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Introduction  

 

In our project we will introduce a new programming language for hardware 

which is OpenCL, OpenCL is an industry standard framework for 

programming computers composed of a combination of CPUs, GPUs, and 

other processors. These so-called heterogeneous systems have become an 

important class of platforms, and OpenCL is the first industry standard that 

directly addresses their needs. First released in December of 2008 with 

early products available in the fall of 2009, OpenCL is a relatively new 

technology. 

Justification 

The OpenCL with Altera SDK has many advantages for hardware programing 

in our life, it is good industry challenges such as power efficient 

acceleration, FPGA lifecycle over 15 years, allows for streaming IO channels 

and kernel channels and shared virtual memory, also OpenCL flow abstracts 

away FPGA hardware flow bringing the FPGA to low level software 

programmers and the OpenCL optimization doesn’t require a board.  It fits 

all markets like medical, military, automotive, industrial and broadcast. 

Objectives 

The aim goal of our project are:  

 Know and understand the main construction and structure of 

OpenCL.  

 Introduce for the first time the flow of design of OpenCL with 

FPGAs.  

 We will do a study about the algorithm Matrix-multiplication on 

deferent hardware configurations by using OpenCL programing and 

we see the faster case, we will improve the performance by using 

the Kernel function in FPGA with embedded ARM CPU, first we will 

run our algorithm on CPU ARM and this a simple way, than we add 

kernel and we run our algorithm on that kernel.  

 We demonstrate that the use of HDL IP (RTL code) can improve the 

results of standard kernel, our experiment consists a introduce the 

nonlinear function IP (tanh) in a generic kernel (matrix-
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multiplication), we add new technic it called Hyperbolic Tangent 

‘tanh’ to our kernel and we run our algorithm on it. 

 We represent the results of application of this kernel (matrix-

multiplication) in a very important algorithm in training of neural 

networks: Backpropagation algorithm. 

Structure of TFM 

In our thesis we will give a description of new programing OpenCL in first 

chapter as general and in the second chapter the OpenCL with Altera SDK, 

so we talk about the structure of OpenCL. Than we will study an example of   

implementation and optimization of the matrix-multiplication kernel cod  

also the host code that execute in the kernel in chapter three, in chapter 

four we will talk about the application of matrix-multiplication in 

Backpropagation algorithm,  and finally we describe of ‘tanh’ IP and present 

the result that we collect in our study. 
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Chapter 1. Conceptual Foundations of OpenCL 

 

We can define OpenCL by the following models: 

• Platform model: a high-level description of the heterogeneous system  

• Execution model: an abstract representation of how streams of 

instructions execute on the heterogeneous platform 

• Memory model: the collection of memory regions within OpenCL and 

how they interact during an OpenCL computation  

• Programming models: the high-level abstractions a programmer uses 

when designing algorithms to implement an application 

 

1.1 Platform Model 

An OpenCL platform always includes a single host. The host interacts with 

the environment external to the OpenCL program, including I/O or 

interaction with a program’s user. This model is shown in Figure below:   

 

 

 

Figure 1.1 OpenCL Platform
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The host is connected to one or more OpenCL devices. A device can be a 

CPU, a GPU, a DSP, or any other processor provided by the hardware and 

supported by the OpenCL vendor.  The OpenCL devices are further divided 

into compute units which are further divided into one or more processing 

elements.  

 

1.2 Execution Model 

An OpenCL application consists of two distinct parts: the host program and 

a collection of one or more kernels. The host program runs on the host. The 

kernels execute on the OpenCL devices. Kernels are typically simple 

functions that transform input memory objects into output memory 

objects. 

 OpenCL defines two types of kernels: 

 OpenCL kernels: functions written with the OpenCL C programming 

language and compiled with the OpenCL compiler 

 Native kernels: functions created outside of OpenCL and accessed 

within OpenCL through a function pointer. These functions could be, 

for example, functions defined in the host source code or exported 

from a specialized library. And it is an optional functionality within 

OpenCL. 

1.2.1 How a Kernel Executes on an OpenCL Device 

Execution of an OpenCL program occurs in two parts: kernels that execute 

on one or more OpenCL devices and a host program that executes on the 

host. A kernel is defined on the host. The host program issues a command 

that submits the kernel for execution on an OpenCL device. When this 

command is issued by the host, the OpenCL runtime system creates an 

integer index space. An instance of the kernel executes for each point in this 

index space. We call each instance of an executing kernel a work-item, 

which is identified by its coordinates in the index space. These coordinates 

are the global ID for the work-item.



Conceptual foundation of OpenCL                                                                                                          05 
  

The command that submits a kernel for execution, therefore, creates a 

collection of work-items. Work-items are organized into work-groups. 

Work-groups are the same size in corresponding dimensions, and this size 

evenly divides the global size in each dimension. The work-items in a given 

work-group execute concurrently on the processing elements of a single 

compute unit. 

The index space spans an N-dimensioned range of values and thus is called 

an NDRange (N can be 1, 2 or 3). Each work-item’s global and local ID is an 

N-dimensional tuple. Work-groups are assigned IDs using a similar approach 

to that used for work-items. 

In figure 2.1  shown a 2D NDRange, each small square is a work-item. Let’s 

us define that uppercase letter Gx/y is the size of the index space in each 

dimension and lowercase letter gx/y is the global ID of a work-item in each 

dimension, and uppercase letter Wx/y is the number of work-groups in each 

dimension and lowercase letter wx/y the work-group ID. 

OpenCL requires that the number of work-groups in each dimension evenly 

divide the size of the NDRange index space in each dimension. We will refer 

to this index space inside a work-group as the local index space. The size of 

our local index space in each dimension (x and y) is indicated with an 

uppercase L and the local ID inside a work-group uses a lowercase l. 

So we get this results: 

 Lx/y = Gx/y / Wx/y  

 

 gx/y = wx/y * Lx/y + lx/y (the index space starts with a zero in each 

dimension) 

 

From the figure 2.1 and we use the default offset of zero in each dimension. 

The shaded block has a global ID of (gx, gy) = (6, 5) and a work-group plus 

local ID of (wx, wy) = (1, 1) and (lx, ly) =(2, 1).
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Figure 1.2 An example of how the global IDs, local IDs, and work-group 

indices are related for a two-dimensional NDRange 

 

1.2.2 Context 

The computational work of an OpenCL application takes place on the 

OpenCL devices. The host defines a context for the execution of the kernels. 

The context includes the following resources:  

• Devices: the collection of OpenCL devices to be used by the host  

• Kernels: the OpenCL functions that run on OpenCL devices  

• Program objects: the program source code and executables that 

implement the kernels 

• Memory objects: a set of objects in memory that are visible to 

OpenCL devices and contain values that can be operated on by 

instances of a kernel
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The context is created and manipulated by the host using functions from 

the OpenCL API. The context included one or more program objects that 

contain the code for the kernels. 

 

1.2.3 Command-Queues 

The interaction between the host and the OpenCL devices occurs through 

commands posted by the host to the command-queue. A command-queue 

is created by the host and attached to a single OpenCL device. OpenCL 

supports three types of commands: 

• Kernel execution commands execute a kernel on the processing 

elements of an OpenCL device.  

• Memory commands transfer data between the host and different 

memory objects, move data between memory objects, or map and unmap 

memory objects from the host address space.  

• Synchronization commands put constraints on the order in which 

commands execute. 

In a typical host program, the programmer defines the context and the 

command-queues, defines memory and program objects, and builds any 

data structures needed on the host to support the application. When 

multiple kernels are submitted to the queue, they may need to interact. 

Commands within a single queue execute relative to each other in one of 

two modes: 

• In-order execution: a prior command on the queue completes before 

the following command begins. 

• Out-of-order execution: Commands are issued in order but do not wait 

to complete before the following commands execute. 

All OpenCL platforms support the in-order mode, but the out-of-order 

mode is optional. And it is possible to associate multiple queues with a 

single context for any of the OpenCL devices within that context.
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1.3 Memory Model 

OpenCL defines two types of memory objects: buffer objects and image 

objects. A buffer object, is just a contiguous block of memory made 

available to the kernels. A programmer can map data structures onto this 

buffer and access the buffer through pointers. Image objects are restricted 

to holding images. An image storage format may be optimized to the needs 

of a specific OpenCL device. 

 

The OpenCL memory model defines five distinct memory regions: 

• Host memory: This memory region is visible only to the host.  

• Global memory: This memory region permits read/write access to all 

work-items in all work-groups. 

• Constant memory: This memory region of global memory remains 

constant during the execution of a kernel. 

• Local memory: This memory region is local to a work-group. 

• Private memory: This region of memory is private to a work-item. 

