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RESUMEN

Durante las primeras fases del proceso de desarrollo de nuevos productos, muchos de los
parámetros del producto desarrollado pueden cambiar y están por tanto sujetos a algún
tipo de incertidumbre. En particular, en la industria automotriz, estas incertidumbres en los
parámetros afectarán por último al comportamiento del vehículo que está siendo desarrol-
lado. Si se tiene como objetivo un comportamiento dinámico concreto, resulta de suma
importancia conocer que parámetro específico del vehículo tiene mayor importancia en de-
terminar la incertidumbre de la salida de interés.
Los modelos para la simulación del comportamiento dinámico de vehículos son conocidos
desde hace ya mucho tiempo y han sido utilizados con éxito para simular el comportamiento
de un vehículo bajo ciertas maniobras, cuando los parámetros del mismo son conocidos.
Sin embargo, incluso cuando algunos parámetros son inciertos, normalmente se pueden
aceptar ciertos supuestos razonables con respecto a su varianza, basados en la experiencia
o en productos anteriores similares, por ejemplo. Consecuentemente, la propagación de la
incertidumbre de los parámetros a las variables de salida y con ello el comportamiento
estocástico del modelo quedan, en principio, determinados.
En este trabajo se investigarán medidas de sensibilidad basadas en la varianza y métodos
para el análisis global de sensibilidad. En particular, se aplicará a la dinámica vehicular el
método de expansión en caos polinomial (con muchas aplicaciones en otros campos de la
ciencia y la ingeniería) y el cálculo de los índices de sensibilidad de Sobol basados en dicha
expansión.

Palabras Clave: Dinámica de Vehículos, Simulación, Métodos Númericos, Modelos Es-
tocásticos, Cuantificación de la Incertidumbre, Caos Polinomial, Análisis de Sensibilidad,
Medidas de Sensibilidad basadas en la Varianza, Índices de Sobol





ABSTRACT

During the early stages of any new product development, many parameters of the product
being developed will change and are therefore subject to uncertainty. In particular, in the
automotive industry, these uncertainties in the parameters will ultimately affect the behavior
of the vehicle being developed. If particular vehicle dynamics are targeted, knowing which
specific input parameter of the vehicle is more important in determining the uncertainty in
the output of interest is of utmost importance.
Vehicle dynamics models have been known and used for a long time and they can be very
useful for simulating the behavior of the vehicle under certain maneuvers if its parameters
are known. Nonetheless, even when some parameters are uncertain, reasonable assump-
tions can usually be accepted regarding their variance, based on experience or previous
similar products, for example. Consequently, the propagation of uncertainty from the param-
eters to the output variables and thus the stochastic behavior of the model can be deter-
mined in principle.
In this project, variance-based sensitivity measures and methods for global Sensitivity Anal-
ysis will be investigated. In particular, the Polynomial Chaos Expansion method (with many
applications in other fields of science and engineering) and the computation of Sobol’ sen-
sitivity indices based on polynomial chaos expansions will be applied to the simulation of
vehicle dynamics.

Keywords: Vehicle Dynamics, Simulation, Numerical Methods, Stochastic Models, Un-
certainty Quantification, Polynomial Chaos, Sensitivity Analysis, Variance-based Sensitivity
Measures, Sobol’ Indices
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1 INTRODUCTION

1 INTRODUCTION

The design of vehicle dynamics depends on several factors which will change over the
course of the development process of the vehicle, until the final product is ready for pro-
duction. These changes ultimately affect the behavior of the vehicle and thus it is of utmost
importance to be able to quantify their effects on the output signals of interest. In this re-
gard, simulation models offer a valuable solution since they provide a means of replicating
the behavior of a vehicle under certain maneuvers in a reproducible fashion. Consequently,
different sets of uncertain parameters can be applied to simulation models in order to inves-
tigate the resulting uncertainty in any of the relevant output signals.

Uncertainties may arise from different sources. For example, the mathematical model may
not be able to describe the underlying physics accurately, this is known as structural uncer-
tainty or model inadequacy. Furthermore, the model parameters may not be exactly inferable
or determinable, also known as parameter uncertainty. In addition, if the input parameters
are determined from measurements, there is always an associated experimental uncertainty.
All these sources of uncertainty have an impact on the results of the simulations and conse-
quently the output signals are no longer single values but random variables with their own
probability distributions. Therefore uncertainties propagate from the input parameters to the
output variables and quantifying this propagation may be further investigated by means of a
global Sensitivity Analysis (SA).

Nowadays there are several approaches to deal with these problems. One of the first and
best known techniques is the Monte Carlo Simulation (MCS) Method (Metropolis & Ulam,
1949), whose use is indeed fairly restricted due to its slow rate of convergence, which causes
long computing times. Nevertheless, alternatives to this method have been proposed and
developed, for example using Fuzzy-Set Theory (Hanss, 2002), the Method of Dimension-
ality Reduction (Rahman & Xu, 2004; Xu & Rahman, 2004) or the modified Monte Carlo
Method with Stratified Sampling (Shields, Teferra, Hapij, & Daddazio, 2013). In this work
a method for the quantification of output uncertainties caused by uncertainties in the input
parameters will be presented and used – namely the Polynomial Chaos Expansion (PCE)
– and variance-based measures for SA will be computed by means of the so-called Sobol’
indices.

Based on the theory of Homogeneous Chaos formulated by Wiener (1938) and subse-
quently enhanced by Cameron and Martin (1947), Ghanem and Spanos (1991) along with
Xiu and Karniadakis (2002), PCE is by now a widely spread technique according to Xiu
(2010, p. 4), with many applications in different fields of science, such as Fluid Dynamics
(Le Maitre & Knio, 2010), Finite Element Methods (Ghanem & Spanos, 1991) or Failure
Detection (Paffrath & Wever, 2007), among others. The fundamental idea of PCE is the ap-
proximation of a model’s output by an expansion in an orthogonal polynomial basis, whose
appropriate selection results in exponential convergence of the approximation.

Regarding global SA, a number of methods are available depending on the different con-
straints of the problem being investigated, such as linearity of the model output with respect
to its inputs, the number of outputs, the presence of correlated inputs and/or interactions

1



1 INTRODUCTION

between them. In particular, variance-based methods are suitable whenever non-linearity,
non-monotonic behavior or both are present in the model response (see Andrea Saltelli,
Tarantola, Campolongo, & Ratto, 2004, p. 188).

The main goal of this work is to apply the PCE Method to the simulation of vehicle dynamics
and to derive Sobol’ indices for their use in global SA from the coefficients of the PCE.
Since, as mentioned before, most of the parameters affecting vehicle dynamics change
throughout the development process, it is of maximum importance to be able to quantify the
changes in the behavior of the system for a certain bandwidth of the input parameters and
thus being able to answer questions such as: “which of the uncertain input factors is more
important in determining the uncertainty in the output of interest?" or “if we could eliminate
the uncertainty in one of the input factors, which factor should we choose to reduce the most
the variance of the output?" (see Andrea Saltelli et al., 2004, p. ix), which may be relevant
for the development process of the vehicle.

To clarify the methods and techniques used in this work, they will be first applied to some
test functions that are commonly used in the field of Uncertainty Quantification (UQ) and
next to a simple Single-Track Model (STM) before they are finally put to use in a more com-
plex environment with a non-linear Two-Track Model (TTM). The present work is therefore
structured following this arrangement. In Chapter 2 the theoretical framework for the PCE
and the global variance-based SA will be established. Chapter 3 will present a comparison
of different non-intrusive methods that can be used for the computation of the PCE coeffi-
cients, paying special attention to differences in their performance. Additionally, the method
for computing Sobol’ indices from the PCE coefficients will also be presented in this chap-
ter. The results of applying the aforementioned methods to appropriate test functions, the
STM and the TTM will be presented in Chapter 4. Finally, Chapter 5 will encompass a brief
summary of this work, the conclusions and some recommendations for future work.

2



2 THEORETICAL FRAMEWORK

2 THEORETICAL FRAMEWORK

This chapter presents a summary of the basic theoretical knowledge required in order to
understand the methods and problems described within the present work, starting with the
foundations of Polynomial Chaos (PC) and following with a brief introduction to Sensitivity
Analysis (SA).

2.1 Polynomial Chaos

The foundations for PC were first established by Norbert Wiener in 1938 with his work in
Homogeneous Chaos (Wiener, 1938), where he showed that any normally distributed ran-
dom variable could be expressed as an infinite sum of Hermite polynomials of different
orders weighted by some coefficients, thus enabling stochastic processes to be modeled
accordingly. The application of Homogeneous Chaos to arbitrary L2-functions dates back to
1947 and is attributed to Cameron and Martin (Cameron & Martin, 1947), while the exten-
sion of PC to common distributions other than Gaussian was carried out many years later
by Xiu and Karniadakis (Xiu & Karniadakis, 2002). In this section, the foundations of PC will
be explained beginning with the most fundamental ideas, i.e. orthogonal polynomials.

2.1.1 Orthogonal polynomials

Orthogonal polynomials are of utmost importance for the theory of PC, since they are used
as the basis for the expansion of the random variable of interest.

In particular, a system of polynomials {Ψn(x), n ∈ N0} of n-th degree with:

Ψn(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x + b0, bn 6= 0, x ∈ R (2.1)

is orthogonal, as stated in Schoutens (2000, p. 3), in terms of a positive measure α(x) ∈ R+
0

with respect to the sample space Ω, if the property of orthogonality in terms of the inner
product:

〈Ψn(x),Ψm(x)〉 = E[Ψn(x)Ψm(x)] =

∫
Ω

Ψn(x)Ψm(x)dα(x) = γnδnm, n,m ∈ N0 (2.2)

is fulfilled. α(x) usually represents a probability density function ρ(x), γn is a non-zero value,
also known as normalizing constant and δnm is Kronecker’s delta, defined as:

δnm =

{
1, if n = m

0, if n 6= m

That is, if n 6= m then:
〈Ψn,Ψm〉 = 0

3



2 THEORETICAL FRAMEWORK

Consequently, for continuous probability distributions one can use the following expression:∫
Ω

Ψn(x)Ψm(x)ρ(x)dx = γnδnm (2.3)

On the other hand, if the probability distribution is discrete, Schoutens (2000, p. 3) defines
equation (2.3) for nodes xj with weighting function ρ(xj) as:∑

j

Ψn(xj)Ψm(xj)ρ(xj) = γnδnm, j ∈ N0 (2.4)

In addition, if γn = 1 the system is said to be orthonormal.

For further details on orthogonal polynomials the reader is referred to specific literature on
the subject, for example Szegö (1939); Chihara (1978) or Xiu (2010).

Following the theory of discrete chaos as exposed by Wiener in his article (Wiener, 1938),
stochastic processes with Gaussian random variables may be modeled by an expansion
in terms of Hermite polynomials and, in fact, the PCE derived thereof converges exponen-
tially. Xiu and Karniadakis (2002) generalized the results of the Cameron-Martin theorem
(Cameron & Martin, 1947) to other continuous and discrete distributions by using appropri-
ate orthogonal polynomials from the so-called Askey-Scheme (Askey & Wilson, 1985), thus
giving rise to generalized Polynomial Chaos (gPC), which will be presented in what follows.

2.1.2 Generalized polynomial chaos expansion

Next, the basic theory of gPC will be clarified. gPC is based on the expansion of stochastic
processes or random variables by means of orthogonal polynomial bases.

The foundation of a stochastic mathematical model is the existence of a probability space
or triple (Ω,F ,P) where Ω represents the sample space, F ⊂ 2Ω is a set of events (a
σ-algebra on Ω) and P is a probability measure. Moreover, convergence is satisfied in a
mean-squared sense for a stochastic process of finite second-order moments by virtue of
the Cameron-Martin theorem (Cameron & Martin, 1947), implying L2 convergence in the
Hilbert space defined as:

L2 = L2(Ω,F ,P) = {X : E[X2] <∞} (2.5)

with the norm ‖X‖ =
√
〈X,X〉 induced by the inner product 〈X, Y 〉 = E[XY ] (see Xiu, 2010,

p. 23), with the (weighted) inner product being defined by the integrals in equation (2.2).

If the weighting function of the orthogonal polynomials being used has the same form (except
for a constant factor) as the weighting function of the distribution of the random variable
the convergence rate for the corresponding PCE is optimal (see Xiu & Karniadakis, 2002).
Table 2.1 shows some common continuous and discrete probability distributions and their
corresponding gPC basis polynomials from the Askey-Scheme as first investigated by Xiu
and Karniadakis (2002) and as presented in Xiu (2010, p. 59).

Following, gPC will be further detailed by means of the more general multivariate case, for
a description of the univariate case the reader is referred to the bibliography on the subject,
for example Xiu (2010, pp. 57–63) or Ghanem and Spanos (1991, p. 47 ff.)

4



2 THEORETICAL FRAMEWORK

Distribution of the random variable zi gPC basis polynomial Ψi Support

Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . . }
Binomial Krawtchouk {0, 1, . . . , N}
Negative binomial Meixner {0, 1, 2, . . . }
Hypergeometric Hahn {0, 1, . . . , N}

Table 2.1: Correspondence between the gPC polynomial basis and their underlying random vari-
ables, Askey-Scheme (Xiu, 2010, p. 59)

Multivariate gPC

When more than one independent random variables are present in the stochastic models
being used, multivariate gPC must be used.

As detailed in Xiu (2010, p. 64 ff.), let Z = (Z1, . . . , Zd) be a random vector with dimension
d , whose components are mutually independent with joint Cumulative Distribution Function
(CDF) FZ(z1, . . . , zd) = P (Z1 ≤ z1, . . . , ) and marginal CDF FZi (zi) = P (Zi ≤ zi) for Zi
with i = 1 . . . d and support IZi . Mutual independence of every Zi means that FZ(z) =∏d
i=1 FZi (zi) and Iz = IZ1

× · · · × IZd . Moreover, let {Ψk(Zi)}Nk=0 ∈ PN(Zi) be the univariate
gPC basis functions in Zi of degree up to N, so that:

E[Ψn(Zi)Ψm(Zi)] =

∫
Ψn(z)Ψm(z)dFZi (z) = γnδnm, 0 ≤ n,m ≤ N (2.6)

Then, in order to define the d-variate Nth-degree gPC basis functions a multi-index is
needed, which is defined as follows:

i = (i1, . . . , id) ∈ Nd0 , with |i | = i1 + · · ·+ id (2.7)

Thus, the d-variate basis functions can now be defined in terms of products of univariate
gPC polynomials of total degree less than or equal to N:

Ψi = Ψi1 (Z1) . . .Ψid (Zd) =

d∏
k=1

Ψik (Zk), 0 ≤ |i | ≤ N (2.8)

From 2.6 it follows that:

E[Ψi (Z)Ψj (Z)] =

∫
Ψi (z)Ψi (z)dFZ(z) = γiδi j (2.9)

where γi = E[Ψi
2] = γi1 . . . γid are the normalizing constants and δi j = δi1j1 . . . δid jd is the

d-variate Kronecker delta function.

