohydrology, there is considerable ambiguity in the used 

terminology (Arnold et al., 2011) due to ecohydrological modelling has multi-

disciplinary origins with the modelling techniques used by researchers biased to 

either ecological or hydrological approaches depending on the researchers’ 

background (King and Caylor, 2011). Figure 2-2 showed the different terms used 
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in Ecology and Hydrology compiled by Arnold et al. (2011). Hereafter, we used 

the terminology used predominantly in Hydrology due to our own background and 

distinguished between three different types of models: empirical models or black 

boxes, conceptual and physically-based models.  

 

Figure 2-2. Continuum of model terminology according to the level of process detail and understanding within 

the model. The terminology originated from (1) ecological and (2) hydrological science. Figure extracted from 

Arnold et al. (2011) 

Chen et al. (2015) reviewed the most used models nowadays and they classified 

them into these three categories (empirical, conceptual and physically-based). 

Analyzing their conceptualizations, the main differences between them are 

related to how the actual evapotranspiration is calculated and/or how the biomass 

is modelled. According to the calculation of the actual evapotranspiration, two 

strategies can be found. First, some models use the concept of reference 
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evapotranspiration in order to calculate the actual evapotranspiration following 

the recommendations provided by the document FAO-56. Some examples are: 

SWAT (Arnold et al., 2005), SWIM (Krysanova et al., 2005), and EcoHAT (Yang 

et al., 2009). On the other hand, there are models using the Penman-Monteith 

equation in order to calculate the actual transpiration and evaporation (or the 

combined evapotranspiration). In this case, the reference evapotranspiration is 

not required. Some examples are: TOPOG (Vertessy et al., 1996); Model 

Macaque (Band et al., 1993); VIP (Mo et al., 2007) among others.  

Regarding to the biomass simulation, there are models from the simplest to the 

most complex conceptualizations. The simplest models calculate the dynamic 

growth of vegetation by a simple empirical relationship, mostly by calculating 

potential growth and then calculating the actual production based on a sort of 

stress factor which takes into account the temperature, the water and/or nutrient 

availability. For example, the SWAT model, developed and used by the U.S 

Department of Agriculture, uses a vegetation module which calculates the 

dynamic potential growth of vegetation according to the solar utilization and then 

the actual growth is simulated according to the ecological stress. At the other 

extreme, some models such as Biome-BGC (explained in detail and used 

Chapter 3) simulate all physiological, biochemical and hydrological processes. 

Hence, the dynamic growth of vegetation is reproduced with a high level of detail. 

The advantages and disadvantages of each kind of model have been deeply 

discussed in general (e.g. Beven, 2001; Khakbaz, 2012; Ruiz-Pérez et al., 2016a) 

and in particular for ecohydrological models (Arnold et al., 2015; Chen et al., 2015). 

The common conclusion is that the selection of a model depends on:  (1) the 

purpose of the model and the working scale, (2) existing system understanding 

and, (3) practical constraints such as available data and computational power. In 

fact, the physically-based models have a complex computation involving large 

amount of parameters, most of which are difficult to obtain (Chen et al., 2015). 

That’s why ecohydrological studies often face the problem that many models 

have extensive parametrical requirements, while available data are scarce. 

Inapplicability of the wide range of possible ecohydrological models due to scarce 

data motivates the need for a modelling approach that can be well constrained to 

available data and still model the dominant processes (Pande et al., 2012). 

Having done a bibliographic review, we observed two different strategies in order 

to deal with this ‘scarce data – parametrical requirement’ issue: strategies for 

simplifying the complexity of the models and, the use of new and innovative 
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source of observed data (remote sensing data, new sensors, experimental 

catchments/plots, etc.). 

Regarding to the simplification of the models, a few papers have focused on 

strategies for simplifying ecohydrological models. Most notably, Montaldo et al. 

(2005) experimented with five different levels of vegetation model complexity, 

each one with one less vegetation state variable, in an attempt to identify a 

parsimonious and robust ecohydrological model for semiarid climates. Motivated 

by this research, Istanbulluoglu et al. (2012) repeated the same procedure using 

five different model variants but in this case across a climate gradient. More 

recently, Arnold et al. (2015) tested five alternative structures of an 

echohydrological model of flood-groundwater-vegetation in order to identify the 

minimal required complexity in their particular study area which is a dryland 

located in Namibia, Africa. With different purposes, Wi et al. (2015) studied the 

effect of an increase of the model complexity on streamflow projections under 

climate change. The conclusions provided by these works were ambivalent. For 

example, Arnold et al. (2015) found the most complex version of their model 

provided the most reliable results, while Istanbulluoglu et al. (2012) obtained that 

the simplest model’s results were accurate enough. For their part, Wi et al. (2015) 

found that a complexity increase did not increase uncertainty in streamflow 

projections, even though parameter equifinality did emerge.  

In our opinion, the key does not consist on the identification of the proper 

complexity level required by the system to be modelled regardless the available 

data and observations of this particular system. In fact, a lot of authors, such as 

Pokhrel and Gupta (2010), Khakbaz et al. (2012) and Wi et al. (2015) (only citing 

the most actual), have found better results when the parametric complexity of the 

distributed model is aligned with the data available for calibration.  According to 

Arnold et al. (2011), the critical challenge is to build a minimalistic still realistic 

model, and we add, whose complexity and requirements match data availability. 

Although there is not an unique opinion about the controversial topic of 

parsimony, it seems demonstrated that mathematically programming only 

dominant processes is a promising option for modelling in data scarce areas 

(Pande et al., 2012). In this thesis, we chose a parsimonious and simple 

ecohydrological model to be used in water-controlled and scarce data 

environments. 

Regarding to the second strategy, among the new and innovative source of 

information, there is a number of exciting developments in monitoring tools useful 
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for ecohydrological research over the last decades (Wang et al., 2012). For 

example, isotope tracers and analyses (Wang et al., 2012), cosmic-ray and 

electromagnetic imaging for the soil moisture monitoring (Zreda et al., 2008), new 

low-cost systems for taking environmental observations and communicating them 

over a cell phone system such as PulsePod developed by Caylor et al. (2015), 

remote sensing measurements and so on.  

With the advantages of covering large areas and being fast and convenient, 

remote sensing is widely used in model implementation, which is a revolutionary 

change compared with the traditional measurements (Zhao, 2003). 

Environmental remote sensing essentially makes use of radiant energy to extract 

information on ground features along large swath areas within a short period of 

time (Zhang and Kovacs, 2012). Common remote sensing platforms include 

satellites, airplanes, balloons and helicopters, and a variety of sensors such as 

optical and near infrared sensors and RADAR are installed in them.  For 

example, the use of small unmanned aerial systems (UAS) has flourished during 

the last decade to monitor environmental change (Zhang and Kovacs, 2012). 

There are currently a plethora of these instruments available at various costs. 

But, in practical applications, they still have some issues to solve. The main ones 

are related to the image processing and the no availability of historical records 

large enough. In the case of satellite data, many years of worldwide data are 

available: Landsat program, for example, has been active since the 70’s. This 

makes possible long term and retrospective analysis of the phenomena or areas 

of interest (Vicente-Serrano et al., 2010). That’s why we focused on the use of 

satellite data in order to control the vegetation dynamics as can be read in the 

next two sections. 

 Satellite data 

The sixth proclaim of the declaration of the United Nations Conference on the 

Human Environment at Stockholm in 1972 said: ‘[…] Through ignorance or 

indifference we can do massive and irreversible harm to the earthly environment 

on which our life and wellbeing depend. Conversely, through fuller knowledge 

and wiser action, we can achieve for ourselves and our posterity a better life in 

an environment more in keeping with human needs and hopes. There are broad 

vistas for the enhancement of environmental quality and the creation of a good 

life. What is needed is an enthusiastic but calm state of mind and intense but 

orderly work. For the purpose of attaining freedom in the world of nature, man 
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must use knowledge to build, in collaboration with nature, a better environment. 

[…]’ 

After Stockholm convention, the interest of a fuller knowing of the interactions 

between atmosphere, hydrosphere and land surface increased substantially and 

research projects about Earth observation started. It could be said that the 

Stockholm convention was the starting point of the satellite data acquisition 

development (Mas et al., 2011). Here we presented three important points in 

order to answer the following questions: (1) why and how is the vegetation 

related to satellite data?, (2) which kind of data can we use in vegetation 

monitoring and how can we acquire such information? and, (3) how have satellite 

data been used in the past and how can this data be used nowadays and in the 

future? 

2.5.1. Vegetation and satellite data 

In her doctoral thesis, Pasquato (2014) highlighted that the use of satellite data 

requires the knowledge of the structure and functions of vegetation and its 

reflectance properties. Thanks to this knowledge, it is possible to link the 

vegetative states and structures of a certain ecological system of interest to their 

reflectance behavior. In this document, a brief summary about the link between 

plants and satellite is presented.  

Briefly, once reflected by the Earth’s surface, the radiation spectrum 

encompasses the range of 400 nm to 2500 nm. This reflected optical spectrum 

can be divided into three different wavelength categories: visible (VIS), from 400 

nm to 700 nm; near infra-red (NIR), from 700 nm to 1300 nm; and shortwave 

infra-red (SWIR), from 1300 nm to 2500 nm. The total range of 400 nm to 2500 

nm can be measured by a wide variety of remote sensors from multispectral 

(Landsat, MODIS) to hyperspectral (AVIRIS).  

Using these different spectrum bands, the called vegetation indices (VIs) can be 

calculated. The VIs are designed to highlight specific characteristics of 

vegetation, combining surface reflectance at two or more wavelengths in the 

solar-reflected optical spectrum, and using the reflectance characteristics of leaf 

components and canopy structure. Basically, healthy canopies of green 

vegetation have a very distinct interaction with certain portions of the 

electromagnetic spectrum. In the visible regions, chlorophyll causes strong 

absorption of energy, primarily for use in photosynthesis. This absorption peaks 
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in the red and blue areas of the visible spectrum, while the green area is reflected 

by clorophyll. At the same time, the NIR region of the spectrum is strongly 

reflected through the internal structure of the leaves. Taking into account this 

phenomenon, the majority of VIs compares red and NIR reflectances, taking 

advantage of the highly different response of green vegetation in these two 

spectral regions.  

Nowadays, there is a massive amount of different VIs prioritizing different aspects 

of the plant-light relationship. Silleos et al. (2006) did a great effort in order to 

compile the most used VIs in vegetation monitoring in the last 30 years (Table 

2-1). More recently, Viña et al. (2011) compared the suitability of a total of eight 

VIs for the remote assessment of the green leaf area index. Pasquato (2014) 

described the most common VIs (all of them showed in Table 2.1) and, later, 

compared the suitability of two well-known VIs: the Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).  

But the Normalized Difference Vegetation Index (NDVI) is by far the widest-used 

VI and this is the VI used in this research work. The NDVI is calculated according 

to the equation in Table 2-1. This index varies between -1 and 1. Bare soils are 

generally characterized by very low, positive NDVI values; vegetated areas tend 

to show positive values, with increasing index as vegetation canopy becomes 

denser. Free standing water results in very low positive or even slightly negative 

NDVI values, while clouds and snow fields are characterized by negative values 

of this index. 

It is deep-demonstrated that the NDVI is sensitive to green leaf biomass, so that 

it can be primarily employed to monitor the photosynthetically active biomass of 

plant canopies (Tucker, 1979). In fact, during the late 90s, some authors (e.g. 

Carlson and Ripley, 1997) demonstrated that although the NDVI is not an intrinsic 

physical quantity, it is indeed correlated with certain physical properties of the 

vegetation canopy, particularly, with the leaf area index (LAI) and biomass 

productivity. The LAI is a dimensionless quantity defined as the total one-sided 

area of photosynthetic tissue per unit ground surface area (e.g. Gobron, 2008). 

Hence, it represents the amount of leaf biomass in an ecosystem. Previous 

studies have demonstrated the relationship between satellite-derived NDVI and 

LAI or ground biomass productivity (Tucker et al., 1985, Hobbs, 1995, Wang et 

al., 2004, Wang et al., 2005, Gitelson et al., 2006, Funk and Budde, 2009 and 

Becker-Reshef et al., 2010). However, it is also well documented that the 

relationship between NDVI and LAI is far from perfect (e.g. Tucker et al., 1985; 
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Prince, 1991; Prince et al., 1995; Pettorelli et al., 2005). The main limitation of 

using NDVI to estimate LAI is that NDVI can reach saturation in dense vegetation 

canopies; i.e., NDVI becomes insensitive at high values of leaf area index (Asrar 

et al., 1984, Hatfield et al., 1985, Sellers, 1985, Hobbs, 1995, Asner et al., 2003 

and Chen et al., 2006), which may lead to an underestimation of LAI increases in 

high (dense) biomass regions. According to Turner et al. (1999), the relationship 

between LAI and NDVI can be considered as linear for low values, but beyond a 

certain value of LAI, the change in NDVI with LAI becomes insignificant. This 

threshold tends to be reached when LAI attains a value between 2.5 and 3.0 

(Price, 1992; Liu and Huete, 1995; Jasisnki, 1996). In this research project, the 

observed/expected LAI are around 2.0. Hence, we did not have to worry about 

this issue. 

Table 2-1. Vegetation indices compiled by Silleos et al. (2006) 

Vegetation indices Author 

𝑅𝐴𝑇𝐼𝑂 = 𝑁𝐼𝑅/𝑅 Birth and McVey (1968) 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅) Rouse et al. (1974) 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
∗ (1 + 𝐿) 

Huete (1988) 

𝑇𝑉𝐼 = √(𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅) + 0.5 Deering et al. (1975) 

𝐶𝑇𝑉𝐼 =
𝑁𝐷𝑉𝐼 + 0.5

|𝑁𝐷𝑉𝐼 + 0.5|
∗ √|𝑁𝐷𝑉𝐼 + 0.5| 

Perry and Lautenschlager (1984) 

𝑇𝐼𝑉𝐼 = √|𝑁𝐷𝑉𝐼 + 0.5| Thiam (1997) 

𝑅𝑉𝐼 = 𝑅/𝑁𝐼𝑅 Richardson and Wiegand (1977) 

𝑁𝑅𝑉𝐼 =
𝑅𝑉𝐼 − 1

𝑅𝑉𝐼 + 1
 

Baret and Guyot (1991) 

𝐸𝑉𝐼 = 𝐺 ∗ (1 + 𝐿) ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅 − 𝐶2 ∗ 𝐵 + 𝐿
 

Huete et al.(1999) 

𝑃𝑉𝐼 = √(𝑅𝑔𝑔5 − 𝑅𝑝5)2 + (𝑅𝑔𝑔7 − 𝑅𝑝7)3 Richardson and Wiegand (1977) 

𝑃𝑉𝐼1 = (𝑏 ∗ 𝑁𝐼𝑅 − 𝑅 + 𝑎)/√(𝑏2 + 1) Perry and Lautenschlager (1984) 

𝐷𝑉𝐼 = 𝑔 ∗ 𝑀𝑆𝑆7 + 𝑀𝑆𝑆5 Richardson and Wiegand (1977) 

𝐴𝑉𝐼 = 2 ∗ 𝑀𝑆𝑆7 − 𝑀𝑆𝑆5 Ashburn (1978) 

𝑇𝑆𝐴𝑉𝐼1 =
𝑎 ∗ (𝑁𝐼𝑅 − 𝑎) ∗ (𝑅 − 𝑏)

𝑅 + 𝑎 ∗ 𝑁𝐼𝑅 − 𝑎 ∗ 𝑏
 

Baret et al. (1989) 

Symbology (in order of appearance): 

NIR=near infrared, R=red, B=blue, L= soil, C1 = adjustment factor, C2= adjustment factor, G= gain factor, Rp= reflectance 
at a vegetation spot for Landsat bands MSS5 and MSS7, Rgg= reflectance of soil background, a= intercept of the soil line, 
b= slope of the soil line, g= slope of the soil line, MSS7= reflectance in the near infrared 2 band, MSS5= reflectance in the 
visible red band 
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2.5.2. Satellite data and Vegetation Indexes acquisition: MODIS 

products 

 As mentioned before, after the Stockholm Convention in 1972, the scientific 

community focused on the interactions between atmosphere, hydrosphere and 

land surface. In fact, during the late 1980s, some projects about the global land 

coverage were carried out, such as the International Geosphere and Biosphere 

Program (IGBP). This project mapped the terrestrial coverage using the 

Advanced Very High Resolution Radiometer (AVHRR) installed in NOAA 

satellites. It provided global databases during more than two decades. However, 

the AVHRR data had some disadvantages to be used for ecological monitoring: 

(1) low spatial resolution, (2) low spectral resolution and (3) high predisposal to 

saturation (Ichoku et al., 2003). It is important to mention that the AVHRR was 

designed originally for climatic monitoring. 

This fact motivated the creation of new sensors and new systems designed 

specifically for terrestrial land monitoring. In this sense, the Earth Observing 

System (EOS) of NASA appeared as the most ambitious project. The EOSDIS 

(Earth Observing System Data and Information System) is based on two 

principles: (1) no discrimination and (2) no exclusivity. No discrimination means 

that every single person in the world can acquire the global data as easier as 

possible and the data are completely free. No exclusivity means that all works 

using this data must be published and spread. Precisely for the two principles, we 

decided to use the EOS products.  