Table describes whether the kernel or the host can allocate from a memory 

region, and the type of access allowed. 

 

 

Table 1.3 Memory Region - Allocation and Memory Access Capabilites 

The memory regions and how they relate to the platform model are 

described in figure below.
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Figure 1.3 The Memory Model in OpenCL 

 

1.4 Programming Models 

Programming Models are intimately connected to how programmers 

reason about their algorithms. OpenCL was defined with two different 

programming models in mind: task parallelism and data parallelism. 

 Data-Parallel Programming Model: A data parallel programming 
model defines a computation in terms of a sequence of instructions 
applied to multiple elements of a memory object. The index space 
associated with the OpenCL execution model defines the work-items 
and how the data maps onto the work-items. 

 
 Task-Parallel Programming Model: The OpenCL task parallel 

programming model defines a model in which a single instance of a 
kernel is executed independent of any index space.
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 Other Programming Models 

A programmer is free to combine OpenCL’s programming models to create 

a range of hybrid programming models. 

 

1.5 The OpenCL Framework  

The OpenCL framework is divided into the following components: 

• OpenCL platform API: The platform API defines functions used by the 

host program to discover OpenCL devices and their capabilities 

• OpenCL runtime API: This API manipulates the context to create 

command-queues and other operations that occur at runtime. 

• The OpenCL programming language: This is the programming language 

used to write the code for kernels. 

 

1.5.1 Platform API 

The term platform has a very specific meaning in OpenCL. It refers to a 

particular combination of the host, the OpenCL devices, and the OpenCL 

framework. Multiple OpenCL platforms can exist on a single heterogeneous 

computer at one time. 
1.5.2 Runtime API 

The tasks of the runtime API are: 

 To set up the command-queues.  

 When the command-queues in place, the runtime API is used to 

define memory objects.  

 Managed by the runtime API is to create the program objects used 

to build the dynamic libraries from which kernels are defined. The 

program objects, the compiler to compile them, the definition of 

the kernels.  

 Issues the commands that interact with the command-queue. 

 Synchronization points for managing data sharing and to enforce 

constraints on the execution of kernels
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1.5.3 Kernel Programming Language 

OpenCL consists two program, the OpenCL Host Program and the OpenCL 

Kernel, The host program is very important, but it is the kernels that do the 

real work in OpenCL. 

 The OpenCL Host Program 

Pure software written in standard ‘C’. Communicates with the Kernel 
Device via a set of library routines which abstract the communication 
between the host processor and the kernels. 
 
Example: 
 
 

                                                             
 
 
 
 
 The OpenCL Kernel 

 
The kernel programming language in OpenCL is called the OpenCL C 
programming language. It is derived from the ISO C99 language. 
 
Language Features Added like Work-items and work-groups, Vector types, 
Synchronization and Address space qualifiers. Also includes a large set of 
built-in functions like Image manipulation, Work-item manipulation and 
Math functions.

main() 
{ 
read_data_from_file(…); 
maninpulate_data(…); 
clEnqueueWriteBuffer(…); 
clEnqueueTask(…,my_kerne,…); 
clEnqueueReadBuffer(…); 
display_result_to_user(…); 
} 

Copy data from 
Host to Kernel 
Device 

Ask the Kernel 

Device to run a 
particular kernel 

Copy data from 
Kernel Device to 
Host  
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The OpenCL working group has already approved many extensions to the 
OpenCL specification: 
 
—Double precision floating-point types 
—Built-in functions to support doubles 
—Atomic functions 
—Byte-addressable stores (write to pointers to types < 32-bits)  
—3D Image writes  
—Built-in functions to support half types 

 OpenCL Language Restrictions: 
 

 Pointers to functions are not allowed 

 Pointers to pointers allowed within a kernel, but not as an argument 

 Bit-fields are not supported 

 Variable-length arrays and structures are not supported 

 Recursion is not supported 

 Writes to a pointer to a type less than 32 bits are not supported 

 Double types are not supported, but reserved 

 3D Image writes are not supported 

 

 The BIG idea behind OpenCL 

Replace loops with functions (a kernel) executing at each point in a problem 
domain, define N-dimensional computation domain and execute a kernel at 
each point in computation domain. 
 
The following example, we have two codes, the left code with traditional 
loop as a function in C and the right code with OpenCL C kernel. We can see 
the different in the declaration of function and the variables, and the most 
important one is the loop.  
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Traditional loop as a function in C                               OpenCL C kernel 
 
 
Example:  
 
We will give an example for a kernel function, the Output is square of Input, 
so we have the following code: 
 
 
 
 
 
 
 
 
     
 
                           get_globa_id(0) = 4  
 
 get_globa_id(0) =    0           1          2          3          4          5          6          7  
Input: 

2 5 4 9 3 7 0 8 

 
Output: 

4 25 16 81 9 49 0 64 

 
 

_kerner void square(_global float* input, _global float* output)  
{ 

int i = get_globa_id(0) ; 
output[i]  = input[i] * input[i] ; 

} 
 

Void 

trad_mul(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

   int i; 

   for (i=0; i<n; i++) 

      c[i] = a[i] * b[i]; 

} 

__kernel void  

dp_mul(__global const float *a,  

       __global const float *b,  

       __global  float *c) 

{ 

int id = get_global_id(0); 

c[id] = a[id] * b[id];} 

// execute over n“work items” 
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1.6 Opencl Overview 
 
In figure we can see general block diagram of OpenCL. First, the host 
program that defines the context. The context contains two OpenCL 
devices, a CPU and a GPU. Next we define the command-queues. In this 
case we have two queues, an in-order command-queue for the GPU and an 
out-of-order command-queue for the CPU. The host program then defines 
a program object that is compiled to generate kernels for both OpenCL 
devices (the CPU and the GPU). Next the host program defines any memory 
objects required by the program and maps them onto the arguments of the 
kernels. Finally, the host program enquires commands to the command-
queues to execute the kernels. 
 
 

 
 

Figure 1.6 general block diagram of OpenCL 
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Chapter 2. Conceptual Foundations of OpenCL 

with Altera SDK 

 

Utilizing the OpenCL standard on an FPGA may offer significantly higher 

performance than other hardware architectures such as CPU, GPU and DSP. 

Moreover, an FPGA-based heterogeneous system (CPU + FPGA) using the 

OpenCL standard. 

In Figure 02   we see the programmable technologies, is represented by 

CPU, DSP, Multicores and Arrays. 

 

 

Figure 02 Trend of Programmable and Parallel Technology  

 

2.1 The openCL stander on FPGA 

As we mention on chapter 1, the OpenCL application has two part, one part 

is OpenCL host program, is a pure software routine written in standard 

C/C++ that runs on any sort of microprocessor. That processor may be, an 

embedded soft processor in an FPGA, a hard ARM processor, or an external 

x86 processor. And second part is OpenCL Kernels program is written in 

standard C that make our kernel circuit on FPGA.  

In Figure 2.1.1 we provide an overview.
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Figure 2.1.1 overview of OpenCL  

 

In figure 2.1.2 we have an example shown that circuit architecture to 

perform the vector addition of two arrays, a and b. 

 

Figure 2.1.2 Example of OpenCL Implementation on an FPGA
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OpenCL Compiler translates an OpenCL kernel to hardware by creating a 

circuit that implements each operation. These circuits are wired together 

to mimic the flow of data in the kernel. For example in victor addition, The 

loads from arrays A and B are converted into load units, which are small 

circuits responsible for issuing addresses to external memory and 

processing the returned data. The two returned values are fed directly into 

an adder unit responsible for calculating the floating-point addition of these 

two values. Finally, the result of the adder is wired directly to a store unit 

that writes the sum back to external memory. 

The most important concept behind the OpenCL-to-FPGA compiler is the 

notion of pipeline parallelism. For simplicity, in figure 2.1.3   we have a 

circuit has three pipeline stages for the kernel. On the first clock cycle, 

thread 0 is clocked into the two load units. This indicates that they should 

begin fetching the first elements of data from arrays A and B. On the second 

clock cycle, thread 1 is clocked in at the same time that thread 0 has 

completed its read from memory and stored the results in the registers 

following the load units. On cycle 3, thread 2 is clocked in, thread 1 captures 

its returned data, and thread 0 stores the sum of the two values that it 

loaded. It is evident that in the steady state, all parts of the pipeline are 

active, with each stage processing a different thread. 