According to Sudret (2008) and Xiu (2010) if a stochastic model is represented by Y =

f (Z) ∈ L2
dFZ (IZ), with L2

dFZ (IZ) being the space of all mean-square integrable functions

5



2 THEORETICAL FRAMEWORK

with respect to the measure dFZ , then the stochastic model may be approximated by its
Nth-degree gPC as:

Y = f (Z) ≈
∑
|i |≤N

yiΨi (Z), Z = (Z1, . . . , Zd) (2.10)

Note that although convenient for the formulation, the multi-index notation can be cumber-
some to manipulate and thus a single index (k) is used in practice. A common choice for
the computation of this single index being the graded lexicographic order, where i > j if and
only if |i | ≥ |j | and the left-most non-zero entry of the difference, i − j , is positive. The multi-
index can now be ordered in an ascending order following a single index. An example for a
4-dimensional case is shown in table 2.2 (as presented in Xiu (2010, p. 66) and corrected
according to the definition of graded lexicographic ordering).

|i | Multi-index i Single index k

0 (0 0 0 0) 0

1 (0 0 0 1) 1
(0 0 1 0) 2
(0 1 0 0) 3
(1 0 0 0) 4

2 (0 0 0 2) 5
(0 0 1 1) 6
(0 1 0 1) 7
(1 0 0 1) 8
(0 0 2 0) 9
(0 1 1 0) 10
(1 0 1 0) 11
(0 2 0 0) 12
(1 1 0 0) 13
(2 0 0 0) 14

3 (0 0 0 3) 15
(0 0 1 2) 16
(0 1 0 2) 17

. . . . . .

Table 2.2: Example of graded lexicographic ordering of a multi-index i in 4 dimensions, adapted from
Xiu (2010, p. 66)

Therefore, the gPC approximation of the stochastic model Y can be now expressed in terms
of the single index k as follows:

Y = f (Z) ≈
P−1∑
k=0

ykΨk(Z) (2.11)

with the number of terms in the sum (also the number of unknown (vector) coefficients yk )
being:

P =

(
N + d

N

)
=

(N + d)!

N!d!
(2.12)
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The coefficients yk = yk(t) are unknown but deterministic, and they are in general time-
dependent (Xiu, 2010, p. 67). They are usually referred to as the spectral coefficients of
the gPC expansion, unknown coefficients, response coefficients or simply expansion coeffi-
cients. Different methods for the computation of these spectral coefficients are available and
will be presented later in this work, in Chapter 3.1.

Additionally, note that the number of terms of the PCE to be computed depends on the
dimension d and the order N being used (as given by equation (2.12)).

Given the PCE of a random variable, important properties and statistics thereof can be easily
computed, for instance statistical moments, as presented in the following section.

2.1.3 Computation of statistical moments

In general, the k-th moment of a random variable Z ∈ Ln(P) with n ∈ N can be defined as:

mk = E[Zk ] =

∫
Ω

ZkdP (2.13)

(See Klenke, 2014, p. 101).

In particular, given the gPC approximation, the expectation and the variance of the output
Y are easily computed by using the orthogonality property (equation (2.2)) and the fact that
Ψ0 = 1, as presented in Augustin (2012, p. 11 ff.); Berveiller (2005, p. 57) and Sudret (2008,
p. 971):

E[Y ] = m1

=

∫
Ω

(
P−1∑
k=0

ykΨk

)
Ψ0dP

= 〈y0Ψ0,Ψ0〉
= y0

(2.14)

That is, the expectation of Y can be computed as the first term of its PCE.

Var[S] = m2 −m2
1

=

∫
Ω

(
P−1∑
k=0

ykΨk

)P−1∑
j=0

yjΨj

dP − y2
0

=

P−1∑
k=1

y2
kE[Ψ2

k ]

(2.15)

Moments of higher order can be computed analogously, although the resulting expressions
are cumbersome and the reader is referred to the aforementioned literature (Augustin (2012)
and Berveiller (2005)) for further details.

From these expressions one may observe that in order to compute the statistics of the model
Y = f (Z) it is not necessary to compute its full response but only the coefficients of its gPC
expansion are required. Furthermore, one can notice that it is also possible to approximate

7
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the statistics of the response Y by randomly sampling its gPC expansion and estimating the
desired statistics from the resulting histogram.

2.1.4 Probability density function estimation

Besides statistical moments, it is also useful to have some information about the Proba-
bility Density Functions (PDFs) of the output variables of interest. Nonetheless, obtaining
the PDF from the roots of the polynomials is not a simple task and an analytical solution
requires considerable effort, specially with increasing stochastic dimension and, in fact, a
general expression does not exist, according to B. J. Debusschere et al. (2004). Therefore
approximations to the actual PDF are usually computed instead, for instance the Kernel
Density Estimation (KDE) (Parzen, 1962).

As defined in Härdle and Simar (2007, p. 13) the general Kernel Density Estimator has the
following form:

f̂h(x) =
1

nh

n∑
i=1

K(
x − xi
h

) (2.16)

where n is the number of samples used, h is the so-called bandwidth and K(u) is the kernel.
The bandwidth h determines the degree of smoothness of the estimate f̂h (Härdle & Simar,
2007, p. 16) and can be optimized (for example, by cross-validation), while different kernels
generate different shapes of the estimated PDF. Table 2.3 lists some commonly used ker-
nels as presented in Härdle and Simar (2007, p. 14), where I(M) is the indicator function for
a set M, which is 1 on M and 0 otherwise.

Name Kernel K(u)

Uniform 1
2I(|u| ≤ 1)

Triangle (1− |u|)I(|u| ≤ 1)

Epanechnikov 3
4 (1− u2)I(|u| ≤ 1)

Quartic (Biweight) 15
16 (1− u2)2I(|u| ≤ 1)

Gaussian 1√
2π
e−

1
2
u2

Table 2.3: A list of commonly used kernels, (Härdle & Simar, 2007, p. 14)

The basic principle behind KDE is to apply the kernel centered on each sample xi , the
density estimate is then the average over all kernels, as indicated by equation (2.16).

The MATLAB function ksdensity serves the purpose of KDE and will be used in this work.

2.1.5 Sobol’ decomposition of the PCE

In order to compute the sensitivity indices as will be explained later in section 2.2.3, it is
convenient to express the gPC expansion of the model fPC(Z) ≈ f (Z) = Y by means of the
so-called Sobol’ decomposition, which will be detailed in what follows.

Recall that the gPC expansion of Y is given by the following expression: fPC(Z) =
∑P−1
k=0 ykΨk(Z).

Now, represent the multivariate orthogonal polynomial being used by means of the multi-

8
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index α = (α1, . . . , αn), that is:

Ψα =

d∏
i=1

Ψαi (Zi) (2.17)

Then define Ii1,...,is , the set of α tuples such that only the indices (i1, . . . , is) are non-zero:

Ii1,...,is =

{
α :

αk > 0 ∀k = 1, . . . , d, k ∈ (i1, ..., is)

αk = 0 ∀k = 1, . . . , d, k /∈ (i1, ..., is)

}
(2.18)

Since Ii corresponds to the polynomials depending only on parameter Zi , the terms in the
gPC expansion in 2.11 may now be grouped according to the parameters they depend on,
as described by Sudret (2008, p. 971):

fPC(Z) =f0 +
∑

1≤i≤d

∑
α∈Ii

yαΨα(Zi)


+

∑
1≤i1<i2≤d

 ∑
α∈Ii1,i2

yαΨα(Zi1 , Zi2 )

+ . . .

+
∑

1≤i1<···<is≤d

 ∑
α∈Ii1,...,is

yαΨα(Zi1 , . . . , Zis )


+ · · ·+

∑
α∈I1,2,...,d

yαΨα(Z1, . . . , Zd)

(2.19)

Due to the uniqueness of the Sobol’ decomposition, the expansion in equation 2.19 is unique
see, Sudret (2008, p. 971) and thus it is the Sobol’ decomposition of fPC(Z).

Next, an introduction to Sensitivity Analysis (SA) is presented together with a description of
variance-based measures and the definition of the Sobol’ indices.

2.2 Sensitivity Analysis

A possible definition of Sensitivity Analysis (SA) according to Andrea Saltelli et al. (2004,
p. 45) is the following: “The study of how the uncertainty in the output of a model (numeri-
cal or otherwise) can be apportioned to different sources of uncertainty in the model input".
However, in order to answer problem-specific questions, the choice of an appropriate SA
method and an adequate sensitivity measure must be carried out carefully, taking into ac-
count a number of “desired properties" for the analysis and “possible settings" of constraints
of the model being used (Andrea Saltelli et al., 2004, p. 45).

Independently of the method being used, the general methodology in SA (as described by
Andrea Saltelli et al., 2004, pp. 45–47) is as follows:

1. Establish the goal of the analysis and the output function that answers the question(s)
of interest.

2. Decide which input factors should be investigated.

3. Choose a distribution function for each of the inputs, from the literature, derived from
data, based on an expert’s opinions, etc.

9
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4. Choose a SA method based on:

The questions being addressed.

The number of model evaluations that can be afforded.

The presence of correlations between input factors.

5. Generate the input sample, according to the method used for the SA.

6. Evaluate the model on the generated sample and produce the output.

7. Analyze the model outputs and draw conclusions from them. It is also possible that a
new iteration of the whole process is needed.

Consequently, in order to select an appropriate SA method it is important to define which
are the “desired properties", which will be briefly presented here (see Andrea Saltelli et al.,
2004, pp. 47–49):

Scale and shape Ability to handle different shapes and forms of PDFs.

Multidimensional averaging Evaluate the effect of a factor while all others are also
varying.

Model independence The method should work independently of the additivity or linearity
of the model. It should as well be able to capture interaction effects.

Grouping of factors Being able to treat grouped factors as if they were single factors.

For further details on the subject, the reader is referred to Andrea Saltelli et al. (2004, Chap-
ter 2).

2.2.1 Local vs. global

In addition, SA methods can be categorized into two groups, local methods and global ones.

On the one hand local methods are usually based on partial derivatives, that is, the influence
of the variation of an input factor Xj while all others are kept constant on the model output
Y . This influence can be computed by means of a partial derivative:

Sj =
∂Y

∂Xj
(2.20)

While useful in some situations, this method lack some important desired properties for SA
according to Andrea Saltelli et al. (2004, p. 48, Table 2.1).

On the other hand global methods explore the entire interval of definition or the full spectrum
of each factor, as opposed to local methods, where only one point of the factors’ space is
explored. Therefore the influence of the variation of an input factor on the model output is in
fact an average over all possible values of the other factors, for that reason global methods
possess multidimensional scaling (Andrea Saltelli et al., 2004, p. 44 ff.).

There are several global SA methods. In what follows, variance-based sensitivity will be
presented. For further information on different global sensitivity measures the reader is
again referred to the literature on the subject, such as Andrea Saltelli et al. (2004) or A.
Saltelli et al. (2008).
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2.2.2 Variance-based measures

As shown in Andrea Saltelli et al. (2004, p. 48, Table 2.1) variance-based methods possess
all of the aforementioned desirable properties for a sensitivity measure and are thus very
useful in a wide number of scenarios.

Variance-based measures are based on the so-called Analysis of Variance (ANOVA) or
Sobol’ functional decomposition, as presented in Sobol (2001, p. 272); Crestaux, Le Maitre,
and Martinez (2009, p. 1165) or Sudret (2008, p. 966) and shown in equation (2.21).

Consider, for simplicity, the d-dimensional random vector of input variables ξ, whose com-
ponents are independent identically distributed random variables ξi , with Ωd = Ω× · · · ×Ω︸ ︷︷ ︸

d-times
as range and p(ξ) as joint PDF. Since the random variables are independent the joint PDF
can be expressed as the product of the marginal PDFs: p(ξ) =

∏
i p(ξi). Finally, the model

output Y = f (ξ) assuming that ξ ∈ Ωd 7→ f (ξ) ∈ L2(Ωd , p(ξ)) can be expressed by its Sobol’
functional decomposition:

f (ξ) = f0 +

d∑
s=1

d∑
i1<···<is

fi1...id (ξi1 , . . . , ξis ) = f0 +
∑
i

fi(ξi)+
∑
i<j

fi j(ξi , ξj)+· · ·+f12...d(ξ1, . . . , ξd)

(2.21)

Whose total number of summands is 2d . As detailed in Crestaux et al. (2009, p. 1165), it can
be shown that the integral of each summand fi1...is (ξi1 , . . . , ξis ) over any of its independent
variables ξik is zero:∫

Ω

fi1...is (ξi1 , . . . , ξis )p(ξik )dξik = 0, ∀ik ∈ (i1, . . . , is) (2.22)

This implies the orthogonality of the summands in equation (2.21), let u = (u1, . . . , us) be
a multi-index, with |u| = card(u) = s, and let v be another multi-index defined analogously,
then: ∫

Ωd

fu(ξu)fv (ξv )p(ξ)dξ = 0, ∀u 6= v (2.23)

And thus they can be computed as integrals of the model output f (ξ), indeed according to
Crestaux et al. (2009, p. 1165):

fu(ξu) =

∫
Ωd−|u|

f (ξ)p(ξ∼u)dξ∼u −
∑
v⊂u
v 6=u

fv (ξv ) (2.24)

Where ξ∼u is the vector ξ without the elements of the multi-index u. For example:

ξ∼i = (ξ1, . . . , ξi−1, ξi+1, . . . , ξd) (2.25)

With this functional decomposition and defining the total variance D of the output Y = f (ξ)

as described in Crestaux et al. (2009, p. 1165):

D =

∫
Ωd

f 2(ξ)p(ξ)dξ − f 2
0 (2.26)

11
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The conditional variances Du are easily defined by:

Du =

∫
Ω|u|

f 2
u (ξu)p(ξu)dξu (2.27)

Furthermore, according to Crestaux et al. (2009)Du can also be expressed as a combination
of conditional variances:

Du = Var(E[f (ξ)|ξu ])−
∑
v⊂u
v 6=u
v 6=∅

Dv (2.28)

Finally, due to the orthogonality of the decomposition, the sum of the conditional variances
Du is the total variance of the output D:

D =
∑

u⊆{1,2,...,d}
u 6=∅

Du (2.29)

(See Crestaux et al., 2009).

2.2.3 Sobol’ indices

From the above definitions one can then define the (global) Sobol’ sensitivity indices of order
s = |u| as:

Su = Su1,...,us =
Du1,...,us

D
=
Du
D

(2.30)

(See Crestaux et al., 2009).

And from equation (2.28) one has that: ∑
u⊆{1,2,...,d}

u 6=∅

Su = 1 (2.31)

As described in Crestaux et al. (2009, p. 1166), each Sobol’ index Su is a measure of the
contribution of the variance of the variables in ξu to the variance in the output Y = f (ξ),
without taking into account the effect of the variables in ξv for v ⊂ u and v 6= u. That is, for
example, the second-order sensitivity index Si j , measures the sensitivity of the variance of
the output Y = f (ξ) with respect to ξi and ξj , without taking into account the effects of each
variable separately (described by Si and Sj ).

Furthermore, the number of Sobol’ sensitivity indices increases exponentially with the di-
mension d as 2d −1. Consequently, specially for problems with many uncertain parameters,
total Sobol’ indices were introduced first by Homma and Andrea Saltelli (1996).