Among the EOS products, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) stands out. It is aboard the Terra and Aqua satellites launched in 2000 

and 2002 respectively. The MODIS instrument provides high radiometric 

sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 

µm (Table 2-2). Two bands are imaged at a nominal resolution of 250 m at nadir, 

with five bands at 500 m, and the remaining 29 bands at 1 km. A ±55-degree 

scanning pattern at the EOS orbit of 705 km achieves a 2,330-km swath and 

provides global coverage every one to two days. The bands from 1 to 7 are used 

for terrestrial applications; the bands from 8 to 16 for oceanic monitoring and from 

17 to 19 for atmospheric observation. The bands from 20 to 36 correspond to the 

thermal infrared. 
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Table 2-2. General specifications of the MODIS sensors (extracted from 

http://modis.gsfc.nasa.gov/about/specifications.php) 

Property Information 

Orbit 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), 
sun-synchronous, near-polar, circular 

Scan rate 20.3 rpm, cross track 

Swath dimensions 2330km (cross track) and 10 km (along track at nadir) 

Telescope 17.78 cm  

Size 1.0x1.6x1 m 

Weight 228.7 kg 

Power 162.5 W (single orbital average) 

Data rate 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 

Quantization 12 bits 

Spatial resolution 250 m ( 1-2 bands) 

500 m (3-7 bands) 

1000 m (8-36 bands) 

Design life 6 years 

 

The MODIS products can be divided into five levels from 0 to 4. Level 0 means 

raw data (without any data treatment), level 1 contains the bands geolocated and 

calibrated, level 2 contains geophysical variables, level 3 contains the 

geophysical variables contained in level 2 but aggregated in time and level 4 is 

data generated by models. Atmosphere products are available through the 

LAADS web.  Land Products are available through the Land Processes DAAC at 

the U. S. Geological Survey EROS Data Center (EDC).  Cryosphere data 

products (snow and sea ice cover) are available from the National Snow and Ice 

Data Center (NSIDC) in Boulder, Colorado.  Ocean color products and sea 

surface temperature products along with information about these products are 

obtainable at the Ocean Color Data Processing System (OCDPS) at Goddard 

Space Flight Center (GSFC).  More information about obtaining MODIS data can 

be found from the information sites listed in Table 2-3. 

Table 2-3. MODIS products and their corresponding sources 

Product Source 

MODIS level 1 data, geolocation, cloud mask, and 
atmosphere products 

http://ladsweb.nascom.nasa.gov/ 

MODIS land products https://lpdaac.usgs.gov/ 

MODIS cryosphere products http://nsidc.org/daac/modis/index.html 

MODIS ocean color and sea surface temperature products http://oceancolor.gsfc.nasa.gov/ 
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2.5.3. Ecohydrological modelling and satellite data 

According to the previous subsection, satellite remote sensing has the ability to 

provide information on hydrological fluxes and state variables at (near-)global 

coverage and at (near-)real time, and at frequent temporal intervals. The given 

features provide unique opportunities for enhancing model simulations in remote 

areas (van Dijk and Renzullo, 2011). Now, the question is how to take advantage 

of this potential information for ecohydrological modelling.  

Remote sensing data in ecohydrological modelling has been used, in general, in 

two different ways: as input in order to force the model or as target in order to 

calibrate and/or validate the model. There are a lot of examples of models forced 

by remote sensing data (Xiao et al., 2004; Yuan et al., 2010; and Stisen et al., 

2011, Samaniego et al., 2011), but the applicability of remote sensing to calibrate 

and/or validate a model still remains as a challenging task. 

Table 2-4 summarizes the reviewed publications related to this challenge, their 

calibration and validation strategies as well as some important comments. In 

order to make this compilation, a bibliographic survey of the ISI Web of 

Knowledge Science Citation Index database was undertaken using the following 

words combinations in the topic search: (1) satellite calibration, (2) satellite 

implementation, (3) satellite ecohydrological modelling, and (4) remote sensing 

ecohydrology. This search looked for each term in the title, abstract and keyword 

lists of millions of publications (i.e. articles, letters and book reviews) in ISI-rated 

journals and conference proceedings since 1981, although we only used the 

publications during the last decade. From the total of publications obtained by 

this search, only those that used the satellite data to calibrate and/or validate a 

model were selected. We know this compilation of publications was really 

sensitive to the used topic search and we apologize because of the no-cited 

papers due to this limitation but the Table 2-4 was complete enough for our 

purposes. 

In following lines the most illustrative papers extracted from Table 2-4 will be 

discussed. Included as Ruiz-Pérez et al. (2016b), next chapter will discuss the 

applicability of satellite data during the calibration process comparing the results 

obtained by a parsimonious model calibrated only using satellite data 

(particularly, NDVI data) against the results obtained by a complex model 

calibrated using field measurements at pixel scale. At catchment scale, 

Immerzeel and Droogers (2008) used satellite-based evapotranspiration (ET) in 
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combination with observed streamflow to calibrate the semi-distributed SWAT in 

a portion of the Krishna River basin in India. In Winsemius et al. (2008), satellite-

based ET was used to constrain the parameter boundaries through bayesian 

techniques in order to calibrate a hydrological model in Luangwa River basin in 

Zambia. Zhang et al. (2009) concluded that multi-objective calibration of SymHyd 

model with streamflow and satellite-based ET produced better daily and monthly 

runoff compared to calibration with streamflow alone. More recently, Rientjes et 

al. (2013) calibrated a semi-distributed hydrological model using streamflow data 

and satellite-based ET in a catchment located in Iran. Regarding to other satellite 

products, GRACE (the US-German satellite mission) data have been used to 

calibrate both global and regional-scale surface hydrology models, in combination 

with stream discharge data (e.g. Lo et al., 2010). Zhang et al. (2011) calibrated 

the AWRA-L model with streamflow, NOAA-AVHRR LAI and TRMM-MI (Tropical 

Rainfall Measuring Mission- Microwave Imager) soil moisture using multi-

objective criteria. The main conclusion of all of these references was the same: 

including remote sensing data into the model calibration/validation improves the 

results obtained by the models. 

Closer to our objectives, a calibration scheme which relies solely on remote 

sensing data will be greatly beneficial in modelling at ungauged and scarce data 

catchments, especially if it can be demonstrated to result in improved estimation 

compared with uncalibrated model (Kunnath-Poovakka et al., 2016). But, only in 

few studies, the calibration is carried out exclusively with remote sensing. For 

instance, Gutmann et al. (2010) presented a method for identifying landscape 

hydraulic properties (LHPs) from MODIS surface temperatures. They calibrated 

LHPs in the Noah land surface model using only MODIS surface temperatures 

from 14 different sites and using observed flux data for model verification. Or, 

Velpuri et al. (2012) modelled Lake Turkana water level only using satellite 

information, even the forcing data was satellite-derived. In fact, they proposed a 

multi-source satellite data approach using satellite rainfall and ET from MODIS 

products while the model calibration and validation were carried out using the 

satellite altimetry information.  

Considering all publications from Table 2-4, from a total of the reviewed 

publications, calibrations only using satellite data were performed in seven of 

them while a combination of satellite data and field measurements (specially, 

streamflow at the outlet) was used in the remaining 18. Similar results were 

obtained with regards to the validation: six publications only using field 
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measurements (specially, historical streamflow), eight using a combination of 

field measurements and satellite data, two using only satellite data and one 

without any specification. But, more interesting is how the different calibrations 

were carried out. 

In most of the cited examples, a sort of multi-objective calibration was used 

adopting only some cells/pixels to calibrate the entire catchment. According to 

Campo et al. (2006), the use of point measurements is not enough since they do 

not represent an integrated output of non-linear dynamics. In other cases, lumped 

models were used instead of distributed models using, in consequence, 

aggregated values of the satellite data and neglecting the spatial heterogeneity. If 

so, we are not taking the complete advantage provided by satellite imagery. 

Therefore, a method able to exploit the potential of the spatio-temporal 

information contained in remote sensed data is highly desirable. In Chapter 4, it 

can be seen our contribution in that sense by including both, temporal and spatial 

patterns of the satellite data, during both calibration and validation processes. 
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Table 2-4. List of publications in which satellite data was used to calibrate different models extracted from the Web of Knowledge database using the search 

topics specified in the introduction section 

Publication Calibration Validation Comments 

 Data Method Data  

Immerzed and 

Droogers, 2008 

ET calculated by the 

SEBAL model and MODIS 

spectrum bands. 

Historical streamflow 

Multi-objective 

approach 

Historical Streamflow Catchment scale. 

Semi-distributed model. 

115 sites (sub-catchments). 

Parajka and Blöschl, 

2008 

Snow cover data from 

MODIS 

Historical streamflow 

Multi-objective 

approach 

Ground-based snow depth 

observations 

Historical streamflow 

Catchment scale 

Semi-distributed model 

148 sites (sub-catchments) 

Arda Sorman et al., 

2009 

Snow cover data from 

MODIS 

Historical streamflow 

Multi-objective 

approach 

Snow cover data from MODIS 

Historical streamflow 

Catchment scale 

Lumped model 

One site. 

Zhang et al., 2009 ET calculated through 

Penman-Monteith using: 

LAI, Albedo and Land 

Cover from MODIS. 

Historical streamflow 

Single-objective 

approach 

Historical Streamflow Catchment scale 

Lumped model 

One site. 

Gutman and Small, 

2010 

LST from MODIS One calibration for 

each different soil 

type (1306 soils) 

Observed latent and sensible fluxes 

measured in a tower flux 

Plot scale. 

Lumped model 

15  sites. 

Lo et al., 2010 Total water storages 

anomalies derived from 

GRACE 

Base flow estimates 

from historical 

streamflow 

Multi-objective 

approach 

Total water storages anomalies 

derived from GRACE 

Base flow estimates from historical 

Catchment scale 

Semi-distributed model 

Three sites 
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Sun et al., 2010 River widths from JERS-1 

SAR 

Single-objective 

approach 

Historical streamflow Catchment scale 

Lumped model 

One site 

Werth and Güntner, 

(2010) 

Total water storages 

from GRACE 

Historical streamflow 

Multi-objective 

approach 

No specified 

 

Catchment scale 

Lumped model 

28 sites 

Zhang et al., 2011 LAI from NOAA-AVHRR 

SM from TRMM-TMI 

Historical streamflow 

Multi-objective 

approach 

LAI from NOAA-AVHRR 

SM from TRMM-TMI 

Historical streamflow 

Catchment scale 

Distributed model 

579 sites (289 to calibrate, 290 to 

validate) 

Sun et al. 2012 GRACE-derived 

groundwater storages 

In situ water level 

measurements 

Multi-objective 

approach 

GRACE-derived groundwater 

storages 

In situ water level measurements 

Catchment scale. 

Distributed model 

One site 

Velpuri et al., 2012 Satellite altimetry from 

TOPEX 

Single-objective 

approach 

Satellite altimetry from TOPEX Catchment scale. 

Lumped model  

One site  

Franz and Karsten, 

2013 

Three calibrations: 

1. Snow covered area 

from MODIS 

2. Historical streamflow 

3. Combining both 

Multi-objective 

approach 

Snow covered area from MODIS  

Historical streamflow 

Catchment scale. 

Lumped model 

One site 

Riutjes et al., 2013 ET from MODIS 

Historical Streamflow 

Multi-objective 

approach 

ET from MODIS 

Historical Streamflow 

Catchment scale. 

Semi-distributed model. 

12 sites. 

Corbari et al., 2015 LST from MODIS 

LAI from MODIS 

Pixel-by-pixel 

calibration. 

Histograms 

comparison 

LST from MODIS 

Surface cumulated volume for one 

year measured in field 

Catchment scale. 

Distributed model. 

One site 
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Pasquato et al., 2015 LAI from MODIS  

NDVI from MODIS 

EVI from MODIS 

Single-objective 

approach 

LAI from MODIS  

NDVI from MODIS 

EVI from MODIS 

Catchment scale 

Lumped model 

One site 

Kunnath-Poovakka et 

al., 2016 

ET from MODIS 

SM from AMSR-E 

Multi-objective 

approach 

Historical streamflow Catchment scale  

Distributed model  

Two sites 

Ruiz-Pérez et al., 

2016b 

NDVI from MODIS Single-objective 

approach 

NDVI from MODIS 

Field measurements of transpiration 

and SM 

Plot scale 

Lumped model 

One site 
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CHAPTER 3. AT PLOT SCALE: TESTING 

THE MODEL 
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3. AT PLOT SCALE: TESTING THE MODE 

  



On the use of satellite data to calibrate a parsimonious ecohydrological model in ungauged basins 

Doctoral Thesis 

Guiomar Ruiz Pérez Página 69 

 Introduction 

In both previous chapters, we highlighted the importance of the vegetation in the 

water cycle especially in water-controlled areas. The key role played by the 

vegetation has been demonstrated in a lot of research projects and publications 

(e.g. Laio et al., 2001; Huxman et al., 2005). That’s why it seems unbelievable 

that most of the current hydrological models does not consider the vegetation as 

state variable but a static parameter neglecting in this way the active role of the 

vegetation dynamics. This fact is particularly serious in arid and semi-arid 

regions, where this thesis is focused on, because in these regions the ET may 

account more than 90% of the mean annual precipitation (Pilgrim et al., 1988; 

Huxman et al., 2005; Andersen, 2008).  

On the other hand, according to Andersen (2008), arid and semi-arid regions can 

be considered as ungauged areas. Hence, in most of practical applications in 

these areas, there are not a lot of information and measurements in order to 

implement complex models. In Chapter 2, we called this combination as the 

‘complex models – data scarcity’ issue and we mentioned two strategies to be 

applied: (1) simplification of the models and (2) search of new sources of 

information. In this context, we decided to use a parsimonious ecohydrological 

model in which the vegetation is a state variable and, at the same time, to explore 

the useful of satellite data as new source of information. 

In particular, in this chapter, we used the parsimonious ecohydrological model 

proposed by Pasquato et al. (2015) in an experimental plot located in a semi-arid 

Mediterranean forest. Although the model is described in depth in following 

pages, it is important to mention that the model is composed by two sub-models: 

(1) a hydrological sub-model and (2) a dynamic vegetation sub-model. The 

hydrological sub-model is tank-based in which each tank represents different 

storages in the soil water column. On the other hand, the dynamic vegetation 

sub-model is based on the use of the Light Use Efficiency (LUE) index to 

simulate the green biomass. Anyway, the most important aspect is that both sub-

models are parsimonious. The relationships between different storages in the soil 

water column and the used equations are as simple as possible. The number of 

parameters is also as low as possible. 

Precisely due to their simplicity, some processes are neglected. In fact, only the 

main processes are included in order to simplify their conceptualization. That’s 

why it was important to test their accuracy and reliability. To address this issue, 
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we decided to compare the results provided by this parsimonious model against 

the corresponding ones provided by a complex physically-based ecohydrological 

model described in section 3.4.2.  

At the same time and as mentioned, we also wanted to explore the potential 

applicability of satellite data in ecohydrological modelling. To do that, we 

calibrated the parsimonious model with exclusively satellite data while the 

complex model used as reference was calibrated with field measurements as 

usual. 

All this work was done in order to address this two main research questions: (1) 

is the proposed parsimonious model capable to satisfactory simulate vegetation 

and hydrological dynamics or is a more complex model needed? and, (2) could 

satellite products be used to implement a dynamic vegetation model or are field 

measurements totally necessary? 

 Study area 

The study site is an experimental plot located in the Public Forest Monte de La 

Hunde y La Palomera with coordinates 1º12’30’’ W, 39º05’30’’ in Valencia, East 

part of Spain ( Figure 3-1). La Hunde y La Palomera is a public utility forest 

(property of Generalitat Valenciana, number V1007V154). This forest has a total 

extension of 4,500 ha.  

 

Figure 3-1. Location of the experimental plot study site. Detailed view of the 60 years old Aleppo pine plantation, 

control plot, used for this work 
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The climate is Mediterranean with a mean annual rainfall of 466 mm and a mean 

annual temperature of 13.7 °C (1960–2007). The mean annual reference 

evapotranspiration is 749 mm. Using the Köppen climate classification, the 

climate of this area is classified as semiarid (González-Sanchis et al., 2015). 

According to the statistical analysis done by Molina (2010), the rainfall is 

concentrated during the months of autumn while the driest months are during the 

summer. This distribution of the precipitation is characteristic of continental 

Mediterranean climate with three months of drought (FAO, 2005). According to 

Cervelló Royo (2008), the precipitation indexes of this mount are higher than the 

respective indexes of the surrounding mounts. Finally, this mount is located in a 

dry precipitation zone1 (350-600mm). 

La Hunde y La Palomera forest is located on a calcareous fluvisol characterized 

by deep soils and variable textures (even in the same soil profile). The organic 

matter content is relatively low, approximately around 2%. According to the 

samples extracted near to the study experimental plot, the sandy-silty loam soils 

predominate with high concentration of carbonate (16–38%, pH 7.7–8.2) (Del 

Campo et al., 2008). Soil thickness ranges between 50 and 60 cm. 

The Forestry map of Spain (scale: 1:200,000, year: 1990) shows that there are 

eleven different vegetation species in the studied area. The description and the 

extension of each one can be found in Table 3-1. Particularly, the vegetation in 

the experimental plot is characterized by an homogeneous Aleppo pine (Pinus 

halepensis) plantation of high tree density with scant presence of other tree 

species either in forest gaps or as understory species (e.g., Quercus ilex sbsp. 

ballota, Pinus pinaster) ( Molina and Del Campo, 2012). 

The Pinus halepensis plantations were established in the area during the late 

1940s with high densities (approximately 1,500 trees/ha), and no forest 

management has been carried out due to the role of the forest in soil protection 

(Del Campo et al., 2014). In the described area, an experimental plot of 30X30 m 

was stablished with different research objectives. In order to characterize the 

                                                
1 Precipitation zone is the translation of the Spanish term ombroclima. The ombroclima term is related to the 

amount of precipitation in a particular region (expressed generally in mm or in l/m2). According to the annual 

mean of precipitation, there are six different classes in the Mediterranean region: arid (<200mm), semi-arid 

(200-350mm), dry (350-600 mm), sub-humid (600-1,000 mm), humid (1,000-1,600 mm) and hyper-humid 

(>1,600). 
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vegetation mass of the experimental plot, Del Campo et al. (2014) measured the 

following variables: cover (%), basal area (m2/ha), density (tree/ha), diameter at 

breast height (DBH, cm), LAI (m2/m2), mean height (m), heartwood area (cm2), 

and sapwood area (cm2). Table 3-2 shows the value of these variables measured 

on field. 