 

 

Figure 2.1.3 pipelined information
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2.2 FPGA OpenCL Architecture  

The figure 2.2 represents the high level of a complete OpenCL system 

containing multiple kernel pipelines and circuitry connecting these 

pipelines to off-chip data interfaces. In addition to the kernel pipeline, 

Altera's OpenCL compiler creates interfaces to external and internal 

memory. The load and store units for each pipeline are connected to 

external memory via a global interconnect structure that arbitrates multiple 

requests to a group of DDR DIMMs. Similarly, OpenCL local memory 

accesses are connected through a specialized interconnect structure to on-

chip M9K RAMs. These specialized interconnect structures are designed to 

ensure high operating frequency and efficient organization of requests to 

memory. 

 

 

Figure 2.2 OpenCL system implementation  
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2.3 OpenCL-to-FPGA framework 

We define the OpenCL-to-FPGA framework in the following schematic:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 OpenCL-to-FPGA framework 

 

The schematic presents the flow of our compilation framework, based on 

an LLVM compiler infrastructure. The input is an OpenCL application 

comprising a set of kernels (.cl files) and a host program (.c file). The kernels 

are compiled into a hardware circuit, starting with a C-language parser that 

produces an intermediate representation for each kernel. The intermediate 

representation (LLVM IR) is in the form of instructions and dependencies 
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between them. This representation is then optimized to target an FPGA 

platform. An optimized LLVM IR is then converted into a Control-Data Flow 

Graph (CDFG), which can be optimized to improve area and performance of 

the system, prior to RTL generation that produces Verilog HDL for a kernel. 

For the host program, we compile it using a C/C++ compiler. There are two 

elements in the compilation of the host program. One is the Altera 

OpenCL (ACL) Host Library, which implements OpenCL function calls that 

allow the host program to exchange information with kernels on an FPGA. 

The second is the Auto-Discovery module which allows a host program to 

detect the types of kernels on an FPGA. 

 

2.4 Kernel Compiler 

To compile OpenCL kernels into a hardware circuit, we extended the LLVM 

Open-Source compiler to target an FPGA platform as shown in schematic. 

The LLVM compiler represents a program as a sequence of instructions, 

such as load, add, subtract, store. A group of instructions in a contiguous 

sequence constitutes a basic block. At the end of a basic block there is 

always a terminal instruction that either ends the program or redirects 

execution to another basic block. The compiler uses this representation to 

create a hardware implementation of each basic block, which are then put 

together to form the complete kernel circuit. 

There are six basic group for kernel compiler, and they are: 

 C-Language Front-End: 

The first step in the conversion of a high-level description to a hardware 

circuit is to produce an intermediate representation (IR). To illustrate the 

IR, consider a program in following example kernel code :  

 

 

 

 

__kernel void triangle(_global int *x, _global int *y) { 

                int i, t = get global id(0), sum=0; 

                for (i=0; i < t; i++) sum += x[i];  

                y[id] = sum;  

} 
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In this example, each thread reads its ID using the get_global_id(0) function 

and stores it in variable t. It then sums up all elements of array x beginning 

at the first and ending at t-1. Finally, the result is stored in array y. C-

Language front-end parses a kernel description and creates an LLVM 

Intermediate Representation (IR), which is based on static single 

assignment. It comprises basic blocks connected by control-flow edges as 

shown in Figure2.4.1. The first basic block, Entry, performs initialization for 

the kernel and ends with a branch instruction that decides if a thread should 

bypass the loop. The second basic block represents the loop body and the 

last basic block stores the result to memory. To determine the data each 

basic block consumes and produces, we perform Live Variable Analysis. 

 
Figure 2.4.1 basic blocks 

 Live Variable Analysis 

Live Variable Analysis identifies variables consumed and produced by each 

basic block. In our example, the Entry basic block contains only kernel 

arguments as input variables (x, y). At the output of the basic block, 

variables sum, t and i are also created. This tells us that each thread 

produces these values when it completes execution in this basic block. 
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The For.body basic block includes all kernel arguments as well as the three 

arguments produced by the first basic block. It then produces y, t, i.next and 

add as output live variables. Notice that i.next and add effectively replace i 

and sum when the basic block loops back to itself, allowing the loop to 

function correctly. Finally, the last basic block has input live variables y, t 

and add, while no variables are live after the return instruction. 

 CDFG Generation 

Once each basic block is analyzed, we create a Control-Data Flow Graph 

(CDFG) to represent the operations inside it. Each basic block module takes 

inputs either from kernel arguments or another basic block, based on the 

results of Live Variable Analysis. Each basic block then processes the data 

according to the instructions contained within it and produces output that 

can be read by other basic blocks. 

A basic block module, shown in Figure 2.4.2, consists of three types of 

nodes. The first node is the merge node, which is responsible for 

aggregating data from previously executed basic blocks. This ensures that 

for each thread, its id as well as all other live variables are valid when the 

execution of the basic block begins. 

 

 

Figure 2.4.2 basic block module 
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Operational nodes represent instructions that a basic block needs to 

execute, such as load, store, or add. They are linked by edges to other nodes 

to show where their inputs come from and where their outputs are used. 

Each operational node can be independently stalled when the successor 

node is unable to accept data, or not all inputs of the successor node are 

ready. 

The last node in a basic block module is a branch node. It decides which of 

the successor basic blocks a thread should proceed to. 

 Loop Handling 

Loops are handled at a basic block level. A simple example of a loop is a 

basic block whose output is also an input to it, such as shown in Figure 2.4.1. 

The loop itself presents a problem in that it is entirely possible that a loop 

can stall. To remedy the problem, we insert an additional stage of registers 

into the merge node, that allows the pipeline to have an additional spot into 

which data can be placed.  

When loops comprise many basic blocks, it is possible that stalling can occur 

when loop-back paths are unbalanced. In such cases, we instantiate a loop 

limiter that allows only specific number of threads to enter the loop. The 

number of threads is equal to the length of the shortest path in a loop. 

 Scheduling 

Once each basic block is represented as a CDFG, scheduling is used to 

determine the clock cycles in which each operation is performed. This is 

important because not all instructions require the same number of clock 

cycles to complete. For example, an AND operation may be purely 

combinational, but a floating point addition may take eight cycles. In some 

cases, it may be necessary to insert pipeline balancing registers into the 

circuit because one execution path is longer than another. 

To solve the scheduling problem we apply SDC(system of difference 

constraints ) scheduling algorithm. The SDC scheduler uses a system of 

linear equations to schedule operations, while minimizing a cost function. 

In the context of scheduling, each equation represents a clock cycle 

relationship between connected operations. For example, in implementing 

an equation f = a ∗ b + c ∗ d, the scheduler has ensure that both 

multiplications occur before addition. A secondary objective is the 

reduction of area, and in particular the amount of pipeline balancing 
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registers required. To minimize the impact on area, we minimize a cost 

function that reduces the number of bits required by the pipeline. 

 Hardware Generation 

To generate a hardware circuit for a kernel we build it out of basic block 

modules. To achieve high performance, we implement each module as a 

pipelined circuit, rather than a finite state machine with datapath (FSMD). 

This is because a potentially large number of threads need to execute using 

a kernel hardware, and their computation is largely independent. Hence, 

the kernel hardware should be able to execute many threads at once, rather 

than one at a time. 

In a pipelined circuit, a new thread begins execution at each clock cycle. 

Thus, a basic block with pipeline depth of 100 executes 100 threads 

simultaneously. This is similar to replicating an FSMD circuit 100 times, 

except that subsequent threads execute different operations. Once each 

basic block is implemented, we put the basic blocks together by linking the 

stall, valid and data signals as specified by the control edge. We then 

generate a wrapper around a kernel to provide a standard interface to the 

rest of the system. 

 

2.5 Memory Organization 

OpenCL defines three types of memory spaces: global, local and private. 

The global memory space is designated for access by all threads. Read and 

write operations to this memory can be performed by any thread. The 

global memory space resides in off-chip DRRx memory. It has large capacity 

allowing us to store data, but long access latency. Accesses to this memory 

are coalesced when possible to increase memory throughput. 

Local memory is used by work groups to enable synchronized exchange of 

data. To synchronize threads within a workgroup, barriers/memory fences 

are used to force threads to wait on one another before proceeding further. 

This allows complex algorithms that require collaboration of threads to be 

implemented. Local memory is implemented using on-chip memory. It has 

short latency and multiple ports, allowing the kernel to access it efficiently. 

To do this we create a shared memory space for each load and store unit to 

any local memory.
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Private memory is implemented with registers that store the data on a per-

thread basis, and are pipelined through the kernel to ensure that each 

thread keeps the data it requires as it proceeds with the execution through 

the kernel. 

2.5.1 Optimize Global Memory Accesses 

The Altera Offline Compiler (AOC) uses SDRAM as global memory. By 

default, the AOC configures global memory in a burst-interleaved 

configuration. The AOC interleaves global memory across each of the 

external memory banks, the default burst-interleaved configuration leads 

to the best load balancing between the memory banks. 

