

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38484-
4_14

http://link.springer.com/chapter/10.1007/978-3-642-38484-4_14

http://hdl.handle.net/10251/72837

Springer

Oliveira, K.; Castro, J.; España Cubillo, S.; Pastor López, O. (2013). Multi-level Autonomic
Business Process Management. En Enterprise, Business-Process and Information Systems
Modeling. Springer. 184-198. doi:10.1007/978-3-642-38484-4_14.

Multi-level Autonomic Business Process Management

Karolyne Oliveira1, Jaelson Castro1, Sergio España2, Oscar Pastor2

1Universidade Federal de Pernambuco—UFPE, Recife, PE 50 740-560, Brazil
2Centro de Investigación en Métodos de Producción de Software, Universitat Politècnica de

València, Valencia, Spain

{kmao, jbc}@cin.ufpe.br
{sergio.espana, opastor}@pros.upv.es

Abstract: Nowadays, business processes are becoming increasingly complex
and heterogeneous. Autonomic Computing principles can reduce this complexi-
ty by autonomously managing the software systems and the running processes,
their states and evolution. Business Processes that are able to be self-managed
are referred to as Autonomic Business Processes (ABP). However, a key chal-
lenge is to keep the models of such ABP understandable and expressive in in-
creasingly complex scenarios. This paper discusses the design aspects of an au-
tonomic business process management system able to self-manage processes
based on operational adaptation. The goal is to minimize human intervention
during the process definition and execution phases. This novel approach, named
MABUP, provides four well-defined levels of abstraction to express business
and operational knowledge and to guide the management activity; namely, Or-
ganizational Level, Technological Level, Operational Level and Service Level.
A real example is used to illustrate our proposal.

Keywords: Autonomic business process models, workflow management, self
awareness, context awareness

1 INTRODUCTION

System components and software have been evolving to deal with the increasing
complexity of stakeholder needs. Automating the management of computing re-
sources is a major challenge.

Some recent works have proposed the use of Autonomic Computing (AC) concepts
[1] to help to effectively manage enterprise systems and applications [3]. Indeed, a
major application area for autonomic computing is aimed at freeing system adminis-
trators from the details of system operation and maintenance, improving robustness of
systems and decreasing the total cost of ownership [2, 6].

Autonomic Computing Systems (ACS) are able to: (i) Self-configure; (ii) Self-
heal; (iii) Self-optimize and, (iv) Self-protect. The secondary properties of autonomic
systems are: (i) Self-awareness: An autonomic system requires to know itself; (ii)
Context-awareness: An autonomic system should be aware of its execution environ-

This	
 is	
 a	
 pre-­‐print	
 draft	
 of	
 the	
 following	
 paper,	
 please	
 reference	
 it	
 correctly	
 when	
 citing	
 it:	

Oliveira,	
 K.,	
 J.	
 Castro,	
 S.	
 España	
 and	
 O.	
 Pastor	
 (2013).	
 Multi-­‐level	
 autonomic	
 business	

process	
 management.	
 14th	
 Working	
 Conference	
 on	
 Business	
 Process	
 Modeling,	
 Devel-­‐
opment,	
 and	
 Support	
 (BPMDS	
 2013).	
 S.	
 Nurcan,	
 H.	
 Proper,	
 P.	
 Sofferet	
 al.	
 Valencia,	
 Spain,	

Springer	
 LNBIP.	
 147:	
 184-­‐198.	

The	
 copyright	
 belongs	
 to	
 Springer	

	

ment by exposing itself and discovering other systems in the environment; (iii) Open-
ness: An autonomic system should be able to function in a heterogeneous environ-
ment and be implemented on open standards and protocols; (iv) Anticipatory: One
critical property from the perspective of the users is that an autonomic system should
be able to anticipate its needs and behaviors to act accordingly, while keeping its
complexity hidden [10].

However, the vision of autonomic computing should be not restricted to the area of
system administration, management and maintenance. For example, it can also be
applied to the area of process-aware information systems to effectively and efficiently
deal with changes in several aspects of these applications.

Business Processes and Business Process Management (BPM) are essential in
many modern enterprises. They constitute organizational and operational
knowledge and often perpetuate independently of changes in the personnel or the
infrastructure [4]. Autonomic computing principles can also be adapted to help organ-
izations survive in dynamic business scenarios.

A Process that is compliant with AC principles is referred to as Autonomic Busi-
ness Process (ABP) [9] [12]. ABPs (a.k.a. autonomic workflows) must have the ca-
pability to adjust to environment variations (context). If one component service
node of an ABP becomes unavailable, a mechanism is needed to ensure a business
process execution is not interrupted [8] [18]. ABP differs from traditional workflow in
the fact that it relies on autonomic techniques to manage adjustments during its execu-
tion. Therefore, it enables dynamic and automatic configuration of its definition, ac-
tivities and resources. It also allows self-optimization and self-healing. Furthermore,
autonomic workflows must have intelligence to analyze situations and deduce adapta-
tions at run-time.

