Document downloaded from:

http://hdl.handle.net/10251/73088
This paper must be cited as:

Real Saez, JV.; Sdez Barona, S.; Crespo Lorente, A. (2016). Combined Scheduling of Time-
Triggered Plans and Priority Scheduled Task Sets. Ada Letters. 36(1):68-76.
doi:10.1145/2971571.2971580.

The final publication is available at

http://dl.acm.org/citation.cfm?id=2971580&preflayout=flat

Copyright Association for Computing Machinery (ACM)

Additional Information

© Owner/Author (2016). This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in ACM
SIGAda Ada Letters, 36(1), 68-76, http://dx.doi.org/10.1145/10.1145/2971571.2971580.

Combined Scheduling of Time-Triggered Plans and Priority
Scheduled Task Sets*

Jorge Realt, Sergio Saezi, Alfons Crespof
T Instituto de Automatica e Informética Industrial
T Instituto Tecnoldgico de Informética
Universitat Politecnica de Valencia
Camino de vera, s/n, 46022 Valencia, Spain

E-mail: {jorge,ssaez,alfons}@disca.upv.es

Abstract

Preemptive, priority-based scheduling on the one hand, and time-triggered scheduling on the other, are the two
magjor techniques in use for development of real-time and embedded software. Both have their advantages and
drawbacks with respect to the other, and are commonly adopted in mutual exclusion.

In a previous paper, we proposed a software architecture that enables the combined and controlled execution of
time-triggered plans and priority-scheduled tasks. The goal was to take advantage of the best of both approaches by
providing deterministic, jitter-controlled execution of time-triggered tasks (e.g., control tasks), coexisting with a set
of priority-scheduled tasks, with less demanding jitter requirements.

In this paper, we briefly describe the approach, in which the time-triggered plan is executed at the highest priority
level, controlled by scheduling decisions taken only at particular points in time, signalled by recurrent timing events.
The rest of priority levels are used by a set of concurrent tasks scheduled by static or dynamic priorities. We also
discuss several open issues such as schedulability analysis, use of the approach in multiprocessor architectures,
usability in mized-criticality systems and needed changes to make this approach Ravenscar compliant.

1 Introduction

Despite the advantages of priority-based scheduling (PB) for real-time applications, a known issue is that such
schedulers introduce irregular and difficult to analise delay patterns at run time, that translate into variable
release jitter, i.e., the difference between the tasks’ theoretical release time and their actual start of execution.
Variable jitter degrades the performance of real-time applications such as digital control systems and synchronous
communication protocols. Although several techniques have been proposed to reduce or mitigate the effects of
variable jitter in these areas [2, 4, 5, 6], they involve changes to the task set design, or to the tasks’ timing
parameters, or they introduce additional run time overhead.

On the other hand, time-triggered scheduling (TT) uses an offline predefined plan, in which the designer identifies
the exact points in time when every planned activity should start, and the times by which they should have finished.
Since all scheduling decisions are planned in advance, a T'T scheduler introduces very small runtime overhead, and
therefore less —and easier to bound— jitter. The main drawback attributed to the TT approach is that plans are
difficult to design, specially when they involve a large number of TT activities.

Our aim is to explore an alternative that combines both schemes for the same application. Activities imposing
strict jitter requirements (such as digital regulators) are scheduled according to a TT plan, whereas the rest of tasks

*This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the European
Commission’s project EMC2 (ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).

are scheduled by the rules of a preemptive, priority-based scheduler. The whole set of tasks (both jitter-sensitive
and jitter-tolerant tasks) will be resting on the same preemptive, priority scheduler, but the TT schedule will run
at the highest priority to ensure minimal, controlled release jitter. The rest of tasks execute at lower priority
levels, where they can be all scheduled under the same dispatching policy (preemptive, non-preemptive, EDF) or
a combination of several dispatching policies, e.g. by using Ada’s priority specific dispatching.