The figure below illustrates the differences in memory mapping patterns 

between burst-interleaved and non-interleaved memory partitions. 

 

 

Figure 2.5.1 Global Memory Partitions 
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2.5.2 Contiguous Memory Accesses 

Contiguous memory access optimizations analyze statically the access 

patterns of global load and store operations in a kernel. For sequential load 

or store operations that occur for the entire kernel invocation, the Altera 

Offline Compiler (AOC) directs the kernel to access consecutive locations in 

global memory. Consider the following code example: 

 

 

 

 

 

 

 

 

The load operation from array a uses an index that is a direct function of 

the work-item global ID. By basing the array index on the work-item global 

ID, the AOC can direct contiguous load operations. These load operations 

retrieve the data sequentially from the input array, and sends the read data 

to the pipeline as required. Contiguous store operations then store 

elements of the result that exits the computation pipeline in sequential 

locations within global memory. 

The following figure illustrates an example of the contiguous memory 

access optimization:

__kernel void sum ( __global const float * restrict a, 

                                    __global const float * restrict b, 

                                    __global float * restrict c ) 

 {  

                                   size_t gid = get_global_id(0);  

                                    c[gid] = a[gid] + b[gid]; 

 } 
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Figure 2.5.2 Contiguous Memory Access 

 

Contiguous load and store operations improve memory access efficiency 

because they lead to increased access speeds and reduced hardware 

resource needs. The data travels in and out of the computational portion of 

the pipeline concurrently, allowing overlaps between computation and 

memory accesses. If possible, use work-item IDs that index consecutive 

memory locations for load and store operations that access global memory. 

Sequential accesses to global memory increase memory efficiency because 

they provide an ideal access pattern. 

We can execute our kernel on an FPGA board that includes multiple global 

memory types, such as DDR, quad data rate (QDR), and on-chip RAMs. 

2.5.3 Constant Cache Memory 

Constant memory resides in global memory, but the kernel loads it into an 

on-chip cache shared by all work-groups at runtime. For example, if we have 

read-only data that all work-groups use, and the data size of the constant 

buffer fits into the constant cache, allocate the data to the constant 

memory. The constant cache is most appropriate for high-bandwidth table 

lookups that are constant across several invocations of a kernel. The 

constant cache is optimized for high cache hit performance.
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2.6 Strategies for Improving NDRange Kernel Data Processing 

Efficiency 

Consider the following kernel code: 

 

 

 

 

 

 

 

This kernel adds arrays a and b, one element at a time. Each work-item is 

responsible for adding two elements, one from each array, and storing the 

sum into the array answer. Without optimization, the kernel performs one 

addition per work-item. 

To maximize the performance of our OpenCL kernel, consider implementing 

the applicable optimization techniques to improve data processing 

efficiency. 

 Specify a Maximum Work-Group Size or a Required Work-Group 

Size 

Specify the max_work_group_size or reqd_work_group_size attribute for 

our kernels whenever possible. These attributes allow the Altera Offline 

Compiler (AOC) to perform aggressive optimizations to match the kernel to 

hardware resources without any excess logic.  

For example, the code fragment below assigns a fixed work-group size of 64 

work-items to a kernel: 

 

 

 

 

 

 

__kernel void sum ( __global const float * restrict a, 

                                    __global const float * restrict b, 

                                    __global float * restrict answer ) 

 {  

                                   size_t gid = get_global_id(0);  

                                    answer[gid] = a[gid] + b[gid]; 

 } 

 

__attribute__((reqd_work_group_size(64,1,1))) 

__kernel void sum ( __global const float * restrict a, 

                                    __global const float * restrict b, 

                                    __global float * restrict answer ) 

 {  

                                   size_t gid = get_global_id(0);  

                                    answer[gid] = a[gid] + b[gid]; 

 } 
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 Kernel Vectorization 

To achieve higher throughput, we can vectorize our kernel. Kernel 

vectorization allows multiple work-items to execute in a single instruction 

multiple data (SIMD) fashion. 

Include the num_simd_work_items attribute in our kernel code to direct 

the AOC to perform more additions per work-item without modifying the 

body of the kernel. The following code fragment applies a vectorization 

factor of four to the original kernel code:  

 

 

 

 

 

 

 

 

 Static Memory Coalescing 

Static memory coalescing is an Altera Offline Compiler (AOC) optimization 

step that attempts to reduce the number of times a kernel accesses non-

private memory. 

In previous code. The OpenCL kernel performs four load operations that 

access consecutive locations in memory. Instead of performing four 

memory accesses to competing locations, the AOC coalesces the four loads 

into a single wider vector load. This optimization reduces the number of 

accesses to a memory system and potentially leads to better memory 

access patterns. Although the AOC performs static memory coalescing 

automatically when it vectorizes the kernel. 
 Multiple Compute Units 

To achieve higher throughput, the Altera Offline Compiler (AOC) can 

generate multiple compute units for each kernel. The AOC implements each 

__attribute__((num_simd_work_items(4))) 

__attribute__((reqd_work_group_size(64,1,1))) 

__kernel void sum ( __global const float * restrict a, 

                                    __global const float * restrict b, 

                                    __global float * restrict answer ) 

 {  

                                   size_t gid = get_global_id(0);  

                                    answer[gid] = a[gid] + b[gid]; 

 } 
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compute unit as a unique pipeline. Generally, each kernel compute unit can 

execute multiple work-groups simultaneously. 

To increase overall kernel throughput, the hardware scheduler in the FPGA 

dispatches work-groups to additional available compute units. A compute 

unit is available for work-group assignments as long as it has not reached 

its full capacity.  

Assume each work-group takes the same amount of time to complete its 

execution. If the AOC implements two compute units, each compute unit 

executes half of the work-groups. Because the hardware scheduler 

dispatches the work-groups, you do not need to manage this process in 

your own code.  

The AOC does not automatically determine the optimal number of compute 

units for a kernel. To increase the number of compute units for our kernel 

implementation, we must specify the number of compute units that the 

AOC should create using the num_compute_units attribute, as shown in the 

code sample below. 

 

 

 

 

 

 

 

 

 

 

 Combination of Compute Unit Replication and Kernel SIMD 

Vectorization 

If our replicated or vectorized OpenCL kernel does not fit in the FPGA, we 

can modify the kernel by both replicating the compute unit and vectorizing 

the kernel. Include the num_compute_units attribute to modify the number 

__attribute__((num_compute_units(2))) 

__kernel void sum ( __global const float * restrict a, 

                                    __global const float * restrict b, 

                                    __global float * restrict answer ) 

 {  

                                   size_t gid = get_global_id(0);  

                                    answer[gid] = a[gid] + b[gid]; 

 } 
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of compute units for the kernel, and include the num_simd_work_items 

attribute to take advantage of kernel vectorization. 

 

 

Figure 2.6.1 Compute Unit Replication versus Kernel SIMD Vectorization 

 

Figure 2.6.2 Combination of Compute Unit Replication and Kernel SIMD 

Vectorization
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2.7 Optimize Floating-Point Operations 

For floating-point operations, we can manually direct the Altera Offline 

Compiler (AOC) to perform optimizations that create more efficient 

pipeline structures in hardware and reduce the overall hardware usage. 

These optimizations can cause small differences in floating-point results. 

 Tree Balancing 

We have this equation: 

                           result = (((A * B) + C) + (D * E)) + (F * G); 

By default, the AOC creates an implementation that resembles a long vine 

for such computations: 

 

Figure 2.7.1 Default Floating-Point Implementation 

 

Long, unbalanced operations lead to more expensive hardware. A more 

efficient hardware implementa‐ tion is a balanced tree, as shown below:
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Figure 2.7.2 Balanced Tree Floating-Point Implementation 

 

In a balanced tree implementation, the AOC converts the long vine of 

floating-point adders into a tree pipeline structure. The AOC does not 

perform tree balancing of floating-point operations automatically because 

the outcomes of the floating-point operations might differ. As a result, this 

optimization is inconsistent with the IEEE Standard 754-2008. 

If we want the AOC to optimize floating-point operations using balanced 

trees and your program can tolerate small differences in floating-point 

results, include the --fp-relaxed option in the aoc command. 

 Rounding Operations 

The balanced tree implementation of a floating-point operation includes 

multiple rounding operations. These rounding operations can require a 

significant amount of hardware resources in some applications. The AOC 

does not reduce the number of rounding operations automatically because 

doing so violates the results required by IEEE Standard 754-2008.  