Total Sobol’ sensitivity indices denoted by STi measure the total sensitivity of the variance of
Y = f (ξ) caused directly by variable ξi and all of its interactions with the rest of the variables
in ξ. According to Crestaux et al. (2009, p. 1166), the total Sobol’ sensitivity indices can be
defined as:

STi =
∑
u3i

Su (2.32)
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Or, alternatively, as defined by Sudret (2008, p. 967), as the sum of the partial sensitivity
indices Si1,...,is involving index i :

STi =
∑
Ii

Si1,...,is , with Ii = {(i1, . . . , is) : ∃k, 1 ≤ k ≤ s, ik = i} (2.33)

For example for the 3-dimensional case (d = 3) ST1
can be computed as:

ST1
= S1 + S12 + S13 + S123

An important property, as described in Crestaux et al. (2009, p. 1166), is that:

E[Var(Y |ξ∼i)]

Var(Y )︸ ︷︷ ︸
STi

+
Var(E[Y |ξ∼i ])

Var(Y )
= 1 (2.34)

And consequently, STi can be also expressed, according to Sudret (2008, p. 967), as:

STi = 1− S∼i (2.35)

Where S∼i is the sum of all partial sensitivity indices Si1,...,is that do not contain index i .

As it will be shown later in section 3.2, Sobol’ indices can be directly and easily computed
from the spectral coefficients of the PCE, but they can also be computed with classical
methods such as Monte Carlo (MC) or even Quasi-Monte Carlo (QMC) simulation. This last
alternative will come in useful in order to compare and validate the results of the PC-based
method.
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3 NUMERICAL METHODS

In this chapter, the numerical methods used in this work will be presented. Starting with
some of the most common methods for the computation of the PCE coefficients, whilst
describing first the existing differences between the intrusive and non-intrusive approaches.
Following, the PC-based technique used to compute the Sobol’ sensitivity indices will be
presented and compared with the sampling-based methods.

3.1 Computation of the PCE Coefficients

As presented in section 2.1 and in particular in equation (2.11), the use of gPC expansions
requires the computation of a number of deterministic (in general, time-dependent) coeffi-
cients or unknowns, the so-called spectral coefficients (yk , k ∈ 0, 1, . . . , P ). The determi-
nation of these coefficients is the most expensive step in terms of computational cost, since
the post-processing, i.e. computing statistical moments or the Sobol’ indices is relatively fast
once the coefficients are known. For the purpose of computing the spectral coefficients, a
number of methods are available, some of which will be presented in the following section.

3.1.1 Intrusive vs. non-intrusive methods

First of all, a distinction must be made, between intrusive and non-intrusive methods. The
intrusive non-deterministic method, is based on a Galerkin projection. According to Xiu
and Karniadakis (2002, p. 9 ff.) if the following Stochastic Differential Equation (SDE) is
considered: {

L(x, t, ξ; Y ) = f (x, t; ξ), (0, T ] ∧ Rd , (d ∈ N0)

Y = Y0, t0 ∧ Rd
(3.1)

where Y = Y (x, t; ξ) is the solution of the SDE and f (x, t; ξ) is the right-hand side, contain-
ing no differential operators. Furthermore, the differential operator L, be it in space and/or
time, can be linear or non-linear. Moreover, the initial value Y0 must be considered for the
existence of a solution to the initial value problem. The vector ξ = (ξ1, . . . , ξN) ∈ RN rep-
resents the random input parameters, which can indeed refer to initial, boundary or system
parameters.

The Galerkin projection method is firstly based on the approximation of the solution by a
gPC expansion. Next, the SDE is projected onto the subspace of orthogonal polynomials
Ψj being used and the ensemble average or inner product is further applied. As presented
by Xiu and Karniadakis (2002), the resulting coupled deterministic system of equations is:〈

L

(
x, t, ξ;

P−1∑
k=0

ykΨk

)
,Ψi

〉
= 〈f (x, t; ξ),Ψi〉 (3.2)
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Afterwards the orthogonality property of the polynomial basis can be used to simplify the
approximate solution. Nonetheless, a general solution to equation (3.2) does not exist and
a problem-specific numerical method must be explored. For that reason this method is
sometimes qualified as intrusive, since according to Sudret (2008, p. 968), it requires heavy
ad hoc implementation for the specific problem of interest.

As an alternative, non-intrusive methods have been recently developed, for example the
Non-intrusive Spectral Projection (NISP) method and the Linear Regression Method (LRM).
In the following, both methods will be briefly explained and two different strategies for the
numerical integration of the expressions appearing in the NISP will be presented, namely
the tensor product rule and Smolyak’s Sparse Grid Integration (SGI).

3.1.2 Linear regression method

The linear regression approach is based on the regression of the exact solution Y with
respect to the gPC basis: {Ψj(ξ), j = 0, . . . , P −1}. As described in Sudret (2008, p. 969),
assuming that the scalar response quantity Y can be expressed as:

Y = f (Z) = Ỹ (ξ) + ε (3.3)

Ỹ (ξ) =
P−1∑
k=0

ykΨk(ξ) (3.4)

where the residual ε is supposed to be a zero-mean variable and Y = {yk , k = 0, . . . , P −1}
is the set of unknown coefficients. Minimizing the Mean Squared Error (MSE) of the residual
with respect to the unknown coefficients leads to:

Y = Argmin
{
E[(f (Z(ξ))− Ỹ (ξ))2]

}
(3.5)

Equation (3.5) can be solved by choosing a set of N regression points {ξ1, . . . , ξN}. Then,
according to Sudret (2008) the MSE minimization leads to:

Y = Argmin

 1

N

N∑
j=1

[
f (z j )−

P−1∑
k=0

ykΨk(ξj)

]2
 (3.6)

The solution to equation (3.6) can then be obtained as:

Y = (ΨTΨ)−1 ΨT Yex (3.7)

Where Ψ is a matrix whose entries are Ψi j = Ψj(ξ
j), ∀i = 1, . . . , N, ∀j = 0, . . . , P − 1

and Yex = {f (z i), i = 1, . . . , N} is the vector containing the exact response of the model
at the regression points, the set {z1, . . . , zN} also known as the experimental design. The
matrix ΨTΨ is the so-called information matrix, which might be, unfortunately, ill-conditioned.
Thus a specific solver such as the singular value decomposition method should be used, as
suggested by Sudret (2008, p. 969).

The information matrix A = ΨTΨ can be expressed as:

Ai j =

N∑
k=1

Ψi(ξ
k)Ψj(ξ

k) (3.8)
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And therefore A can be seen as the sum of N basic matrices akij = Ψi(ξ
k)Ψj(ξ

k). In order for
the information matrix A to be invertible, it is obvious that rank(A) ≥ P . According to Sudret
(2008), since the basic matrices ak are square matrices of size P and they have unit rank,
at least P such matrices should be added.

The optimal design of experiment in terms of the D-optimality criterion is given by the tensor
product of the roots of the orthogonal polynomial being used ({r1, . . . , rP }) in the gPC expan-
sion, that is, the set of M-tuples built using all possible combinations of the unidimensional
roots, as presented by Sudret in Sudret (2008, p. 969):

r k = (ri1 , . . . , riM ), 1 ≤ i1 ≤ · · · ≤ iM ≤ P, k = 1, . . . , PM (3.9)

Nevertheless, since only the multivariate polynomials of total degree less than P − 1 are
considered (and not the full tensor of unidimensional polynomials of degree less than P −
1), the following iterative algorithm can be used, in order to obtain an improved design of
experiment which requires fewer evaluations of the model, according to Sudret (2008, p.
970 ff.):

• Compute the M-tuples based on the roots of the orthogonal polynomial being used in
the gPC expansion.

• Order the M-tuples by increasing norm.

• Iteratively assemble the information matrix A by adding the corresponding basic matri-
ces ak for the k th M-tuple, until it becomes invertible.

Note that the number of model evaluations N depends on the number of random input vari-
ablesM and the degree of the gPC expansion P−1, and that it cannot be determined a priori
and is also a result of the iterative assembly process. Furthermore, although the information
matrix A built in this way is invertible, it might still be ill-conditioned, as mentioned previously,
so that a singular value decomposition algorithm should still be used for the computation of
the rank at each step of the assembly process. In this work MATLAB’s rank function is used,
which applies such a singular value decomposition algorithm.

3.1.3 Non-intrusive spectral projection

Another approach for the computation of the spectral coefficients of the gPC expansion is
the NISP method. This technique takes advantage of the orthogonality of the PC basis.
Computing the inner product of the gPC expansion of the model output Y = f (ξ) with Ψj :

〈
f (ξ),Ψj

〉
=

〈
P−1∑
k=0

ykΨk(ξ),Ψj

〉
(3.10)

Using the orthogonality property (
〈

Ψk ,Ψj

〉
= 0, ∀k 6= j and 〈Ψk ,Ψk〉 = γk ) one obtains,

according to Crestaux et al. (2009, p. 1164):

yj =

〈
f (ξ),Ψj(ξ)

〉〈
Ψj ,Ψj

〉 , ∀j = 0, . . . , P − 1 (3.11)

In this expression the denominator
〈

Ψ2
j

〉
is known analytically for the corresponding polyno-

mial basis being used in the gPC expansion and the numerator may be computed from the
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definition of the weighted inner product as the following integral:

〈
f (ξ),Ψj(ξ)

〉
=

∫
Ωd

f (ξ)Ψj(ξ)p(ξ)dξ (3.12)

Consequently, the problem now reduces to finding an appropriate multi-dimensional numeri-
cal integration method. In this regard, several schemes are available with different properties
that have to be considered. Some of the best known methods and their properties are sum-
marized below, as according to Crestaux et al. (2009, p. 1164):

Monte Carlo Integration robust with respect to the smoothness of the integrand, with con-
vergence guaranteed for any L2-function and a convergence rate independent of the
dimension d . However, it has a poor convergence rate of order O(1/

√
n).

Quasi Monte Carlo Integration less robust than classical MC, but with a convergence rate
of orderO(log(n)d/n), if some assumptions regarding the smoothness of the integrand
are fulfilled.

Full Tensorization / Tensor Product Rule quadrature with fast convergence rate for smooth
integrands. Nevertheless, its computational cost increases exponentially with the stochas-
tic dimension d as: n = (n1)d , with n1 the number of quadrature points in the one-
dimensional formula.

Composite Methods based on adaptive partitions of the integration domain, they are also
robust, but their computational cost also increases with the stochastic dimension d

exponentially.

Smolyak’s Cubature if the integrand is relatively smooth its convergence rate is fast and
the computation cost increases much slower than for the fully tensored formula.

Previous works on the usage of PCE for uncertainty quantification in vehicle dynamics sim-
ulation, such as the one by Cristoph Stadler (see Stadler, 2014–2015), were based on the
tensor product rule. In the present work, however, sparse grid integration was additionally
implemented and investigated in order to reduce the number of model evaluations and the
computation cost of the gPC algorithm.

Therefore, in what follows, the tensor product rule and sparse grid integration (Smolyak’s
cubature) will be detailed and the results obtained with both methods will be compared later
in chapter 4.

3.1.3.1 Tensor product rule

The tensor product rule is based on a full tensorization of the unidimensional quadrature
rule, which is built upon the roots of an appropriate polynomial basis chosen according
to the Askey-scheme presented in table 2.1. Let QM [f ] be the Mth-order unidimensional
quadrature operator, such that:

I1[f ] =

∫
Ω

f (ξ)p(ξ)dξ ≈ QM [f ] =

M∑
i=1

w i f (ξi) (3.13)

Such an unidimensional quadrature rule of order M can exactly integrate polynomials of
degree less than or equal to 2M − 1 (see Florian Heiss & Viktor Winschel, 2006, p. 3).
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Consider now the multivariate case where the following integral is to be evaluated:

Id [f ] =

∫
Ωd

f (ξ)p(ξ)dξ =

∫
Ω1

. . .

∫
Ωd

f (ξ1, . . . , ξd)p(ξ1, . . . , ξd)dξd . . . dξ1 (3.14)

Univariate quadrature rules can be extended rather easily to the multivariate case by the
product rule, that is, by defining the tensor product over univariate quadrature rules. Con-
sidering that the input random variables are independent, i.e. p(ξ) =

∏
i p(ξi), and the set

of nodes ΞMi
⊂ R and weights, wMi

obtained from the corresponding univariate quadrature
rules QMi

, ∀i = 1, . . . , d , the tensor product rule can be expressed as:

(QM1
⊗ · · · ⊗QMd

)[f ] =
∑

ξ1∈ΞM1

· · ·
∑

ξd∈ΞMd

f (ξ1, . . . , ξd)

d∏
j=1

wMj
(ξj) (3.15)

As clarified by Florian Heiss and Viktor Winschel (2006, p. 6), if the accuracy level M is
the same for each dimension, the product rule is then (QM ⊗ · · · ⊗ QM)[f ] and thus the
model f (ξ) is evaluated at the full grid of points ΞM ⊗ · · · ⊗ . . .ΞM , consequently requiring
Md evaluations. This exponential growth of the computational cost is known as curse of
dimensionality and restricts the usage of the tensor product rule for higher dimensions.
Therefore a tailored product rule which restricts the total order (the sum of exponents) of the
polynomials and not the maximum exponent of each monomial would reduce the required
amount of model evaluations. A feasible solution to the curse of dimensionality is detailed
in the following section, i.e. sparse grid integration, particularly, Smolyak’s construction of
cubature formulas.

3.1.3.2 Smolyak’s Cubature

The method devised by Smolyak (1963) is based on a partial tensorization (sparse grid) of
univariate quadrature formulas.

According to Crestaux et al. (2009, p. 1165), if we consider the sequence of unidimensional
integration formulas with increasing accuracy level given by L = 0, 1, . . . and corresponding
with a number of nodes nL. Each univariate quadrature formula of level L can be expressed
similarly to equation (3.13)∫

Ω

f (ξ)p(ξ)dξ ≈ Q1
L[f ] =

nL∑
i=1

f (ξi ,L)w i ,L (3.16)

Now, according to Crestaux et al. (2009, p. 1165), by setting Q1
0[f ] = 0, the difference

quadrature formula is defined as:

∆1
k≥1[f ] = (Q1

k −Q1
k−1)[f ] (3.17)

And using the multi-index k = (k1, . . . , kd), the d-dimensional difference formula is computed
as the tensor product of the unidimensional difference quadratures:

∆k [f ] = (∆1
k1
⊗ · · · ⊗ ∆1

kd
)[f ] (3.18)

Therefore, the d-dimensional Smolyak’s cubature formula of level L is constructed by the
sum of the tensor products of the difference quadratures, over the set of multi-indices such
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that: |k | ≤ L+ d − 1. That is:∫
Ωd

f (ξ)p(ξ)dξ ≈ QdL[f ] =
∑

|k |≤L+d−1

∆k [f ], L ∈ N0, k ∈ Nd0 (3.19)

In this work, a slightly modified version of the MATLAB code offered by Florian Heiss and
Viktor Winschel (2006) (freely available at http://sparse-grids.de) shall be used, which com-
putes the set of nodes and their corresponding weights for the multi-dimensional integration.
In this MATLAB function (nwspgr.m), four different quadrature rules are implemented: two
corresponding to the uniform distribution (unweighted integration in Ω = [0, 1]d , w = 1), an
univariate Gaussian quadrature rule and a nested univariate Kronrod-Patterson rule; and
two corresponding to a Gaussian distribution (integration in Ω = Rd with weighting func-

tion w(x) = 1
2πe
− x2

2 ), again an univariate Gaussian quadrature rule and a nested univariate
Kronrod-Patterson rule. Note again that each rule with accuracy level L exactly integrates
complete polynomials of total order up to 2L− 1.