In this position paper, we refer to the system model described in [11], which we summarise in Section 2. Section 3
defines the actions taken by the T'T scheduler, with Section 4 briefly describing the TT scheduler’s API and several
patterns for TT activities. In Section 5 we discuss extensions to the model and Section 6 concludes the paper.

2 System Model

In our system model, an offline, static TT plan coexists with a set of concurrent PB tasks. Since all TT activity
is given the highest priority, the particular priority assignment and scheduling policy used for PB tasks will not
affect the execution of the plan. The PB workload will find time to execute only when there is no TT activity
running, and will be preempted by the arrival of TT events. In other words, PB tasks never preempt TT tasks.
We therefore limit our description to the system model for the TT plan.

A TT plan is described by an ordered sequence of time slots. Each slot is characterised by two parameters:

work identifier (Work_Id), an integer value ultimately referring to either a piece of user-provided application
code or a predefined scheduler action;

slot duration, a time interval that must accommodate the execution of the work denoted by the slot’s work
identifier.

The whole plan sequence starts at a given time and each slot starts right after the end of its predecessor in the
plan. The plan is repeated cyclically. We consider three types of slots, depending on the kind of activity that must
be executed during the slot duration:

e A regular slot defines a time interval for the execution of an application-specific activity. It is denoted
by a reqular Work_Id and a strictly positive slot duration. For regular Work_Id we mean a positive integer
corresponding to a regular work identifier, i.e. one that ultimately refers to a piece of user-supplied application
code. The duration of a regular slot must be, by design, sufficient to accommodate the worst-case execution
time of that work — we will discuss overrun handling later on.

The following two types of slots correspond to scheduler actions exclusively and they have no associated
application-specific activity.

e An empty slot defines a time interval during which no TT activity will be executed. This is useful for
inserting gaps in the plan where they are needed. These gaps in the plan can be used by PB tasks, which will
also use any spare time left by TT tasks taking less than their allocated slot duration to complete. Empty
slots use the special Work_Id value zero.

e A mode-change slot defines a point in time where it is possible to substitute the current plan with a new
one. At the start of a mode-change slot, the scheduler will check whether there is a pending mode-change
request to process. If there is one, then the new plan will start executing at the end of the mode-change slot.
The change will be immediate if the mode-change slot duration is defined to be zero. The inclusion of this
type of slot provides a flexible way to specify in which points of the plan a mode change can be enforced.
Mode change slots are identified by Work_Id = —1.

Each slot accommodates at most one TT activity, as opposed to the classic cyclic exzecutive [1, 7). This is because
we want to have the highest possible control over release jitter of TT activities, which cannot be accomplished if
several activities of varying execution times share the same slot. Another advantage is that, with only one activity
per slot, the T'T scheduler only needs to check one activity at a time for potential overrun (see next Section). This
simplifies the implementation of the TT scheduler, which in turn helps keeping release jitter small.

3 The time-triggered scheduler

The TT scheduler ensures the timely execution of the plan. This implies not only releasing the activities at the
right moments, but also controlling that all activities behave as per the plan’s design. In particular, the scheduler
must check and take correcting actions for possible overruns, i.e., activities taking longer than their allocated slot
duration. The TT scheduler must also give support to mode changes, as described previous section. Contrary to
the case of PB schedulers, all decisions and actions of the T'T scheduler are enforced at predefined points in time;
in our case, at the start of each slot.

At the start of any slot, the scheduler will first detect whether there is still pending work from the previous
slot, which is equivalent to detecting an overrun. There are several possible ways to handle this situation. One
possibility is to lead the system to a fail-safe state (as in [9]), which can be achieved by means of a mode change.
For the rest of this paper, we will take a more tolerant approach and allow the offending activity to continue
executing at a lower priority, thereby limiting its interference to only tasks with an even lower priority, if any.
The particular demoted priority can be specified for each activity. After this overrun check, the TT scheduler will
proceed depending on the type of slot:

Regular slot: The scheduler releases the execution of the slot’s activity, denoted by its regular Work_Id, and
makes sure it is assigned the TT level priority.