Table 3-1. Vegetation units in La Hunde y La Palomera forest (Table extracted from Molina, 2010) 

Vegetation Unit Area (Ha) 

1. Aleppo pine (Pinus Halepensis) plantation with shrubs of Rosmarinus officinalis and 
mixed tomillar. Coverage of 95%. 

719.07 

2. Aleppo pine (Pinus Halepensis) plantation with shrubs of Rosmarinus officinalis and 
Brachypodium retusum. Coverage of 70%. 

385.15 

3. Degraded shrubs of pine with Rosmarinus officinalis and mixed tomillar 46.34 

4. Mixed mass of Pinus pinaster, Quercus coccifera and shrubs of Rosmarinus officinalis 
and mixed tomillar. 

410.02 

5. Mixed mass of Pinus Halepensis and Quercus ilex subsp. Ballota 374.54 

6. Mixed mass of Pinus halepensis (30%), Pinus halepensis plantation (20%) and 
Quercus ilex subsp. Ballota (10%). Populus nigra in wet regions 

1,043.34 

7. Mosaic of Pinus halepensis, Quercus coccifera, Juniperus oxycedrus and Rosmarinus 
officinalis. 

1,322.94 

8. Mixed tomillar 165.47 

9. Dense shrubs 145.70 

10. Tree mass of Pinus halepensis, Juniperus phoenicea and Quercus ilex subsp. ballota 23.90 

11. Cropland 29.66 

 

Table 3-2. Means of the forest structure characteristics in the experimental plot. Table extracted from Del 

Campo et al. (2014) and adapted from Molina and Del Campo (2012) 

Characteristic Units Value 

Cover % 84 

Basal Area m2/ha 40.1 

Density Tree/ha 1,489 

DBH cm 16.9 

LAI m2/m2 2.6 

Mean Height m 11.5 

Heartwood area cm2 0.58 

Sapwood area cm2 230.9 

 

Finally, this place has been previously studied and modelled with different 

objectives (mostly sylviculture experiments). Information about the results of the 
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previous studies can be found at González-Sanchis et al. (2015), Molina and Del 

Campo (2012) and, Del Campo et al. (2014). 

 Data 

The data used in this chapter can be classified in two main groups: field 

measurements and satellite data. As field measurements, there are two groups: 

forcing data (precipitation and temperature) and data related to some variables of 

the model (transpiration and soil water content). In the following lines, a 

description about the collection of the mentioned field measurements and about 

the analysis of the used satellite products are given. 

3.3.1. Precipitation and Temperature time series 

Precipitation and temperature were measured in the experimental plot during the 

observational period from 27/03/2009 to 31/05/2011. The precipitation was 

measured using a standard pluviograph with a resolution of 0.2 mm (from Davis, 

USA). It was installed near to the experimental plot (around 50 m) and without the 

influence of any object. It was measured every minute and the data was stored 

using an internal datalogger (Hobo, Onset application, USA). Anyway, we used 

the daily precipitation provided by the research group Re-Forest (our partner in 

two research projects). 

On the other hand, temperature sensors (from Decagon Devices, USA) were 

installed in the middle of the experimental plot and at 1 m height. These sensors 

took a measure every 20 minutes. The data was stored in a datalogger EM50 

with five connection channels. Once again, we only used daily maximum, 

minimum and mean temperature provided by the Re-Forest research group. 

Furthermore, in order to increase the availability of forcing data, we also used the 

historical data of daily precipitation and maximum, minimum and mean 

temperature from a meteorological station located nearby the experimental plot. 

This station is located in Almansa (town near to the experimental plot), 

particularly, its UTM coordinates are x=664097 and y=4307740 and its altitude is 

equal to 698 m. This station belongs to the Irrigation Integral Consultancy Service 

of Castilla-La Mancha Regional Government (known in Spanish as SIAR). 
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3.3.2. Transpiration and Soil Water Content time series 

Measurements of Soil Water Content (SWC) and transpiration were carried out in 

this experimental plot by Del Campo et al. (2014). Transpiration was measured in 

4 trees by considering the diametrical distribution (<20.5 cm low, 20.5–26.5 cm 

medium, >26.5 cm high). Four trees were selected: one of the high, one of the 

low and two of the medium diameter class. This sample, although modestly 

sized, falls within the range considered in tree-water relation studies (Granier, 

1987; Klein et al., 2013; Martínez-Vilalta et al., 2002).   

The method to estimate the transpiration was based on the use of sap flow 

sensors, based on the Heat-Ratio Method (HRM, Burgess et al., 2001, 

Hernandez-Santana et al., 2011 and Williams et al., 2004) in all sample trees and 

programmed to average every hour. In each tree a HRM sap flow sensor (HRM 

sensor, ICT International, Australia) was placed at 1.3 m height and at the north 

side. In order to estimate daily values of sap flow in each tree, the sapwood areas 

were obtained by subtracting their heartwood area from the inner-bark area 

(Giuggiola et al., 2013) from the cores extracted for a growth analysis carried out 

by Del Campo et al. (2014). Finally, daily transpiration data was calculated as an 

average which takes into account the number of trees included in each diameter 

class (low, medium and high). In this way, plant transpiration was obtained in the 

experimental plot during the observational period from 27/03/2009 to 31/05/2011 

(Figure 3-2). 

 

Figure 3-2. Transpiration  measured in field during the observational period from 27/03/2009 to 31/05/2011 
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SWC was measured using 9 FDR sensors (EC-TM, Decagon Devices Inc., 

Pullman, WA), placed at 30 cm depth and considering either tree influence or not 

(i.e., under projected crown or not). SWC was continuously measured every 20 

min. Field sensor calibrations were carried out by determining the gravimetric 

water content in four sampling dates (saturation, field capacity, between field 

capacity and wilting point and wilting point) to obtain the full range of SWC in the 

study site (Del Campo et al., 2014). Daily SWC data was calculated according to 

the vegetation cover, assuming that the sensors under tree influence (mean 

value) were representative of the area covered by vegetation and the sensors 

without tree influence (mean value) were representative of bare soil. In this way, 

soil moisture was obtained in the experimental plot during the observational 

period from 27/03/2009 to 31/05/2011 (Figure 3-3). 

 

Figure 3-3. SWC measured in field during the observational period from 27/03/2009 to 31/05/2011 

The Leaf Area Index (LAI) was estimated on field using a LAI-2000 sensor (LI-

COR, 1991) only once at the beginning of the work. Readings were taken under 

direct solar radiation (Molina and Del Campo, 2011) with a 270° view cap and 

with the sensor always shaded to avoid light dispersions affecting sensor 

readings (LI-COR, 1991). The measured LAI has a value of 2.6 (Table 3-2). 
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3.3.3. Satellite data 

We analyzed the following satellite products provided by NASA (NASA Land 

Processes Distributed Active Archive Center (LP DAAC)): the Normalized 

Difference Vegetation Index (NDVI) included in the MOD13Q1 and MYD13Q1 

products, the Leaf Area Index (LAI) included in the MOD15A2 and the MYD15A2 

products and the actual evapotranspiration (ET) included in the product 

MOD16A2. For the coverage of the study site, the h17v05 tile is required, where 

h and v denote the horizontal and vertical tile number, respectively. The MODIS 

vegetation index datasets provided in Hierarchical Data Format (HDF) were 

imported to GeoTIFF format by MODIS Reprojection Tool (MRT) (software 

provided by NASA) and reprojected from the Integerized Sinusoidal (ISIN) 

projection to Universal Transform Mercator projection system. 

The NDVI data is provided by NASA every 16 days and with a spatial resolution 

of 250x250 m. On the other hand, the LAI data is provided every 8 days and with 

a spatial resolution of 1x1 km. Both MODIS products were analyzed from 

18/02/2000 to 02/02/2013. Finally, the ET datasets provided by NASA are 

evaluated using Mu et al.’s algorithm (2011) based on Penman Monteith equation 

(Monteith, 1965). This algorithm uses the following satellite information to be 

implemented: land cover classification, albedo, LAI and fPAR (Fraction of 

Photosynthetically Active Radiation). It is available from 01/01/2000 to 

26/12/2012, provided every 8 days and with a spatial resolution of 1x1 km. As the 

study experimental plot is only of 30x30 m and it is completely covered by one 

satellite pixel, we used directly the value of NDVI, LAI and ET from this pixel 

(Figure 3-4). In other words, interpolation techniques were not needed.  

The used NDVI products (MOD13Q1 and MYD13Q1) are in level 3 that means 

they don’t contain raw satellite data. Actually, the NDVI indices are retrieved from 

daily, atmosphere-corrected, bidirectional surface reflectance. Specifically, these 

products use a MODIS-specific compositing method based on product quality 

assurance metrics to remove low quality pixels. From the remaining good quality 

NDVI values, a constrained view angle approach then selects a pixel to represent 

the compositing period (from the two highest NDVI values it selects the pixel that 

is closest-to-nadir). On the other hand, LAI and ET products are in level 4 what 

means they are derived from a model as discussed in the following paragraph. 

Despite the fact that all analyzed satellite products (NDVI, LAI and ET) showed a 

marked seasonal quasi-sinusoidal behavior as expected (Figure 3-4), the values 
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of LAI were significantly lower than the one measured was 2.6. This field value is 

in agreement to values reported in literature (Sabaté et al., 2002; Sprintsin et al., 

2007; Vicente-Serrano et al., 2010) for the same species and under similar 

climatic conditions. We know that this difference could be due to scale effects 

since we were comparing LAI measured in field against LAI provided by satellite. 

However, contrary to the NDVI which is calculated directly as difference between 

spectrum bands, the satellite LAI is simulated by a model. We were not able to be 

sure about the accuracy of this model in our particular pixel. Thus, the use of 

satellite LAI was finally dismissed. Likewise, as the Mu’s algorithm employed to 

calculate ET uses the MODIS LAI, the use of satellite ET was also rejected. 

Hence, we used only the NDVI data from 18/02/2000 to 02/02/2013 to carry out 

the calibration of the LUE-Model.  

 

 

Figure 3-4. NDVI data included in MOD13Q1 and MYD13Q1 products, LAI included in MOD15A2 and 

MYD15A2, and ET included in MOD16A2 from MODIS (NASA) during the period from 01/01/2000 to 26/12/2012 
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 Models 

Two models were used in this chapter: (1) the parsimonious LUE-Model 

proposed by Pasquato (2013) and slightly improved in this doctoral thesis and, 

(2) the physically-based BIOME-BGC model deeply used and tested around the 

world. Both models are described in the following lines.   

3.4.1. LUE-Model 

The tested dynamic vegetation model, the LUE-Model, was proposed by 

Pasquato et al. (2015). An important improvement on the maximum interception 

storage (Imax) was introduced. Pasquato et al. (2015) used a parameter called 

maximum interception storage which is stationary. In this version of the model, 

the Imax is calculated according to the product between the maximum leaf storage 

(a parameter) and the LAI simulated by the dynamic vegetation sub-model.  

In their research, the model was used in an area with semi-arid climate obtaining 

satisfactory results. In this study, simulations are performed with a daily time 

step, on a per unit ground area basis and equations are solved with finite 

difference approximations. In order to provide a more detailed description, two 

different sub-models can be distinguished: (1) the hydrological sub-model and, 

(2) the dynamic vegetation sub-model. 

THE HYDROLOGICAL SUB-MODEL 

The dynamic vegetation model was coupled with a hydrological model based on 

a tank-based scheme (Figure 3-5). The first tank represents the amount of water 

retained by canopy. This water can only exit from this tank by direct evaporation. 

In this tank, the water balance is performed according to equations [ 1 ], [ 2 ] and 

[ 3 ]. 

𝐼𝑡
∗ = 𝐼𝑡−1 +min⁡(𝑃𝑝𝑡 ∗ 𝛥𝑡, 𝐼𝑚𝑎𝑥 ∗ 𝑓𝑐 − 𝐼𝑡−1) [ 1 ] 

𝐸𝐼𝑡 ∗ 𝛥𝑡 = min⁡(𝐸𝑇0,𝑡 ∗ 𝛥𝑡, 𝐼𝑡) [ 2 ] 

𝐼𝑡 = 𝐼𝑡
∗ − 𝐸𝐼𝑡 ∗ 𝛥𝑡 [ 3 ] 

where t is time, I is interception (I* is only an intermediate step), Ppt is 

precipitation, Imax is the maximum interception storage which is calculated 
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according to the product between the maximum leaf storage and the LAI 

simulated by the dynamic vegetation sub-model, fc is the coverage factor, EI is 

the evaporation from the interception storage and ET0 is the reference 

evapotranspiration.  

 

 

Figure 3-5. Scheme of the hydrological sub-model (extracted from Pasquato et al., 2015) 

On the other hand, the effective root zone is divided into two superimposed 

layers, similar to Scanlon and Albertson (2003): a shallow layer that involves the 

processes of bare soil evaporation and superficial roots transpiration, and a 

second underlying layer that provides soil moisture to deeper roots (Figure 3-5). 

Transpiration (both from the shallow layer and from the deeper layer) is 

calculated according to FAO recommendations (Allen et al.,1998): the 

transpiration is obtained using the ET0 multiplied by a water stress factor (f(H)) 

and by a factor related to the current LAI simulated by the dynamic vegetation 

model, as shown in the following equations. Through this factor, the state of 

vegetation affects the hydrological fluxes and, consequently, the water storage in 

the different tanks. 
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𝐻1,𝑡
∗ = 𝐻1,𝑡−1 +min⁡(𝑇ℎ𝑟 ∗ 𝛥𝑡, 𝐻1,𝑚𝑎𝑥 − 𝐻1,𝑡−1) [ 4 ] 

𝐸𝑏𝑠,𝑡 ∗ 𝛥𝑡 = min((𝐸𝑇0,𝑡 − 𝐸𝐼𝑡) ∗ 𝛥𝑡 ∗ (1 − 𝑓𝑐) ∗ 𝛽(𝐻1)𝑏𝑠,𝑡, 𝐻1,𝑡
∗ ) [ 5 ] 

𝑇1,𝑡 ∗ 𝛥𝑡 = min((𝐸𝑇0,𝑡 − 𝐸𝐼𝑡) ∗ 𝛥𝑡 ∗ 𝑓𝑐 ∗ 𝛽(𝐻1)𝑡 ∗ min(1, 𝐿𝐴𝐼) ∗ 𝑧1, 𝐻1,𝑡
∗ ) [ 6 ] 

𝐻1,𝑡 = 𝐻1,𝑡
∗ − 𝐸𝑏𝑠,𝑡 ∗ 𝛥𝑡 − 𝑇1,𝑡 ∗ 𝛥𝑡 [ 7 ] 

𝐻2,𝑡
∗ = 𝐻2,𝑡−1 +min⁡(𝐸𝑥𝑐𝑒𝑠𝑠 ∗ 𝛥𝑡, 𝐻2,𝑚𝑎𝑥 −𝐻2,𝑡−1) [ 8 ] 

𝑇2,𝑡 ∗ 𝛥𝑡 = min((𝐸𝑇0,𝑡 − 𝐸𝐼𝑡) ∗ 𝛥𝑡 ∗ 𝑓𝑐 ∗ 𝛽(𝐻2)𝑡 ∗ min(1, 𝐿𝐴𝐼) ∗ 𝑧2, 𝐻2,𝑡
∗ ) [ 9 ] 

𝐻2,𝑡 = 𝐻2,𝑡
∗ − 𝑇2,𝑡 ∗ 𝛥𝑡 [ 10 ] 

The subscripts 1 and 2 mean shallow and deep layer respectively. Thr is the 

throughfall, Excess is the vertical flux between the first and the second soil layer, 

Hi is the water content of the i soil layer, Hi,max is the maximum static storage of 

the i soil layer, Ebs is the bare soil evaporation and zi is the percentage of roots 

in the i soil layer. The sum of z1 and z2 must be equal to one. The expression 

min(1,LAI) is the factor which replaces the crop factor recommended by the FAO 

56.  Finally, the water stress factor or soil water limitation β(Hi) is calculated 

according to equation [ 11 ]. 

𝛽𝑗(𝐻𝑖) =

{
 
 

 
 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝐻𝑖 ≥ 𝐻𝑖,𝑐𝑟

(
𝐻𝑖 −𝐻𝑖,𝑙𝑖𝑚
𝐻𝑖,𝑐𝑟 − 𝐻𝑖,𝑙𝑖𝑚

)𝑞⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝐻𝑖,𝑙𝑖𝑚 < 𝐻𝑖 < 𝐻𝑖,𝑐𝑟

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝐻𝑖 ≤ 𝐻𝑖,𝑙𝑖𝑚

 [ 11 ] 

 

where Hlim and Hcr are the water storages (mm) corresponding respectively to the 

wilting point and the critical point, below which transpiration is limited (Laio et al., 

2001); q is a measure of the nonlinearity of the effects of soil moisture deficit on 

plant condition (Porporato et al., 2001) and differs by species and might vary 

even among individuals (Rodriguez-Iturbe et al., 1999). As an example, in 

drought tolerant species that adopt a water-saving strategy (e.g. Pinus 

halepensis Mill.), stomata opening is reduced before leaf water potential suffers 

any change (Baquedano and Castillo, 2006), generating a nonlinearity in the 
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plant response to soil moisture shortage. For instance, Pasquato et al. (2015) 

recommends the use of an exponent equal to 3 for an Aleppo pine in a semi-arid 

region.  

Regarding to the Hlim and Hcr, both depend on the species and their strategy to 

survive during droughts as can be seen in the Figure 3-6 extracted from the well-

known and prestigious book Plant Ecology (Schulze et al., 2005)  

 

Figure 3-6. Soil water potential (MPa) at field capacity, permanent wilting point and hygroscopically bound water 

recommended in the book Plant Ecology (Schulze et al., 2005) for different types of soil and different plants 

according to their adaptation (drought or moist adapted) 

The power function proposed by Clapp and Horberger (1978) was used in order 

to obtain the soil water content at wilting and critical points: 

𝜓 = 𝜓𝑎𝑒 ∗ (
𝑛

𝐻
)𝑏 [ 12 ] 

where ψ is the matric potential, ψae is the matric potential of the air entry, n is the 

porosity, b is an index related to the distribution of the porosity and H is the water 
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content. Clapp and Hornberger (1978) also proposed values for ψae, n and b 

according to the soil texture (Table 3-3). 