Using sparse grid integration, the number of model evaluations is drastically reduced. How-
ever, it must be noted that although Smolyak’s method has a fast convergence rate for
smooth integrands, the smoothness of the model output f (ξ) is not known a priori, so that
the integration scheme must be carefully chosen, since as noted by Crestaux et al. (2009,
p. 1165) there exists an optimal order for the PCE for which the projection error is minimized
and if the order is either too high or too low the projection error increases. Consequently, the
need for a validation of the results cannot be understated. The validation can be performed
by comparing the results of the PC approximation with the results obtained by sampling
techniques, such as MCS or QMC simulation, or by means of confidence intervals for some
given statistics. Therefore, following an explanation of the computation of PC-based Sobol’
indices, both sampling techniques and the computation of confidence intervals using boot-
strapping will be presented.

3.2 Computation of the Sobol’ Indices

3.2.1 PC-based Sobol’ indices

Once the coefficients of the gPC have been computed as shown in section 3.1, and the gPC
expansion is thus fully determined, the PC-based Sobol’ indices of sth-order can be easily
computed as follows (see Sudret, 2008, p. 971 ff. or Crestaux et al., 2009, p. 1167):

Si1,...,is ≈ S
PC
i1,...,is

=
∑

α∈Ii1,...,is

y2
α

〈
Ψ2
α

〉
DPC

(3.20)

Where yα are the spectral coefficients as defined in equation (2.19), and DPC =
P−1∑
k=0

y2
k

〈
Ψ2
k

〉
the PC approximation of the total variance of model output Y . Note that the expansion
coefficients are grouped according to their dependency on each basis polynomial, square-
summed and normalized (Sudret, 2008, p. 971).

Finally, the total Sobol’ indices can also be computed by virtue of equation (2.32) or (2.35).
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3.2.2 Sampling-based Sobol’ indices

Although Sobol’ indices can be easily approximated by means of a gPC expansion of the
model output Y , they can also be computed using a sampling approach. Thus, in order to
validate the approximation obtained with the PC-based approach, a sampling-based method
will also be used. First of all, a MCS approach will be introduced, before low-discrepancy
sampling methods are briefly presented.

Consider the expression for the total variance of the model outputD given by equation (2.26).
Using the MC estimator with a sample set of N realizations of the random input variables
{ξ(i)}Ni=1, the expression can be rewritten as follows (see Crestaux et al., 2009, p. 1166):

D ≈ D̂ =
1

N

N∑
i=1

f 2(ξ(i))− f̂ 2
0 (3.21)

With f̂0 the sample estimate of the average of the model output:

f̂0 =
1

N

N∑
i=1

f (ξ(i)) (3.22)

Then in order to compute the conditional variances Du appearing in equation (2.28) one
can use two independent samples {ξ(i)}Ni=1 and {η(i)}Ni=1 each of N points, as described
in Crestaux et al. (2009, p. 1166). Using the two sample sets the conditional variance
Var(E[Y |ξu ]) = E[E[Y |ξu ]2]− E[Y ]2 can be rewritten as:

E[E[Y |ξu ]2] = E[E[Y |ξu ] E[Y |ξu ]] =

=
∫ (∫

f (ξ∼u , ξu)p(ξ∼u)dξ∼u
)
×

×
(∫
f (ξ∼u , ξu)p(ξ∼u)dξ∼u

)
p(ξu)dξ∼u =

=
∫ ∫ ∫

f (ξ)f (η∼u , ξu)p(ξ)p(η∼u)dξdη∼u

(3.23)

According to Crestaux et al. (2009), after some manipulations the conditional variance Du
can be approximated by its sample estimate as:

Du ≈ D̂u =
1

N

N∑
i=1

f (ξ(i))f (ζu
(i))−

∑
v⊂u
v 6=u

D̂v (3.24)

Where the sample set ζu(i) is defined by:

(ζj)
(i)
u =

{
ξ

(i)
j if j ∈ u,
η

(i)
j otherwise

(3.25)

Finally, the sampling-based Sobol’ indices of order s are computed from equation (2.30):
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Ŝu1,...,us = Ŝu =
D̂u

D̂
(3.26)

Analogously the sampling-based method for the computation of the total Sobol’ indices can
be derived from equation (2.34):

ŜTi = 1−
1

D̂

(
1

N

N∑
k=1

f (ξ(k))f (ζ
(k)
i )− f̂ 2

0

)
(3.27)

Where f̂0 is given by equation (3.22). In practice, instead of generating two different inde-
pendent sets of samples, a quasi-random low-discrepancy sequence is used (in this work,
the Sobol sequence), which improves the convergence rate of the sensitivity index estimate,
as noted by Crestaux et al. (2009, p. 1167). However, since the sample sets must be inde-
pendent, in practice both sets are generated from a unique quasi-random sequence of size
N and 2d dimensions, which are then split into two sets of size N and d dimensions each.

In this work, the MATLAB function sobolset is used to generate such a low-discrepancy
Sobol sequence and before it used the nodes are scrambled by using the scramble function
with the ‘MatousekAffineOwen’ scramble type (see Matousek, 1998).

For further details on sampling-based methods for the computation of variance-based sen-
sitivity measures, the reader is referred to Andrea Saltelli et al. (2004, p. 124 ff.). For more
information on low-discrepancy sequences and QMC methods the reader is referred to the
literature on the subject, such as Niederreiter (1988); Niederreiter (1992); Sobol (2001) or
Andrea Saltelli et al. (2004, p. 197 ff.).

3.3 Confidence Intervals Using Bootstrapping

When an unknown statistic or parameter θ ∈ Θ of a population is to be estimated, so-
called interval estimates can be used (in contrast to point estimates). A γ · 100% confidence
interval for θ is such an interval estimate defined by two statistics Tl = hl({X}Ni=0) and
Tu = hu({X}Ni=0) based on a random sample {X}Ni=0, which fulfills, according to Held and
Bové (2014, p. 55 ff.):

Pr (Tl ≤ θ ≤ Tu) = γ, ∀θ ∈ Θ (3.28)

The statistics Tl and Tu are called the limits of the confidence interval, and it is assumed that
Tl ≤ Tu. Note that the limits are functions of the random sample {X}Ni=0 and are therefore
also random variables, whilst the unknown parameter θ is fixed.

According to Held and Bové (2014, p. 55 ff.), if many identical repetitions of the sampling
experiment are carried out, then a γ · 100% confidence interval will cover the unknown pa-
rameter θ in γ · 100% of the cases.

Confidence intervals will be computed later on in section 4.4.2.3 for the validation of the
moments mk of the model outputs of interest for the corresponding gPC expansion. For
the computation of the confidence intervals the bootstrapping method, first introduced by
Efron (1979) and Efron and R. Tibshirani (1986)), will be used. Therefore the bootstrapping
method will be presented in what follows.

Bootstrapping belongs to the class of so-called re-sampling methods. As mentioned before,
consider the sought parameter of the population to be θ = θ(F ) with unknown distribution
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F and consider that n samples x1, . . . , xn, realizations from identically distributed random
variables X1, . . . , Xn (with distribution Xi ∼ F, ∀i ∈ {1, . . . , n}), are available. Based on
the observed samples, the parameter θ can be estimated by θ̂ = θ̂(x1, . . . , xn). The dis-
tribution of the sought parameter which is a function of the random variables X1, . . . , Xn:
θ̂ = θ̂(X1, . . . , Xn|F ) is also unknown, since F is unknown.

The bootstrapping method comprises two basic steps. In the first step, the real unknown
distribution F is replaced by the empirical distribution F̂n, which can be defined according to
Engel and Grübel (2008, p. 8) as:

F̂n(x) =
1

n
#{xi |xi ≤ x} (3.29)

That is, the real unknown Cumulative Distribution Function (CDF) is replaced by the cumu-
lative frequency (where #{U} represents the cardinal number of the set U), the percentage
of observations that lie below x . Consequently, the distribution of θ̂(X1, . . . , Xn|F ) can be
estimated by θ̂(X1, . . . , Xn|F̂n), known as the bootstrap-distribution.

The second step is a MCS, a sample of size n is drawn with replacement according to F̂n:
x∗1 , . . . , x

∗
n , the bootstrap-sample, which is actually a re-sample of the original sample. The

unknown parameter is then computed from it as θ̂(x∗1 , . . . , x
∗
n ). If this process is repeated

several times, for example B times, an empirical approximation to the bootstrap-distribution
θ̂(X1, . . . , Xn|F̂n) can be obtained.

For the computation of confidence intervals by bootstrapping, the MATLAB function bootci

will be used, and in particular, the bias-corrected percentile method will be used for its
accuracy and relatively low computation cost. For further information the reader is referred
to Efron and R. J. Tibshirani (1993) and other literature on the subject.
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4 NUMERICAL RESULTS

In this chapter, the numerical results obtained using the aforementioned methods will be
presented and described in detail. First, the selection of an appropriate UQ toolkit is dis-
cussed, followed by a brief description of the modifications, additions and improvements
implemented within the chosen toolkit. Next, the results obtained by using common test
functions are presented and discussed. The different non-intrusive methods for the com-
putation of the gPC expansion coefficients and the resulting first order and total Sobol’ in-
dices are compared in terms of accuracy and computational cost. Convergence of important
statistics such as mean and standard deviation and the Sobol’ indices of the output variables
of interest is validated against sampling-based alternatives, such as MC or QMC simulation.
The same structure is used to analyze the results gained by the Single-Track Model (STM).
Finally, the Python-MATLAB-DYNA4 framework used for the Two-Track Model (TTM), de-
rived from previous works on related topics and adapted to fit the purposes of SA, will be
presented along with the obtained results.

4.1 Selection of an Uncertainty Quantification Toolkit

A number of toolkits for UQ are freely available implemented in different programming lan-
guages. For that reason, a completely new package is not developed in this work, but an
existing toolkit is chosen instead and modified as required.

For convenience and compatibility reasons with DYNA4, a MATLAB toolkit is chosen in this
work. In particular, the MATLAB version of Uncertainty Quantification Toolkit (UQTk) de-
veloped by Sandia National Laboratories (B. Debusschere, Sargsyan, & Safta, 2014) will
be used. Although other available packages such as the Design Analysis Kit for Optimiza-
tion and Terascale Applications (DAKOTA) toolkit (written in C++) might be better in terms
of performance (due to the compiled nature of C++, as opposed to interpreted program-
ming languages such as MATLAB), UQTk’s MATLAB version can be more easily modified
and adapted for the purposes of this work and thus greater emphasis may be laid upon its
application.

Having presented the reasons for the choice of the toolkit that will be used within the present
work, the modifications carried out on UQTk will be detailed in what follows.

4.2 Modifications to the Chosen Toolkit

The UQTk provides non-intrusive algorithms for gPC and some other useful algorithms for
UQ, all of which are listed in table A.1 in appendix A. The modifications performed on UQTk
(all of which shall be found in table A.2) are basically focused on improving the NISP methods
already available in the toolkit.
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Firstly, the LRM was implemented in regressionPCE.m, this function computes the neces-
sary matrices, i.e.: Ψi j = Ψj(X

i) and the information matrix Ai j = ΨT Ψ = Ψj iΨi j , as well as
the design of experiment Xi j (the sample nodes necessary to compute the linear regression)
and its size N, which is unknown before the information matrix is assembled.

Secondly, the original code by F. Heiss and V. Winschel (2015) was adapted for its use
with UQTk in order to obtain the necessary quadrature structure containing the nodes and
weights for the SGI method. This allows for the use of Gaussian quadrature rules and of
Kronrod-Patterson nested quadrature rules (as already shown in section 3.1.3.2).

Additionally a generalization of UQTk’s uq_getSensitivity.m was implemented in sobol-

Index.m, which computes the sth-order Sobol’ sensitivity indices for an appropriate multi-
index (a vector of single indices) of dimension s.

Further methods for the sampling of the PCE at a given instant and for the estimation and
visualization of the PDF were implemented in samplePCE.m and plotPDF.m, respectively.

Finally, the test functions and the STM that will be presented in the next sections, as well
as some useful functions used within the Python-MATLAB-DYNA4 framework were also im-
plemented in MATLAB. They will only be briefly described here though, in the interest of
conciseness and clarity.

For each of the test functions, the analytical results for the first order and total Sobol’ sensi-
tivity indices are either computed with a MATLAB function or hard-coded into a vector such
that they can be compared later on by means of two benchmark functions, one that com-
putes the aforementioned indices from a PCE, whose coefficients are computed using the
LRM and another one that computes the Sobol’ indices by using SGI for the computation
of the PCE coefficients. Both methods are compared using a fixed order for the PCE in
this case. Additionally, for both the LRM and SGI separately, the results are also compared
against different orders of the PCE. In the case of the Oakley & O’Hagan function, the model
presents 15 stochastic dimensions and therefore the comparison for different orders of the
PCE is not feasible, since the LRM must first compute the full tensor of nodes and weights
for the integration (despite the fact that not all of them are used). That means that even for
a 2nd-order PCE (N = 2) the number of nodes is already (N + 1)d = 315 = 14348907. In
the next sections many other scripts and functions were implemented for the sole purpose
of results visualization and thus these will not be detailed here.

The following sections present the actual results for the applications described so far, starting
with the test functions, followed by the STM and concluding with the TTM.
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4.3 Test Functions

In the field of UQ there are some typical test functions which possess known analytical
solutions for different statistics and are thus useful for the validation of numerical methods
and approximations. In the present work, the G-function and the Oakley & O’Hagan function
will be used for that purpose, and these are consequently detailed in what follows.

4.3.1 G-function

The G-function, commonly used in UQ, is defined according to A. Saltelli et al. (2010, p. 264)
as:

f (x) =

d∏
i=1

|4xi − 2|+ ai
1 + ai

(4.1)

For Uncertainty Quantification (UQ), the input random variables are independent and iden-
tically distributed, following a uniform distribution: xi ∼ U(0, 1), i = 1, . . . , d . A lower value
of ai means a higher importance of the input random variable xi .

In this work, the same procedure followed by Sudret (2008, p. 973 ff.) is used, thus the
vector of ai ’s is described by: a = [1, 2, 5, 10, 20, 50, 100, 500], so that initially the number
of dimensions is 8, although according to the results shown by Sudret, only the first 3 or
4 parameters have a significant influence on the output variance and thus an approximate
model using the first 4 parameters is actually used.