Empty slot: No other user or scheduler activity will be executed until the arrival of the next slot.

Mode change slot: The scheduler checks whether there is a pending mode change request. If there is one, then
the current plan is substituted with the new mode plan and the next slot to be processed is set to the first slot
of the new plan. The actual implementation details of mode changes will depend on the concrete hardware
platform. In some cases, the system has enough memory to allocate all the required TT tasks for all modes.
On platforms with scarce resources, it could be necessary to delete old-mode tasks and load new-mode tasks
to memory. The time needed for these operations can be absorbed by the mode-change slot duration, as well
as the time needed for the scheduler to actually enforce the mode change and start scheduling the new mode.

The TT scheduler’s activity always coincides with the start of a new slot. In our implementation we use
a recurrent timing event to signal the start of each slot. The handler for this timing event encapsulates the
scheduler’s actions.

4 Application Program Interface and Task Patterns

An application program interface (API) for TT plans is described in [11]. What follows is a minimal summary
of the most important features of that API, and a set of proposed task patterns using the TT scheduler. The API
is provided by the Ada package Time_Triggered_Scheduling, which includes data types for representing the TT plan
itself, as well as a T'T scheduler supported by a protected type Time_Triggered_Scheduler. The scheduler offers:

e A protected procedure Set_Plan, to establish the plan to execute. This procedure comes in two versions to
determine either an absolute or a relative starting time for the plan being set.

e A protected entry Wait_For_Activation, where T'T tasks wait for their next slot, according to the current TT
plan, as set by Set_Plan.

e A protected procedure Leave TT_Level that allows a TT task to abandon the TT priority level and continue
execution at a lower priority. This is useful for supporting the initial-optional-final pattern described below.
The priority can be lowered to a predetermined value or a value passed as a parameter to Leave TT_Level and
the TT level priority is obtained again at the next slot assigned to the calling Work_Id.

e Three getter protected functions to obtain relevant timing information from the TT plan, which enable the
implementation of richer task patterns, as described later. In particular:

— Get_Last_Release returns the absolute release time of the last slot of a given Work_Id.

— Get_Last_Slot_Duration returns the duration of the last slot of a given Work_Id.

— Get_Next_Slot_Separation returns the separation between the start of the last slot and the next slot of a
given Work_Id.

Based on this API, the simplest pattern for T'T tasks is shown in Listing 1, which includes the specification and
body of the task type Simple_Worker. Worker tasks are created by instantiation of this task type. Each instance
must use a different value for the discriminant Work_ld — this is checked at runtime by the scheduler and the
exception Program_Error is raised if a task tries to use another task’s Work_Id. The discriminant Prio specifies the
demoted priority, i.e., the priority to which the task will be demoted in case of overrun. During normal operation,
time-triggered tasks run at the highest priority. We have used the CPU aspect in our experiments to set the affinity
of all time-triggered tasks to the same processor, although this is not in principle compulsory. Adapting this
architecture to multiprocessor systems is the subject of ongoing work (see Section 5).

The task first calls the scheduler’s entry Wait_For_Activation. The scheduler will then keep the calling task
blocked until a slot arrives in which its work identifier is planned to execute. Upon completion of the call to
Wait_For_Activation, the task then executes its specific work actions. This is repeated in an infinite loop.