This work investigates the application of autonomic computing principles can to
business processes management. Our goal is to help organizations survive in dynamic
environments. More specifically we want to face an open challenge in the area, which
is to promote modularization and separation of concerns (SoC) in ABP Models [14].
This paper proposes a framework that exploits the high variability in service-

oriented system environments by using models of the system context and by provid-
ing autonomic adaptations which rely on operationalizations of Non-Functional Re-
quirements (NFR). This framework guides its adaptation according to a Multi-level
Autonomic Business Process named MABUP, whose modeling process is presented in
[9]. The benefits are manifold and include addressing scalability problems and im-
proving the understandability of ABP in complex scenarios [11].

A MAPE cycle (Monitor-Analyze-Plan-Execute) is used, considering both the sys-
tem (self) and the instrumented BPM (context).

This paper is structured as follows. Section 2 presents the background and related
works. In Section 3, we introduce a running example. Section 4 proposes a multi-level
autonomic business process management approach. Lastly, Section 5 discusses the
proposal and outlines further research..

2 RELATED WORKS

Strohmaier and Yu in [13] have presented the first attempt to apply autonomic com-
puting principles to workflow management. Their work shows that certain levels of
autonomy can already be achieved with available techniques and introduces the con-
cepts of the different degree of “autonomy” in workflow systems. However, no novel
technique is proposed.

In order to deal with autonomic features, an interesting issue emerged when com-
posing applications: the ability to bind and re-bind abstract activities to concrete ser-
vices at run-time. Several researchers have addressed this issue. Lee et. al. [7] dis-
cussed managing run-time adaptations in long-running scientific workflows. In their
work, adaptations have been described in terms of the functional decomposition of
autonomic managers into monitoring, analysis, planning and execution components.
Mosincat et al. [8] proposed fault tolerant execution of BPEL processes executing
dynamic binding of services, performing a process transformation before the execu-
tion, for using a selection component at run-time. In Haupt et. al. [5], the workflow
and the services comprising it are treated as managed resources controlled by hierar-
chically organized autonomic managers. Their work attempts to treat the complexity
problem of autonomic workflows by using hierarchical workflow but, it does not
explore any modularity technique neither how these different levels can guide differ-
ent kinds of adaptations.

The modularization helps to treat the complexity of large-size models [11]. Once
the management of business process models can be realized at different levels of
granularity, there is a tradeoff between monitoring granularity and diagnostic preci-
sion. The finest level of monitoring granularity is at the functional level where all leaf
level tasks are monitored. The disadvantage of fine-grained level monitoring is high
monitoring and diagnostic overhead. Coarser levels of granularity only monitor high-
er-level business goals. In these cases, less complete and high-level monitoring data is
generated, leading to multiple competing diagnoses. Both monitoring and diagnostic
overheads are lower. The disadvantage is that if requirements denials are found, mul-
tiple diagnoses are returned, each pinpointing possible failures [17].

Generally, self-adaptive software is a closed-loop system with feedback from the self
and the context. The Autonomic Computer System’s building block, named autonomic
manager, constantly interacts with managed element in order to maintain its equilibrium in
face of incoming perturbations. The MAPE cycle (Monitor-Analyze-Plan-Execute), repre-
sented in Figure 1, is an implementation of the classical feedback control technique [6].

Fig. 1. Closed Loop Control Mechanism

Instrumented System

Monitor

Analyzer Planner

Actuator

Monitoring the execution context represents another important aspect to implement
an autonomic behavior and for reacting to events. However, even if, they exploit
workflows to design applications and to specify causal constraints among activities
and pages, the major works do not use contextual information in the autonomic busi-
ness process management system [15].

Furthermore, these works do not explore another crucial issue that is the expres-
siveness of the operational knowledge in the business process. This problem is related
to how the metrics impact the in the management of business process and how to offer
understandability of autonomic behavior.

The analysis of the related work shows that there is a lot of interest in the realiza-
tion of systems and approaches able to deal, dynamically and automatically, with
composition, binding, failures and other aspects of definition and execution of com-
posed processes. However, these works do not explore the modularization of business
process that helps to treat the management of autonomic business process in complex
scenarios and expressiveness of autonomic features in business process models.