Figure 4.1 presents a comparison of the different methods for the computation of the gPC
coefficients for a PCE of 7th-order in terms of the resulting first order and total Sobol’ sensi-
tivity indices.
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Figure 4.1: First order (left) and total (right) Sobol’ sensitivity indices for the G-function with a PCE
of 7th-order using different methods for the computation of the coefficients, no. of model
evaluations in parentheses
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As can be observed the differences in the first order and total Sobol’ indices computed by
means of a linear regression method and sparse grid integration are negligible in practice
and so is the error of both methods compared to the analytical solutions. The analytical
solution is obtained according to A. Saltelli et al. (2010, Appendix A):

Vi =
1/3

(1 + ai)2
, i ∈ {1, 2, . . . , d} (4.2)

VTi = Vi
∏
j 6=i

(1 + Vj), i ∈ {1, 2, . . . , d} (4.3)

V =

d∏
i=1

(1 + Vi)− 1 (4.4)

Si =
Vi
V
, i ∈ {1, 2, . . . , d} (4.5)

STi =
VTi
V
, i ∈ {1, 2, . . . , d} (4.6)

Figure 4.2a displays a benchmark comparing the LRM for the computation of the gPC co-
efficients and the resulting first order and total Sobol’ indices for the G-function for different
orders of the PCE to their analytical counterpart.
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Figure 4.2: First order (left images) and total (right images) Sobol’ sensitivity indices for the G-
Function using different PCEs of increasing order and different methods for the com-
putation of the PCE coefficients, no. of model evaluations in parentheses

In addition, figure 4.2b shows a benchmark comparing the SGI method for the computation
of the gPC coefficients and the resulting first order and total Sobol’ indices for the G-function
for different orders of the PCE to their analytical counterparts.

As can be seen, increasing the order of the PCE achieves a higher accuracy in the ap-
proximation of the Sobol’ indices, converging to the analytical solution, at the expense of an
increased computational cost.

26



4 NUMERICAL RESULTS

4.3.2 Oakley & O’Hagan function

The Oakley & O’Hagan function, as first introduced in Oakley and O’Hagan (2004), is given
by:

f (x) = a
T x + a

T sin(x) + a
T cos(x) + xTMx (4.7)

Where the input vector x = (x1, . . . , x15) has 15 dimensions and the a-coefficients are cho-
sen such that 5 of the input variables contribute significantly to the output variance, 5 have a
much smaller effect and the remaining 5 have almost no effect on the output variance. The
input random variables are independent and identically distributed and they follow a normal
distribution with parameters xi ∼ N (µ = 0, σ2 = 1), ∀i = 1, . . . , 15. For the values of the
coefficient vectors a1, a2 and a3, and the matrix M used in this work see Oakley (2015).

Figure 4.3 shows a benchmark comparing different methods for the computation of the gPC
coefficients and the resulting total Sobol’ indices for the Oakley & O’Hagan function. The
analytical values are obtained from Campolongo, Cariboni, Saltelli, and Schoutens (2005,
p. 373).

As mentioned before, only a 2nd-order PCE was used in this case due to the high number of
stochastic dimensions of this model (15), which limits the use of higher order PCEs, specially
for the linear regression method, since the full tensor must be computed in the first place,
thus requiring the computation of (N+ 1)d = 315 = 14348907 nodes and their corresponding
weights, while a 3rd-order PCE would already require the computation of 415 = 1073741824

nodes (and again their corresponding weights), thus making the comparison unfeasible for
an order N > 2.
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Figure 4.3: Comparison of Total Sobol’ sensitivity indices for the Oakley & O’Hagan function com-
puted analytically and by using a PCE with LRM and SGI, no. of model evaluations in
parentheses

As can be observed, the results are considerably accurate, with the maximum relative error
being approximately 8% (and the relative error of most of the indices being under 5%). Recall
that a 2nd-order PCE was used in both cases and thus the accuracy could theoretically be
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improved by increasing the order of the PCE. The results obtained by using the linear
regression method and those achieved by using sparse grid integration are identical and
thus there is no practical difference in using one method or the other in this case.

Finally, note that although the number of model of evaluations is always lower for the LRM
(compared to SGI) for all the investigated test functions, its computation time is actually
higher (as will be shown in section 4.4.2.1) since the LRM requires the prior computation of
the tensor product and the sorting of all the nodes by increasing norm (as according to the
assembly algorithm presented in Sudret (2008)).

4.4 Single-track Model

After testing and validating the methods implemented in this work with the aforementioned
test functions, they will be applied to a more complex model in order to test their robustness
and reliability and to exemplify their usage in a practical case. A vehicle dynamics model will
be used, in particular, a transient linear Single-Track Model (STM) implemented in MATLAB.
Next, the mathematical model will be presented for completeness and later on the results
obtained thereof will be detailed.

4.4.1 Mathematical model

The transient linear STM that will be used in this work, which was originally implemented in
MATLAB for the lecture Dynamik der Straßenfahrzeuge (see Lienkamp, 2015), is based on
the work by Riekert and Schunk (1940), who developed a simplified vehicle dynamics model
consisting of a front- and a rear axle with only one wheel each, whereby more complex
dynamic effects such as rolling and pitching (and thus any load transfer between front- and
rear axle) are neglected, consequently reducing the physical phenomenon to three degrees
of freedom: two translations and one rotation.

As discussed in Stadler (2014–2015, p. 36 ff.), Isermann (2006, p. 57 ff.) devised the
following state space model for the transient linear STM:[

ẋ(t)

y(t)

]
=

[
A b

C d

] [
x(t)

u(t)

]
(4.8)

[
β̇

ψ̈

]
︸ ︷︷ ︸

ẋ

=

[
− cαv +cαh+mv̇

mv

cαh lh−cαv lv
mv2 − 1

cαh lh−cαv lv
Jzz

− cαh l
2
h+cαv l

2
v

Jzzv

]
︸ ︷︷ ︸

A

[
β

ψ̇

]
︸ ︷︷ ︸

x

+

[
cαv
mv
cαv lv
Jzz

]
︸ ︷︷ ︸

b

δ︸︷︷︸
u

(4.9)

 ay
β

ψ̇


︸ ︷︷ ︸

y

=

 − cαv +cαh+mv̇

m

cαh lh−cαv lv
mv

1 0

0 1


︸ ︷︷ ︸

C

[
β

ψ̇

]
︸ ︷︷ ︸

x

+

 cαv
m

0

0


︸ ︷︷ ︸

d

δ︸︷︷︸
u

(4.10)

This coupled system of differential equations 4.9 represents the relations between sideslip
angle β, yaw rate ψ̇ and the front wheel steering angle δ and allows to additionally compute
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the lateral acceleration by means of equation (4.10). Thanks to the state space representa-
tion the transient linear STM can be solved over time using MATLAB’s lsim function.

In the following, the results obtained with the discussed model will be presented.

4.4.2 Step steering input

The STM and the resulting statistics and Sobol’ indices of the model outputs are tested by
using 7 uncertain parameters. All parameters are assumed independent and follow normal
distributions (Zi ∼ N (µi , σ

2
i ) i = 1, 2, . . . , 7), whose corresponding means and standard

deviations are summarized in table 4.1.

Parameter description Symbol Units Mean (µ) Std. dev. (σ)

Distance front axle-center of gravity lv [m] 1.45 0.0725
Distance rear axle-center of gravity lh [m] 1.45 0.0725
Total mass m [kg] 2250 112.5
Wheel cornering stiffness front axle cv [N/rad] 60000 3000
Wheel cornering stiffness rear axle ch [N/rad] 75000 3750
Yaw moment of inertia Jzz [kg m2] 3000 150
Vehicle speed in x-direction vx [m/s] ([km/h]) 27.78 (100) 1.389 (5)

Table 4.1: Uncertain parameters and their distribution for the STM study

The parameters are chosen as discussed in Stadler (2014–2015), so that the behavior of
the vehicle remains stable, which enables a better visualization of the results and an easier
understanding of the underlying phenomena. Note that the parameters can be freely chosen
(more or less), depending on the specifications of the automotive manufacturer. Here a
rough specification is represented, by choosing the standard deviation of each parameter to
be 5% of their corresponding mean. The input parameters actually correspond with a small
Sports or Suburban Utility Vehicle (SUV), as according to Stadler (2014–2015).

As shown in the previous sections, differences in the accuracy of the different methods used
to compute the spectral coefficients are, in general, negligible, if the model output is smooth
enough. Consequently, first an analysis of the computation time required by each of these
methods is carried out in order to choose the best one in terms of performance. Later on,
convergence plots for the Sobol’ indices of the different model outputs (lateral acceleration
ay , side slip angle β and yaw-rate ψ̇) and their statistics will be analyzed.

But first of all, the time evolution of the STM outputs is shown in figure 4.4. The mean (µ)
of each variable over time is represented with a solid line, whilst the mean plus-minus two
standard deviations (µ± 2 · σ) are plotted with dashed lines.

As it can be observed, the response of the STM is computed for a step steering input ma-
neuver of δ = 5◦. The step steering input takes place at t = 1 s and is held constant
thereafter.

4.4.2.1 Performance analysis

In figure 4.5 the computation time is compared for the different approaches to computing the
spectral coefficients, i.e. the tensor product rule, the linear regression method and sparse
grid integration. It then becomes clear that sparse grid integration outperforms any of the
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Figure 4.4: Time evolution of the STM outputs, computed with a 6th-order PCE

other two methods, specially as the order of the PCE expansion increases. The tensor
product rule becomes unfeasible as soon the order increases too much, due to the curse of
dimensionality. As can be seen in the figure, for the 4th-order PCE the tensor product rule
is almost 100 times slower than sparse grid integration. The linear regression method also
performs good, or at least better than the tensor product rule, but it is still slower than sparse
grid integration as soon as the order of the PCE increases.

Therefore it is important to note that, from now on, all of the computations in the present
work will be based on sparse grid integration, being cautious with the results, which shall be
always validated.

Figure 4.6 shows the computation time required for the determination of the spectral coeffi-
cients (by means of SGI) versus the number of model evaluations, which increases with the
order of the PCE being used (in the figure 1st to 6th-order PCE are represented). As can be
observed, the computation time is linear with the number of model evaluations performed.

Nonetheless, the number of model evaluations increases exponentially with the order of the
PCE and thus the computation time increases logarithmically with the order of the PCE, as
can be seen in figure 4.7 (note the logarithmic scale of the y -axis).

An additional image of the computation time depending on the number of PCE terms to
be computed is shown in appendix B. It is noted that the computation time increases with

the number of PCE terms to be computed according to P =

(
N + 7

N

)
for N = 1, . . . , 6

(the order of the PCE), since the stochastic dimension of the PCE (the number of uncertain
model input parameters) is d = 7.
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Figure 4.5: Computation time vs. Order of the PCE for the STM, with different methods for the com-
putation of the spectral coefficients
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Figure 4.6: Computation time vs. Number of model evaluations for the STM using SGI (Kronrod-
Patterson rule) for the computation of the PCE coefficients
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Figure 4.7: Computation time vs. Order of the PCE for the STM using SGI (Kronrod-Patterson rule)
for the computation of the PCE coefficients

4.4.2.2 Convergence analysis

Next, convergence plots for the first order and total Sobol’ indices of each STM output at
t = 4 s, as well as for their sums will be presented in figures 4.8, 4.9 and 4.10. It can be
observed, that all of the aforementioned indices converge as the order of the PCE increases.
In particular, for most of them, a PCE of 3th-order is enough to achieve a low error and
increasing the order of the PCE does not improve the accuracy much more, so that the
increase in computation time is not worth the small improvement in accuracy, in this case.

Furthermore, convergence plots for the mean value and standard deviation of the STM out-
puts themselves, can be found in figure 4.11. In this case, a 4rd-order PCE suffices in order
to achieve convergence of the aforementioned statistics.

However, the convergence of the investigated variables does not imply that they converge to
the correct value. Consequently, convergence of the mean value and the standard deviation
of the output variables is tested against a QMC sampling-based method here, and the same
procedure will be followed afterwards for the validation of the Sobol’ indices.

Figure 4.12 shows this comparison for the lateral acceleration (ay ) at t = 2.5 s. Further
images on this topic can be found in appendix B.

As it can be observed, again a 3rd-order PCE already converges to the sampling-based
values and even a 2nd-order PCE already offers a good accuracy for these statistics, the PC-
based method requiring much fewer model evaluations and thus offering a good alternative
in terms of performance.
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Figure 4.12: PCE vs. QMC, convergence of the mean and standard deviation for ay at t = 2.5 s

4.4.2.3 Confidence intervals of the moments and KDE of the model outputs

The convergence of the PC-based mean and the standard deviation is actually guaranteed
by the Cameron-Martin theorem (Cameron & Martin, 1947), and although convergence of
higher-order moments is not guaranteed at all, it is interesting to consider their (95%) confi-
dence intervals, computed here by means of a bootstrapping strategy.

The bootstrapping is carried out here by sampling the 6th-order PCEs of the model outputs.
The confidence intervals for the yaw rate (ψ̇) can be found in figure 4.13, being computed at
t = 2.5 s. The corresponding KDEs can be found in figure 4.14. For additional images the
reader is referred to appendix B.

As can be observed in those figures, confidence intervals for the first two moments (i.e.
mean and standard deviation), are imperceptible, practically coincident with the value of the
moments themselves. The confidence intervals for the 3rd-, 4th- and 5th-order moments
are relatively narrow, but scatter as the order increases (compare with 6th-order moments),
since their convergence is not strictly guaranteed.

Furthermore, the kernel density estimates may be compared with the moments for each of
the variables. Qualitatively, both the mean and the standard deviation coincide with the val-
ues seen in the KDE. Finally, the skewness (given by the 3rd-order moment) is positive for
the yaw rate, and this statement can be confirmed by looking at the KDE of the correspond-
ing variable: the yaw rate has a positive skew, i.e. it is right-skewed.

Finally, it is noted that in figure 4.14 the KDE of the 6th-order PC-based outputs perfectly
match the KDE of the MC-based output, computed using 200000 samples/model evalua-
tions. The PC-based method using only 9941 model evaluations in comparison.
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ψ̇ [rad/s]
0 50 100 150

f
ψ̇

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MC Nsamp = 2e5

PCE p = 6

Figure 4.14: KDE of ψ̇ at t = 2.5 s for the STM

36



4 NUMERICAL RESULTS

4.4.2.4 PC-based vs. sampling-based Sobol’ indices

To finish this section, the PC-based (first order and total) Sobol’ indices are compared to the
ones obtained by using a QMC sampling-based approach.

Figure 4.15 shows this comparison for the first order Sobol’ indices for the lateral acceler-
ation (ay ), whilst figure 4.16 does the same for the total Sobol’ indices. In both cases, 7

indices are computed, each one corresponding to a different uncertain parameter (the order
follows the one presented in table 4.1, e.g. parameter number 3 corresponds to the total
mass).

PCE p = 6 QMC Nsamp = 1e4
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Figure 4.15: Comparison of PC-based and sampling-based first order Sobol’ indices of ay at t = 3 s
for the STM

As shown, in both figures, the relative error for all of the computed indices is lower than
1%, and thus negligible in practice. Furthermore, the QMC sampling-based method (using a
Sobol sequence as described in section 3.2.2) was computed with 10000 samples, and thus
N(k+2) = 10000(7+2) = 90000 model evaluations were required for the computation of the
Sobol’ indices, while the PC-based method of 6th-order (computed by means of sparse grid
integration) requires only 9941 model evaluations, that is, approximately 11.05% as many.

These results thus support the idea that a PCE of an appropriate order using sparse grid
integration provides sufficient accuracy not only in the time evolution of the output variables
themselves, but also in derived measures such as Sobol’ indices and are a good alternative
to sampling-based methods in terms of performance and number of model evaluations.

Finally, the convergence of the Sobol’ indices in terms of the number of model evaluations
is exemplified by computing the 2nd total Sobol’ index (corresponding to lh) of each model
output computed at t = 2.5 s. Figure 4.17 compares the convergence of the PC-based
method with that of the QMC sampling-based method.