TTS: Time_Triggered_Scheduler(3); —— A scheduler for 3 different works (arbitrary)

task type Simple_Worker (Work_ld: Regular_Work_ld; Prio: System. Priority)
with Priority => Prio, —— Demoted priority in case of overrun
CPU =>1; —— We limit ourselves to a single processor

task body Simple_Worker is

begin
loop
TTS.Wait_For_Activation (Work_Id); —— Block here until my slot arrives
Do_My_Work (...); —— Specific work actions
end loop;

end Simple_Worker;

Listing 1. Simplest pattern for a time-triggered task

More complex task patterns are also possible, still relying essentially on the same simple scheduler described so
far. In particular, we propose the following patterns, beyond the Simple_Worker pattern:

Worker_With_Cancellation Before causing an overrun, a task following this pattern will cancel its activity,
instead of following the default behaviour of continuing its execution at a demoted priority level. This pattern
is intended for tasks that cannot contribute any value after their allocated slot duration, for example because
their result must be applied to a system output immediately.

The pattern modifies the Simple_'Worker pattern in Listing 1 by enclosing the Do_My Work sentence in the
abortable part of an Ada asynchronous transfer of control statement. The triggering alternative is an absolute
delay until the end of the current slot, hence the work will be aborted before it would cause overrun.

To obtain the time of this absolute delay, the pattern uses the TT scheduler’s functions Get_Last_Release, that
returns the last release time of a given Work_ld, and Get_Last_Slot_Duration that returns the duration of the
last slot of a given work. Adding these two values gives the end time of the current slot. To be on the safe
side, we should subtract the worst-case duration of abort-deferred operations in the work’s code. This would
avoid the work to cross a slot barrier while executing an abort-deferred operation.

Worker_With_Initial_Final This pattern is conceived for works that require controlled and short jitter both
at the beginning and towards the end of their activity. The work is said to have an initial part (e.g., sensing
a physical environment variable) and a final part (e.g., the actuation phase of a control algorithm).

This pattern is a simple duplication of the loop actions of Simple_Pattern: there are two calls to Wait_For_Activation,
one preceding the initial part and one preceding the final part of the work. Note that the same effect can
in principle be obtained by two works, one for the initial part and one for the final. But using this pattern,
the advantage is that all communication between the initial and the final part is immediate since both parts
share the common task’s stack (no inter-task communication is needed).

Worker_With_Initial_Optional_Final This pattern is appropriate for tasks with initial and final parts with
strict jitter restrictions, plus an optional part in between them. The optional part may implement an
optimisation algorithm for improving a quick and dirty result obtained during the time allocated for the
execution of the initial part. The execution time of optimisation algorithms may be quite disperse, and hence
it is not easy to define the required slot duration for this part of the work: too large a duration would impose
design delays to other activities; too short and the potential for run-time overruns increases.

To avoid these issues during the optional phase, this pattern will first execute the initial part until completion.
Then it will inform the TT scheduler that it wants to leave the T'T priority level and be demoted to a given
non-disturbing priority, to execute the optional phase at that priority. This functionality is supported by
procedure Leave_TT_Level, that takes as parameters the Work_Id and the demoted priority, the latter defaulting
to a value Demoted_Priority given in the work’s definition. When the optional part completes, the task will wait
again for activation until the arrival of the final part slot, where the work’s task will execute the final part
using the best result obtained during the optional part. If the optional part had not finished by the time when
starting the final part is due, then the optional phase will be aborted (as in the Worker-With_Cancellation
pattern). Listing 2 gives the pattern implementation.

Figure 1 shows the execution of a system composed by a TT plan with three works (numbered 1, 2 and 3) and
two PB tasks (T4 and T5) scheduled under deadline monotonic. Work 1 follows the simple worker pattern, work
2 uses initial-final, and work 3 is initial-optional-final. Work 3 starts executing the initial part (marked 3;), which
gets completed before the end of the allocated slot duration. It then calls Leave_TT_Level to continue the execution
of the optional part (marked 3p) at the demoted priority, between T4 and T5, in competition with the rest of
tasks. When the optional part 3p completes, it calls Wait_For_Activation to wait for the arrival of the final part slot
(marked 3r). Note that the optional part is abortable, hence it can be forced to not cause overrun. All we need
to do is set the delay of the triggering statement to the right value: by the arrival of the next slot allocated to this
work. We obtain our last activation time by using the above mentioned Get_Last_Release. To this time, we need to
add the duration of all slots in between the current slot and the next slot for the current Work_Id. This imposes a
time cost (traversing the plan) that we do not want to charge on the scheduler at run time. To avoid this overhead
on the scheduler, we have added a field to the Slot_Type record, named Next_Slot_Separation. The separation to my
next slot can be easily calculated at design time and stored in the plan using this field, where the scheduler can
read it immediately. The API function Get_Next_Slot_Speration returns precisely this value for a given Work_Id.