3 RUNNING EXAMPLE

A running example will be used to illustrate our approach. The example consists of a
large system that requires to be managed in an autonomic manner. Specifically we
treated the characteristic of Self-Optimization. We examine the CAGED (General
Register of Employed and Unemployed), a project under the Ministry of Labour and
Employment of Brazil (MTE) and governed by law 4923/65. It supports the submis-
sion of monthly declarations of change of company’s employees due to dismissal or
admittance (CAGED movements). The deadline for submission is the 7th day of eve-
ry month. The data submitted are related to the previous month (i.e. its competence).
The declarations are processed to generate operational and statistical data for the min-
istry of labor and employment.

Considering these characteristics, the process is started when the MTE opens the
competence of CAGED reception. In this case, the declarants can send their CAGED
declaration. The submit process a CAGED declaration is composed of a selection
(including filling) of a CAGED file (detect the movements), sending this file and
receiving a CAGED Receipt. During the reception, MTE can decide to start the pro-
cessing of the files that provide operational data for MTE. Depending on timing con-
straints, such as holidays or some other guidance, MTE staff closes competences of
reception. After all checks in CAGED reception and processing, operational staff
closes the reception processing and starts statistical processing.

Having in mind that the CAGED submission is an activity that is critical to the
success of CAGED process as a whole, we explain the main points that must be con-
sidered in its management. The capture operation of a CAGED file can be performed
in different manner: (i) Generate CAGED File, that in general is executed through
payroll systems of accounting firms which generate a CAGED declaration (in a pre-
defined layout) without MTE analysis and signature; (ii) Generate Analyzed CAGED
File, that is executed by declarants through a MTE offline system that generate a

CAGED File with analysis and signature; and (iii) Generate Short Analyzed CAGED
File, that is performed by declarants to generate and send CAGED declarations with a
maximum of 36 movements.

The CAGED Declaration can be generated in two ways: CAGED File without sig-
nature of analysis or an Analyzed and Signed CAGED File. The first one can be ana-
lyzed through the activity of Generate Analyzed CAGED File or to be analyzed and
sent by a service. An analyzed CAGED file, the second one, is sent without additional
analysis; in this case, two manners are possible: CAGED File with less than 1500kb
can be sent through a service that only verifies MTE signature. CAGED Files with
more than 1500kb must be sent throw a desktop tool that optimizes its transmission.

The previews tasks are executed by the declarants that send their CAGED file to
MTE. A MTE reception service is available to receive and store these files and trig-
gers the generation of a CAGED Receipt to the declarants.

CAGED is complex system that is hard to be managed. Some qualities attributes
must be assured according to its SLA such as availability, response time, processing
time, etc; and all these with less human intervention. In this sense, business process
models must be able to adequately represent: (i) Mission-critical Activities; (ii) The
way the activities are executed and monitored; (iii) Which quality attributes and envi-
ronmental context must be monitored and to what autonomic features; (iv) How sys-
tems needs to be adapted in case of some quality attributes deviation.

4 MULTI LEVEL AUTONOMIC BUSINESS PROCESS
MANAGEMENT

To provide autonomic business process, we considered the use of modularization and
separation of concerns to represent the different features. In Figure 2, we depict an over-
view of our approach to the management of a multi-level business process model that
includes two main stages: (i) The modeling phase exploits the modeling of four abstrac-
tion levels: Organizational Level, Technological Level, Operational Level and Service
Level; (ii) The management phase includes a MAPE module that uses the modeled auto-
nomic business process and the metrics provided by the systems to guide the adaptation.

Fig. 2. Overview of the modeling and management phases of MABUP

In the sequel we present our Multi-Level Autonomic Business Process approach,
named MABUP, which consists of well-defined abstraction level and a closed-loop
mechanism to provide system adaptation (see Figure 2). As mentioned, our frame-
work considers in the management of the processes both context information and
quality attributes of the system.

4.1 Modeling Phase

In this section we present the four well-defined abstraction levels of MABUP. In the
modeling phase, we used a combination of two languages; namely Communicative
Event Diagram and BPMN (see Figure 3). Due to lack of space, we depict a simpli-
fied version of the models; for instance, we do not capture all context variations re-
quired for self-configuration, self-healing and self-protection. Hence, this paper fo-
cuses on the self-optimization feature of the “Declarant submits a declaration” critical
communicative event.

Fig. 3. Organizational, Technological, Operational and Service Levels

Model Organizational Level
The Organizational Level is an important abstraction level in our approach since it

makes business process models more immune to changes in the support technologies
by focusing on the essentials of the business behavior. It supports the modularization
of Autonomic Business Process by providing a level which presents critical activities
that must be refined and monitored.