We can reduce the amount of hardware necessary to implement floating-

point operations with the -- fpc option of the aoc command.
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2.7.1 Floating-Point versus Fixed-Point Representations 

An FPGA contains a substantial amount of logic for implementing floating-

point operations. However, we can increase the amount of hardware 

resources available by using a fixed-point representation of the data 

whenever possible. The hardware necessary to implement a fixed-point 

operation is typically smaller than the equivalent floating-point operation. 

As a result, you can fit more fixed-point operations into an FPGA than the 

floating-point equivalent. 

 The OpenCL standard does not support fixed-point representation; we 

must implement fixed-point representations using integer data types. 

Hardware developers commonly achieve hardware savings by using fixed-

point data representations and only retain a data resolution required for 

performing calculations. We must use an 8, 16, 32, or 64-bit scalar data type 

because the OpenCL standard supports only these data resolutions 
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Chapter 3. Matrix-multiplication (Study an 
example) 

 

According to the definition of BLAS libraries, we define the computation of 
Matrix-multiplication as follow: the single-precision general matrix-
multiplication (SGEMM) computes the following form: 

C = alpha* A * B + beta * C 

Where: A is a K by M input matrix, B is an N by K input matrix, C is the M by 
N output matrix, and alpha and beta are scalar constants. For simplicity, we 
assume the common case where alpha is equal to 1 and beta is equal to 
zero, we get: 

C = A * B 

There is a condition for the matrix sizes must be equal or multiples 
of OpenCL workgroups. 

There are many ways for implementations of single-precision matrix-
multiplication, we will study ‘’ Tiling in the local memory’’. 

 

3.1 Tiling in the local memory 

The main reason the naive implementation doesn't perform so well is 
because we are accessing the kernel device's off-chip memory way too 
much. We have M*N*K multiplications and additions, we need M*N*K*2 
loads and M*N stores. To avoid that we compute by sub-block, so we divide 
the matrixes to sub-block and work with them, in figure 03 we multiply sub-
A with sub-B and we get sub-C and this save time of accessing to  kernel 
device's off-chip memory.
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Figure 03 matrix-multiplication by sub-block  

 

3.2 Host Code  

The version of SGEMM can be implemented in plain C using 3 nested loops, 

we see code below  
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3.3 Kernel code  

The following code is an implementation of tiling: 

 

 

 

We see that the original accumulation loop over K has been split into two 

new loops: first one over all K/TS tiles and second one over all TS elements 

within a tile. We can identify two parts which are separated with 

synchronization barriers: first loading from off-chip memory to local 

memory, and second computation based on local memory data.
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Chapter 4. Application of matrix-multiplication 

kernel in Backpropagation 

In this chapter we will talk about the algorithm of Backpropagation that 

we used in our study. 

4.1 The time execution 

The following equation defines the time execution of the algorithm 

Backpropagation. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑖𝑛𝑖 + 𝐸 ∙ (𝑇𝐶𝑊 + 𝑇𝑢𝑤) + 𝑇𝑡𝑒𝑠𝑡                       (1) 

Where: 

𝑇𝑖𝑛𝑖 : is the time of initialization. 

𝐸 : is the number of iterations of a loop. 

𝑇𝑐𝑤 : is the calculus of partial derivative of the error with respect to each 

weight. 

𝑇𝑈𝑤: is the update of the weights. 

𝑇𝑡𝑒𝑠𝑡 : is the time of obtaining of calculus with test set. 

4.1.1  𝑻𝒄𝒘 

The time dedicated to calculus of partial derivative of the error with 

respect to each weight is usually broken down into three phases to be 

performed iteratively for each pattern. If we had Np patterns it would be 

𝑇𝑐𝑤 = 𝑁𝑝 ∙ (𝑇𝑓 + 𝑇𝑏1 + 𝑇𝑏2)                                  (2) 

The three steps involved in this time taking one pattern 𝑚 at a time, 

having 𝐿 layers of neurons and 𝑁𝑙 neurons in each layer, and calculating 

the partial derivative of the error with respect to each weight are as 

follows: 

 Forward step. Apply the pattern 𝑦𝑖
𝐾 to the input layer and 

propagate the signal forward through the network until the final 

outputs 𝑦𝑖
𝐿 have been calculated for each 𝑖(index of neuron) and 

𝑙(index of layer) 
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  

 
Figure 4.1.1: Multiplayer Perceptron 

 

𝑢𝑖
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 𝑦𝑗
𝑙−1𝑁𝑙−1

𝑗=0                                     (3) 

𝑦𝑖
𝑙 = 𝑓(𝑢𝑖

𝑙)                                                   (4) 

𝑦𝑖
′𝑙 = 𝑓′(𝑢𝑖

𝑙)                                                (5) 

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿 

where y is the activation, w the weights and f the non-linear 

function 

 Backward step 1. Compute the δ’s for the output layer 𝐿 and 

compute the δ’s for the preceding layers by propagating the errors 

backwards using 

𝛿𝑗
𝐿 = 𝑓′(𝑢𝑗

𝐿)(𝑡𝑖 − 𝑦𝑖)                                     (6) 

𝜃𝑖
𝑙−1 = ∑ 𝑤𝑖𝑗𝛿𝑖

𝑙𝑁𝑙
𝑖=1                                            (7) 

𝛿𝑗
𝑙−1 = 𝑓′(𝑢𝑗

𝑙−1) 𝜃𝑖
𝑙−1                                      (8) 

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿 

where 𝛿 are the error terms, 𝑡 the targets and 𝑓′ the derivative 

function of 𝑓 

 Backward step 2. Meanwhile we obtain the delta errors en 

backward step 1 we can obtain the accumulation of partial 

derivative of the error with respect to each weight using 

𝑒 = 1/2∑ (𝑡𝑖 − 𝑦𝑖
𝐿)2

𝑁𝑙
𝑖=1                                 (9) 

𝑚
𝜕𝑒

𝜕𝑤𝑖𝑗
𝑙 = 𝛿𝑖

𝑙𝑦𝑗
𝑙−1                                              (10) 

𝑐𝑤𝑖𝑗
𝑙𝑚 = 𝑐𝑤𝑖𝑗

𝑙𝑚−1 +  𝑚
𝜕𝑒

𝜕𝑤𝑖𝑗
𝑙                            (11) 

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿
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where cw is the accumulation of the direction of the gradient of the 

error . When we finish with all the patterns, this accumulation will 

be 

𝑐𝑤𝑖𝑗
𝑙 =

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑙                                                  (12) 

𝐸 =
1

2
∑ ∑ (𝑡𝑖 − 𝑦𝑖

𝐿)2
𝑁𝑙
𝑖=1

𝑁𝑝
𝑚=1                     (13) 

1 ≤ 𝑙 ≤ 𝐿 

4.1.2  𝑻𝒖𝒘 

The time dedicated to update the weights of the ANN is dedicated to 

actualize all the weights of the ANN when each EPOCH has finished 

 

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑗𝑖
(𝑡)
+ ∆𝑤𝑖𝑗

(𝑡)
                                                    (14) 

∆𝑤𝑖𝑗
(𝑡)
=

{
 
 
 

 
 
 −∆𝑤𝑖𝑗

(𝑡−1)
, 𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

−∆𝑖𝑗
(𝑡)
, 𝑒𝑙𝑠𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

> 0

−∆𝑖𝑗
(𝑡)
, 𝑒𝑙𝑠𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

0, 𝑒𝑙𝑠𝑒 

     (15) 

 

∆𝑖𝑗
(𝑡)
=

{
  
 

  
 𝜂+ ∗ ∆𝑖𝑗

(𝑡−1)
, 𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

> 0

𝜂− ∗ ∆𝑖𝑗
(𝑡−1)

, 𝑖𝑓 (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

∆𝑖𝑗
(𝑡−1)

, 𝑒𝑙𝑠𝑒 

𝑤ℎ𝑒𝑟𝑒 0 < 𝜂− < 1 < 𝜂+

       (16) 
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If we combine the Equations 14, 15 and 16 we consider the following 

pseudo code 

for each 𝑤𝑖𝑗do { 

  if (∂E/∂wij)(t-1). (∂E/∂wij)(t)> 0 then { 

   ∆ij
(t):=min(∆ij

(t-1).η+,∆max) 

   ∆wij
(t):=-sign((∂E/∂wij)(t)). ∆ij

(t) 

   wij
(t+1)):= wij

(t)+ ∆wij
(t)              } 

         elsif (∂E/∂wij)(t-1). (∂E/∂wij)(t)< 0 then {                          (17)            

   ∆ij
(t):=max(∆ij

(t-1).η-,∆min) 

   wij
(t+1)):= wij

(t)- ∆wij
(t-1)               