Separation between initial and final slots
TT Plan i~ ™

TT tasks

i N o

Priority-based

T4 T _____

1 — | ml.

Figure 1. Execution of a Worker_With_Initial_Optional_Final pattern.

task body Worker_With_Initial_Optional_Final is
—— Common data to all parts goes here

begin
loop
TTS.Wait_For_Activation(Work_Id);
Initia_ Work ; —— Do initial part
TTS.Leave_TT_Level(Work_ld,Optional_Part_Prio); —— Prepare to start optional part
select
delay until TTS.Get_Last_Release(Work_ld) + TTS.Get_Next_Slot_Separation(Work_ld);
then abort
Optional_'Work; —— Do optional part
end select;

TTS.Wait_For_Activation(Work_Id);
Final Work; —— Do final part
end loop;
end Worker_With_Initial_Optional_Final ;

Listing 2. Pattern for control tasks with initial, optional and final parts

5 Discussion
In the following subsections, we discuss various aspects related to the proposed architecture.
5.1 Schedulability analysis

A schedulability analysis is needed to assess the feasibility of the full task set, including both the TT plan and the
PB levels. The plan can be guaranteed by construction, since it executes at the highest priority level and suffers
no interference from priority-based tasks. But the analysis of priority-based tasks needs to take into account
the interference caused by the execution of the higher-priority plan. Although there exists abundant literature
addressing schedulability analysis of priority-based systems under different assumptions, we need to incorporate
the interference produced by the time-triggered level by characterising the plan workload in a way that it can be
accounted for by a system-wide schedulability analysis.

One possibility is to consider the plan as a real-time transaction, as defined in the computational model of [8].
The period of the transaction would be the length of the plan and each time slot can be considered as a task
of the transaction with a static offset equal to its release time. As shown in Figure 2, adjacent time slots can
be considered as a single task in the resulting transaction. This transaction has the highest priority and the
interference introduced in lower priority levels can be computed as described in the above mentioned work [8].

TT plan
B [z2]3] s s

TT transaction

Figure 2. Transformation of a time-triggered plan into a transaction, for schedulability analysis.

5.2 Use in multiprocessor platforms

This combined approach of coexisting TT and PB tasks is also applicable on multiprocessor platforms, where
the advantage of increased performance can be exploited. However, it makes sense to apply certain constraints in
order to be able to assert timing guarantees. One is that plans have affinity: each plan runs on a different CPU. It
makes little sense to apply global multiprocessor scheduling (jobs can migrate at any time of their execution), but
we don’t need to go to the other extreme with full partitioning (nothing migrates). Controlled forms of migration
could be applied for cases where a single processor is insufficient to guarantee compliance with jitter restrictions.
Figure 3 illustrates this idea: there are two plans, running on two different processors. The TT task with Work_Id
1 has an initial and a final part (it follows the Worker_With_Initial_Final pattern described above). Given the
need to schedule works 2 and 3 on processor 0 when work 1z is due to be released, this final part of work 1 can
migrate to a different processor (processor 1 in this case) to find the CPU time that processor 0 cannot grant.
This flexibility however is not attainable without restrictions in the design of all plans: they need to be executed
synchronously in all CPUs (use a common clock and epoch), and all plans must have durations that are exact
multiples of each other.

oo [l (RN EEN
moes (a7 EE WS a0

Figure 3. The final part of work 1 is executed on a different processor than its initial part.