According of the principles of Communication Analysis, Communicative Event
Diagram provides a notation to specify the Organizational Level of a business process
[1]. In this notation, there is a special primitive for process modelling, named com-
municative event. It represents the triggering of an activity that receives an incoming
message, processes it and provides an output. Hence, it represents the organizational
behavior resulting from a given change in world (subject system), intended to account
for that change by gathering information about it. A communicative event is a set of
actions related to information (acquisition, storage, processing, retrieval, and/or dis-
tribution), that are carried out in a complete and uninterrupted way, on the occasion of
an external stimulus.

Operational
Service

Service
Link

Monitored
Service

QoSID

LEGENDLEGEND

TECHNOLOGICAL LEVEL (only CAG2. Declarant submits declaration)

O

O

O

O

O

SERVICE
LEVEL

OPERATIONAL LEVEL (only Receive CAGED File)

Op1

Op2

Service1

QoS1

Service2

QoS2

Service3

QoS3

QoS4Service5

QoS5

Service4

QoS4

Op3

(S3)

O

COMMUNICATIONAL LEVEL

CAG1
MTE OPENS

COMPETENCE

MTEMTE CGET STAFF

COMPETENCE

DECLARANT

CAGED MOVEMENTS

MINISTER

PREVIOUS DATA

OPERATIONAL DATA

MTE STAFF

CAG2
DECLARANT

SUBMITS
DECLARATION
DECLARANT

CAGED RECEIPT

MTE CGET STAFF

COMPETENCE
CAG3

MTE OPENS
PROCESSING

RECEIPT FILES
MTE

CAGED EXTRACT

DECLARANT

CAG4
MTE CLOSES
COMPETENCE

MTE
MTE CGET STAFF

CAG5
STAFF CLOSES
PROCESSING

MTE
OPERATIONAL STAFF

MINISTER,
 RESEARCHERS,

MTE STAFFS

STATISTICAL DATAS
CAG6

STAFF STARTS
STATISTICAL
PROCESSING

OPERACIONAL STAFF
OPERATIONAL STAFF

STATISTICAL
PROCESSING

 PARAMETERS

LEGEND

ACTOR PRECEDENCE
RELATION

COMMUNICATIVE
EVENT

OUTGOING
COMMUNICATIVE

INTERACTION

INGOING
COMMUNICATIVE

INTERACTION
START END“OR”

MERGE CRITICAL
EVENT

Communication Analysis offers guidelines to allow the identification of communi-
cative events. The following modularity criteria are used to guide modeling [3]:

• Trigger unity, that presumes that the event occurs as a response to an external in-
teraction by an actor that triggers organizational reaction;

• Communication unity, that describes that each and every event involves providing
new meaningful information;

• Reaction unity, that outlines that an event triggers an Information System (IS) reac-
tion, which is a composition of synchronous activities. Events are asynchronous
among each other. This criterion defines a temporal encapsulation.

MABUP introduces the concept of Critical Event, a special kind of communicative
event which is a mission-critical activity. Critical events must be refined to provide
information about its behavior and indicate the sub-activities that are monitored ac-
cording to autonomic features.

In this sense, Figure 3 presents the Organizational Level of Business Process of
CAGED, where we highlight the critical event “CAG2 - Declarant submits declara-
tion”. It is an activity that has as input all CAGED movements and, as an output, the
receipt. Stakeholders highlight that it is critical to the success of the CAGED process.

Model Technological Level
Technological Level represents the refinement of a critical event processing to

model important aspects that can impact software adaptation, such as:

• Present different alternatives to perform an activity: Some activities can be execut-
ed in different ways in a company. It is important to map these differences to ana-
lyze if they require special ways to be managed.

In our example, the generation of file can be performed in three different manners: (i)
Generate CAGED File; (ii) Generate Analyzed CAGED File; and (iii) Generate Short
Analyzed CAGED File. If one of these activities became unavailable, another alterna-
tive can be executed to guarantee the system operability until all processes return to
an optimum state.

• Indicate External dependences: External dependences are important to be ex-
pressed as they can lead to interoperability problems. In that sense, interoperability
demands human intervention coordination related to the efforts to ensure perfor-
mance, scalability, correctness, or reliability of applications in the presence of con-
currency and failures [2]. We consider that this calls for autonomic characteristics
such as optimization, healing and protection. Furthermore, when a system relies on
an external service, some kind of service level agreement (SLA) is required.

Figure 3 indicates that the “Receive CAGED Receipt” task is impacted if the “Re-
ceive CAGED File” task becomes unavailable or has a poor performance.

• Highlight monitorable tasks: Some events are too complex and have to be processed
by different kind of components. Hence, some are monitorable and others not.

For example the “Generate analyzed CAGED File” task is executed outside the MTE
domain by an offline desktop tool that is not expressed in SLA as a monitorable mod-
ule. In our example the monitored tasks, such as “Receive CAGED File” are depicted
in gray.