As can be observed in the figure, a 3rd-order PCE already converges to the same value
as the QMC sampling-based method with as little as 407 model evaluations, compared to
approx. 60000 needed for the convergence of the QMC method.
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Figure 4.16: Comparison of PC-based and sampling-based total Sobol’ indices of ay at t = 3 s for
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4.4.2.5 Time evolution of the Sobol’ indices

Finally, the time evolution of the PC-based first order and total Sobol’ indices of the yaw
rate (ψ̇) for the STM are presented in figure 4.18. Additionally, figure 4.19 shows their QMC
sampling-based counterparts.

These stacked area graphs allow for the simultaneous graphical representation of the 7

indices, as well as their cumulated values, over time.

As discussed previously, the Sobol’ indices enable us to quantify the influence of the uncer-
tainty in a model parameter on the uncertainty of a model output, and in this case we can
observe this influence over time. In both figures two clearly distinct regions can be distin-
guished, a transient region (from t = 1 s to t = 2 s approx.) and a stationary state region
(starting at t = 2 s approximately), corresponding to their analogous regions of the out-
puts themselves (see figure 4.4). In the stationary region, the relative contribution of each
parameter to the variance in the output does not change.

The trends shown by the PC-based Sobol’ indices coincide with those which one would
intuitively expect. For example, the yaw moment of inertia (Jzz ) has great influence (almost
33%) on the yaw rate (ψ̇) right at the beginning of the transient, and its influence quickly
vanishes, as the yaw angular acceleration (ψ̈) vanishes, corresponding to a constant yaw
rate (ψ̇). The cornering stiffness of the front wheels (cαv ) also has a great impact on the yaw
rate at the beginning of the transient, this can be explained by the fact that the front wheels
are the ones used for the steering of the vehicle (in this case) and so affect the angular
response of the vehicle right after the step steering maneuver takes place.

For further images on this subject the reader is referred to appendix B.
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Figure 4.18: PC-based first order and total Sobol’ indices of ψ̇ for the STM

As can be observed by comparing the PC-based Sobol’ indices to their QMC sampling-
based counterparts, even their time evolution match very accurately. That is, the PCE
method implemented in this work and the Sobol’ indices derived therefrom match the results
obtained with other sampling-based techniques (such as QMC) with a much lower compu-
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Figure 4.19: Sampling-based first order and total Sobol’ indices of ψ̇ for the STM

tational cost when the order of the PCE is appropriately chosen. Usually, a 4th-order PCE is
accurate enough for these output variables and this model, as experience has shown.

4.5 Two-track Model

In this section, the results obtained by using a TTM as the model for vehicle dynamics will
be presented. The TTM that will be used is built using TESIS DYNAware DYNA4, a modular
Simulink-based simulation framework that contains several models for the automotive de-
velopment process. DYNA4’s Car Professional offers real-time vehicle dynamics simulation,
suitable for suspension concept studies and vehicle dynamics controller development. The
vehicle model is again a modular multi-body system based on components, containing dif-
ferent multi-body axle models including axle geometry via hardpoint definition or tabled axle
kinematics, various steering and drivetrain configurations and the TM-Easy and Pacejka96
tire models. Furthermore, the braking system can be implemented by means of a brake
pressure distribution or using a hydraulic brake system model. Car Professional also offers
different drive train configurations, such as manual or automatic gearboxes and front-, rear-
or all-wheel drive. It also incorporates different Electronic Control Unit (ECU) models, as well
as a 3D road model including road geometry and road surface properties. Finally, open-loop
as well as closed-loop maneuver controls and a catalog of typical vehicle dynamics tests
(e.g. ISO tests) are also provided in the framework. DYNA4 allows one to easily access and
edit all of these modules, making full customization of the vehicle properties, test scenarios
and maneuvers possible.

Furthermore, the selection of the DYNA4 framework is motivated by its usage in previous
works on related subjects. For example, the work by C. Bartsch on sampling methods for
uncertainty quantification in vehicle dynamics, see Bartsch (2014–2015). In that work, a
pre-processing tool written in Python and called UPSim was developed and implemented
which allows for the Monte Carlo (MC) simulation of vehicle dynamics with DYNA4 by using
its XML-Remote Procedure Call (RPC) Application Program Interface (API). Using UPSim’s
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Graphical User Interface (GUI) a DYNA4 project may be chosen and loaded and the uncer-
tain parameters and their distributions may be selected, finally a number of MC simulations
can be easily run at the end of the configuration process.

4.5.1 Python-MATLAB-DYNA4 framework

DYNA4 provides access to its MATLAB engine through its aforementioned XML-RPC API,
nonetheless, the API does not work as one would expect for all MATLAB functions, e.g., it
does not support functions returning structures or cells. These limitations were recognized
by TESIS DYNAware when requesting support for some related problems that occurred while
implementing the UQ capability into our framework. Consequently, there was a need for a
simple solution that would allow for the implementation of general MATLAB functions and
libraries. In figure 4.20 the proposed solution for the design of the framework is represented.

Figure 4.20: Python-MATLAB-DYNA4 Framework

Luckily, MATLAB provides an API which allows running a full-working MATLAB engine within
Python. Since UPSim is written in Python it was relatively straightforward to implement
that engine into the core of UPSim. Thus, every time UPSim starts up, an instance of the
MATLAB engine is automatically started and waits ready for any necessary computations.

The framework as presented in figure 4.20 consists of three basic components working to-
gether, Python, a MATLAB engine (run from Python) and DYNA4 itself. UPSim running in
Python is used for the post-processing and the selection of the uncertain input parameters
and their corresponding distributions. UPSim’s GUI could also be used for the setup of the
PCE parameters (its implementation was out of the scope of the present work, instead the
PCE parameters are hard-coded into UPSim). Then the Python’s MATLAB engine is used
to compute the necessary sparse grid for the integration taking into account the PCE set-
tings (using UQTk and the modifications described in section 4.2). Then DYNA4 is iteratively
called and the TTM is evaluated at each of the sparse grid nodes, producing the correspond-
ing result files. Finally, the results could be loaded into UPSim and the GUI could be used
for the post-processing allowing the user to select the different output parameters and post-
processing actions that should be taken, such as the computation of the spectral coefficients
for each of the selected model outputs or the computation of the PC-based Sobol’ indices.
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Again, UPSim’s GUI was not modified for this purpose, but the post-processing was instead
performed for the outputs of interest using a series of MATLAB scripts and functions.

In this work two open-loop maneuvers will be considered for the validation of the results
obtained with this framework, first a simple “step steering input" maneuver, similar to the one
used with the STM. The second scenario is a more complex “braking in a turn" maneuver.

Next each of these scenarios will be thoroughly described and their corresponding results
will be presented.

4.5.2 Step steering input

In this test case, 3 random normally distributed parameters will be used, namely the mass
of the vehicle’s body, the position of the center of gravity in x-direction (measured from the
front axle in the vehicle’s reference frame) and the spring stiffness of the anti-roll bar (front
axle). Their corresponding means and standard deviations are shown in table 4.2.

Parameter description Units Mean (µ) Std. dev. (σ)

Vehicle body mass [kg] 1134.8 75
Vehicle body center of gravity position x [m] -1.285 0.147224
(Front axle) Spring stiffness of anti-roll bar [N/m] 78400 11547

Table 4.2: Uncertain parameters and their distribution for the TTM step steering input scenario

In this case the vehicle accelerates from rest at t = 1 s to 15 [ m/s ] in 7.5 seconds (i.e. until
t = 8.5 s) and the speed is maintained thereafter. At t = 9.5 s (having reached constant
speed) a steering step input of δ = 1.5 rad (approx. 86◦) takes place. At some point steady
state is reached if the vehicle is stable and the vehicle travels in a circle. The simulation
stops at t = 14.5 s. For figures on the time evolution of some model outputs the reader is
referred to appendix B (see B.12, B.13 and B.14).

The simulations are carried out with three different PCEs of orders 2, 4 and 6, and a QMC
sampling-method based on a Sobol’ sequence (just as for the STM).

As an example, figure 4.21, shows the convergence of mean value and standard deviation
of the lateral acceleration, yaw rate, sideslip angle and lateral force of the front right wheel
at t = 14 s as computed by means of a 2nd-, 4th- and 6th-order PCE and a QMC simulation
(with 735 samples), respectively. As can be seen, a 2nd order PCE already offers a high
accuracy in all investigated variables, whilst requiring a much lower number of model eval-
uations compared to a QMC simulation (19 versus approx. 300). Further similar images on
this subject can be found in appendix B.

Moreover, the PC-based Sobol’ indices of the different PCEs (2nd, 4th and 6th order) are
compared to the sampling-based Sobol’ indices obtained by means of QMC simulation,
computed using again 735 samples (recall that for the computation of the Sobol’ indices that
means 735 · (3 + 2) = 3675 model evaluations). As an example, this comparison is shown,
over the number of model evaluations, in figure 4.22 and 4.23 1st-order and total Sobol’
Indices of the vehicle body mass (S1 and ST1

, respectively) and of the yaw rate at t = 14 s,
respectively.

The rest of the indices for all model outputs exhibit similar trends, although they are not
shown here in the interest of concision.
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Figure 4.21: PCE vs. QMC convergence of the mean and standard deviation for the lateral accelera-
tion ay at t = 14 s
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Figure 4.22: PCE vs. QMC convergence of the 1st first order Sobol’ index at t = 14 s for the yaw
rate ψ̇
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Figure 4.23: PCE vs. QMC convergence of the 1st total Sobol’ index at t = 14 s for the yaw rate ψ̇

As can be seen, the PC-based Sobol’ indices match their sampling-based counterpart very
accurately at a much lower computational cost, just as they did for the STM.

Figure 4.24 shows a direct comparison of the 6th-order PC-based and the QMC sampling-
based (value of the last sample, i.e. 735) total Sobol’ indices for the lateral acceleration at
t = 14 s.

As it can be observed, the results obtained through the PCE again match their sampling-
based counterpart almost exactly. The relative error is less than 3% for each of the indices
and, in fact, this error is probably due to a lack of convergence in the sampling-based results,
since only 735 samples were used.

Furthermore, the KDE of the (6th-order) PC-based model outputs also show a high accu-
racy compared to their sampling-based counterpart. As an example, figure 4.25 and 4.26
show a comparison of both KDEs for the sideslip angle (β) and the lateral acceleration (ay ),
respectively, at t = 10.9 (little after the step steering input).

The small differences in the KDEs of the PDFs can be attributed to a slight lack of conver-
gence in the sampling-based QMC approach (since only 1470 samples were used in this
case). Nonetheless, the relative error is minimal and the PC-based approach shows, once
again, a good accuracy and a better performance than classical MC and QMC methods
(recall that the 6th-order PCE required only 237 model evaluations in this case).

The results shown so far confirm that even for more complex non-linear models such as the
TTM used in this case, PC is a good alternative to sampling-based techniques in terms of
performance for UQ, both for the computation of model output statistics (mean and standard
deviation), as well as for the computation of derived sensitivity measures, such as the Sobol’
indices.

In what follows, the last test scenario explored within the present work will be described and
the corresponding results will be analyzed.
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Figure 4.24: PCE vs. QMC comparison of the total Sobol’ indices at t = 14 s for the lateral accelera-
tion ay
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Figure 4.25: PCE vs. QMC comparison of the KDE at t = 10.9 s for the sideslip angle β
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Figure 4.26: PCE vs. QMC comparison of the KDE at t = 10.9 s for the lateral acceleration ay

4.5.3 Braking in a turn

The second and last maneuver for the TTM used in this work is braking in a turn. In this case
5 normally distributed parameters are used: the friction scaling factor, which describes the
coefficient of friction between the wheels and the road (affected for example by the presence
of rain, snow or ice on the road or by tire wear, among other factors); the maximum lateral
force scaling factor, used to simulate the effects of different inflation pressures of the tires;
the mass of the vehicle’s body; the position of the center of gravity in x-direction (measured
from the front axle in the vehicle’s reference frame) and the rear axle wheel cylinder brake
pressure delta, that is, the difference in the brake pressure applied to the rear-right and
rear-left wheels. This last parameter is used to simulate the effects of a torque vectoring
system, which allows for the variation of the power input to each wheel and thus provides
a way to counteract undesired effects in the dynamics, such as oversteer (or understeer).
The corresponding means and standard deviations used for these parameters are shown in
table 4.3. The parameters are again selected in such a way that the vehicle remains stable
during the whole maneuver, i.e. no unstable simulations occur.

Parameter description Units Mean (µ) Std. dev. (σ)

Friction scaling factor [ - ] 0.8 0.045
Maximum lateral force scaling factor [ - ] 1.0 0.0065
Vehicle body mass [ kg ] 1425 50
Vehicle body center of gravity position x [ m ] -1.26 0.0125
Rear axle wheel cylinder brake pressure delta [ N/m2 ] 0 100000

Table 4.3: Uncertain parameters and their distribution for the TTM braking in a curve scenario

In this test scenario the vehicle accelerates from rest at t = 1 s to 20 [m/s] in 7.5 seconds
(i.e. until t = 8.5 s) and the speed is maintained thereafter. At t = 11.5 s (having reached
constant speed) a steering step input of δ = 0.55 rad (approx. 31.51◦) takes place. At
t = 21 s, having reached steady state, while the vehicle is traveling in a circular path, a
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step braking input is carried out and, finally, at t = 25 s the simulation ends. Again, for
figures on the time evolution of some model outputs the reader is referred to appendix B
(see B.18, B.19, B.20 and B.21).

Once more the PC-based approach is compared to a sampling-based QMC method. Never-
theless, in spite of some recurring problems with the simulations stopping prematurely (that
is, before the desired number of samples could be reached), only 397 samples could be com-
puted with the QMC approach for the computation of the Sobol’ indices (i.e., 397 · (5 + 2) =

2779 model evaluations; compared to the actual desired number of samples between 2000

and 3000 samples, that is, 14000 to 21000 model evaluations). Nevertheless, it shall be noted
that 794 samples can actually be used for the computation of means, standard deviations,
KDEs, etc. since in the sampling-based approach two independent sets of random parame-
ters are first generated, which can be directly used for that purpose. Additionally, combina-
tions thereof are required for the computation of conditional variances and, ultimately, for the
estimation of the Sobol’ indices as discussed in 3.2. The source of the problems seems to
be that Python loses the connection with DYNA4 after some (apparently) undefined amount
of time and thus the simulations stop after they timeout. In this case, the PC-based compu-
tations were carried out with 3rd-, 4th-, 5th- and 6th-order PCEs. That being said, the results
presented in the following section shall be studied carefully and first qualitatively, since not
all variables have necessarily converged with such a small amount of samples for the QMC
simulations. Furthermore, classic MC simulations were also carried out in this case with
1897 samples (number again limited by the problems and the available time) in order to un-
derstand the convergence better. Nevertheless, the problem with the simulations stopping
shall be investigated and is left as further research.