   (∂E/∂wij)(t):= 0                          } 

        elsif  (∂E/∂wij)(t-1). (∂E/∂wij)(t)= 0 then { 

   ∆wij
(t):=-sign((∂E/∂wij)(t)). ∆ij

(t) 

   wij
(t+1)):= wij

(t)+ ∆wij
(t)              } 

} 

4.2 Original algorithm  

We can perform the equation 01 by implementing this algorithm with 

OpenCL, our main candidates for the kernels are the tasks called in lines 

1,2,3,4 and 5 (see Figure 4.2). The tasks called in lines 1, 2 and 3 are 

implementing the Equation 3, and the tasks called in lines 4 and 5 are 

implementing the Equation 7. Each kernel would have a similar structure 

based on a matrix vector multiplication, and how a path dependence 

between them, the better solution exist is implement a unique kernel and 

reuse 5 times in each iteration. Therefore we would use the same kernel in 

5 · Np · E times in our algorithm.                                                                                                      . 
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Figure 4.2 Resilient Backpropagation original 

 

4.3 Final algorithm  

We can perform the equation 01 by implementing this algorithm with 

OpenCL, our main candidates for the kernels are the lines 1, 2, 3, 4, 5, 6, 7 

and 8 of algorithm 2(see Figure 4.3). Each kernel would have a similar 

structure based on a matrix matrix-multiplication, and how a path 

dependence between them, the better solution exist is implement a unique 

kernel and reuse 7 times in each iteration. Therefore we would use the 

same kernel in 7 · E times in our algorithm. In equation 18 we can see the 

matrix matrix-multiplications of forward phase, in equation 19 we can see 

the matrix matrix-multiplications of backward1 phase and in equation 20 

we can observe the matrix matrix-multiplications of backward2 phase. In 

each matrix matrix-multiplication the size of the matrices must be modified 

and of course our OpenCL implementation must permit to change this 

parameters. This algorithm use Matrix-multiplication with tiling that we had 

it in chapter 3.
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Figure 4.3 Resilient Backpropagation  

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 (
𝐼𝑛𝑝𝑢𝑡 11⋯𝐼𝑛𝑝𝑢𝑡1𝑛 
⋮           ⋱           ⋮

𝐼𝑛𝑝𝑢𝑡𝑚1…𝐼𝑛𝑝𝑢𝑡𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘 
⋮           ⋱           ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘 
⋮           ⋱           ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐼𝑛𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟1

(

𝑦 11⋯𝑦1𝑛 
⋮     ⋱     ⋮
𝑦𝑚1…𝑦𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘 
⋮           ⋱           ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘 
⋮           ⋱           ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟2

(

𝑦 11⋯𝑦1𝑛 
⋮     ⋱     ⋮
𝑦𝑚1…𝑦𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘 
⋮           ⋱           ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘 
⋮           ⋱           ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑘 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟3
}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

→ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝ℎ𝑎𝑠  

                                                                                                                               (18) 
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{
 
 
 
 
 

 
 
 
 
 

(

𝛿11⋯𝛿1𝑛
⋮     ⋱     ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑤11⋯𝑤1𝑘
⋮    ⋱     ⋮
𝑤𝑛1⋯𝑤𝑛𝑘

) = (

𝜃11⋯𝜃1𝑘
⋮     ⋱     ⋮
𝜃𝑚1⋯𝜃𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 − 𝑙𝑎𝑦𝑒𝑟2

(

𝛿11⋯𝛿1𝑛
⋮     ⋱     ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑤11⋯𝑤1𝑘
⋮    ⋱     ⋮
𝑤𝑛1⋯𝑤𝑛𝑘

) = (

𝜃11⋯𝜃1𝑘
⋮     ⋱     ⋮
𝜃𝑚1⋯𝜃𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑘 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 − 𝑙𝑎𝑦𝑒𝑟1
}
 
 
 
 
 

 
 
 
 
 

→ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 𝑓𝑎𝑠𝑒 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
(

𝛿11⋯𝛿1𝑛
⋮     ⋱     ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮    ⋱     ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮     ⋱     ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟3

(

𝛿11⋯𝛿1𝑛
⋮     ⋱     ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮    ⋱     ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮     ⋱     ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑛 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟2

(

𝛿11⋯𝛿1𝑛
⋮     ⋱     ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮    ⋱     ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮     ⋱     ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1
𝑛 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑘 = 𝑛𝑢𝑚𝐼𝑛𝑡𝑝𝑢𝑡𝑠

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟1
}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

→ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 𝑓𝑎𝑠𝑒 

                                                                                                                        (20) 
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Chapter 5. Ability to quickly integrate IPs in 

OpenCL and Results 

 

In this section we will see one advanced features for OpenCL Altera SDK 

how we can write our own code HDL inside OpenCL kernel and create its 

library. And we present our result with graphs. 

5.1 OpenCL Library 

The Altera SDK for OpenCL provides advanced features we can create our 

OpenCL library, OpenCL library is a single file that contains multiple 

functions and we can create it in OpenCL or RTL. 

 

Figure 5.1 Overview of Altera SDK for OpenCL's Library Support 

To create an OpenCL library we need the following files: 

 RTL Components 

 

 RTL source file: Verilog, VHDL. 

  eXtensible Markup Language File (.xml): The Altera Offline 

Compiler     uses these properties to integrate the RTL 

component into the OpenCL pipeline. 

  Header file (.h): A C-style header file that declares the 

signatures of function(s) that are implement by the RTL 

component.
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 OpenCL emulation model file (.cl): Provides C model for the 

RTL component that is used only for emulation. 

 OpenCL Functions 

 

 OpenCL source files (.cl): Contains definitions of the OpenCL 

functions. 

 Header file (.h): A C-style header file that declares the 

signatures of function(s) that are defined in the OpenCL 

source files. 

 

5.1.1 RTL Modules and the OpenCL Pipeline 

In the following figure represent the architecture of an AOCL pipeline 

 

Figure 5.1.1 Parallel Execution Model of AOCL Pipeline Stages 

In the figure 5.1.1 the operations on the right represent the AOCL pipeline 

implementation of the OpenCL kernel code on the left. At each stage, the 

AOC executes all operations in parallel by the thread existing at that stage. 

 Integration of an RTL Module into the AOCL Pipeline 

In the figure 5.1.2 we see how the AOC integrates the RTL module myMod 

within the library into the AOCL pipeline. The RTL module has a balanced 

latency where the threads of the RTL module match the number of pipeline 

stages.
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Figure 5.1.2 Integration of an RTL Module into an AOCL Pipeline 

 RTL Reset and Clock Signals 

Resets and clocks of RTL modules are connected to the same clock and reset 

drivers as the rest of the OpenCL pipeline. 

The following steps outline the process of setting the kernel clock 

frequency: 

1. The Quartus Prime software's Fitter applies an aggressive constraint on 

the kernel clock. 

2. The Quartus Prime software's TimeQuest Timing Analyzer performs 

static timing analysis to determine the frequency that the Fitter actually 

achieves. 

3. The phase-locked loop (PLL) that drives the kernel clock sets the 

frequency determined in Step 2 to be the kernel clock frequency. 

 XML Syntax of an RTL Module 

Elements and Attributes in the XML Specification File:  

RTL_SPEC: Top-level element in the XML specification file. There can only 

be one such top-level element in the file.
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FUNCTION: defines the OpenCL function that the RTL module implements. 

We can have multiple function. 

ATTRIBUTES: containing other XML elements that describe various 

characteristics (for example, latency) of the RTL module. 

INTERFACE: containing other XML elements that describe the RTL 

module's interface. 

C_MODEL: specifying one or more files that implement OpenCL C model 

for the function. 

REQUIREMENTS: specifying one or more RTL resource files (that is, .v, 

.vhd…..) 

 Order of Threads Entering an RTL Module 

That threads entering an RTL module not follow a defined order. 

 OpenCL C Model of an RTL Module 

Each RTL module within an OpenCL library must have an OpenCL C model, 

if we decide not to emulate our OpenCL system, we have to create an empty 

function with a name that matches the function name you specified in the 

XML specification file. 

 Potential Incompatibility between RTL Modules and Partial 

Reconfiguration 

If a library user then uses the library's RTL module inside a PR region, the 

module might not function correctly after PR. To ensure that the RTL 

modules function correctly on a device that uses PR:  

1-The RTL modules do not use memory logic array blocks (MLABs) with 

initialized content. 

2-The RTL modules do not make any assumptions regarding the power-up 

values of any logic. 

5.1.2 Packaging an OpenCL Helper Function File 

Before creating an OpenCL library file, package each OpenCL source file 

with helper functions into a .aoco file. Unlike RTL modules, we do not need 

to create an XML specification file. 

To package an OpenCL source file into a .aoco file, invoke the following 

command:  
aoc -c -shared <OpenCL_source_file_name>.cl –o <OpenCL_object_file_name>.aoco
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where the -shared AOC command option instructs the AOC to create a 

.aoco file that is suitable for inclusion into an OpenCL library. 