• Define the autonomic characteristics and symptoms of monitorable tasks: Indicate
the autonomic principles that will be considered to monitor the tasks. The SLA
document is a good source of information as it presents the quality attributes and
their respectively values that must be assured.

In the running example, we only consider the self-optimization (O) principle to all
monitorable tasks.

Model Operational Level
Operational level indicates the operational knowledge required to manage the pro-

cess. Business analysts define the contextualization of the monitored task using their
knowledge about the business domain to identify information that can affect the pro-
cess and express the operational knowledge to manage it. The information is codified
in terms of contexts, context variability and operational tasks.

The variability analysis is focused on context variability. Both variants and varia-
tion points are related with the contextual information. They indicate how the contexts
variation can affect the autonomic actions. Operational Task expresses autonomic
actions in the systems to assure the optimal state of the system and express a refine-
ment of the autonomic part of a Monitored Task.

In our running example, we defined Self-Optimization (O) as the desired autonom-
ic principle. As previously noted, it is related to the efficiency NFR, which in turn can
be decomposed into others characteristics such as Response Time and Space Utiliza-
tion. In this example, we deal only with Response Time attribute.

For instance, a variation point of the Receive CAGED File (see Table 1) task is as-
sociated with the response time. This variation point is a contextualization for the al-
ternative ways how the adaptation actions are selected to respond to environment
changes. The alternatives are represented as variants that are associated with the varia-
tion point. In the example, the variants are actions to control or regulate the response
time deviation of the CAGED file reception. The tasks are associated with contexts
describe in expressions that activate the presence of a variant in the variation point.

Given that in our running CAGED there is a deadline for declaration submission, it
is important to measure the daily reception. As observed in Figure 4, the reception
rate peaks during the first seven days of the month. This trend must be considered to
allow the selection of a correct adaptation. Trend analysis methods [16] can help
business analysts to predict future outcomes tracking variances in historical results.

In order to treat Response Time deviations that may be related to the performance
of the “Receive CAGED File” activity, we defined in Figure 3 (Operational Level)
three different tasks (operationalizations): (i) Increase resource; (ii) Decrease Re-
source; and (iii) Analyze deviation. The 3 contexts (C1, C2 and C3) present in Figure
3 (Operational Level) are defined in Table 1.

Table 1. Contextualization of Autonomic Business Process

Monitored
Task

Contextualization
Variation

Point Variants Context Quality

Receive
CAGED File

Response
Time

Deviation

Increase
Reception

Rate

C1: ReceptionTrendIsOK= true and
LastThreeCycleIncreasing= true

Response Time
>= 220ms

Decrease
Reception

Rate

C2:ReceptionTrendIsOK= true and
LastThreeCycleDecreasing= true

Response Time
<= 110ms

Deviation
Reception

Rate

C3:ReceptionTrendIsOK= false and
LastThreeCycleIncreasing= true

Response Time
>= 220ms

Considering the above, the operational level presents the new interconnected concepts in
ABP models: variation point, variants, operational task and can be defined as follow:

OL = {VP, Var, OT, Rel{VPxVarxOT}}
where: OL is the Operational Level; VP is Variation Point; Var is Variant, OT is Op-
erational Task and Rel expresses the relationship between then. OL is a conjunct of
VP, Var and OT where VP is linked with Var and Var is related with OT.

Model Service Level
Both monitorable and operational tasks should be linked to system services. In a ser-

vice-based mission-critical system, adaptation is an activity with the objective of deliv-
ering an acceptable/guaranteed service based on SLA (Service Level Agreement).

One of the key components in SLA is SLO (Service Level Objective) which specifies
QoS (Quality of Service) metrics governing service delivery. Each SLA may include
several SLOs, each corresponding to a single QoS parameter related to quality factors.

In the Service Level, the services linked with monitorable tasks are called mon-
itorable services that should be checked according to the parameters presented in the
SLO. Whereas the services linked with operational tasks are named as operational
services that have the objective of returning the system to an optimal state in an auto-
nomic manner. For example, the “Receive CAGED File” activity is linked to “Ser-
vice5” that should assure a response time of 190 ms. The concepts used in this level
are related as follow:
MonitoredService ⊆ Service and OperationalService ⊆ Service (MonitoredService ∩

AutonomicService = {} ∧ MonitoredService ∪ AutonomicService ⊆ Service)

That is, MonitoredService and OperationalService are a sub-conjunt of Service and

are mutually exclusive because other services may exist (ie. a disjoint and incomplete
inheritance of Service).

4.2 Management Phase

Monitor
The monitoring component collects indicators provided by the system from time to

time (cycle). The monitor checks both context information and NFRs related to the

system. In our approach we assume the use of context sensors, which are computational
entities that provide raw data about the operational environment presented in the in-
strumented BPM; and service quality attributes that must be assured. The monitor mod-
ule verifies the processes at a well-defined level of modularity (Technological Level)
and affects services-oriented systems with coarse grained adaptation at run-time.