Firstly, as an example convergence plots for the mean of the yaw rate (ψ̇) at t = 15 s and
t = 22 s are presented in figures 4.27 and 4.28, respectively.
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Figure 4.27: PCE, MC and QMC comparison for the mean of the yaw rate (ψ̇) at t = 15 s

As can be seen in both cases, for the statistical moments (the mean in this case) the QMC
simulations converge quite fast, although they don’t seem to converge to the right values
predicted by the MC simulations. This can be explained by the fact that QMC methods
are usually not as robust against non-smooth integrands as classical MCS, as was already
mentioned in section 3.1.3. Additionally, as noted by Crestaux et al. (2009, p. 1165) and as
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Figure 4.28: PCE, MC and QMC comparison for the mean of the yaw rate (ψ̇) at t = 22 s

mentioned earlier in this work, there seems to exist an optimal order for the PCE in this case,
as can be seen, the 5th-order PCE. However, if one computes the relative errors for the dif-
ferent methods it is clear that the differences are, in practice, negligible for the statistics of
all the studied variables (although not all of them are presented here in the interest of conci-
sion), for example, at t = 15 s: er r (PCEN=5,MC) = |0.1678−0.1691|/0.1691·100 ≈ 0.769%.
The small differences (< 1% in most cases) can be explained by the lower robustness of SGI
against non-smooth integrands as compared to other integration methods, as mentioned in
3.1.3. Nevertheless, the results obtained my means of a 5th-order PCE computed by means
of SGI are thus, in practice, accurate enough even for more complex statistics such as the
Sobol’ indices or the KDEs, as will be shown later.

Next, a comparison of the PC-based Sobol’ indices with their QMC sampling-based coun-
terpart will be presented. Nevertheless, it shall be noted that while the sampling-based total
Sobol’ indices have almost already converged with 397 samples (see figure 4.29 for an ex-
ample), the same statement does not hold in general for the first order Sobol’ indices (see
figure 4.30) and although the relative importance of each parameter is relatively constant,
only some of the total Sobol’ indices will be compared here as an example.

Figure 4.31 compares the PC-based (using a 5th-order PCE) total Sobol’ indices to their
QMC sampling-based counterpart (using 397 samples) for the sideslip angle at t = 22 s.

As can be observed, the differences in the computed total Sobol’ indices are in this case min-
imal and are probably larger than they actually should be in spite of the lack of convergence
for the QMC method.

Furthermore, a similar graph is shown for total Sobol’ indices of the lateral acceleration at
t = 22 s in figure 4.32. Again, the differences are small and probably due to the lack of
convergence in the QMC approach. Moreover, the relative contributions of each parameter
are also qualitatively accurate.

Recall that a 5th-order PCE using SGI requires, in this case, only 993 model evaluations
whilst the QMC-based approach needs (5 + 2) · 397 = 2779 model evaluations (and it would
actually need around 7000 model evaluations for full convergence of the results).
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Figure 4.29: Example of convergence for the total Sobol’ indices of the lateral acceleration (ay ) at
t = 15 s computed by means of QMC simulation
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Figure 4.30: Example of non-convergence for the first order Sobol’ indices of the yaw rate (ψ̇) at
t = 22 s computed by means of QMC simulation
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Figure 4.31: PCE vs. QMC total Sobol’ indices of the sideslip angle (β) at t = 22 s
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Figure 4.32: PCE vs. QMC total Sobol’ indices of the lateral acceleration (ay ) at t = 22 s
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In addition, a comparison of some PC-based KDEs with their MC sampling-based counter-
part is carried out as an example.

As can be seen in figure 4.33, the shapes of the KDEs match relatively accurately, although
the lower robustness of SGI used for the computation of the spectral coefficients is probably
the main reason for the small differences that can be appreciated. The same can be con-
cluded for other model outputs, for example for the yaw rate (ψ̇) at t = 22 s, by inspecting
figure B.22, found in appendix B.
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Figure 4.33: PCE vs. MC-based KDE for the sideslip angle β at t = 22 s

Finally, all of the usual statistics used throughout this work are also shown for a more com-
plex model output, namely the ratio of the yaw rate at t = 22 and t = 21 s, i.e. ψ̇(22 s)

˙ψ(21 s)
.

First, convergence plots for the 1st and 5th total Sobol’ indices are shown in figures 4.34
and 4.35, respectively.

As can be observed in the figures, a 5th-order PCE shows again the best convergence
compared with the QMC predictions (which are again lacking convergence), although the
differences are relatively small. The comparison of all five total Sobol’ indices for the 5th-
order PCE and the QMC approach are shown in figure 4.36.

As can be seen, the results exhibit minor differences and qualitatively the influences of each
parameter are correctly captured by the 5th-order PCE with far fewer model evaluations, the
differences being again probably caused by the lack of convergence in the QMC simulations.

Furthermore, the KDE predicted by using a 5th-order PCE is also very similar to the one
computed by means of MCS, as can be seen in figure 4.37, and again any differences might
probably be attributed to the lack of convergence in the MC-based approach.

In conclusion, the PCE approach shows again accurate and relatively robust results at a
lower computational cost than MC and QMC methods and is a valuable tool for Uncertainty
Quantification (UQ) and the computation of variance-based sensitivity measures such as the
Sobol’ sensitivity indices, outperforming sampling-based methods if the number of stochastic
dimensions is relatively low. Nevertheless, it should be noted that after the investigation of all
the results, a convergence analysis appears to be of utmost importance if the model outputs
are relatively complex and the SGI method is being used for the computation of the spectral
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Figure 4.34: PCE vs. QMC 1st total Sobol’ index for the ratio ψ̇(22 s)/ψ̇(21 s)
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Figure 4.35: PCE vs. QMC 5th total Sobol’ index for the ratio ψ̇(22 s)/ψ̇(21 s)
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Figure 4.36: PCE vs. QMC total Sobol’ indices for the ratio ψ̇(22 s)/ψ̇(21 s)
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Figure 4.37: PCE vs. MC-based KDE for the ratio ψ̇(22 s)/ψ̇(21 s)
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coefficients. The use of 4th- or 5th-order PCE is suggested considering the results shown
and probably a study of the results obtained by using the Linear Regression Method (LRM)
for the computation of the spectral coefficients would also be advisable in complex scenarios
like this last one.
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5 SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

In this work the study of a method for the computation of the global Sobol’ sensitivity in-
dices based on the theory of Polynomial Chaos (PC) has been carried out and the method
has been successfully applied to the propagation of uncertainty in the simulation of vehicle
dynamics.

First of all, different approaches to the computation of the spectral coefficients of the Poly-
nomial Chaos Expansion (PCE) have been investigated, more precisely non-intrusive meth-
ods: the Linear Regression Method (LRM) and two different Non-intrusive Spectral Pro-
jection (NISP) methods, namely the tensor product rule and sparse grid integration. The
resulting PC-based Sobol’ indices and other statistics of interest (means, standard devia-
tions and Kernel Density Estimations (KDEs) of Probability Density Functions (PDFs)) have
been studied and compared to the results based on classical sampling methods such as
Monte Carlo (MC) or Quasi-Monte Carlo (QMC) Simulation.

The methods have been verified and validated using test functions that are typically used
in the field of Uncertainty Quantification (UQ). As has been shown, the three methods
for the computation of the spectral coefficients that have been investigated have resulted
in very similar statistics and Sobol’ indices and have matched their analytical counterparts
accurately.

In addition, the methods have been applied to a transient linear Single-Track Model (STM)
for vehicle dynamics by means of an open-loop step steering maneuver with 3 uncertain
parameters. The results have shown a high accuracy of the PC-based approach both in
the prediction of statistics of the model outputs as well as in the estimation of first order
and total Sobol’ sensitivity indices. Moreover, the PCE has proven to outperform classical
sampling-based techniques (such as MC and QMC) requiring far fewer model evaluations
in this case and thus achieving a substantial gain in performance. Particularly, the use of
Sparse Grid Integration (SGI) for the computation of the spectral coefficients has proven to
be very efficient in terms of accuracy versus computation time and thus it has been used for
the computation of the PCEs for the rest of the work.

Finally, the methods studied in this work have been put to use with a more complex transient
non-linear Two-Track Model (TTM) (with TESIS Dynaware’s DYNA4 Framework) employing
two different maneuvers and a framework combining Python, MATLAB and DYNA4, specifi-
cally designed for this task. The results have shown that on relatively simple scenarios, such
as the step steering maneuver, PCE using SGI again outperforms sampling-based methods
providing a very good accuracy for all of the aforementioned statistics.

However, if the scenario is complex and the model outputs are no longer smooth, special
care must be taken in studying the results if Sparse Grid Integration (SGI) is used, in spite
of its robustness limitations. Convergence analyses are suggested in this case, comparing
increasing orders of the PCE at different time instants with sampling-based techniques (ide-
ally Monte Carlo (MC) and Quasi-Monte Carlo (QMC) simulations) and the use of LRM is

55



5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

recommended if the results are not satisfactory, since it also offers a good accuracy at a low
computational cost.

Nevertheless, it must be noted that a PC-based approach is usually only feasible when the
stochastic dimension of the problem (i.e. the number of uncertain parameters) is relatively
low (usually < 10) and a sampling-based approach is suggested otherwise.

Finally, it should be mentioned that there is still room for improvement in some parts of
the code and the framework developed throughout this work and that other PC-based tech-
niques which are recently appearing in the literature, such as sparse PCEs, could be in-
vestigated. In addition, future work could be carried out in the parallelization of the studied
methods which could also lead to further reductions in execution time and consequently
result in great improvements in performance.

In conclusion, this work has shown that the PC-based approach for the computation of
the global Sobol’ sensitivity indices usually offers a good alternative to classical sampling-
based methods in terms of accuracy and performance, specially if the number of stochastic
dimensions is relatively low. In particular, it has been shown that the NISP method for the
computation of the spectral coefficients using Sparse Grid Integration (SGI) achieves a very
good performance provided that the integrand is relatively smooth and that its accuracy level
and the order of the PCE are chosen appropriately. Finally, the investigated methods have
been successfully applied to the simulation of vehicle dynamics.
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1 INTRODUCTION

1 INTRODUCTION

In order for a university or an external company to evaluate the costs and study the possibility
of executing a project an estimation of the budget is required.

Therefore, in the next chapters a budget for the whole project is presented. It contains all
estimated costs required for the development of this work, thus it is structured following
the logical order of the tasks carried out in the project (except for the meetings, which are
considered an independent unit, taking place in parallel to the development of the project).

First of all, a detailed and disaggregated budget containing all the items and tasks developed
during this project, their description and the required resources and personnel for each one
of them is introduced in chapter 2.

Next, a summary of the chapters including the usual coefficients such as the overhead
expenses, the industrial profit and the V.A.T., as well as the overall budget, is presented in
chapter 3.
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Order No. 
Description of the 
construction units Units  Measurement Price Subtotal 

 

  
 

 
1 RESEARCH & LABOR 

 

 
1.1 
 

 MEETING 

Meeting between the engineer and the supervisor for general 
information exchange regarding the project, feedback and 
review of the progress. 
 

 E01   h   ENGINEER 5.00 45.00 225.00 

 P01   h   PROFESSOR 5.00 100.00 500.00 

 
Total of item 1.1  ........................................................................................ 10.00  .... 72.50 €  ......... 725.00 € 

 
1.2 IMPLEMENTATION 

Programming, implementation and setup of the required 
programs and models in MATLAB, Python and DYNA4. 
 

 
1.2.1 
 

 LINEAR REGRESSION METHOD 

Implementation of the Linear Regression Method for the 
computation of the Polynomial Chaos Expansion Coefficients. 
 

 E01   h   ENGINEER 40.00 45.00 1,800.00 

 C01   h   COMPUTER 40.00 0.57 22.80 

 L01   h   SOFTWARE LICENSES 40.00 2.27 90.80 

 
Total of item 1.2.1  .......................................................................................... 1.00 1,913.60 €  ...... 1,913.60 € 

 
1.2.2 
 

 SPARSE GRID INTEGRATION METHOD 

Implementation of the Sparse Grid Integration Method for the 
computation of the Polynomial Chaos Expansion Coefficients. 

 

 E01   h   ENGINEER 16.00 45.00 720.00 

 C01   h   COMPUTER 16.00 0.57 9.12 

 L01   h   SOFTWARE LICENSES 16.00 2.27 36.32 

 
Total of item 1.2.2  .......................................................................................... 1.00  .. 765.44 €  ......... 765.44 € 

 
1.2.3 
 

 TEST FUNCTIONS 

Implementation of the test functions for the validation and 
verification of the different methods for the computation of 
the Polynomial Chaos Expansion Coefficients. 
 

 E01   h   ENGINEER 5.00 45.00 225.00 

 C01   h   COMPUTER 5.00 0.57 2.85 

 L01   h   SOFTWARE LICENSES 5.00 2.27 11.35 

 
Total of item 1.2.3  .......................................................................................... 1.00  .. 239.20 €  ......... 239.20 € 

  

2 MEASUREMENTS & BUDGET

2 MEASUREMENTS & BUDGET

2



 

 

 

Order No. Description of the 
construction units Units  Measurement Price Subtotal 

 

 

 

 
1.2.4 
 

 SINGLE-TRACK MODEL 

Implementation and setup of the Single-Track Model and the 
corresponding maneuver scenarios. 
 

 E01   h   ENGINEER 16.00 45.00 720.00 

 C01   h   COMPUTER 16.00 0.57 9.12 

 L01   h   SOFTWARE LICENSES 16.00 2.27 36.32 

 
Total of item 1.2.4  .......................................................................................... 1.00  .. 765.44 €  ......... 765.44 € 

 
1.2.5 
 

 PYTHON-MATLAB-DYNA4 FRAMEWORK 

Implementation and setup of the Python-MATLAB-DYNA4 
Framework for the simulation of the Two-Track Model test 
cases. 
 

 E01   h   ENGINEER 56.00 45.00 2,520.00 

 C01   h   COMPUTER 56.00 0.57 31.92 

 L01   h   SOFTWARE LICENSES 56.00 2.27 127.12 

 
Total of item 1.2.5  .......................................................................................... 1.00 2,679.04 €  ...... 2,679.04 € 

 
1.2.6 
 

 TWO-TRACK MODEL 

Implementation and setup of the Two-Track Model and its 
corresponding test scenarios. 
 

 C01   h   COMPUTER 40.00 0.57 22.80 

 E01   h   ENGINEER 40.00 45.00 1,800.00 

 L01   h   SOFTWARE LICENSES 40.00 2.27 90.80 

 
Total of item 1.2.6  .......................................................................................... 1.00 1,913.60 €  ...... 1,913.60 € 

 
Total of chapter 1.2  ............................................................................................................8,276.32 € 

1.3 TESTING & DEBUGGING 
Testing and debugging of the required programs and models 
in MATLAB, Python and DYNA4. 
 

 
1.3.1 
 

 LINEAR REGRESSION METHOD 

Testing and debugging of the Linear Regression Method for 
the computation of the Polynomial Chaos Expansion 
Coefficients. 
 

 E01   h   ENGINEER 16.00 45.00 720.00 

 C01   h   COMPUTER 16.00 0.57 9.12 

 L01   h   SOFTWARE LICENSES 16.00 2.27 36.32 

 
Total of item 1.3.1  .......................................................................................... 1.00  .. 765.44 €  ......... 765.44 € 
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Order No. Description of the 
construction units Units  Measurement Price Subtotal 

 

 

 

 
1.3.2 
 

 SPARSE GRID INTEGRATION METHOD 

Testing and debugging of the Sparse Grid Integration Method 
for the computation of the Polynomial Chaos Expansion 
Coefficients. 
 