To summarize and having showed all equations and relationships evolved in this 

hydrological sub-model, Table 3-4 contains a list of inputs, state variables and 

parameters together with the used symbols. 

 

Table 3-3. Values proposed by Calpp and Hornberger (1978) for the parameters: ψae, n and b 

Soil Texture ψae [MPa] n b 

Sand 3.42 e-04 0.395 4.05 

Loamy sand 1.74 e-04 0.410 4.38 

Sandy loam 7.01 e-04 0.435 4.90 

Silt loam 5.50 e-03 0.485 5.30 

Loam 1.43 e-03 0.451 5.39 

Sandy clay loam 8.43 e-04 0.420 7.12 

Silty clay loam 1.43 e-03 0.477 7.75 

Clay loam 3.53 e-03 0.476 8.52 

Sandy clay 6.02 e-04 0.426 10.4 

Silty clay 1.70 e-03 0.492 10.4 

Clay 1.82 e-03 0.482 11.4 

 

Table 3-4. Inputs, state variables and parameters of the LUE-Model’s hydrological sub-model 

 Definition Symbol 

In
p

u
ts

 

Precipitation Ppt 

Temperature T 

Solar Radiation R 

Leaf Area Index (simulated by the 
vegetation submodel) 

LAI 

St
at

e
 v

ar
ia

b
le

s 

Interception I 

Static Storage in the first soil layer H1 

Static Storage in the second soil layer H2 

Throughfall Thr 

Excess Ex 

Leakage and runoff L 

Evaporation from the interception EI 

Evaporation from the bare soil Ebs 

Transpiration from the first soil layer T1 

Transpiration from the second soil layer T2 
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P
ar

am
e

te
rs

 

Maximum leaf interception storage Imax 

Wilting point θwp 

Field capacity θfc 

Optimal point  θ* 

Effective depth of the first soil layer d1 

Effective depth of the second soil layer d2 

Roots percentage Z1 or Z2 

Coverage factor fc 

THE DYNAMIC VEGETATION SUB-MODEL 

The dynamics of vegetation biomass are modelled through a mass balance; 

where uptake is based on photosynthesis, simulated through the Absorbed 

Photosynthetically Active Radiation (APAR) and LUE factor (Arora, 2002; Polley 

et al., 2011). 

Many approaches for estimating plant biomass production (Field et al., 1995; 

Running et al., 2004; Montaldo et al., 2005; Pasquato et al., 2015) are based on 

the use of the light use efficiency concept. The LUE is the proportionality between 

plant biomass production by terrestrial vegetation and absorbed photosyntetically 

active radiation in optimal conditions. However, this efficiency can be affected by 

stress conditions. The key factors contributing to the variation of this efficiency 

are: soil moisture content, air temperature (Landsber and Waring, 1997; Sims et 

al.,2006), and nutrient levels (Gamon et al., 1997; Ollinger et al., 2008). Our LUE-

Model simulates the leaf biomass (Bl, kg/m2ground) as follows (Pasquato et al., 

2015): 

𝑑𝐵𝑙
𝑑𝑡

= (𝐿𝑈𝐸 ∗ 𝜀 ∗ 𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅 − 𝑅𝑒) ∗ 𝜑𝑙(𝐵𝑙) − 𝑘𝑙 ∗ 𝐵𝑙 
[ 13 ] 

 

where ε takes into account the reduction in LUE due to stress sources. In this 

study, as it was applied in a water-controlled catchment, the stress factors 

considered were only the water stress and the temperature stress. The nutrient 

levels were not considered, because they are not the dominant stress source in 

this semi-arid area. The water stress factor connects the dynamic vegetation 

model with the hydrological model. Re is the respiration, ϕl(Bl) is the fractional 

leaf allocation and kl is the leaf natural decay factor to reproduce the senescence. 

The respiration and the fractional leaf allocation are simulated as specified by 

Pasquato (2013). The fractional leaf allocation is simply calculated taking into 



On the use of satellite data to calibrate a parsimonious ecohydrological model in ungauged basins 

Doctoral Thesis 

 

Página 84  Guiomar Ruiz Pérez  

account the maximum LAI sustainable by the system and according to the 

equation [ 14 ]. 

𝜑𝑙 = 1 −
𝐿𝐴𝐼

𝐿𝐴𝐼𝑚𝑎𝑥
 [ 14 ] 

 

On the other hand, inspired in Sitch et al. (2003), respiration calculation (equation 

[ 15 ]) is based on tissue specific C:N ratios, air temperature and phenology. The 

model uses a variant of the Arrhenius equation in order to include the influence of 

the temperature in respiration rates using a tissue C:N ratio equal to 29 (Sitch et 

al., 2003). To obtain biomass instead of carbon, the model employs the relation 

1gC in 2.2g of dry organic matter (relation used in Montaldo, 2005; Pasquato, 

2013 and García-Arias, 2015). 

𝑅𝑒 =
𝑟𝑟 ∗ 𝐵𝑙
2.2 ∗ 29

∗ 𝑒308.56∗[
1

56.02
−

1
𝑇+46.02

]
 

[ 15 ] 

 

where rr is the respiration rate in gC/gN day and T is the daily mean temperature 

in Celsius degrees. 

Finally, PAR and fPAR are the photosyntetically active radiation and the fraction 

of PAR absorbed by the canopy, respectively. More information about these 

terms can be found in Pasquato (2013).The daily PAR was obtained from the 

incident global radiation provided by a nearby meteorological station (the same 

station where the precipitation and temperature are measured) using a constant 

ratio of 0.48 MJ (PAR)/MJ (global radiation) (McCree, 1972). The fPAR was 

obtained using the Beer–Lambert law according to the next equation: 

𝑓𝑃𝐴𝑅 = 0.95 ∗ (1 − 𝑒−𝑘∗𝐿𝐴𝐼) [ 16 ] 

where k is the light extinction coefficient and the LAI is simulated through the 

specific leaf area (SLA) and the vegetation fractional cover (fc) according to 

equation [ 17 ]. 

𝐿𝐴𝐼 = 𝐵𝑙 ∗ 𝑆𝐿𝐴 ∗ 𝑓𝑐 [ 17 ] 
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However, Dawson et al. (1998) showed that NDVI is influenced by leaf water 

content. For this reason, some authors (Williams and Albertson, 2005; Pasquato 

et al., 2015) recommend the use of a water stress factor to make comparable the 

LAI with the NDVI as shown in the following equation: 

𝐿𝐴𝐼𝑟 = 𝐿𝐴𝐼 ∗ (1 − 𝜉10) [ 18 ] 

where the LAIr is the LAI comparable with NDVI and  𝜉10⁡ is the average plant 

water stress of the previous 10 days as proposed by Williams and Albertson 

(2005). 

Finally, having showed all equations and relationships evolved in this dynamic 

vegetation sub-model, Table 3-5 contains a list of inputs, state variables and 

parameters together with the used symbols. 

 

Table 3-5. Inputs, state variables and parameters of the LUE-Model’s dynamic vegetation sub-model 

 Definition Symbol 

In
p

u
ts

 

Static storage of the first soil layer (simulated by the 
hydrological sub-model) 

H1 

Static storage of the second soil layer (simulated by 
the hydrological sub-model) 

H2 

Temperature T 

Solar Radiation R 

St
at

e
 

va
ri

ab
le

s Leaf Biomass Bl 

Fraction of the Photosynthetically Active Radiation fPAR 

Leaf Area Index LAI 

Leaf Area Index affected by water stress LAIr 

P
ar

am
e

te
rs

 Light Use Efficiency index LUE 

Maximum LAI sustainable by the system LAImax 

Light extinction coefficient K 

Specific Leaf Area SLA 

Optimal Temperature Topt 

 

3.4.2. Biome-BGC model 

As representative of a complex model, this research used the Biome-BGC 4.2 

model (Thorton et al., 2002) for two reasons. Firstly, the model is well 
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documented, both technically and in scientific publications; second, the source 

code of the model is publicly available on the Internet (NTSG 2001). Furthermore, 

it is also widely used as a benchmark during Global Change analysis (e.g., 

Schimel et al., 1994). Complete descriptions of the model have been carried out 

in many studies (Pietsch et al., 2003; Tatarinov and Cienciala,2006; Chiesi et al., 

2007; Maselli et al., 2009). The accuracy of the Biome-BGC model in this 

particular experimental plot was deeply demonstrated by González-Sanchis et al. 

(2015). These authors compared the obtained results using Biome-BGC with the 

results obtained using the same model around the world (Pietsch et al., 2003; 

Chiesi et al., 2002; etc.) and, also, with the obtained results using other 

approaches (Zhen-Ming et al.,2011; Keenan et al., 2009). 

This model was not coded or modified by us. Hence, it is not relevant to give a 

detailed description of the model. Extracted directly from its User’s manual, 

Biome-BGC could be described as follows: ‘Biome-BGC is a mechanistic model 

that is used to estimate the state and fluxes of carbon (C), nitrogen (N), and 

water (H2O) into and out of an ecosystem. Biome-BGC is actively used in 

institutions around the globe and its most recent release is version 4.2. The three 

primary biogeochemical cycles represented in Biome-BGC are the C, N, and H2O 

cycles. In conjunction with these cycles, Biome-BGC models the physical 

processes of radiation and water disposition. Biome-BGC partitions incoming 

radiation and precipitation and treats the excess/unused portions as outflows. 

The primary physiological processes modeled by Biome-BGC are 

photosynthesis, evapotranspiration, respiration (autotrophic and heterotrophic), 

decomposition, the final allocation of photosynthetic assimilate, and mortality. To 

model these processes, Biome-BGC first models the phenology of the systems 

based on the input meteorological data.’ 

The model operates in a 1 m2 scale, with a daily time step and describes the 

dynamics of energy, water, carbon and nitrogen in a defined type of terrestrial 

ecosystem (deciduous broadleaf forest, coniferous forest or grassland). The 

model requires: daily climate data, information of the general environment (soil, 

vegetation and site conditions) and 34 parameters describing the 

ecophysiological characteristics of vegetation such as specific leaf area, water 

interception coefficient or light extinction coefficient. Biome-BGC is provided with 

default ecophysiological parameters sets for the major biome types, but these 

must be modified to adapt to Mediterranean ecosystems (Chiese et al., 2007). 

Water cycle calculation includes daily canopy interception, evaporation, 
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transpiration, soil evaporation, soil water potential, soil water content and outflow 

(Figure 3-7). 

 

Figure 3-7. Biome-BGC detailed model flow chart (extracted from the Theoretically Framework of Biome-BGC, 

2010) 

Due to the objectives of this thesis, special attention deserves the simulation of 

the canopy transpiration. The canopy transpiration routine calculates the 

transpiration taking into account the leaf level and the stomatal conductances 

and using the Penman-Monteith equation. The Penman-Monteith equation is a 

general equation that relates the incoming radiation, vapor pressure deficit 

(VPD), the density of air, the specific heat of air, and the resistances to sensible 

heat flux and water vapor flux to the loss of latent heat by evaporation (Waring 

and Running 2007; Monteith and Unsworth 2008). For plant leaves, the Penman-

Monteith equation considers the leaf level conductance to water vapor which is 

based on the stomatal conductance to water. To simulate the drivers of stomatal 

closure, Biome-BGC calculates a series of multipliers between 0 and 1 for: (1) 

photosynthetic photon flux density, (2) soil water potential, (3) minimum 

temperature, and (4) Vapor Pressure Deficit (VPD). The final multiplier is the 

product of these four multipliers. All this information is important to understand 

the discussion of the results. More details (not needed to be known for this 
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thesis) can be found in the document: Theoretically Framework of Biome-BGC 

(2010). 

 Methodology 

The LUE-Model was implemented following two steps: (1) calibration of the 

model only using the satellite NDVI and (2) validation using the available field 

measurements (transpiration and SWC. The performance of the model is then 

compared to that of the BIOME-BGC model by comparing the simulation results 

between them and with the field observations. The BIOME-BGC model was 

calibrated using the available field measurements as usual because we wanted 

to compare the results obtained by using a parsimonious model together with 

satellite data against the ‘traditional’ option of using a complex model together 

with field measurements.  

The simulated period of both models included the period with available field data 

(27/03/2009 to 31/05/2011), as well as two different precipitation scenarios: dry 

(year 2005) and wet (year 2010). In particular, we computed the amount of ‘blue 

water’ (water in liquid form used for the human needs or which flows out the 

ecosystems) and the amount of ‘green water’ (water vapor form resulting from 

evaporation and transpiration processes) in order to obtain and compare the 

blue/green rate (B/G) using both modelling alternatives. 

As shown in the previous section, in the case of LUE-Model, the hydrological 

sub-model has eight parameters to be calibrated: (1) maximum interception 

storage, (2) the wilting point soil moisture, (3) field capacity soil moisture, (4) 

optimal point soil moisture, (5) effective depth of the first soil layer, (6) effective 

depth of the second soil layer, (7) distribution of roots and (8) coverage factor ( 

Table 3-4). With regards to the dynamic vegetation sub-model, there are five 

parameters to be calibrated: (1) LUE, (2) maximum LAI sustainable by the 

system, (3) light extinction coefficient, (4) SLA, Specific Leaf Area, and (5) 

optimal temperature (Table 3-5). 

To calibrate both sub-models (thirteen parameters) we used the available NDVI 

data from 18/02/2000 to 02/02/2013. As NDVI is sensitive to green leaf biomass, 

it can be primarily employed to monitor the photosynthetically active biomass of 

plant canopies. As mentioned in Chapter 2, studies on various vegetation types 

(e.g., agroecosystems (Cohen et al.,2003), grasslands (Friedl et al., 1994), 
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shrublands (Law and Waring,1994), conifer forests (Chen and Cihlar, 1996), and 

broadleaf forests (Fassnacht et al., 1997)) have led to the general conclusion that 

the spectral vegetation indices have considerable sensitivities to LAI. According 

to Turner et al. (1999), the relationship between LAI and NDVI can be considered 

as linear for low values. For this reason, the selected objective function was the 

Pearson’s correlation coefficient between the simulated LAIr and the satellite 

NDVI. Firstly, calibration was carried out using a manual adjustment of 

parameter’s values and using values recommended in literature for each 

parameter (some sources were: Ceballos and Ruiz de la Torre, 1979; Calatayud 

et al., 2000 and others). Regarding to the wilting point, optimal point and field 

capacity, we used the values recommended by Caylor et al. (2005) for the same 

type of vegetation and in the same kind of environment. Specifically, we used 

−0.015 MPa, −0.5 MPa and −3 MPa for the field capacity, optimal point and 

wilting point, respectively (Figure 3-6). Using the relationships defined in Clapp 

and Hornberger (1978), these pressures were transformed into soil moisture. 

These values are not included in the calibration process.  

Then, the model was calibrated automatically. This automatic calibration was 

carried out using a genetic algorithm called Evolver which looks for global 

maxima or minima. This algorithm needs initial values to start the calibration 

process and we used the values obtained during a previous manual calibration. 

The used initial values can be seen in Table 3-6 (next section) as well as the 

search range and the results of the calibration. Finally, the model was validated 

using daily field measurements of SWC and transpiration. 

As explained previously, the Biome-BGC was calibrated and validated using daily 

transpiration and SWC. For calibration, the 70% of the field data was used, while 

the remaining 30% were used to validate the model. Data selection was carried 

out using a previous classification of the transpiration data into four classes, with 

class limits set at (μ − ρ), ρ and (μ + ρ) where μ is the average value and ρ is the 

standard deviation. For each of the classes, the data was again separately 

classified according to the vapor pressure deficit range and season. In order to 

be sure that all four seasons were represented in both the calibration and the 

validation datasets, we used the 70% of each group to calibrate the model and 

the 30% to validate it. Finally, a t-test was applied to the both data sets and no 

significant statistical differences between sample means (p ≤ 0.05) was found. 

Since it is a model which works at 1 m2 scale (individual scale), it was applied in 

various trees and, later, we calculated an average of these ‘individual’ results. A 
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more detailed description of this process can be found in González-Sanchis et al. 

(2015).  

The performance of both models was analyzed comparing the simulation results 

to the field observations. The selected goodness-of-fit indexes were the Root 

Mean Square Error (RMSE), the Nash and Sutcliffe efficiency index (E) and the 

Pearson correlation coefficient (only for the LAI evaluation). As the main objective 

of this section is to know if a parsimonious model implemented only using 

satellite data can be used as alternative against a well-known physically-based 

model implemented using field measurements, we ran both models for a long 

period and, later, we compared the differences between them. The B/G water 

ratio was calculated using the results from each model. In our study case, on one 

hand, the Blue water is the excess water from the upper soil: i.e., surface runoff 

plus deep percolation. And, on the other hand, the Green water is calculated as 

the sum of the amount of water transpired by plants, the amount of water 

evaporated from the bare soil and the amount of water evaporated from the 

interception. 

 Results 

In general, the calibration of the LUE-Model showed a strong positive relationship 

between the LAIr and the NDVI provided by satellite in the entire period (Figure 

3-8), with a Pearson correlation coefficient of 0.635. The parameter values 

obtained during the calibration process are compiled in Table 3-6.  

Table 3-6. Range of parameters values, initial values and final results obtained during the calibration process 

Parameter Units Initial value Search range Final value 

Maximum Interception storage mm 2.0 [0.5-3.0] 1.75 

Effective depth of the first layer mm 200.0 [10,1000] 100.00 

Effective depth of the second layer mm 800.0 [100,5000] 1100.00 

LUE Kg/m2MJ 1.5 [1.2,2.5] 1.25 

Coverage factor [-] 0.8 [0.1,1.0] 0.90 

Distribution of roots [-] 0.3 [0.0,1.0] 0.10 

Maximum LAI m2/m2 2.5 [1.5,3.5] 3.00 

Light extinction coefficient [-] 0.5 [0.4,0.6] 0.52 

SLA m2/kg 4.0 [2.0,5.0] 4.00 

Optimal temperature ºC 18.0 [10,30] 15.00 
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However, during the calibration, despite the fact that the simulated peak values of 

LAIr generally coincided with those of NDVI, a significant disagreement between 

both variables was obtained during two specific periods (shaded in Figure 3-8). 