As shown in Figure 5, the monitor module is divided in Context Monitor, QoS
Monitor and Monitor Engine. The context monitor reads and processes the contextual
data provided by the instrumented system. The QoS Monitor reads and processes the
log database of all monitored services that support all monitored tasks and their re-
spective metrics according to the SLO. The Monitor Engine processes the information
provided by Context Monitor and QoS Monitor, collects the relevant data according
MABUP model and passes it to the diagnostic component for analysis.

Algorithm 1 defines how the monitor process works, ie. it obtains the MABUP
model, treats the monitored tasks, collects the metrics of each one and returns the data
to be used by analyzer module.

Algorithm 1. Monitor algorithm

monitor(MABUPModel model)
1. MonitoredTaskValue[] mtvs
2. VariationPointValue vpv
3. VariationPointValue[] vpvs
4. for each tl � getTechnologicalLevels(model)
5. do for each mti � getMonitoredTasks(tl)
6. MonitoredService ms ß getMonitoredService(mt)
7. OperationalLevel op � getOperationalLevel(mt)
8. do for each vpj � getVariationPoints(op)
9. vpv ß getVariationPointValues(mt,ms,vp)
10. vpvs[j] ß vpv
11. end for
12. mtvs[i] ß getMonitoredTaskValues(mt, vpvs)
13. end for
14. end for
15. return mtvs

The getMonitoredTaskValues method (line 12) localizes, though QoS Monitor, the
metrics of the monitored service expressed in the Service Level based on the identifi-
cation of the monitored task. It calculates the average of the metrics obtained in a
cycle by all requested services that support the monitored task as follow:

𝑓 𝑠 =
1
𝑛

𝑄𝑜𝑆(𝑠!)
!

!!!

where: f(s) the function to verify the QoS of a service s; n is the number of requested
services in a cycle; QoS(𝑠!) is the metric obtained for a requested service.

Analyze
In our approach, this component has the objective to evaluate the metrics obtained

by the monitor. Considering the measures obtained by the monitor, the diagnostic
component checks the contexts expressed in the Business Process Model. In case of
some deviation, the planner (section 4.2.3) selects the appropriate operational task
that represents autonomic interventions in the system.

Considering the management of business processes, it is important to assure the
service level agreement related to these processes. In this sense, the analyzer module
verifies the monitored metrics in the business process model and in case of deviation
above a predefined threshold the module verifies the operational contexts that affect
the process and the variants related to these contexts. The analyzer module is divided
in two components: Domain Assumption Verifier and Contextual Business Process
Model Diagnosis.

The “Domain Assumption Verifier” component identifies all quality attributes re-
lated to the monitored task and in case of metric deviations the “Contextual Business
Process Model Diagnosis” component analyzes the contexts values. Algorithm 2 is a
simplified version of this process. According to lines 2-4 the “Domain Assumption
Verifier” component reads all monitored task values obtained by the monitor module
and verifies the QoS deviation. The isQoSDeviated method (line 3) reads the Service
Level, gets the expected metrics and compare them against the obtained values. In
the “Contextual Business Process Model Diagnosis” component, the getDeviatedVar-
iant method (line 5) checks all Variation Points and evaluates the context and quality
expected in each Variant. The Analyzer module returns all the deviated variants.

 Algorithm 2. Diagnosis algorithm

analyze(MonitoredTaskValue[] mtvs)
1. Variant[] deviatedVars
2. for each mtv � mtvs
3. do boolean isQoSOut ß isQoSDeviated(mtv)
4. if isQoSOut then
5. deviatedVars += getDeviatedVariant(mtv)
6. end for
7. return deviatedVars

In our running example we had explored the monitored task “Receive CAGED File”
that has the Self-Optimization (O) as the desired autonomic principle and in its opera-
tional decomposition presents the Variation Point related to the Response Time attrib-
ute. In this sense, we explored three scenarios according the data provided in Figure 4
that are related to the tree variants presented in this Variation Point:

• Scenario 1: In the beginning of the month the reception rate is increasing time-to-
time and this is an expected change in the environment according to the CAGED
characteristics. The system provided the following information: ReceptionTrend-
IsOK=true; LastThreeCycleIncreasing=true (Contextual); and Re-
sponsteTime=382ms (QoS);

• Scenario 2: After the deadline to send the CAGED File, the competence is closed
to receive files of previous month and opens to receive the next competence. As re-
sult, reception rate decreases time-to-time. Considering this, the system provided
the following information: ReceptionTrendIsOK=true; LastThreeCycleDecreas-
ing=true (Contextual); and ResponsteTime=80ms (QoS);