 E01   h   ENGINEER 8.00 45.00 360.00 

 C01   h   COMPUTER 8.00 0.57 4.56 

 L01   h   SOFTWARE LICENSES 8.00 2.27 18.16 

 
Total of item 1.3.2  .......................................................................................... 1.00  .. 382.72 €  ......... 382.72 € 

 
1.3.3 
 

 TEST FUNCTIONS 

Testing and debugging of the test functions for the validation 
and verification of the different methods for the computation 
of the Polynomial Chaos Expansion Coefficients. 
 

 E01   h   ENGINEER 3.00 45.00 135.00 

 C01   h   COMPUTER 3.00 0.57 1.71 

 L01   h   SOFTWARE LICENSES 3.00 2.27 6.81 

 
Total of item 1.3.3  .......................................................................................... 1.00  .. 143.52 €  ......... 143.52 € 

 
1.3.4 
 

 SINGLE-TRACK MODEL 

Testing and debugging of the Single-Track Model and the 
corresponding maneuver scenarios. 
 

 E01   h   ENGINEER 4.00 45.00 180.00 

 C01   h   COMPUTER 4.00 0.57 2.28 

 L01   h   SOFTWARE LICENSES 4.00 2.27 9.08 

 
Total of item 1.3.4  .......................................................................................... 1.00  .. 191.36 €  ......... 191.36 € 

 
1.3.5 
 

 PYTHON-MATLAB-DYNA4 FRAMEWORK 

Testing and debugging of the Python-MATLAB-DYNA4 
Framework for the simulation of the Two-Track Model test 
cases. 
 

 E01   h   ENGINEER 56.00 45.00 2,520.00 

 C01   h   COMPUTER 56.00 0.57 31.92 

 L01   h   SOFTWARE LICENSES 56.00 2.27 127.12 

 
Total of item 1.3.5  .......................................................................................... 1.00 2,679.04 €  ...... 2,679.04 € 

 
1.3.6 
 

 TWO-TRACK MODEL 

Testing and debugging of the Two-Track Model and its 
corresponding test scenarios. 
 

 L01   h   SOFTWARE LICENSES 24.00 2.27 54.48 

 C01   h   COMPUTER 24.00 0.57 13.68 

 E01   h   ENGINEER 24.00 45.00 1,080.00 

 
Total of item1.3.6  .......................................................................................... 1.00 1,148.16 €  ...... 1,148.16 € 

 
Total of chapter 1.3  ............................................................................................................5,310.24 € 
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Order No. Description of the 
construction units Units  Measurement Price Subtotal 

 

 

 

1.4 
 

 DATA ANALYSIS 

Analysis of the data acquired during the simulations of the test 
cases for both the Single-Track and the Two-Track Model. 
 

 E01   h   ENGINEER 80.00 45.00 3,600.00 

 
Total of item 1.4  .......................................................................................... 1.00 3,600.00 €  ...... 3,600.00 € 

 
1.5 
 

 REPORT ELABORATION 

Elaboration of a complete report of the simulations with the 
obtained results, including the data analysis and the 
conclusions derived therefrom. 
 

 E01   h   ENGINEER 160.00 45.00 7,200.00 

 
Total of item 1.5  .......................................................................................... 1.00 7,200.00 €  ...... 7,200.00 € 

 
Total of chapter 1.3  .......................................................................................................... 25,111.56 € 

Total budget  .......................................................................................................... 25,111.56 € 
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Order No. Description of the chapters Subtotal % 

 

 

 

1 RESEARCH & LABOR 25,111.56 100.00 % 

1.2 IMPLEMENTATION 8,276.32 32.96 % 

1.3 TESTING & DEBUGGING 5,310.24 21.15 % 

1.4 DATA ANALYSIS 3,600.00 14.34 % 

1.5 REPORT ELABORATION 7,200.00 28.68 % 

 

 

 
BUDGET FOR MATERIAL IMPLEMENTATION OF THE PROJECT ........  25,111.56 € 

 
15 % Overhead Expenses ...................................................................  3,766.73 €  

6 % Industrial Profit ............................................................................  1,506.69 € 

BUDGET FOR PROVISION OF THE CONTRACTED SERVICES ..............  30,384.98 € 

 
21 % V.A.T. .........................................................................................  6,380.85 € 

OVERALL BUDGET W/VAT ..............................................................  36,765.83 € 

 
The projected budget adds up to the expressed amount of: 
THIRTY-SIX THOUSAND, SEVEN-HUNDRED SIXTY-FIVE EUROS AND EIGHTY-THREE CENTS 
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1 PROJECT SPECIFICATIONS

During the early stages of any new product development, many parameters of the product
being developed will change and are therefore subject to uncertainty. In particular, in the
automotive industry, these uncertainties in the parameters will ultimately affect the behavior
of the vehicle being developed. If particular vehicle dynamics are targeted, knowing which
specific input parameter of the vehicle is more important in determining the uncertainty in
the output of interest is of utmost importance.

Vehicle dynamics models have been known and used for a long time and they can be very
useful for simulating the behavior of the vehicle under certain maneuvers if its parameters
are known. Nonetheless, even when some parameters are uncertain, reasonable assump-
tions can usually be accepted regarding their variance, based on experience or previous
similar products, for example. Consequently, the propagation of uncertainty from the param-
eters to the output variables and thus the stochastic behavior of the model can be deter-
mined in principle.

In this project, variance-based sensitivity measures and methods for global Sensitivity Anal-
ysis will be investigated. In particular, the Polynomial Chaos Expansion method (with many
applications in other fields of science and engineering) and the computation of Sobol’ sen-
sitivity indices based on polynomial chaos expansions will be applied to the simulation of
vehicle dynamics.

The project is divided into the following steps:

• State of the art: research of existing literature on the subjects

• Fundamentals of the polynomial chaos method for the computation of variance-based
sensitivity measures (Sobol’ indices)

• Implementation of polynomial chaos for the computation of the Sobol’ indices

• Implementation of different methods for the computation of the expansion coefficients:
non-intrusive spectral projection method, linear regression and sparse grid integration

• Reproduction of typical numerical examples (test functions)

• Application of the forementioned methods to the Car Professional model of Tesis’
Dyna4 simulation framework

• Analysis and interpretation of the parametric studies

• Benchmarking of the different methods for the computation of the polynomial chaos
expansion coefficients

• Benchmarking of polynomial chaos against classical algorithms

1



1 PROJECT SPECIFICATIONS

The project report is intended to document the individual steps in a clear manner.

The project is an adaptation from previous work presented at the Technical University of
Munich as part of the T.I.M.E. Double Degree Program and the author has received explicit
permission by the Technical University of Munich for its use and adaptation, therefore no
confidentiality agreement has been violated.

2
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Symbols and abbreviations

Symbols

ay Lateral acceleration
Ai j Information matrix
cαh Front wheel cornering stiffness
cαv Rear wheel cornering stiffness
d Stochastic dimension of the PCE
D Total variance of the model output Y
D̂ Total sampling-based variance of the model output Y
Du Conditional variance of the model output Y
D̂u Conditional sampling-based variance of the model output Y
f̂h KDE
E Expected value
F Unknown distribution
F̂n Empirical distribution
FZ joint CDF of Z
FZi marginal CDF of Zi
F yvr Lateral force of the front right wheel
F Set of possible events
h Bandwidth for the KDE
i Multi-index
Id d-variate integral
Jzz Yaw moment of inertia (moment of inertia about the vertical axis of the vehicle)
k Single-index
K Kernel
L Differential operator in space and/or time
lh Distance rear axle-center of gravity
lv Distance front axle-center of gravity
Lp Lebesgue function space of pth-order
m Total mass of the vehicle
mk k-th statistical moment
N Order of the PCE
N Set of natural numbers (positive integers)
N0 Set of natural numbers and the zero (non-negative integers)
N Gaussian/normal distribution
O Big O notation
P Number of PCE terms
QdL d-variate quadrature rule of accuracy level L
P Probability measure
R Set of real numbers
R+ Set of positive real numbers
R+

0 Set of positive real numbers and the zero
Si First order Sobol’ indices
STi Total Sobol’ indices

i



Symbols and abbreviations

Su1,...,us sth-order Sobol’ indices
Ŝi First order sampling-based Sobol’ indices
ŜTi Total sampling-based Sobol’ indices
Ŝu1,...,us sth-order sampling-based Sobol’ indices
Tl Lower limit of confidence
Tu Upper limit of confidence
u Multi-index
U Uniform distribution
v Multi-index
vx Vehicle velocity in x-direction
Var Variance
w i Weighting function for node ξi of the Gaussian quadrature
yk Spectral expansion coefficient
Xi Random parameter/variable
Xi j Design of experiment, quadrature nodes matrix
Y Model output
Zi Random parameter/variable

α Positive measure
α Multi-index
β Sideslip angle
β̇ Sideslip angular velocity
γ Normalizing constant or Confidence level
δ Steering angle
δnm Kronecker delta function
ε Residual in the linear regression method
ζu

(i) Combined i th-sample
ηu

(i) i th-sample for the sampling-based Sobol’ indices
θ Unknown statistic or parameter
θ̂ Statistic estimator
µ Mean value
ξ Random vector
ξu

(i) i th-sample for the sampling-based Sobol’ indices
ξk Univariate random variable
ρ Probability Density Function (PDF)
σ Standard deviation
ψ̇ Yaw rate
ψ̈ Yaw acceleration
Ψk Orthogonal polynomial of k th-order
Ω Sample space
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Symbols and abbreviations

Abbreviations

ANOVA Analysis of Variance

STM Single-Track Model

TTM Two-Track Model

gPC generalized Polynomial Chaos

MC Monte Carlo

QMC Quasi-Monte Carlo

MCS Monte Carlo Simulation

MSE Mean Squared Error

KDE Kernel Density Estimation

PC Polynomial Chaos

PCE Polynomial Chaos Expansion

SA Sensitivity Analysis

PDF Probability Density Function

CDF Cumulative Distribution Function

LRM Linear Regression Method

SGI Sparse Grid Integration

SDE Stochastic Differential Equation

UQ Uncertainty Quantification

UQTk Uncertainty Quantification Toolkit

DAKOTA Design Analysis Kit for Optimization and Terascale Applications

NISP Non-intrusive Spectral Projection

XML Extensible Markup Language

RPC Remote Procedure Call

API Application Program Interface

GUI Graphical User Interface

ECU Electronic Control Unit
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Appendix A

UQTk Functions

The UQTk functions that can be found in version 2.1.1 and that were used in this work are
presented in table A.1.

Table A.1: UQTk functions used in this work

qrule.m Gauss quadrature rules for the computation of 1D
nodes and xj weights wj

uq_evalBasisNormsSquared.m Computes the inner product of the basis polynomials
〈Ψ2

i 〉
uq_get1DNodesAndWeights.m Set up 1D nodes xj and weights wj for the Gaussian

Quadrature
uq_getNISP.m Returns the NISP matrix, used to project a vector of

data to a PC basis
uq_getSensitivity.m Computes first or second order Sobol’ sensitivity in-

dices
uq_getTotalSensitivity.m Computes total Sobol’ sensitivity indices
uq_initMultiIndex.m Computes the multi-indices αk
uq_meanvar.m Computes mean and variance of a time series
uq_PCBasis.m Computes multidimensional basis polynomials Ψi(xj)

at node xj
uq_pcset.m Sets up the basic PCE parameters
uq_psi.m Computes 1D basis polynomials Ψi

uq_quadrature.m Generation of the multidimensional integration nodes
and weights by using the tensor product rule from
their unidimensional counterpart

uq_quadtable.m Sets up lookup table of quadrature nodes
uq_sample.m Samples a PCE by using the spectral coefficients

Table A.2 presents further methods implemented in this work to improve or adapt the capa-
bilities of UQTk.

xi



Table A.2: Functions implemented or adapted in this work for their use with UQTk

plotPDF.m Computes the KDE for the PDF (using MATLAB’s
ksdensity) of the input variable at the specified time
in the time series and plots the result

regressionPCE.m Computes the necessary matrices of the Linear Re-
gression Method for the computation of the PCE
spectral coefficients

samplePCE.m Samples the PCE at the specified time (uses
uq_sample.m)

sg_quadrature.m Adapted from original code by Heiss & Winschel for
its use with UQTk, returns the nodes and weights for
sparse grid integration

sobolIndex.m Generalization of uq_getSensitivity.m for the com-
putation of nth-order Sobol’ sensitivity indices
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Appendix B

Additional figures
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Figure B.1: Computation time vs. Number of PCE terms for the STM using SGI (Kronrod-Patterson
rule) for the computation of the PCE coefficients

xiii



0 2000 4000 6000 8000 10000

µ

25.3

25.35

25.4

25.45

25.5

No. of samples

0 2000 4000 6000 8000 10000

σ

5.5

6

6.5

7

7.5

8

QMC

PCE

Figure B.2: PCE vs. QMC, convergence of the mean and standard deviation for ψ̇ at t = 2.5 s
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Figure B.3: PCE vs. QMC, convergence of the mean and standard deviation for β at t = 2.5 s
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Figure B.4: Confidence Intervals for the moments of ay at t = 2.5 s for the STM
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Figure B.5: KDE of ay at t = 2.5 s for the STM
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Figure B.6: Confidence Intervals for the moments of β at t = 2.5 s for the STM
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Figure B.7: KDE of β at t = 2.5 s for the STM
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Figure B.8: PC-based first order and total Sobol’ indices of ay for the STM
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Figure B.9: Sampling-based first order and total Sobol’ indices of ay for the STM
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Figure B.10: PC-based first order and total Sobol’ indices of β for the STM
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Figure B.11: Sampling-based first order and total Sobol’ indices of β for the STM
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Figure B.12: Time evolution for the lateral acceleration (ay ) as computed by means of a 6th-order
PCE (TTM, Step steering input maneuver)
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Figure B.13: Time evolution for the sideslip angle (β) as computed by means of a 6th-order PCE
(TTM, Step steering input maneuver)
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Figure B.14: Time evolution for the yaw rate (ψ̇) as computed by means of a 6th-order PCE (TTM,
Step steering input maneuver)
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Figure B.15: PCE vs. QMC convergence of the mean and standard deviation for the yaw rate ψ̇ at
t = 14 s (TTM, Step steering input maneuver)
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Figure B.16: PCE vs. QMC convergence of the mean and standard deviation for the sideslip angle β
at t = 14 s (TTM, Step steering input maneuver)
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Figure B.17: PCE vs. QMC convergence of the mean and standard deviation for the lateral force of
the front right wheel F vry at t = 14 s (TTM, Step steering input maneuver)
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Figure B.18: Time evolution for the longitudinal acceleration (ax ) as computed by means of a 5th-
order PCE (TTM, Braking in a curve maneuver)
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Figure B.19: Time evolution for the lateral acceleration (ay ) as computed by means of a 5th-order
PCE (TTM, Braking in a curve maneuver)
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Figure B.20: Time evolution for the yaw rate (ψ̇) as computed by means of a 5th-order PCE (TTM,
Braking in a curve maneuver)
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Figure B.21: Time evolution for the sideslip angle (β) as computed by means of a 5th-order PCE
(TTM, Braking in a curve maneuver)
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Figure B.22: PCE vs. MC KDE for the yaw rate (ψ̇) at t = 22 s (TTM, Braking in a curve maneuver)
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