During the first period, from July 2004 to December 2005, the LAIr and the NDVI 

series were totally uncorrelated, especially during the beginning of this period. 

Likewise, in the second period, spring 2010, the simulated LAIr maintained a high 

value while the NDVI decreased substantially.  

 

Figure 3-8. Comparison between LAIr simulated by the model and NDVI from satellite. The shaded areas 

correspond to the two specific periods with a significant disagreement between simulated LAIr and satellite 

NDVI 

On the other hand, the validation of the LUE-Model with the field measurements 

showed a general agreement between the simulated and the measured SWC 

and transpiration (Figure 3-9), although the former appears to be more accurately 

reproduced (Table 3-7). The major disagreement in the prediction of transpiration 

values occurred during the spring of 2010, which is the same period where the 

simulated LAIr and the NDVI were noticeably uncorrelated (Figure 3-8).  

As mentioned before, the calibration and validation of the Biome-BGC was 

previously carried out in González-Sanchis et al. (2015) and the results are 

summarized in Table 3-7. The model predicted accurately SWC and 

transpiration, although like the LUE-Model, the Biome-BGC model also 

reproduced more accurately the dynamics of SWC (Figure 3-9). The E index is 

approximately 0.5 in the case of transpiration (0.532 in the calibration and 0.544 

in the validation) while the same index in the case of SWC is higher than 0.7 

(0.766 in the calibration and 0.715 in the validation). In any case, the obtained 

results were satisfactory in both, transpiration and SWC. 
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Figure 3-9. Transpiration (lower panel) and SWC (upper panel) measured in field and simulated by both models 

Table 3-7. Results of the validation using field data for the LUE-Model and Biome-BGC models (observational 

period from 27/03/2008 to 31/05/2011) 

 Transpiration SWC 

 LUE-Model Biome-BGC LUE-Model Biome-BGC 

E 0.346 0.544 0.650 0.715 

RMSE 0.274 0.209 0.051 0.070 

 

Therefore, both models reproduced with acceptable accuracy the water dynamics 

of the study site. In fact, the E indexes in terms of SWC were higher than 0.65 for 

both models (Table 3-7). However, as it was expected and it was shown by the 

selected goodness of fit indexes, the Biome-BGC appeared to be more accurate 

than the LUE-Model (Figure 3-9 and Table 3-7). Having compared the results of 

both models in a longer run (from 2004 to 2012 approximately), we can observe 

that there were not big differences between them (Figure 3-10). The agreement 

between SWC time series was very strong and it was better than the agreement 

between transpiration time series. But, in general, there were not big differences. 
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In fact, the Pearson correlation coefficient values between them are 0.638 and 

0.865 for the transpiration and SWC, respectively. 

 

Figure 3-10. Transpiration (upper panel) and SWC (lower panel) time series simulated by both models (from 

2004 to 2012 approximately) 

Likewise, when estimating the general B/G rate during the dry and the wet years, 

the models produce very similar results, with a rate around 0.1 in the dry year 

and around 0.8 in the wet year (Table 3-8). 

Table 3-8. Results of each model in terms of Blue (exceedance) and Green (evapotranspiration) water 

 Flows Dry year (2005) Wet year (2010) 

LUE-Model Precipitation (mm) 188.00 739.00 

Evapotranspiration (mm) 165.18 431.87 

Exceedance (mm) 16.34 326.93 

B/G 0.098 0.757 

Biome-BGC Precipitation (mm) 188.00 739.00 

Evapotranspiration (mm) 156.30 408.80 

Exceedance (mm) 31.7 330.10 

B/G 0.104 0.807 
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 Discussion 

In general, LUE and Biome-BGC models reproduced with acceptable accuracy 

SWC and transpiration values. Both models simulated more accurately SWC 

than transpiration dynamics, and a disagreement between simulated and 

observed daily transpiration can be found at certain periods for both models. The 

disagreement could be due to the fact that 2010 was an abnormally rainy period, 

and as an outlier, the models might not reproduce it properly. However, since the 

periods where the models performed with less accuracy were not the same, the 

high quantity of rain might not be the cause, or at least not the main one.  

In order to identify the main reasons and understand why the models 

performances were different, a classification proposed by Del Campo et al. 

(2014) was used. Del Campo et al. (2014) grouped the simulated period in four 

spells according to the precipitation and the average daily temperature: Dry Cool 

(DC), Dry Warm (DW), Wet Cool (WC) and Wet Warm (WW). According to them, 

a dry spell was considered to begin when none of the previous 14 consecutive 

days registered a daily precipitation higher than 5 mm. Obviously the other days 

were considered as wet spells. Hence, wet spell was set to a minimum to 14 days 

long, while dry spells was unlimited. On the other hand, a day was considered 

cool if its mean temperature was lower than 13.2 ºC. Conversely, if the mean 

temperature of a day was higher than that temperature, it was considered a warm 

day. 

Analyzing the performance of both models during each spell, it was possible to 

observe that both models behaved differently. The LUE-model did not reproduce 

accurately cool spells, either dry or wet, while the Biome-BGC was slightly less 

accurate when simulating dry spells, either cool or warm. Having analyzed the 

field data, it was possible to observe a significant linear relationship between 

transpiration and Vapor Pressure Deficit (VPD) during cool spells, which was 

stronger during WC spells (Figure 3-11). Contrarily, during warm spells, the 

transpiration was significantly correlated to the measured SWC (Figure 3-12). 

This behavior describes the general dynamics of the vegetation, where if soil 

water availability does not limit transpiration, it is expected that transpiration will 

be affected primarily by atmospheric evaporative demands (Monteith, 1965; 

Tanner and Fuchs, 1968).  
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Figure 3-11. Linear correlation between transpiration and VPD during the different four groups stablished by Del 

Campo et al. (2014). R is the Pearson correlation coefficient 

 

Figure 3-12. Linear correlation between transpiration and SWC during the different four groups stablished by 

Del Campo et al. (2014). R is the Pearson correlation coefficient 



On the use of satellite data to calibrate a parsimonious ecohydrological model in ungauged basins 

Doctoral Thesis 

 

Página 96  Guiomar Ruiz Pérez  

Thus, the LUE-Model appeared not to include properly the atmospheric 

evaporative demands, and its performance during the periods when this demand 

prevailed over SWC was less accurate. But, the atmospheric evaporative 

demands should and could be included through a more accurate calculation of 

the ET0. Hence, these results did not highlight a limitation of the LUE-Model 

taking into account that the ET0 was calculated using the Hargreaves 

methodology which does not include the VPD in its definition. 

With regards to the lower performance of the Biome-BGC model when simulating 

transpiration during dry spells, it was probably due to the fact that the model is 

not originally designed to reproduce arid or semi-arid environments. Hence, the 

performance of the model when simulating transpiration could decrease during 

drought periods because it does not take into account the different plants’ 

strategies against droughts. Likewise, Jolly and Running (2004) used the Biome-

BGC model to simulate drought-deciduous vegetation in the Kalahari and 

reported an underestimation of the transpiration. On the other hand, conversely 

to the LUE-Model, it had not problems when the limiting factor was the VPD. As 

explained in the description of the Biome-BGC model, it takes directly into 

account the VPD during the calculation of the canopy transpiration because it 

uses the Penman-Monteith equation and because the stomatal conductance is 

affected by a factor which is calculated according to the VPD. 

As mentioned previously, when analyzing the performance of the LUE-model with 

satellite information, we observed that the main disagreement between LAIr and 

NDVI was produced during the period from July 2004 to December 2005, which 

was an extremely dry period. The precipitation during this period was 188 mm, 

which is significantly lower than the annual mean precipitation registered in the 

study site (466 mm). Thus, according to the general dynamics of the vegetation, 

in this extremely dry period, the SWC would be expected to be the main driving 

factor of transpiration, and therefore, the performance of the LUE-Model was 

expected to be more accurate. Due to its conceptual structure, SWC and LAIr are 

highly correlated in the LUE-Model, and a significant decrease in SWC will also 

imply a significant decrease of LAIr. However, the immediate response of LAIr to 

SWC variations during this particular dry period contrasted to that of NDVI, which 

appeared to be delayed a few months. NDVI values of arid or semiarid areas, as 

well as those of Mediterranean areas during the dry summer season, have been 

demonstrated to be strongly dependent on plant water availability in preceding 

days even months (Maselli, 2004). Given this fact, we did use LAIr (and not 



On the use of satellite data to calibrate a parsimonious ecohydrological model in ungauged basins 

Doctoral Thesis 

Guiomar Ruiz Pérez Página 97 

directly LAI) as explained in sub-section 3.4.1. But, this strategy was not 

apparently enough in this extremely dry period. Thus, the disagreement between 

LAIr and NDVI found in this period is probably due to the late response of NDVI to 

a severe drought period. Indeed, after this drought period, NDVI decreased until 

August 2006, where the regression between LAIr and NDVI, although significant 

(sig. <0.05) showed a low regression coefficient of 0.2. Contrarily, from August 

2006 onwards, NDVI started to increase again probably as a response of the rain 

during the winter of 2006, and the regression coefficient increased to 0.69. 

The other disagreement between LAIr and NDVI was produced during the first 

half of 2010. Conversely to the previous period, 2010 was an abnormally rainy 

period. In this case, LAIr increased and remained with high values almost the first 

half of 2010. On the contrary, the increasing of NDVI was not observed until 

August, when the regression coefficient between LAIr and NDVI increased from 

0.29 to 0.61. In this case, the disagreement could be due to the ET0 did not take 

into account the limitation produced by the VPD as discussed above. However, 

with these exceptions, the LUE-Model captured well the dynamic of the 

vegetation provided by NDVI. 

Likewise, the estimation of the general B/G water balance using the LUE-Model 

and the Biome-BGC model produced very similar results when simulating both 

dry and wet years (Table 3-8). The similarity of the results enhanced the 

capability of the parsimonious LUE-Model to distribute water, which was very 

similar to that of the physically-based Biome-BGC model. But, the most important 

conclusion is that both models obtained a B/G water ratio below 1, i.e. more than 

half of the total annual rainfall would be consumed by the ecosystem and 

returned to the atmosphere, and a short quantity of water would be able to supply 

the catchment.  A proper distribution of Blue and Green water is essential for a 

model as it raises the question of a loss of services that ecosystems provide to 

human and also the amount of available water to be used by vegetation. 

Particularly, in Mediterranean ecosystems, where the global climate change 

scenario predicts an increase in dry years over normal and wet periods (Giorgi 

and Lionello, 2008), an accurate distribution of the Blue and Green water is 

fundamental when designing water (and forest) management policies. 

 Conclusions 

The results in this research suggest that the parsimonious model is able to 

adequately reproduce the dynamics of vegetation (the correlation coefficient with 
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the satellite and field transpiration data are acceptable), and it also reproduces 

properly the soil moisture variations. In other words, it has been shown that a 

parsimonious model with simple equations can achieve good results in general 

terms, and it is possible to assimilate satellite information for the model 

implementation.  

However, it also has been observed that the LUE-Model’s accuracy is worse 

when the transpiration is limited by the atmospheric demands. It is important to 

mention that the LUE-Model used the ET0 during the calculation of the 

transpiration. As the LUE-Model implementation represented such situation in 

which there is not field information, the ET0 was calculated by Hargreaves and 

Samani method (this method only needs information of temperatures and 

radiation).  

On the other hand, in this section, the satellite data played a key role in the 

implementation of the model. In fact, the measured transpiration data were 

available only for about two years as a field observation of the vegetation state 

and evolution. In this case, the satellite data was a very useful source of 

information, and its combination with the parsimonious LUE-Model demonstrated 

to be an accurate tool capable of predict the role of the vegetation in the water 

cycle with no field data.  

Finally, we want to emphasize that it is known that the proposed model has 

limitations due to its simplicity. The accuracy of the results also depends on the 

quality of the observed data and, obviously, the satellite data has to be used with 

caution. Especially if we are focusing in just one pixel as it is the case in this 

previous stage of the thesis. It is clear that the advantages of using satellite data 

will likely increase when used at catchment scale. But, in our opinion, it was 

important to explore alternative sources of information, such as satellite data, and 

create models which can be implemented using this kind of information to be 

used where or when no field observations are available. There could be better 

models with better results but, this study wants to be a success example about 

how far a parsimonious model together with satellite data can arrive. 

But, all this work was made at plot scale and the main objective of our research 

was the adaptation of a dynamic vegetation model which can be used at 

catchment scale. If the spatial scale is increased, the model has to take into 

account the dynamic growth of the vegetation but, also, its pattern. At the same 

time, at basin scale, we will use temporal maps of information. It means, we will 
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not use the observed temporal series in only one pixel but spatial maps 

distributed in time. In the following chapter, we deal with the use of spatio-

temporal data and we propose a methodology to handle this kind of information 

at catchment scale. 
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CHAPTER 4. AT CATHMENT SCALE: 

SPATIO-TEMPORAL MODELLING 
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4. AT CATMENT SCALE: SPATIO-TEMPORAL MODELLING 
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 Introduction 

This chapter addresses the original main purposes of this research: (1) the 

adaptation of a parsimonious ecohydrological model to be used distributed at 

basin scale and, (2) practical use of satellite data in order to calibrate and 

validate the proposed model. 

In Chapter 2, we have discussed about the two possible strategies in order, at 

least, to reduce the ‘scarce data – high parametrical requirements’ issue. As 

mentioned, in this thesis we used a parsimonious ecohydrological model avoiding 

in this way a high parametrical requirement and we investigated the potential 

utility of satellite data. 

The incorporation of new sources of information such as satellite data is even 

more interesting in places located in undeveloped countries where is hard to 

install and keep in operation the needed instrumentation. One example of these 

places is sub-Saharan Africa where the study area of this chapter is located. In 

this region, researchers often face the problem of extensive parametrical 

requirements and limited available data. Satellite remote sensing data may be 

able to fill this gap. But, these data require novel methodologies to exploit their 

spatio-temporal information that could potentially be incorporated in 

ecohydrological model calibration and validation. 

In Chapter 3, we took the first steps regarding to the use of satellite data 

calibrating the LUE-Model exclusively with the NDVI included in the MODIS 

products and provided by NASA. In this first experience, we only took advantage 

of the temporal information provided by the satellite data, because the model was 

applied at plot scale. But, it is important to mention that the satellite data contain 

both, spatial and temporal information. In this context, the dual challenge of this 

fourth chapter is: (1) to adapt the model to be used at catchment scale and (2) to 

propose a methodology in order to calibrate the model using the spatio-temporal 

information provided by satellite data.  

To address this dual challenge, the distributed version of the parsimonious 

ecohydrological model proposed in the previous chapter was applied in a basin 

located in Kenya, concretely in the Upper Ewaso Ngiro River basin. The study 

area was again located mostly in a water-controlled environment because our 

interest in these ecosystems and, because the used and slightly modified LUE-

Model (Pasquato, 2015) was originally designed to be used in this kind of 
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environments (nutrients cycle is not simulated, i.e.: nutrients cannot be a limiting 

factor). As done at plot scale in the previous chapter, the model was calibrated 

only using NDVI data derived from MODIS.  

Regarding the use of spatio-temporal data, a semi-automatic calibration 

procedure, based on Empirical Orthogonal Functions (EOF) techniques, was 

proposed and applied in the study area. This methodology is deeply explained in 

the next section 4.5.1 where the context, references, mathematical definition, 

meaning and procedure are detailed. Furthermore, as a novel contribution in this 

sense, we used this methodology to calibrate automatically the model which was 

a great challenge taking into account that, to our knowledge and in this field, this 

methodology had never been used in an automatic calibration.  

It is important to say that this section of this doctoral thesis was thanks to an 

international collaboration between the Universitat Politècnica de València 

(Spain), Università degli Studi della Basilicata (Italy) and Princeton University 

(NJ, USA). The results originated a paper entitled ‘Calibration of a parsimonious 

distributed ecohydrological daily model in a data scarce basin using exclusively 

the spatio-temporal variation of NDVI’ which is still under revision. 

 Study area: Upper Ewaso Ngiro River basin 

The Upper Ewaso Ngiro River basin is located in the Laikipia region of Kenya. 

The basin, with a drainage area of 15,200 km2 approximately, is surrounded by 

the Mount Kenya (South East) and the Aberdare Mountains (South West). As 

Kenya is located on the equator, the Intertropical Convergence Zone (ITCZ) 

affects the rainy regimes causing two distinct rainy and dry seasons. The first 

rainy season occurs from March to May (long rains), while the second rainy 

season occurs from October to December (short rains). It is important to mention 

that the general trend in the rainfall coefficient of variance correlates negatively 

when moving from dry to wetter regions, i.e. dry regions have the most variable 

rainfall creating very stressful growing conditions. A full and deep description of 

the rainfall pattern in this catchment was provided by Franz (2007). 

Soil texture ranges from sandy clay to clay soils. Franz (2007) used qualitative 

descriptions for the basin collected from the 1980 Unesco Kenyan soil map and, 

from the fifty-five different soil types identified in the study area, eleven categories 

were obtained. Figure 4-2 illustrates the soil type map used in this thesis. 
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Regarding to the land use, we used a land classification dataset constructed with 

the surface reflectivity measured by AVHRR satellite in previous projects (Franz 

et al., 2010). Briefly, elevations are dominated by forest and a large piece of land 

has been converted to cropland mainly the mid-latitudes of the basin. The 

remaining of the basin is classified as grassland, shrubland and wooded 

grassland (Figure 4-3). 