• Scenario 3: The reception is out of the reception peak and the reception rate is
increasing, as shown in Figure 4 (10/06/2011). In this case, the system must evalu-
ate the deviation but not increase the resource. Considering this, the system provid-
ed the following information: ReceptionTrendIsOK=false; LastThreeCycleIncreas-
ing=true (Contextual); and ResponsteTime=457ms (QoS);

Fig. 4. CAGED Reception Rate

Considering scenario 1, 2 and 3; in different moments the analyzer module would return
respectively the variants: Increase Reception Rate, Decrease Reception Rate and Devia-
tion Reception Rate. As can be observed, it is important to emphasize that even if a
quality attribute is out of the defined value, the deviated variants will only be returned
only if there is contexts that enables it. For example if the system returns a response
time of 350ms in the execution of the task “Receive CAGED File” and there is no con-
text that influences in this value, the autonomic engine will not return deviations.

Plan
The main objective of planner module is planning the interventions that will be ex-

ecuted in the system according the information provided by the analyzer module. As
shown in Figure 5, the planner module has two components: The Planner Execution
Selector and the Process Status Manager. The component Planner Execution Selector
reads all deviated variants obtained through analyze module and then obtain, from the
Operational Level, the Operational Tasks related to these variants. The status of each
selected Operational Task is managed through the Process Status Manager component
to assess if this task can be executed. The status can indicate if there are other execu-
tions of the same Operational Task in the moment (in_progress) or if there are some
previous plans that have the same operation and have not stated yet (uncommitted). In
this case, the Operational Task does not enter in the plan that will be executed.

	

Regarding our running example, considering Scenario 1 (defined in section 4.2.2),
the planner module returns the “Increase Resource” Operational Task. While in Sce-
nario 2 the “Decrease Resource” Operational Task is returned. Finally, in the Scenario
3, the module returns “Analyse Deviations”.

Actuate
The actuator module has the objective of actuating in the instrumented system. For

this reason, the module has two components as presented in Figure 5: The Actuator
Manager and the Operational Task Assigner.

According the Operational Task returned by the planner module, the Actuator
Manager accesses the Service Level to obtain the Operational Service with the pa-
rameters that it needs to be executed. The Operational Task Assigner access the in-
strumented system to finally perform the adaptation.

Considering our running example, if there is a plan to perform the operational task
“Increase Resource”, the Actuator Manager component will access the specification of
the service named “OP1”. This specification has the name of the service that is: ex-
pandReceptionMem(ResourceType rt, ResourceValue rv, SystemModule sm) where
ResourceType is the type of resource that the analyst wants to increase, ResourceValue
is the percentage of growth and the SystemModule is the identification of the sub-
system. These values are predefined as in this case as: rt=” memory”; rv=0.1; and
sm=”cag.Reception”. It corresponds to 10% of increase of memory resource.

Fig. 5. MABUP Engine

5 DISCUSSION AND CONCLUSION

In this paper we outlined an approach for managing autonomic business processes
following a multi-level strategy. The architecture an architecture of autonomic busi-
ness process models that intends to represent the correct behavior of the systems from
the business, technological, operational and service points of view. This proposal has

been divided into two parts: the modeling and the management phases. The modeling
phase express how to obtain four abstract levels that instrument the business process
model with autonomic features; namely, Organizational Level, Technological Level,
Operational Level and Service Level. The management phase proposes a MAPE
(Monitor-Analyze-Plan-Execute) engine that considers both instrumented ABPM
(Autonomic Business Process Model) and the instrumented system obtaining infor-
mation about the environment context and quality attributes to guide the adaptation.

The paper (1) defines the MABUP (Multi-level Autonomic Business Process)
model used at runtime to represent the correct behavior; (2) presents the logical view
on the architecture to manage the multi-level autonomic business processes; (3) intro-
duces algorithms to perform the MAPE modules of our approach; and (4) shows how
an existing system can be modeled to exploit our architecture.

The real example demonstrates the feasibility of the presented conceptual architec-
ture and highlights its applicability to a real-life scenario. Furthermore, the benefits of
our approach are manifold and include:

• Modularity of ABPM: We have relied on Communication Analysis principles to
deal with the overhead in the monitoring phase. The Organizational Level helps to
indicate mission-critical activities that must be treated in an autonomic manner.
The Technological Level, a refinement of the mission-critical activities, specifies
the autonomic tasks that must be monitored.

• Scalability: Modularity helps abstracting processes, thus reducing the complexity
of ABPM, and increases the scalability of our approach;

• Separation of concerns: In our MABUP model the relationship between the busi-
ness, technological and operational knowledge are explicitly expressed in different
and interconnected abstraction levels of the model.