In order to enforce this association between plans and processors, we need control over tasks’ affinities. We
think the set of currently available facilities in Ada (via dispatching domains) is sufficiently rich. But for complete
control, affinity of timing events is also desirable. This feature is currently missing in Ada, although its usefulness
and implementability are the subject of ongoing work [13].

5.3 Ravenscar implementation

Our proposal assumes that there is an underlying priority scheduler in charge of ultimately scheduling all the
workload, both T'T and PB tasks. Although the TT workload is given the highest priority, and its scheduling points
are handled by (ideally fast and efficient) timing events, the scheduler will necessarily incur an extra overhead with
respect to the extremely simple scheduler of a pure TT scheduler. If the TT scheduler and task patterns were
implemented in Ravenscar, then the TT level would benefit from relying on an efficient and certifiable Ravenscar
run-time system.

Certification is a major concern in high-integrity, safety critical systems. TT scheduling finds a natural niche in
certified software because it is more amenable to certification than general priority scheduling. However, Ravenscar
also leads to certifiable implementations. So what would be the use of combining TT plans with Ravenscar tasks,
when one could implement everything in Ravenscar and eventually obtain a certifiable system? In our view, the
potential advantages are twofold: one is, the control and reduction of release jitter of TT tasks; the other is the
possibility for direct reuse of previously designed TT, including cyclic executives, which can be easily transformed
into a plan that is compliant with the model presented in Section 2.

Several aspects should be changed in our current implementation [11] to make it Ravenscar compliant. One
refers to the overrun control policy, since tasks cannot be demoted in Ravenscar. Task demotion should therefore
be reconsidered as a viable overrun handling policy. An alternative overrun handling policy could be a mode change
to enter a fail-safe mode, as in [9]. Or to let overrunning tasks to catch up by using successive slots in the plan.
Use of asynchronous transfer of control is also forbidden in Ravenscar, hence patterns that involve abortion (such
as the Worker_With_Initial_Optional_Final pattern) would need to be reconsidered as well. Other aspects of the
interface should also be adapted to Ravenscar, such as eliminating an entry family we are currently using in the
implementation of the TT scheduler. The release mechanism for TT tasks could instead be based on suspension
objects, rather than a protected entry family.

5.4 Use in mixed criticality systems

In mixed criticality systems, real-time tasks with different criticality levels share the same execution platform.
In such systems the run-time support has to guarantee a certain degree of time isolation between tasks with
different criticality levels. At any given moment the system is in a system criticality level that specifies which tasks
are active and which are not. When a task executes for longer than its allocated execution time at the current
system criticality level, a change of criticality level is due. Depending on the mixed criticality model, each task
in the system has a given amount of execution time allocated for each possible criticality level [3]. It is common
that high criticality tasks are given increasing execution slots in higher criticality levels. These different execution
times are normally due to the use of more conservative WCET estimation methods for higher criticality levels,
or due to probabilistic estimation of execution times, with higher criticality levels granting higher confidence on
the estimation. On the contrary, lower criticality tasks normally see their allocated execution time reduced as the
criticality level increases, which forces low criticality tasks to use simpler and simpler algorithms. In the extreme
case, low criticality tasks will never execute when the system criticality level is high enough.

On priority-scheduled systems, each criticality model can also use several approaches to determine the priority of
each task at a given system criticality level. However, under T'T scheduling, each task executes during its allocated
time slots independently of its criticality level. Even so, different plans can be built for each system criticality
level, indicating which tasks have to be executed in a given criticality level and for how long they have to execute.