In order to give a global vision of the current land uses, it is relevant to review the 

historical development of the farming system in Kenya and in the sub-Saharan 

Africa in general. In the early twentieth century large plantations were established 

throughout sub-Saharan Africa by individual settlers and, increasingly, large 

corporations such as Del Monte and Firestone (Smalley, 2013). In east and 

southern Africa, plantations were most extensive in the settler economies of 

Kenya, Zimbabwe and South Africa (Thompson, 1941; Jamal, 1993; Gibbon, 

2011). But, the challenges facing those large plantations grew after nation states 

won independence from colonialism in the late 1950s and 1960s (1963 in the 

case of Kenya). First, the gradual arrival of worker legislation made labour more 

expensive for firms (Watts, 1994; Vermeulen and Cotula, 2010). Second, their 

land holdings became increasingly vulnerable to takeover by new African 

governments (Acland, 1971; Jamal, 1993; Sender and Jonhston, 2004). Third, 

they had begun to make more money in other areas such as shipping and 

marketing (Oya, 2012). These three developments explain the decline of large 

foreign plantations and their shift to small scale farming. This small scale farming 

is not supported by a proper irrigation system and local people depend on rainfall 

to water their land (Ngigi et al., 2008). Some researches point out that this small 

scale farming is going to cause greater stress on local water supplies due to the 

increasing population (mainly immigration) and illegal extractions from the river 

(e.g. Aarts, 2012). 

Precisely, due to this land use change together with climate change and 

population increase, the Upper Ewaso Ngiro River basin is of particular interest. 

Furthermore, the majority of the basin (≈80%) is in highly stressed conditions as 

shown by a simple water budget analysis carried out by Franz (2007). In this 

analysis, the irrigation was neglected because the small scale farming lacks an 

irrigation system. He calculated the annual runoff ratio, which is the ratio of 

annual precipitation to runoff, in order to characterize the potential stress of the 

basin. Basically, areas with runoff ratio greater than 0.4 are considered as water 

rich, whereas, areas with values lower than 0.4 are considered water stressed. 

The 80% of the basin has runoff ratios lower than 0.4. 
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Figure 4-1 General map location of the upper Ewaso Ngiro River basin within the boundaries of Kenya and the 

major districts where the basin is located
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 Figure 4-2. Spatial distribution of soil types for the basin. Source of data: 1980 Unesco Soil Map modified by Franz (2007) 
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Figure 4-3. Land classification map of watershed. Source of information: AVHRR data modified by Franz (2007) 
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 Data 

We used daily precipitation gauges with records from 1959 to 2003 provided by 

the Natural Resource Monitoring, Modeling and Management Project (NRM3) of 

Nanyuki, Kenya (illustrated by dots in Figure 4-4). Temperature and solar 

radiation records were obtained at the same stations. The reference 

evapotranspiration (ET0) was calculated using the Penman-Monteith equation, 

with the simplifications proposed by Allen et al. (2006). This approach is 

extremely  useful  to  describe  the  spatial  distribution  of  solar  radiation  and  

to  derive  the ET0 maps during any phase of the year (Manfreda et al., 2013). 

Due to the heterogeneity of precipitation gauge stations and since all different 

aspects of the basin were included, we decided to work with the sub-basin 

marked in Figure 4-4 (around 4,600 Km2). We also used the observed discharge 

of this sub-basin’s outlet where data was available from 1980 to 2002 at daily 

scale. 

 

Figure 4-4. The study sub-catchment (in green) was selected because the density of the rainfall stations (dots in 

dark blue) 
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Regarding to the satellite data, we employed the same satellite products as in the 

previous chapter: the NDVI included in the MOD13Q1 and MYD13Q1 products 

provided by NASA. As specified previously, these satellite products are provided 

every 16 days at 250-meter spatial resolution and they are available from 2000 to 

nowadays. Particularly in this case, due to the coverage of the study site, the 

h21v08 and h21v09 tile are required.  

 Model description: TETIS-VEG 

The proposed model, the TETIS-VEG model, is a distributed hydrological model 

called TETIS (GIMHA, 2014) coupled with the LUE-Model (described in the 

previous chapter) as dynamic vegetation sub-model. Both models have simplicity 

in model structure in common. The used equations are as simple as possible in 

order to reduce the number of parameters. The sub-models (i.e.: hydrology and 

vegetation) are connected because the transpiration calculated in the 

hydrological sub-model depends on the LAI simulated by the dynamic vegetation 

model. At the same time, the simulated LAI depends on the water stress which is 

calculated using the hydrological sub-model. A more detailed description of this 

link can be found in Chapter 3. The hydrological sub-model can be used at 

different time scales (from minutal to daily) while the vegetation dynamic sub-

model has to be applied at daily scale. Hence, the TETIS-VEG model must be 

used at daily scale.  

The TETIS model’s conceptual scheme (Figure 4-5) consists on a series of 

connected reservoirs, each one representing different water storages in the soil 

column: interception (rainfall interception and water detention in puddles), first 

static soil layer (retained water by upper soil capillary forces, evaporation and 

transpiration can occur), second static soil layer (retained water by soil capillary 

forces, only transpiration can occur), surface, gravitational (upper soil water 

content above field capacity) and aquifer. Vertical connections between 

reservoirs describe the precipitation, evapotranspiration, infiltration and 

percolation processes. The horizontal flows describe the three different 

hydrological responses that give the discharge at the catchment outlet: overland 

runoff, interflow and baseflow. A more detailed description of the TETIS model 

can be found in GIMHA (2014). 

The TETIS model uses a split-structure for the effective parameter value at each 

cell (Francés et al., 2007). The effective parameter is calculated using a 
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correction factor (a scalar) multiplied by the estimated value of the parameter in 

each cell using all the available information (land use map, soil type map, DEM, 

deep of the soil layer, etc.) and expert’s knowledge. In other words, this 

calibration strategy consists on an application of a scalar multiplier to each prior 

parameter field (specified from data describing watershed characteristics: soils, 

vegetation, topography, land use, etc.) and to estimate a “best” value for this 

multiplier via calibration (e.g., Francés and Benito, 1995; Bandaragoda et al., 

2004; Canfield and Lopes, 2004; Eckhardt and Arnold, 2001; Francés et al., 

2007; Pokhrel et al., 2008; Vieux et al., 2004; Yatheendradas et al., 2008). In this 

way, in a model with Ng grid cells and Np parameters per cell, the dimension of 

the calibration problem is thereby reduced from Ng*Np to 1*Np. This so-called 

“multiplier” approach makes the assumption that the prior parameter field 

properly describes the spatial pattern of parameter variation (the pattern of 

relative magnitudes from cell to cell), but that the magnitudes of all the parameter 

values must be adjusted to achieve a better simulation of the model response. 

Hence, we can distinguish between two parts: (1) a common correction factor for 

each type of parameter that takes into account the model, information and input 

errors and the temporal and spatial scale effects; and (2) the estimated 

parameter value at each cell. With the split-parameter structure, only nine 

correction factors were calibrated for the hydrological sub-model. Each one 

related to one of these estimated parameter maps: maximum static storage, 

evapotranspiration, infiltration capacity, slope velocity, percolation capacity, 

horizontal saturated conductivity for interflow, horizontal saturated conductivity for 

baseflow and channel movement. 

The TETIS model becomes in TETIS-VEG when it is coupled with a dynamic 

vegetation sub-model. This dynamic vegetation sub-model was the LUE-Model 

described in the previous chapter. 
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Figure 4-5. The conceptual scheme of the TETIS model used as the hydrological sub-model in this research  
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 Methodology 

The work was carried out into three different steps: a manual calibration of the 

parameters, an automatic calibration of the parameters and a validation of the 

model. All of these steps are based on the idea that LAI and NDVI are intimately 

related. This link was discussed in Chapter 2. 

One of the main objectives of this work was to explore the potential of the satellite 

for model calibration. Hence, we wanted to calibrate the TETIS-VEG model only 

using satellite data. Observed precipitation and temperature were available from 

1960 to 2003 while the MODIS NDVI was available from 2000 to nowadays. We 

decided to use the year 2003 as the calibration period because it is the year in 

which there was satellite data but not observed streamflow. Very important: we 

wanted to calibrate the model only using satellite data. While the years 2000, 

2001 and 2002 were used as the validation because, during these three years, 

satellite data and observed discharge were available. In order to avoid the effect 

of the initial conditions, we used one year as warming up period (the year 2002 

and 1999 for model calibration and validation respectively). 

In both cases, manual and automatic calibrations, we used the Empirical 

Orthogonal Function (EOF) analysis, as described in next section. 

4.5.1. EOF analysis 

The EOF analysis is a method for analyzing the spatial and temporal variability of 

geophysical fields. The description given here is far to be complete because we 

only want to introduce the topic and explain how we used this analysis for our 

purposes. Those who wish acquire further knowledge about this analysis should 

read some specific references. The book entitled ‘Principal components analysis 

in meteorology and oceanography’ written by Preisendorfer and Mobbley (1988) 

can be considered as the landmark book about EOF analysis. Another reference 

is the text book edited by Von Storch and Navarra (1995). In this case the main 

topic is the climatic variability, but it contains a review of methods for the analysis 

of patterns in geophysical fields together with some practical applications. 

Although these two references are the most complete and mathematically correct 

ones, they are at some point a little bit ‘unfriendly’. In our opinion, for beginners 

with mathematical inclinations, the best option is the book entitled ‘A manual for 

EOF and SVD analyses of Climatic Data’, written by Björnsson and Venegas 

(1997). 
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The EOF method is used to analyze the spatio-temporal variability of a single 

variable but, comparison between different variables can also be performed using 

coupled EOF techniques (Björnssson and Venegas, 1997). The method identifies 

the most important patterns of spatial variability, their time variation, and presents 

a measure of the ‘importance’ of each spatial pattern. We refer to the spatial 

patterns as the EOFs (in literature, they are also called as principal components 

or even longer ‘principal component loading pattern’), and to the time variation as 

loadings (in literature, there are several terms: expansion coefficient time series, 

expansion coefficients, EOF time series, principal components time series, etc.).  

In practical application, it has been shown that EOF analysis is a useful 

methodology to investigate the spatio-temporal patterns of fluxes and states in 

the soil-vegetation-atmosphere continuum (Fang et al., 2015). In particular, Koch 

et al. (2015) carried out a validation of a distributed model using satellite based 

land surface temperature data by means of an EOF analysis. With other 

statistical purposes, the EOF analysis was used by Graf et al. (2014), Kim and 

Barros (2002) and Liu (2003). In a really different working scale (they analyzed 

the first centimeters of soil) Drewry and Albertson (2006) used the EOF analysis 

to associate spatial pattern in the errors of a canopy-atmosphere model with 

errors in the parameters. But, to our knowledge, the EOF analysis has not been 

applied in a model calibration yet. In this research, we used the EOF analysis 

during the model calibration and, moreover, we proposed a methodology which 

can be run automatically. 

But first, it is necessary to explain how to use this methodology. The EOF method 

is essentially a linear algebra methodology based on matrix transformation. 

That’s why the first step is the conversion of the spatio-temporal data to be 

analyzed into a matrix. Basically, we construct a matrix (F) in which each column 

is the temporal variation of the data in a particular pixel/location while each row is 

the pixel/location values during a particular time step. Hence, if we had 

measurements of some variable at locations x1,x2,…xp taken at times t1,t2,…tn, we 

would obtain a matrix which size becomes n by p as shown in Figure 4-6. Then, 

usually, the second step is the obtaining of the anomalies of the analyzed data 

which was not needed in this study because we used normalized data (for 

reasons that will be explained later). 
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Figure 4-6. The matrix F. Each row is one map, and each column is a time series of observations for a given 

location 

The next step of the applied EOF method consists on the calculation of the 

spatial F’s covariance matrix (R) according to equation [ 19 ]. Then, the 

eigenvalue problem is solved2 [ 20 ]. 

𝑅 = 𝐹𝑇 ∗ 𝐹 [ 19 ] 

𝑅 ∗ 𝐶 = 𝐶 ∗ 𝛬 [ 20 ] 

Λ is a diagonal matrix containing the eigenvalues λi of R. The ci column vectors of 

C are the eigenvectors of R corresponding to the i-respective eigenvalues. Each 

of these eigenvectors can be regarded as a map. These eigenvectors are the 

EOFs. In what follows, we always assume that the eigenvectors are ordered 

according to the value of the eigenvalues. Thus, EOF1 is the eigenvector 

associated with the biggest eigenvalue. The fraction of the total variance in R 

explained by EOFi is found by dividing the λi by the sum of all the other 

eigenvalues. The time evolution of an EOFj ( 𝑎𝑗⃗⃗  ⃗) is calculated according to 

equation [ 21 ]. The components of this time vectors are referred to as loadings in 

this document. 

𝑎𝑗⃗⃗  ⃗ = 𝐹 ∗ 𝐸𝑂𝐹𝑗 [ 21 ] 

                                                
2 Since R is a quadratic matric, C will have the property that 𝐶−1 = 𝐶𝑇 so equation 20 can just as well be written 

𝑅 = 𝐶 ∗ 𝛬 ∗ 𝐶𝑇. These two equations are used interchangeably. 
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Using the spatial covariance calculated according to the equation [ 19 ], the EOF 

technique provides three different results: the main patterns or EOFs, their time 

evolution whose components are called loadings and the portion of spatial 

variance explained by each EOF which is calculated dividing each λ by the trace 

of Λ. 

Generally, the first EOFi (with the higher λi) dominate the remaining of EOF. 

According to the idea of this analysis, this means that most of the behavior in our 

spatio-temporal data can be explained by just a few spatial patterns and their 

temporal variations. Precisely this is the main objective of this analysis because 

we use this method in order to reduce the data to a few different modes of 

variability. EOF analyses, and all its relatives (such as Empirical Normal Modes, 

Fourier decomposition, Wavelet-decomposition, etc) are methods that try to 

reduce the size of the analyzed data (Björnsson and Venegas, 1997). 

Finally, some lines about the Singular Value Decomposition method (SVD) are 

given here due to its intimate connection with the EOF method. A non-expert 

reader could be quite confusing when it comes to discuss the connections 

between these two methods. Basically, the SVD method is a generalization to 

rectangular matrices of the diagonalization of a square symmetric matrix3 like in 

the EOF method (Björnsson and Venegas, 1997). The SVD method consists on 

the decomposition of any n x m rectangular matrix F according to equation [ 22 ]. 

𝐹 = 𝑈 ∗ Т ∗ 𝑉𝑇 [ 22 ] 

where U is  an n x n orthonormal matrix, V is an m x m orthonormal matrix and Т 

is a diagonal n x m matrix with ρ elements down the diagonal. 

In order to identify the connection between the both methods, we form de 

covariance matrix R calculated according to equation [ 19 ], and then do a SVD 

on F (the matrix constructed as shown in Figure 4-6). All this process is showed 

in equation [ 23 ]4. 

                                                
3 As explained above, the EOF method is applied to the covariance matrix and by definition the covariance 

matrix is a square symmetric matrix. 
4 In order to understand the procedure, it is important to take into account that U is an orthonormal matrix so  

𝑈𝑇 ∗ 𝑈 = 𝐼, being I the identity matrix. 
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𝑅 = 𝐹𝑇 ∗ 𝐹 = (𝑈 ∗ Т ∗ 𝑉𝑇)𝑇 ∗ (𝑈 ∗ Т ∗ 𝑉𝑇) = 𝑉 ∗ 𝑇𝑇 ∗ 𝑈𝑇 ∗ 𝑈 ∗ 𝑇 ∗ 𝑉𝑇

= 𝑉 ∗ 𝑇𝑇 ∗ 𝑇 ∗ 𝑉𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
[ 23 ] 

 

By comparing the equation in note 2 and the equation [ 23 ] it should be clear that 

𝐶 = 𝑉 and 𝛬 = 𝑇𝑇 ∗ 𝑇. Hence, 𝜆𝑖 = 𝑇𝑖,𝑖
2. Following this demonstration, it can be 

said that the result obtained by application of the EOF method to the covariance 

matrix of F (R) is equal to that one obtained by application of the SVD method to 

F directly.  That’s why it has been said that at heart of the EOF method lies the 

technique of SVD (Björnsson and Venegas,1997). In fact, in this work, we used 

the SVD library available in Python, specifically called “scipy.linalg.svd”. 

4.5.2. Manual calibration 

There is no dispute about the fact that due to observational and model 

conceptualization errors and time and space scale effects, any mathematical 

model must use effective parameters for a better reproduction of reality (Blösch 

and Sivapalan, 1996; Francés et al., 2007). The main reason of the calibration 

(manual or automatic) of a mathematical model is therefore to obtain the effective 

values of its parameters. 

Particularly, this manual calibration was done with a dual purpose. First, we 

wanted to test the applicability of the proposed model in the study basin. Up to 

now, we only had tested the model at plot scale and we did not know its accuracy 

at catchment scale. Second, we wanted to obtain a first approximation for the 

parameters and, in this way, to constrain the automatic calibration. Basically, this 

manual calibration consisted on the usual ad hoc method (manual adjustment of 

parameter values) considering the Pearson correlation coefficient between the 

simulated LAIr and the observed NDVI in a total of 32 different cells within the 

basin.  

These 32 cells were not selected randomly, but they were selected within 

homogeneous areas defined according to the main spatial patterns of the 

observed NDVI and the available spatial maps such as land-use map, soil map, 

DEM, slope map and soil depth map. Precisely, the main spatial patterns of the 

observed NDVI were identified using the EOF analysis: i.e., the EOF analysis 

was used to identify the main spatial patterns of the observed NDVI. The process 

consisted simply on the application of the methodology explained in the previous 

section about the EOF analysis. Then, we combined our own human perception 
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and confusion matrices between the main spatial patterns of the observed NDVI 

and the spatial maps of model parameterization.  