• Understandability: The different well-defined levels helps to provide understanda-
bility of ABPM;

• Expressiveness of autonomic features in BPM: In contrast to other approaches that
need a knowledge database to express the metrics that affects the adaptation, our
approach provides the concepts of critical event, monitored task, context variability
and quality attributes expressed in a BPM that guide the self-management at
runtime. All these concepts are interconnected to indicate how the metrics impact
each autonomic business process.

• Guide the adaptation based on metrics, as context and quality attributes, contained
in the BPM: Considering the knowledge provided in our MABUP model, the man-
agement module guides the adaptation according the context and quality attributes
that affect the operational tasks.

Our approach is part of an ongoing research endeavor. As such, much remains to be
done. As future work, we plan to perform a controlled experiment to empirically
evaluate our proposal.

ACKNOWLEDGMENT
Research supported by CAPES and Spanish Ministry of Science and Innovation

project PROS-Req (TIN2010-19130-C02-02), the Generalitat Valenciana project
ORCA (PROMETEO/2009/015), and co-financed by ERDF structural funds.

REFERENCES
1. Espana, S. et al. 2009. Communication Analysis: A Requirements Engineering Method for

Information Systems. Proceedings of the 21st International Conference on Advanced Infor-
mation Systems Engineering (Berlin, Heidelberg, 2009), 530–545.

2. Ganek, A.G. and Corbi, T.A. 2003. The dawning of the autonomic computing era. IBM Sys-
tems Journal. 42, 1 (2003), 5–18.

3. Gonzalez, A. et al. 2009. Unity criteria for Business Process Modelling. Research Challenges in
Information Science, 2009. RCIS 2009. Third International Conference on (2009), 155–164.

4. Greenwood, D. and Rimassa, G. 2007. Autonomic Goal-Oriented Business Process Man-
agement. Management. (2007), 43.

5. Haupt, T. et al. 2011. Autonomic execution of computational workflows. Computer Science
and Information Systems (FedCSIS), 2011 Federated Conference on (2011), 965–972.

6. Kephart, J.O. and Chess, D.M. 2003. The vision of autonomic computing. IEEE.
7. Lee, K. et al. 2007. Workflow adaptation as an autonomic computing problem. Proceedings

of the 2nd workshop on Workflows in support of large-scale science (New York, NY, USA,
2007), 29–34.

8. Mosincat, A. and Binder, W. 2008. Transparent Runtime Adaptability for BPEL Processes.
Proceedings of the 6th International Conference on Service-Oriented Computing (Berlin,
Heidelberg, 2008), 241–255.

9. Oliveira, K. et al. 2012. Towards Autonomic Business Process Models. International Conference
on Software Engineering and Knowledge (SEKE 2012) (San Francisco, California, USA, 2012).

10. Rahman, M. et al. 2011. A taxonomy and survey on autonomic management of applications in grid
computing environments. Concurr. Comput.  : Pract. Exper. 23, 16 (Nov. 2011), 1990–2019.

11. Reijers, H. 2008. Modularity in process models: Review and effects. Business Process Man-
agement. (2008), 20–35.

12. Rodrigues Nt, J.A. et al. 2007. Autonomic Business Processes Scalable Architecture. Pro-
ceedings of the BPM 2007 International Workshops BPI BPD CBP ProHealth RefMod se-
mantics4ws (2007), 1–20.

13. Strohmaier, M. and Yu, E. 2006. Towards autonomic workflow management systems. ACM Press.
14. Terres, L.D. et al. 2010. Selection of Business Process for Autonomic Automation. 2010 14th

IEEE International Enterprise Distributed Object Computing Conference. (Oct. 2010), 237–246.
15. Tretola, G. and Zimeo, E. 2010. Autonomic internet-scale workflows. Proceedings of the 3rd

International Workshop on Monitoring, Adaptation and Beyond (New York, NY, USA,
2010), 48–56.

16. Vedam, H. and Venkatasubramanian, V. 1997. A wavelet theory-based adaptive trend analy-
sis system for process monitoring and diagnosis. American Control Conference, 1997. Pro-
ceedings of the 1997 (Jun. 1997), 309 –313 vol.1.

17. Wang, Y. and Mylopoulos, J. 2009. Self-Repair through Reconfiguration: A Requirements
Engineering Approach. 2009 IEEE/ACM International Conference on Automated Software
Engineering. (Nov. 2009), 257–268.

18. Yu, T. and Lin, K. 2005. Adaptive algorithms for finding replacement services in autonomic
distributed business processes. Proceedings Autonomous Decentralized Systems 2005 ISADS
2005 (2005), 427–434.