 

5.1.3 Packaging an RTL Component for an OpenCL Library 

To package an RTL component into a .aoco file, invoke the following 

command:  
aoc -c <RTL component description file name>.xml -o <RTL object file name>.aoco 

5.1.4 Restrictions and Limitations in RTL Support  

The Altera SDK for OpenCL supports the use of RTL modules in an OpenCL 

library with the following restrictions: 

1- An RTL module must contain one Avalon-ST interface. In particular, a 

single ready or valid logic must control all the inputs. 

2- The RTL module must work correctly with exactly one clock, regardless 

of clock frequency. 

3- Data input and output sizes must match valid OpenCL data types, from 

8 bits for char to 1024 bits for long16. 

4- RTL modules cannot connect to external I/O signals. All input and 

output signals must come from an OpenCL kernel. 

5- An RTL module must have a clock port, a resetn port, and Avalon-ST 

input and output ports (that is, ivalid, ovalid, iready, oready).  

6- RTL modules that communicate with external memory must have 

Avalon Memory-Mapped (AvalonMM) port parameters that match the 

corresponding Custom Platform parameters. 

7- RTL modules that communicate with external memory cannot burst 

across the burst boundary also cannot make requests every clock cycle 

and stall the hardware by monopolizing the arbitration logic. 

8- RTL modules cannot act as stand-alone OpenCL kernels. 

9- Every function call that corresponds to RTL module instantiation is 

completely independent of other instantiations. There is no hardware 

sharing. 

10- Do not incorporate kernel code (that is, functions marked as kernel) 

into a .aoclib library file. 

11- An RTL component must receive all its inputs at the same time.
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12- AOCL does not support I/O RTL modules. 

13- You can only set RTL module parameters in the <RTL module 

description file name>.xml specification file, not the OpenCL kernel source 

file. 

 AOCL's RTL module support for the library feature has the following 

limitations: 

1- We can only pass data inputs to an RTL module by value via the OpenCL 

kernel code. 

2- We cannot include the -g AOC command option when compiling kernels 

that use libraries. 

3- Names of RTL module source files cannot conflict with the file names of 

AOC IP. 

4- AOCL does not support .qip files. We must manually parse nested .qip 

files to create a flat list of RTL files. 

5- It is very difficult to debug an RTL module that works correctly on its 

own but works incorrectly as part of an OpenCL kernel. 

6- All AOC area estimation tools assume that RTL module area is 0. 

7- RTL modules cannot access a 2x clock that is in-phase with the kernel 

clock and at twice the kernel clock frequency. 

5.1.5 Verifying the RTL Modules 

We verify each RTL module using standard hardware verification methods 

and we can also modify one of Altera's OpenCL library design examples to 

test our RTL modules inside the overall OpenCL system. 

5.1.6 Packaging Multiple Object Files into a Library File 

To package multiple object files into a single library file, invoke the 

following command: 

 aocl library create -o <library file name>.aoclib <object file 1>.aoco [<object file 

2>.aoco ... <object file N>.aoco] 

The aocl library utility command creates a <library file name>.aoclib library 

file, which includes the .aoco object files we specify in the command.         

A library file may contain both RTL-based object files and OpenCL-based 

object files. 
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5.1.7 Specifying an OpenCL Library when Compiling an OpenCL Kernel 

We can specify an OpenCL library to the AOC by invoke the following 

command: 

aoc –l <library_file_name>.aoclib [-L <library directory>] <kernel file 

name>.cl 

Where  the command -l <library_file_name>.aoclib specifies the library file 

name, and the command -L <library directory> specifies the directory 

containing the library files. 

5.1.8 OpenCL Library Command-Line Options 

We can invoke the following commands to perform OpenCL library-related 

tasks: 

1-Library-Related AOC Command Options  

 

‘’-shared’’: In conjunction with the -c command option, compiles an 

OpenCL source file into an object file (.aoco) 

‘’ -I <library_directory>’’: Adds <library directory> to the header file search 

path. 

‘’ -L <library directory>’’: Adds <library directory> to the OpenCL library 

search path. 

‘’-l <library_file_name>.aoclib’’: Specifies the OpenCL library file 

(<library_file_name>.aoclib). 

‘’--library-debug’’: Generates debug output that relates to libraries. 

 

2- AOCL Library Utility (aocl library) Command Options 

‘’hdl-comp-pkg <XML_specification_ file>.xml’’ or ‘’aoc -c 

<XML_specification_file>.xml.’’: Packages a single HDL component into a 

.aoco file that we then include into a library. 

‘’ -c <XML_specification_file>.xml’’: Same function as hdl-comp-pkg 

<XML_specification_file>.xml. 

‘’create’’: Creates a library file from the .aoco files. 

‘’list <library_name>’’: Lists all the RTL components in the library. 

‘’help’’: Prints the list of AOCL library utility options and their descriptions 

on screen.
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5.2 Function tangent hyperbolic ‘tanh’ 

The function Tangent hyperbolic is a no linear function for the hardware 

accelerate, we had wrote this function inside OpenCL Kernel and we get 

better result than the kernel alone, the function work on fixed point so it 

must create two converter: Floating point to fixed point and fixed point to 

floating point, the following photo shows the structure of the function 

tangent hyperbolic. 

 

 

Figure 5.2 The structure of the function tangent hyperbolic  
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5.3 Results  

In this part we will present the results on our study of Backprobagation  

algorithm with acceleration kernel on FPGA Cyclon 5 DE1-Soc with ARM 

CPU embedded, we have three sets of results depends on Block Size and 

Work items and they are  

1- Block Size = 4 and Work Items =4 

2- Block Size = 8 and Work Items =8 

3- Block Size = 16 and Work Items =4 

We start our study by applying our algorithm on ARM CPU without kernel 

and then we apply the algorithm on the Kernel in deferent parameter of 

Block Size and Work Items, we have three sets as mention before and in 

each set we apply the algorithm on kernel acceleration Matrix-

multiplication than we apply it another time on kernel acceleration with 

Hyperbolic Tangent ‘tanh’. 

Our algorithm have 5 parameters, two fixe are numInputs_MAX and 

numOutputs_MAX, three variable are numHidden1_MAX, 

numHidden2_MAX, numPatterns_MAX, we vary the parameters 

numHidden1_MAX and numHidden2_MAX from 4 to 64, the 

numPatterns_MAX from 256 to 65536. And we have four results, CPU 

time, Forward time and backward time, we do all possibility by varying the 

parameter. 

For each set of Work size and Work Items we have the following 

parameters: 

numHidden1_MAX ={4, 8, 16, 32, 48, 64} 

numHidden2_MAX ={4, 8, 16, 32, 48, 64} 

numPatterns_MAX ={256, 1024, 4096, 16384, 65536} 

From that parameter we have 6*6*5 =180 study cases so we three sets of 

Work Size and Work Items so in total we have 180*3 =540 study cases. 

 

The first subset of our results is applying our algorithm Backpropagation on 

ARM CPU in FPGA, we got slow result and we give a sample about the 

results in the following table.
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numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 8 32 32 64 64 

numHidden2 4 16 48 48 64 

CPU time 0,98 16,58 199,46 1970,38 9257,73 

Forward time 0,41 6,2 36,83 222,4 1005,28 

Backward time 0,37 10,23 162,44 1747,68 8251,92 

Table 5.1 Sample Result of ARM CPU 

First set (Block size = 4 and Work Items =4)  

 

The first subset we applying our algorithm backprobagation on Kernel 

Matrix-multiplication and we got better result than the previous subset. 

A sample : 

numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 16 8 48 32 64 

numHidden2 4 16 48 64 64 

CPU time 1,87 5,87 51,24 210,68 1048,06 

Forward time 1,05 3,55 35,51 140,69 717,26 

Backward time 0,67 2,14 15,52 69,72 330,18 

Table 5.2 Sample Result of Kernel, BZ=4 and WI=4  
 

The second subset we applied our algorithm on the kenel Hyperbolic 

Tangent. We give a sample one in the following table: 

 

numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 4 16 16 48 64 

numHidden2 8 16 32 8 64 

CPU time 1,33 4,1 17,07 73,4 485,97 

Forward time 0,46 1,56 6,44 25,96 160,41 

Backward time 0,72 2,37 10,44 47,19 324,99 

Table 5.3 Sample Result of Kernel with ‘Tanh’, BZ=4 and WI=4 
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The second set (Block size = 8 and Work Items =8) 

 

The first subset we applying our algorithm backpropagation on Kernel 

Matrix-multiplication. 