Traditionally, the confusion matrix is a standard tool for evaluation of statistical 

models and it is sometimes referred to as classification matrix. Although the 

confusion matrix is more common in machine learning and statistical models, it is 

also widely applied for map comparison in distributed modelling (Koch et al., 

2015; Bennett et al., 2013; Van Vliet et al., 2013 among many others). Basically 

the confusion matrix compares actual to predicted values for each specific 

category defined previously. Generally, the rows in the matrix represent the 

values predicted by the model, whereas the columns represent the actual values. 

By its nature, the confusion matrix is an overall measure for similarity between 

two categorized maps. However, the comparison of numerical maps is feasible if 

they are categorized previously. In this research, we compared a categorized 

map (land use map, soil type maps, etc.) and a numerical map (the main patterns 

obtained by using the EOF methodology). That is why the main pattern of the 

observed NDVI (which is a continuous variable) was discretized according to the 

number of categories of the spatial maps (land use map, soil type map, etc.) and 

based on the similitude between the corresponding histograms. 

There are a lot of metrics derived from the confusion matrices such as the 

accuracy index, the weighted accuracy index, the lift index, the Receiver 

Operator Characteristic (ROC) area, Mitre F-Score and many others. Caruana et 

al. (2006) showed a deep explanation about most of them. But, they are closely 

related to machine learning and our purpose was to measure the similarity 

between two categorized maps. More related to our purpose, Mouton et al. 

(2010) and García-Arias (2015) explained and used three different statistics: the 

Correctly Classified Instances (CCI), the Kappa statistics (k) and the weighted 

kappa (k*). Following the recommendations of Koch et al. (2015), we decided to 

use the last one calculated according to the equations [ 24 ], [ 25 ] and [ 26 ].  

𝑘∗ =
𝑓0(𝑤) − 𝑓𝑒(𝑤)

1 − 𝑓𝑒(𝑤)
 

[ 24 ] 

  

𝑓𝑜(𝑤) =
1

𝑁
∑∑𝑤𝑖𝑗 ∗ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 
[ 25 ] 
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𝑓𝑒(𝑤) =
1

𝑁2
∑∑𝑤𝑖𝑗 ∗ 𝑟𝑖 ∗ 𝑐𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 
[ 26 ] 

 

where 𝑥𝑖𝑗 are the elements contained in the confusion matrix and 𝑤𝑖𝑗 are the 

elements contained in the matrix of weights. In that matrix, the elements in the 

diagonal are nulls and the remaining of cells is equal to the squared distance 

from them to the diagonal. 𝑐𝑗 corresponds to the number of cells simulated as 

category j (in practice, sum of the column j in the confusion matrix), while 𝑟𝑖 

corresponds to the number of cells observed as category i (in practice, sum of the 

row i).  

This coefficient, whose maximum value is 1 representing a perfect agreement 

(Cohen, 1968), was employed in this analysis comparing cell by cell the 

categorized NDVI and the spatial maps of the model parameterization. Then, the 

maps related to the main patterns of the observed NDVI (land use and soil type 

maps as you can see below) were used in order to select the most appropriate 

cells for the manual calibration. 

4.5.3. Automatic calibration 

Automatic calibration procedures for hydrological models have been under 

development for decades and, still now, there are some advances with the 

degree of sophistication generally paralleling the increase in computational 

power. From the beginning, the goal has been to develop an objective strategy 

for parameter estimation that provides consistent performance by eliminating the 

kinds of subjective human judgements involved in the manual approach (Boyle et 

al., 2000) and taking into account the internal relationships between the different 

parameters to be calibrated. Knowing the importance of an automatic calibration 

in hydrological modelling, we wanted to propose an automatic calibration using 

spatio-temporal data. 

The most innovative aspect of this particular automatic calibration was to 

incorporate the EOF analysis as an objective function. As proposed by Koch et 

al. (2015), we decided to build one integral matrix concatenating both the 

observed and predicted data. In this case, the matrix contains the normalized 
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values of the NDVI provided by MODIS and the normalized values of the LAIr 

simulated by the model. In this way, the upper part of this matrix contains the 

temporal variation of the normalized observed NDVI in all cells as columns while 

the lower part contains the temporal variation of the normalized simulated LAIr in 

all cells as columns as shown in the Figure 4-7.  

We decided to use the normalized values of the NDVI and LAIr because, 

although they are correlated, they differ in range and, therefore, they can’t be 

compared directly. However, normalization implies that some spatial information 

is lost. In order to avoid these losses, we added two rows: the first contains the 

difference between the temporal mean of the observed NDVI at a particular pixel 

and the general mean using the complete NDVI dataset; and the second which 

contains the same but with the simulated LAIr instead (Figure 4-7). In this way, 

we included the spatial gradient of the observed NDVI and the spatial gradient of 

the simulated LAIr. These two rows can be plotted as two different maps and can 

be compared as measure of the model performance. If they are similar, it will 

mean that the spatial gradient remains.  

 

 

Figure 4-7. Matrix used in the EOF analysis. t is the time (equal to the number of maps) and N is the number of 

pixels. 

Due to the area of the basin and the cell size, the number of pixels in the case 

study was 1,034,706. For the calibration period (year 2003), there were 44 NDVI 
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maps (one each 8 days more or less). Hence, the built integral matrix’s size was 

90 rows (44 + 44 + 2 additional rows) times 1,034,706 columns. 

After the construction of this matrix, the EOF analysis was applied obtaining: the 

EOF maps for the matrix containing both NDVI and LAIr, the portion of variance 

explained by each EOF map and the loadings of each EOF map. The combined 

EOF analysis yielded orthogonal EOF maps that explained the combined 

intervariability and intravariability of both data sets. It is important to understand 

that using only one matrix which contains both datasets (normalized NDVI and 

LAIr), we were forcing to obtain the same EOF maps for both datasets. On the 

other hand, the loadings express for each time step how much, LAIr and NDVI, 

contribute to the direction of the corresponding EOF. Hence, if the observed 

NDVI and the simulated LAIr were completely correlated, the temporal evolution 

of the EOF maps for both, NDVI and LAIr, would be essentially equal. The used 

objective function was based on that idea and it also took into account the portion 

of variance explained by each EOF in order to consider that the variance 

contribution decreases consecutively for the EOFs. Basically, the loading 

deviation was weighed to represent this accordingly as shown in equation [ 27 ]. 

𝐸𝑟𝑟𝑜𝑟 =∑𝑤𝑖 ∗∑|𝑙𝑜𝑎𝑑_𝑠𝑖𝑚𝑖,𝑗 − 𝑙𝑜𝑎𝑑_𝑜𝑏𝑠𝑖,𝑗|

𝑡

𝑗=1

𝑘

𝑖=1

 
[ 27 ] 

 

where Error is the objective function to minimize, wi is the portion of variance 

explained by the EOFi, load_simi,j is the loading of the EOFi at time step j for the 

simulated data (in this particular case, the normalized LAIr) and load_obsi,j is the 

loading of the EOFi at time step j for the observed data (in this particular case, 

the observed normalized NDVI).  

The calibration was performed using a genetic algorithm called Pyevolve 

(Perone, 2009). It searches for a global minimum of any given objective function. 

To start the automatic calibration, it needs a seed (initial values of the 

parameters) and a searching boundary of the variables to be calibrated. The 

results obtained after the manual calibration can be used as seeds and we 

should make sure that the searching boundaries are wide enough. 

After the automatic calibration process, the temporal Pearson correlation 

coefficient between the NDVI provided by MODIS and the LAIr simulated by the 

TETIS-VEG model in each cell can be calculated as a measure of the model’s 
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performance. Additionally, the spatial Pearson correlation between the LAIr and 

the NDVI maps can be calculated at each time step. For both correlation 

coefficients (spatial and temporal), we can use the original values of both 

datasets (NDVI and LAIr), not the normalized values as used by the EOF 

analysis. It is important to mention that the Pearson correlation coefficient 

between two datasets X and Y is positive if X and Y tend to be simultaneously 

greater than, or simultaneously less than, their respective means. Hence, the 

mean should be representative. For this reason, in the case of the spatial 

correlation coefficient, we decided to distinguish between the main land uses: 

tree, shrubs and grass because each category had really different mean. 

4.5.4. Validation 

In this last step, we used the years 2000, 2001 and 2002 in order to validate the 

model. As during the calibration period (year 2003), there were data of 

precipitation, temperature and, also, NDVI provided by MODIS. Also, during the 

validation period, the observed discharge at the outlet point was available unlike 

during the calibration period. 

To validate the model, we used the same methodology applied during the 

automatic calibration process. Keeping the parameter values obtained by the 

automatic calibration, we built the matrix concatenating the normalized value of 

the observed NDVI and the normalized value of the simulated LAIr with two 

additional rows used to incorporate the spatial gradient of both datasets as 

explained above and shown in Figure 4-7. We also plotted these two maps and 

compared them as we did during the model calibration. Using the EOF 

techniques, we obtained the coupled EOF maps and their associated loadings 

and portion of variance explained by them. As during the calibration, we 

compared the deviation of the loadings for each EOF map and we calculated the 

Error function defined in equation [ 27 ]. 

Then, we calculated the temporal and the spatial Pearson correlation coefficient 

as we did during the calibration period. Finally, we calculated the Nash and 

Sutcliffe efficiency index and the error value between the observed discharge and 

the simulated discharge at the outlet point. 
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 Results and discussion 

4.6.1. Manual calibration 

It is important to remember that the main objective of this manual calibration was 

the identification of the most appropriate cells where the model could be tested. 

To do that, we identified the spatial main patterns of the observed NDVI and, 

then, we compared the EOFs with the available spatial maps (land use map, 

DEM, soil type map, etc). 

Using our own human perception, we identified a certain relationship between the 

EOF1 (which explained the 61.5% of the observed NDVI’s spatial variance) and 

the land-use map. This potential relationship was supported by the Kappa 

coefficient described in the methodology section. It had a value of 0.34 which was 

not really high, but it showed the existence of a relationship between the 

analyzed maps. Hence, we could say that there was a connection between the 

EOF1 and the land-use map. Regarding to the EOF2 (which explained the 10.5% 

of the observed NDVI’s spatial variance) no connections with the spatial maps of 

physical characteristics were found. It might contain a mix of several drivers and, 

therefore, it can’t be directly linked to a single one. Contrarily, the EOF3 (which 

explained the 5.5%) showed a good agreement with the soil maps (the Kappa 

coefficient was 0.32) 

Hence, the observed patterns of NDVI are strongly influenced by the land-use 

and the soil type spatial distribution. In the following, we combined both maps, 

extracted all possible combinations and selected randomly two cells of each 

combination obtaining a total of 32 cells covering the catchment area.  

When the manual calibration was stopped, the Pearson correlation coefficient 

between the observed NDVI and the simulated LAIr was positive in 25 cells. 

There were only seven cases with negative correlation coefficient and they were 

located near to de Mount Kenya or Aberdare mountains (Figure 4-8). These bad 

results were discussed below in the automatic calibration section.  

Finally, the Table 4-1 shows the obtained set of parameters after model’s manual 

calibration. This set was used as seed during the automatic calibration. All 

parameters had values consistent with the reviewed literature (references 

embedded in the table). 
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Figure 4-8. Location of the center of the cells  where the manual calibration was carried out. The value of the 

Pearson correlation coefficient between the satellite NDVI and the simulated LAIr appears together with the cells 

used to the manual calibration of the model 
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Table 4-1. Summary of the initial values, the search range and the final value of the parameters or correction 

factors of both sub-models (hydrological and dynamic vegetation) as well as the units and the reviewed 

references 

Model Correction factor or 
parameter* 

Units  Initial 
Value 

Search Range Final 
Value 

References 

H
YD

R
O

LO
G

IC
A

L 

SU
B

-M
O

D
EL

  

FC1-Maximum Static 
Storage 

[-]  1.00 [0.5,2.5] 1.80 [1] 

FC2-Evapotranspiration [-]  0.70 [0.7,1.2] 1.05 [1] 

FC3-Infiltration [-]  0.20 [0.01,2] 0.12 [1] 

FC4-Slope velocity [-]  1.00 [0.1,1.2] 1.00 [1] 

FC5-Percolation [-]  0.08 [0.001,2] 0.05 [1] 

FC6-Interflow [-]  140.00 [0.001,100000] 150.12 [1] 

FC7-Deep percolation [-]  0.06 [0.001,2] 0.04 [1] 

FC8-Connected aquifer [-]  20.00 [0.001,100000] 16.82 [1] 

FC9-Flow velocity [-]  1.00 [0.2,1.2] 1.00 [1] 

V
EG

ET
A

TI
O

N
 

SU
B

-M
O

D
EL

 

Specific Leaf Storages  mm Tree 0.50 [0.5,3] 0.43 [2],[3],[4] 

  Srhub 2.00 [0.5,3] 2.00  

  Grass 2.00 [0.5,3] 2.00  

LUE kg/m2 
MJ 

Tree 1.50 [1.2,2.5] 1.14 [5],[6] 

  Srhub 1.50 [1.2,2.5] 1.14  

  Grass 1.50 [1.2,2.5] 1.71  

Coverage factor [-] (**) 0.80 [0.1,1.0] 0.90 [3],[4] 

Distribution of roots [-] Tree 0.30 [0.0,1.0] 0.10 [3],[4],[7] 

  Srhub 0.5 [0.0,1.0] 0.20  

  Grass 0.7 [0.0,1.0] 0.34  

Maximum LAI m2/m2 Tree 2.50 [0.5,3.5] 3.10 [5],[8],[9],[10] 

  Srhub 2.00 [0.5,3.5] 2.00  

  Grass 1.00 [0.5,3.5] 1.50  

Light extinction coefficient [-] All 0.50 [0.4,0.6] 0.52 [11] 

SLA m2/kg Tree 4.00 [2.0,5.0] 4.00  

  Srhub 6.00 [4.0,20.0] 10.00 [5],[12] 

  Grass 6.00 [6.0,50.0] 30.00  

Optimal temperature ºC All 16 [10,30] 18 [11] 

(*) Regarding to the hydrological sub-model, the table shows the value of the correction factors while regarding to the vegetation 

sub-model, the table shows the parameter values 

(**) The coverage factor depends on the location. The value in the table is the mean value.  

[1] GIMHA Team, 2014 

[2] Van Dijk et al., 2011 

[3] Franz et al., 2007 

[4] Caylor et al., 2006 

[5] TRY Database (www.try-db.org) 

[6] Yuan et al., 2007 

[7] Le Roux et al., 1995 

[8] Pasquato et al., 2015 

[9] Ceballos and Ruiz de la Torre, 1979 

[10] López-Serrano et al., 2000 

[11] Ruiz-Pérez et al., 2016b 
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4.6.2. Automatic calibration 

The proposed automatic calibration is based on the assumption that the closer 

the loadings of the simulated values are to the loadings of the observed values, 

the higher the similarity is. The EOF1 explained more than 60% of the dataset 

spatial variance while the EOF2 and the EOF3 explained around 10% each 

(Figure 4-9). The remaining EOFs explained less than 3% each. Anyway, they 

were considered during the calibration process (weighted by the portion of 

variance explained by each one).  

 

Figure 4-9. Variance explained by the first ten EOFs during the calibration period (year 2000).  

There was a good agreement between the observed and simulated loadings of 

the EOF1 (Figure 4-10, upper left panel). Thus EOF1 captured the predominant 

pattern that was found in both, the observed NDVI and the simulated LAIr data. 

Furthermore, the temporal variation of the EOF1’s loadings seemed to be related 

to the two typical growing seasons in the catchment: the first one during March-

May and the second one during October-December (Franz et al., 2010). On the 

other hand, the deviation between the observed and simulated loadings related 

to the EOF2 and the EOF3 were also small but slightly worse than EOF1. Testing 

the model manually, we could observe that the loadings of these both EOFs, 

EOF2 and EOF3, were sensitive to the initial conditions. Maybe, they reflected the 

immediate effect on the vegetation due to the soil moisture. Nevertheless, the 

accuracy between the observed and the simulated loadings could be considered 

satisfactory. The loadings of the remaining of EOFs were scattered which implies 

that mainly dissimilarities in both, measurement and model noise, are covered by 

these EOFs.  
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Figure 4-10.Comparison between the loadings of the normalized NDVI provided by satellite (observed loadings) and the normalized LAIr simulated by the 

model (simulated loadings) during the calibration period (year 2000, upper panels) and during the validation (year 2001, 2002 and 2003; lower panels). The y-

axes reflect the unitless loadings of each EOF. The x-axes reflect the number of the analyzed maps (45 and 65 maps were used for model’s calibration and 

validation respectively). 
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The weakness of the proposed calibration methodology is that, although the 

associated weights to the loading deviation in equation [ 27 ] are needed, they 

are also misleading some spatial information. New ways to weight the loading 

deviations must be emerge in future works as proposed by Koch et al. (2015). In 

fact, due to the portion of variance explained by the EOF1, this main pattern 

controlled the calibration process. However, the variability captured in EOF1 is 

predominant and explains more than 60% of the total variance and should thus 

be weighted more. 

Actually, the calibration process works satisfactorily as shown by the fact that, in 

most of the basin, the temporal Pearson correlation coefficient between the 

observed NDVI and the simulated LAIr was higher than 0.4 (Figure 4-11). The 

weakest correlations were obtained in the two higher areas of the basin near to 

the Mount Kenya and Aberdare Mountains with zero to negative values.  

 

 

Figure 4-11. Temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAIr 

simulated by the model during the calibration period (year 2000). The two areas with negative values 

correspond to the Mount Kenya and Aberdare Mountains. 

Two reasons could explain such unsatisfying results. First, the observed NDVI in 

some pixels of those areas had a really bad quality and they were unrealistic. 