When a TT task overruns its time slot, the scheduler automatically demotes the offending task. This is in order
to ensure time isolation among TT tasks and also to keep the interference on PB tasks within the assumptions of
the schedulability analysis. In a mixed criticality context, an overrun can trigger a change of the system criticality
level. Depending on the mixed criticality model, this could be supported by a plan replacement. Since the current
plan will only be changed at the next mode change slot, there will be a transient period where the system criticality
level has changed, but the active plan is still the previous one, corresponding to the previous criticality level. To
minimise the latency of the transition between plans, the scheduler can perform some on-line optimizations, such
as e.g. to shrink (or ignore) the time slots of the lower criticality tasks that require shorter (or null) execution
times in the incoming plan; and/or to enlarge the time slots belonging to high criticality tasks that require more
execution time in the new plan, so long as the current plan allows it.

6 Conclusions

Combining time-triggered (TT) and priority-based (PB) scheduling is a promising approach for applications
including jitter-sensitive activities and more jitter-tolerant tasks. A time-triggered schedule can be designed for
only the most demanding tasks (in terms of release jitter) whereas the rest of tasks in the system can be scheduled
by priorities. The experimental results presented in [11] show that release jitter can be confined to low values for
TT tasks, compared with the much higher variability of PB tasks.

In this paper we have referenced the approach presented in [11] and discussed several potential areas for ex-
tensions of the basic model, including schedulability analysis of the combined TT-PB system; considerations on
the use of this approach in multiprocessor platforms; changes needed to adapt our current Ada implementation to
Ravenscar; and the integration of these ideas in the context of mixed criticality systems.

There are other aspects of the proposal, some of which are the subject of current and future work. They include
the development of tools to aid in building plans (with automatic code generation as a useful add-on) and to
integrate this architecture in the framework proposed in [10, 12, 14].

References

[1] T. P. Baker and A. Shaw. The cyclic executive model and Ada. In Proceedings IEEE Real Time Systems Symposium
1988, Huntsville, Alabama, pages 120—129, 1988.

[2] P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo. A Task Model to Reduce Control Delays. Real-Time Systems,
27(3):215-236, September 2004.

[3] A. Burns and R. Davis. Mixed Criticality Systems - A Review. Technical report, Depatment of Computer Science,
University of York, 2013.

[4] A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis, Lund Institute of Technology, April 2003.

[5]
(6]

[12]

[13]

[14]

R. Dobrin. Combining Off-line Schedule Construction and Fized Priority Scheduling in Real-Time Computer Systems.
PhD thesis, Malardalen University, 2005.

S. Hong, X. Hu, and M. Lemmon. Reducing Delay Jitter of Real-Time Control Tasks through Adaptive Deadline
Adjustments. In IEEE Computer Society, editor, 22"¢ Euromicro Conference on Real-Time Systems — ECRTS, pages
229-238, 2010.

J. W. S. Liu. Real-Time Systems. Prentice-Hall Inc., 2000.

J. Palencia and M. Gonzalez-Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets. In 9th IEEE
Real-Time Systems Symposium, 1998.

M. J. Pont. The Engineering of Reliable Embedded Systems: LPC1769 edition. Number ISBN: 978-0-9930355-0-0.
SafeTTy Systems Limited, 2014.

J. Real and A. Crespo. Incorporating Operating Modes to an Ada Real-Time Framework. Ada Letters, 30(1):73-85,
April 2010.

J. Real, S. Sdez, and A. Crespo. Combining time-triggered plans with priority scheduled task sets. In M. Bertogna and
L. M. Pinho, editors, Reliable Software Technologies — Ada-Europe 2016, volume 9695 of Lecture Notes in Computer
Science. Springer, June 2016.

S. Sédez, J. Real, and A. Crespo. An integrated framework for multiprocessor, multimoded real-time applications. In
M. Brorsson and L. Pinho, editors, Reliable Software Technologies — Ada-Europe 2012, volume 7308, pages 18-34.
Springer-Verlag, June 2012.

S. Sdez, J. Real, and A. Crespo. Implementation of Timing-Event Affinities in Ada/Linux. Ada Letters, 35(1), April
2015.

A. J. Wellings and A. Burns. A Framework for Real-Time Utilities for Ada 2005. Ada Letters, XXVII(2), August 2007.