There were oscillations from NDVI equal to 0.8 to NDVI equal to 0.1 (even zero) 
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in just one week. These unrealistic oscillations could be produced by the 

presence of clouds near to the mountains. The second reason is related to the 

conceptual limitation of the proposed model. The TETIS-VEG was designed to be 

used only in water-controlled areas. Franz (2007) combined the fractional woody 

cover and the mean annual precipitation (MAP) in order to provide some insights 

as to the limiting resources in the basin. Plotting MAP against the fractional 

woody, it could be observed that MAP and the fractional woody of this catchment 

were correlated linearly but with two different slopes. The point where the slope 

changes, is called the transition point. Up to this point, the slope is steeper (i.e.: 

small variations of MAP produce high variations of the fractional woody) 

indicating the situation in which water has bigger influence. The transition point 

occurred approximately around 800mm/year. Physically, the transition point is 

believed to be a good approximation of the transition from a water-controlled 

ecosystem to a nutrient-controlled ecosystem. Franz (2007) affirmed that the 

high-latitudes (where Mount Kenya and Aberdare Mountains are included) were 

nitrogen limited ecosystems. 

Without taking into account the regions with negative temporal Pearson 

correlation coefficient, the spatial Pearson correlation coefficients were calculated 

as explained in the methodology section. Although slightly worse than the 

obtained results in terms of temporal correlation, the mean spatial correlations 

were higher than 0.45 for all main land covers: trees, shrubs and grasses (Figure 

4-12). We obtained the best results in the cells classified as trees. In fact the 

median was almost 0.6 and the variance was not high. Contrarily, the cells 

classified as grasses obtained the worst results with the lowest median and the 

highest variance. 

Figure 4-13 shows the comparison between the maps which contain, in each cell, 

the difference between the temporal mean and the general mean (mean 

calculated with all dataset) of the observed NDVI and the simulated LAIr 

respectively. As can be seen, the spatial gradient was modelled properly by the 

model. These results, together with the fact than the temporal and spatial 

correlation coefficients were positive and acceptable in most of the catchment, 

highlight the soundness of the proposed automatic calibration methodology. 
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Figure 4-12 Spatial Pearson correlation coefficient during the calibration (year 2000) distinguishing between the 

main land uses: tree, shrubs and grass. The whiskers were calculated according to the 98% percentile and the 

outliers were plotted as x. The median is the line inside boxplot and the mean is the quadrangle. 

 

Figure 4-13 Comparison between the maps where each pixel contains the difference between the temporal 

mean calculated in this particular pixel and the general mean calculated using the all dataset of the simulated 

LAIr (left) and observed NDVI (right)  for the calibration period (year 2000). This difference is a measure of 

spatial gradient of both variables (LAIr and NDVI). 
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Finally, there were four parameters which changed substantially (in relative 

terms) in comparison to the values obtained during the manual calibration: the 

correction factor of the maximum static storage, the correction factor of the 

reference evapotranspiration, the factor related to the distribution of roots 

between the first and the second static storage layers and the maximum LAI 

sustainable by the system. These parameters affect directly the amount of 

available water to be consumed by the plants and, consequently, they also affect 

the transpiration process. All obtained values were consistent with the reviewed 

literature (embedded in the Table 4-1). Furthermore, all of them are completely 

included in the searching boundary used during the automatic calibration. 

4.6.3. Satellite validation 

As for the calibration process, in validation, the EOF1 explained more than 60% 

of the spatial variance while the EOF2 and the EOF3 explained around 10%. The 

remaining of EOF maps is not illustrated because they explained less than 3% 

each (Figure 4-14). The simulated and observed loadings of the EOF1 were 

almost equals while the obtained results in relation to the EOF2 and the EOF3 

were slightly worse (lower part of the Figure 4-10), but showing the same clear 

temporal dynamics. Anyway, the obtained error for the validation period was 

4.03, just slightly worse than the obtained error for the calibration period. The 

error value was calculated considering all EOFs.  

 

Figure 4-14. Variance explained by the first  ten EOFs during the validation period (year 2001, 2002 and 2003) 

The Pearson correlation map showed the same results as for the calibration 

period: in more than 80% of the catchment, this coefficient was between 0.3 and 
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0.9 (Figure 4-15). In fact, only in two areas located near to the Mount Kenya and 

the Aberdare Mountains, the temporal correlation coefficient was zero or 

negative. In this two areas, the quality of the observed NDVI was low due to the 

presence of clouds probably and, again, these two areas were described as 

nutrient-controlled. 

 

Figure 4-15. Temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAIr 

simulated by the model during the validation period (years 2001, 2002 and 2003). The two areas with negative 

values correspond to the Mount Kenya and Aberdare Mountains. 

Regarding to the spatial Pearson correlation coefficient, the results were not as 

good as the obtained in terms of temporal correlation. Nevertheless, there were 

no negative spatial correlation coefficients in any time step. In the case of shrubs 

and grasses, the mean and median were almost 0.4 while the corresponding 

ones for the trees were around 0.35 (Figure 4-16). The variance obtained during 

the validation period was narrower than the obtained during the calibration period 

in the three cases: trees, shrubs and grasses.  

Furthermore, the spatial gradient was, as for the calibration period, well captured 

by the model during the validation (Figure 4-17). The cells with high differences 

between its own temporal mean and the general mean were consistent in both 

maps, observed NDVI and simulated LAIr. 
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Figure 4-16  Spatial Pearson correlation coefficient during the validation distinguishing between the main land 

uses: tree, shrubs and grass. The whiskers were calculated according to the 98% percentile and the outliers 

were plotted as x. The median is the line inside boxplot and the mean is the quadrangle. 

 

Figure 4-17. Comparison between the maps where each pixel contains the difference between the temporal 

mean calculated in this particular pixel and the general mean calculated using the all dataset of the simulated 

LAIr (left) and observed NDVI (right) in validation (years 2001, 2002 and 2003). This difference is a measure of 

spatial gradient of both variables (LAIr and NDVI). 
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4.6.4. Discharge validation 

Finally, since there was observed discharge at the basin outlet during the years 

2000, 2001 and 2002, it could be possible to compare the discharge simulated by 

the model against the observations. The volume error (E) was equal to -0.401 

while the NS was equal to 0.321. E is strongly affected by the results obtained at 

the beginning of the validation period due to the absence of information regarding 

the initial conditions. Although we used a year as warming-up period, the 

simulations improved only from 2001. In fact, having calculated the performances 

indexes in each year, the E decreased from -0.878 in 2000 to only -0.17 during 

the year 2002 (Figure 4-18). Regarding to the NS index, the worst result was also 

obtained for the first year and it improved from a negative value in 2000 to 0.354 

during the year 2002. We did not expect a perfect agreement as long as the 

model was calibrated using the vegetation dynamics represented by the MODIS 

NDVI. But, in general terms, the model seems to fit well the discharge at the 

outlet point (Figure 4-18). Hence, the results can be considered satisfactory 

taking into account that the observed discharge was not included in the 

calibration process where only spatial patterns of the NDVI provided by MODIS 

and their temporal variation were addressed. 

It is important to highlight the positive consequences of this last result particularly 

in ungauged basins because it means that satellite data could be used in order to 

obtain, at least, a proxy of the observed discharge. At the same time, this result 

also shows the key role played by vegetation in water-controlled areas such as 

the upper Ewaso Ngirio River basin in Kenya. 

 

Figure 4-18. Time series of rainfall and observed and simulated daily discharge (m3/s) during the validation 

period (2000,2001 and 2002) 
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 Conclusions 

Two were the main objectives of this chapter: (1) to explore if it is possible to 

calibrate and validate at catchment scale a parsimonious distributed 

ecohydrological model only using satellite information, and (2) to incorporate 

spatio-temporal data about a model state variable into an automatic calibration 

process. In order to tackle these two questions, a parsimonious distributed 

ecohydrological model was calibrated using exclusively NDVI data provided by 

MODIS. A methodology based on the EOF analysis was proposed to carry out 

the model calibration. Finally, the results were validated using satellite data 

referring to different periods and, also, the observed discharge at the basin outlet 

which was not used for calibration. 

Regarding to the first objective of this chapter, the results highlighted the 

enormous utility of satellite data. It was possible to completely implement the 

hydrological and the vegetation components of TETIS-VEG daily model only 

using NDVI data and the model validation can be considered satisfactory. This 

fact is a promising conclusion particularly in ungauged basins such as most of the 

basins located in developing countries because it means that satellite data could 

be used in order to obtain, at least, a proxy of the observed discharge. At the 

same time, this result also shows the key role played by vegetation in water-

controlled areas such as the upper Ewaso Ngiro River basin in Kenya. The time 

step also was a relevant factor in the transfer of information from satellite NDVI to 

hydrological parameters: at daily time step the runoff propagation was not 

relevant in this case study. 

The proposed automatic calibration was completely designed in order to 

incorporate spatio-temporal data in order to take the maximum advantage of the 

used satellite information. After calibrating, the simulated vegetation patterns 

display good agreement with measured NDVI in most of the basin except for the 

portion at higher altitudes. These non-satisfactory results may be due to the bad 

quality of the NDVI data and the limitation of the vegetation sub-model (that was 

specifically designed for semiarid regions). 
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 Concluding remarks 

As someone who was born and grown up in the Mediterranean region, I am 

familiar with the problematic and controversial task of water resources 

management. In my opinion, the decision making process depends absolutely on 

the use of appropriate models in order to model and simulate the available water 

and other ecosystem services. From the beginning of my research, I realized that 

most of the hydrological models had an accurate (more or less) description of the 

different fluxes of the water balance with the exemption of the actual 

evapotranspiration, even the model developed by the research group I belong to. 

This model, which is called TETIS, is a process-based distributed hydrological 

model with successful results around the world but it had not included the 

vegetation as state variable. That’s why I felt soon drawn to the new, at least 

almost new, term of Ecohydrology and the integral vision of Hydrology and 

Ecology. Inspired by the contributions of Rodriguez-Iturbe, Porpotato, Laio and 

the doctoral thesis of one of my colleagues, Marta Pasquato (all of them cited 

along this thesis), I felt emboldened to continue their path and improve the TETIS 

model including the vegetation as state variable but keeping its simplicity.  

In some areas, the vegetation key role on controlling the hydrological cycle is 

such that the actual evapotranspiration may account for more than 90% of the 

precipitation. The issue of climate change is (and will be) aggravating this 

situation. This raises the question of a loss of services that ecosystems provide to 

human and also the amount of available water to be used by vegetation due to 

the increasing temperatures around the world and variation of the precipitation in 

some regions. The question of the water cycle, therefore, should be considered in 

an integrated manner by taking into account both blue water (water in liquid form 

used for the human needs or which flows into the oceans) and green water 

(water for evaporation and transpiration processes).  

In the last decades, the number of hydrological models which explicitly take into 

account the vegetation development as a state variable has increased 

substantially and considerable efforts have been made to understand and 

reproduce adequately the interactions between the vegetation and the water 

cycle. However, most of the time, these models are difficult to constrain because 

of the high number of parameters that are required to be estimated and/or 

calibrated. This represents a particularly challenging task, especially considering 

that in operational applications the available information is frequently quite 
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limited, in particular for undeveloped and developing regions where there still 

exist a high amount of ungauged basins (even ungagged large basins). 

Therefore, parsimonious models together with available remote sensing 

information can be valuable tools to predict vegetation dynamics. Up to now, 

remote sensing data has been employed in three different ways: (1) as forcing 

data, (2) as proxy data in order to obtain prior information of some parameters 

and (3) to calibrate and/or validate different models. In spite of the economical 

investment in new remote sensing technology and the deep interest shown by 

scientific community, the number of papers in which the model calibration was 

carried out explicitly and exclusively with this kind of information is really low as 

mentioned and referred in Section 2.4.3 and Table 2-4.  

For all these reasons, my research group and I focused on the use of the 

parsimonious and dynamic vegetation LUE-Model and the NDVI data included in 

the MODIS products and provided by NASA. Firstly, the model was applied in a 

semi-arid experimental plot located in La Hunde (East of Spain). The climate is 

Mediterranean and the vegetation is characterized by Aleppo pine plantations of 

high tree density.  Since the used ecohydrological model is parsimonious, some 

vegetation processes are neglected. It was important to check that the most 

relevant processes are being captured by the model. That’s why the capability of 

this parsimonious model was compared against a physically-based model in 

reproducing the interaction between vegetation and water. Both models obtained 

really similar results and they could be considered satisfactory. 

But, all this first part of this research was made at plot scale so only the temporal 

information of the satellite data could be exploited. There still existed one 

challenge proposed at the beginning of this research: the application of the model 

at basin scale and the exploitation of the spatio-temporal information of remote-

sensing data, i.e., not only the temporal dynamics but also the spatial patterns. In 

particular, the model was implemented in the upper Ewaso Ngiro River basin 

located in Kenya. It is a perfect example where we can be interested in modelling 

because the deeply demonstrated sensitivity of this region against climate 

change but we don’t have a lot of information required by most of the current 

ecohydrological models. Precisely in these scarce data environments, the use of 

novel sources of information such as satellite imagery could be the unique 

alternative. 
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In order to explore the potential applicability of the satellite data, we wanted to 

calibrate the model using exclusively the NDVI provided by NASA. Firstly, we had 

to deal with the fact that we were not calibrating the model with only one temporal 

series such as historical streamflow as usual. In fact, satellite data is composed 

by one temporal series per pixel. We had to identify how to use spatio-temporal 

(and not only temporal) data during models’ calibration and validation. In that 

sense, unfortunately, there is still a deep lack in literature. 

In fact, nowadays, there is a grand availability of remote sensing information (not 

only satellite) concerning spatial state variables and more information will be 

available in the future. Many efforts are being done to improve the quality and 

quantity of data (drones, better devices, etc.). And, the scientific community must 

also be ready to work with different kinds of data (temporal, spatial and spatio-

temporal) simultaneously. If we want to be efficient, we have to identify the best 

way to use all of this new available information, not only for data assimilation, but 

more important for model calibration and validation. 

A methodology based on the use of EOF analysis was proposed and successfully 

applied. This experience provided amazing and promising results. The model 

was capable to produce daily LAI (Leaf Area Index) maps (spatio-temporal series 

of LAI) and, also, discharge at the outlet point with a good accuracy in both 

cases. It is important to highlight the positive consequences of this last result 

particularly in ungauged basins because it means that satellite imagery can be 

used in order to obtain, at least, a proxy of the observed discharge. 

 Future lines 

One of the possible future lines could be focused on the use of different satellite 

products. Among the multiple possibilities, soil moisture could be the most 

promising product in the future. However, it has some well- known disadvantages 

(Rakovec et al,. 2016): (1) there is limited information on the exact depth of the 

soil layer that is used, (2) the biases across the statistical moments are very 

typical for surface soil moisture data derived from satellite retrievals, ground 

measurements and models, and (3) the top thin first soil layer of most distributed 

models is not a good representation of actual soil moisture.  

But, at the same time, soil moisture monitoring over large scales may be 

extremely useful, but it is limited by the fact that most of the available tools 

provides only surface measurements not representative of the effective amount 
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of water stored in the subsurface as mentioned previously. Authors (such as 

Manfreda et al., 2014) have developed a methodology able to provide a formal 

description of the mathematical relationship between surface measurements and 

root-zone soil moisture. This advance opens new ways to use satellite 

information. In fact, Manfreda et al. (2014) used the new satellite near-surface 

moisture data (SMAP) together with this tool and a Kalman filter obtaining 

satisfactory results.  

Other challenging task could be the development of new objective functions. 

Regarding to the EOF analysis, the proposed error index could be improved if we 

didn’t want the EOF1 to dominate the calibration process or we wanted to 

emphasize a particular EOF map. A popular method for deciding which EOF to 

keep and which to discard is to use ‘selection rules’. Basically, there are three 

classes of selection rules depending on whether they focus on the amount of 

variance explained by each EOF, the loadings or the EOF maps. Those based on 

the amount of variance are called dominant variance rules as the rule used in this 

thesis. Secondly, the time-history rules examine the loadings. Thirdly, the space-

map rules select the EOF based on some pre-specified form of the maps. It could 

be really interesting to check the obtained results by applying different selection 

rules. 

Other option would be to calibrate the model using a multi-objective approach in 

which different sources of information could be mixed. For example, one test 

could be to re-calibrate the model using both field measurements (historical 

streamflow for instance) and satellite data (e.g. NDVI). The proposed 

methodology should be able to prioritize those sources of information with less 

uncertainty. This experience should be done in a well-gauged basin. 

The TETIS-VEG model could also be improved. Nowadays, the GIMHA group 

(research group in which this doctoral thesis was carried out) is incorporating 

nutrients, concretely nitrogen and carbon cycle, in the model conceptualization. In 

this way, the model performance would increase in nutrient-limited areas.  

It could be also interesting to explore the impact of the variability of hydrologic 

drivers on the vegetation patterns formation (studied during this thesis) and 

sustainable functioning of natural and human systems that depends on them. 

The term variability of hydrologic drivers includes not only changes in the amount 

of rainfall but, also, changes in seasonality and spatial patterns. Special attention 

is required during the extreme weather conditions. Their occurrence is expected 
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to increase and, still now, there exists a deep lack about how vegetation will 

respond. The unique sure knowledge is that vegetation and its productivity will be 

affected negatively in times of growing and consuming population. Repeating the 

words of Porporato and Rodriguez-Iturbe (Porporato and Rodriguez-Iturbe, 

2013): ‘… our challenges that we have posed deal with understanding and 

predicting the origin of vegetation and biogeochemical patterns resulting from the 

interactions of stochastics hydrologic variability with the complex ecohydrological 

dynamics inherent in the soil-plant-atmosphere system’. To this end, process-

based and stochastic models should be improved and not only in temporal terms 

but in spatio-temporal ones. 

Finally, it should be explored how to adapt the current code to be run taking 

advantages of the parallel programming. To do that, the options are Open-MP 

and MPI because the code is written in Fortran. The main differences between 

these two options lie on: (1) shared/distributed memory and (2) process/thread. 

Particularly, MPI targets both distributed as well as shared memory system while 

Open-MP targets only shared memory system. On the other hand, Open-MP is 

designed for thread based parallelism and data racing is inherent in this option 

while MPI can be used for both thread and process based parallelism. In general, 

both have pros and cons and the hybrid alternative could be the best option.  
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