A sample: 

numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 4 8 32 48 64 

numHidden2 4 16 8 16 64 

CPU time 1,77 6,09 29,39 154,51 1048,12 

Forward time 0,78 3,5 18,95 102,24 718,53 

Backward time 0,82 2,41 10,25 51,98 328,98 

Table 5.4 Sample Result of Kernel, BZ=8 and WI=8 

 

The second subset we applied our algorithm on the kernel Hyperbolic 

Tangent. We give a sample one in the following table: 

numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 16 32 16 64 64 

numHidden2 8 32 48 8 64 

CPU time 1,58 5,65 20,55 89,63 497,24 

Forward time 0,54 2,17 7,32 31,03 164,74 

Backward time 0,86 3,3 13,02 58,29 331,96 

Table 5.5 Sample Result of Kernel with ‘Tanh’, BZ=8 and WI=8 
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The third set (Block size = 16 and Work Items =4) 
 

The first subset we applying our algorithm backpropagation on Kernel 

Matrix-multiplication,  

A sample: 

 
numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 8 8 32 48 64 

numHidden2 4 8 48 64 64 

CPU time 2,28 7,19 46,27 237,66 1039,09 

Forward time 1,09 3,68 31,17 158,38 700,24 

Backward time 1,02 3,33 14,89 79,01 338,26 

Table 5.6 Sample Result of Kernel with, BZ=16 and WI=4 

 

The second subset we applied our algorithm on the kernel Hyperbolic 

Tangent, we give a sample one in the following table: 

 
numPatterns_MAX 256 1024 4096 16384 65536 

numHidden1 4 4 16 48 16 

numHidden2 4 16 32 48 16 

CPU time 1,95 5,37 19,77 110,28 511,95 

Forward time 0,71 1,99 7,24 36,56 167,24 

Backward time 1,07 3,22 12,32 73,36 344,13 

Table 5.7 Sample Result of Kernel with ‘Tanh’, BZ=16 and WI=4 
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5.3.1 Comparison   

This part we will compare our result which case is better, so we have three 

hardware which are ARM CPU without kernel, kernel acceleration                       

Matrix-multiplication and kernel acceleration Matrix-multiplication with 

Hyperbolic Tangent ‘tanh’. 

First we do a comparison about the hardware: 

 

 ARM-CPU BZ=4, WI=4 BZ=8, WI=8  BZ=16, WI=4 

Logic utilization (in ALMs)  14,328 / 32,070  
( 45 % ) 

26,978 / 
32,070(84% ) 

25,536 / 32,070 ( 
80 % ) 

Total registers 
 

 27659 56719 49801 

Total pins  103 / 457 ( 
23 % ) 

103 / 457 (  
23 % ) 

103 / 457 (  
23 % ) 

Total block memory bits  783,992 / 
4,065,280(19%) 

961,720 / 
4,065,280(24%) 

1,327,024 / 
4,065,280(33% ) 

Total DSP Blocks 
 

 26 / 87 ( 30 % ) 74 / 87 ( 85 % ) 74 / 87 ( 85 % ) 

Total PLLs 
 

 2 / 6 ( 33 % ) 2 / 6 ( 33 % ) 2 / 6 ( 33 % ) 

Total DLLs 
 

 1 / 4 ( 25 % ) 1 / 4 ( 25 % ) 1 / 4 ( 25 % ) 

Total FPGA Thermal 
Power Dissipation 

 1131.78 mW 1637.59 mW 1588.03 mW 

Core Dynamic Thermal 
Power Dissipation 

 650.91 mW 1152.11 mW 1102.71 mW 

Core Static Thermal 
Power Dissipation 

 433.79 mW 438.40 mW 438.24 mW 

I/O Thermal Power 
Dissipation 

 47.08 mW 47.08 mW 47.08 mW 

HPS Dynamic (Dual core) 
Power 

1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW 

HPS Dynamic (Single core) 
Power 

1247.25 mW 1247.25 mW 1247.25 mW 1247.25 mW 

Total FPGA and HPS 
Power 
 

 2524.70 mW 3030.51 mW 2980.95 mW 

 

Table 5.8 Hardware Comparison, Just a Kernel 
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 ARM-CPU BZ=4, WI=4 BZ=8, WI=8  BZ=16, WI=4 

Logic utilization (in 
ALMs) 

 15,047 / 32,070 
( 47 % ) 

28,327 /32,070 
(88%) 

26,241/32,070 ( 
82 % ) 

Total registers 
 

 28690 58763 50914 

Total pins  103 / 457 ( 
 23 % ) 

103 / 457 ( 
 23 % ) 

103 / 457 (  
23 % ) 

Total block memory bits  783,992 / 
4,065,280 (19%) 

961,720 / 
4,065,280(24%) 

1,327,024 / 
4,065,280 ( 33 % ) 

Total DSP Blocks 
 

 26/87 (30 %) 74 / 87 ( 85 % ) 74 / 87 ( 85 % ) 

Total PLLs 
 

 2 / 6 ( 33 % ) 2 / 6 ( 33 % ) 2 / 6 ( 33 % ) 

Total DLLs 
 

 1 / 4 ( 25 % ) 1 / 4 ( 25 % ) 1 / 4 ( 25 % ) 

Total FPGA Thermal 
Power Dissipation 

 1146.95 mW 1660.86 mW 1602.18 mW 

Core Dynamic Thermal 
Power Dissipation 

 665.98 mW 1175.21 mW 1116.76 mW 

Core Static Thermal 
Power Dissipation 

 433.90 mW 438.57 mW 438.34 mW 

I/O Thermal Power 
Dissipation 

 47.08 mW 47.08 mW 47.08 mW 

HPS Dynamic (Dual 
core) Power 

1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW 

HPS Dynamic (Single 
core) Power 

1247.25 mW 1247.25 mW 1247.25 mW 1247.25 mW 

Total FPGA and HPS 
Power 
 

 2539.87 mW 3053.78 mW 2995.10 mW 

 

Table 5.9 Hardware Comparison, Kernel with ‘tanh’ 

 

We tested our Kernel in many case and we get results then we present this 

result in graph to compare it with the results on ARM CPU, for every case 

we try to fix one parameter and varying others, we have three parameter 

numHidden1, numHidden2 and numPatterns. We choose the best case to 

draw the graphs. 

So let see what we got: 

 

 

 



Ability to quickly integrate IPs in OpenCL and results                                                                         59 
  

 Kernel acceleration Matrix-multiplication vs ARM CPU 

 

 First set (Block size = 4 and Work Items =4)  

 

Graph 5.1 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numPatterns_max 

is Variable   

 

Graph 5.2 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden1 is 

Variable   
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Graph 5.3 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden2 is 

Variable   

 

 Second set (Block size = 8 and Work Items =8)  

 

Graph 5.4 Comparison Kernel VS  ARM CPU, BZ=8 WI=8, numPatterns_max 

is Variable   
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Graph 5.5 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden1 is 

Variable 

   

 

Graph 5.6 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden2 is 

Variable   
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 Third set (Block size = 16 and Work Items =4)  

 

Graph 5.7 Comparison Kernel VS ARM CPU, BZ=16 WI=4, 

numPatterns_max is Variable   

 

 

Graph 5.8 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is 

Variable  
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Graph 5.9 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is 

Variable   

 

 kernel acceleration Matrix-multiplication with Tanh vs ARM CPU 

 

 First set (Block size = 4 and Work Items =4)  

 

Graph 5.10 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4, 

numPatterns_max is Variable   
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Graph 5.11 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4, 

numHidden1 is Variable 

 

 

Graph 5.12 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4, 

numHidden2 is Variable 
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 Second set (Block size = 8 and Work Items =8)  

 

Graph 5.13 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8, 

numPatterns_max is Variable   

 

 

Graph 5.14 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8, 

numHidden1 is Variable 
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Graph 5.15 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8, 

numHidden2 is Variable 

 

 Third set (Block size = 16 and Work Items =4)  

 

Graph 5.16 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4, 

numPatterns_max is Variable   
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Graph 5.17 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4, 

numHidden1 is Variable 

 

 

Graph 5.18 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4, 

numHidden2 is Variable 
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5.3.2 Comments  

As we see in the graphs, when we varying the parameter numPatterns_max 

at first increase so quickly and in one point the acceleration will stop and 

this point around 20000, when we varying the parameter numHidden1 we 

see the acceleration get increase when we increase numHidden1, and for 

the last parameter numHidden2 we see its effect not that much as others 

parameters just increase little bit each value. 

For the best case, the best hardware is kernel acceleration Matrix-

multiplication with Tanh, it is the faster and for Work Size and Work Items 

almost are the same but we can see the little different, for Work Size = 4 

and Work Items = 4 is the best one and we have the parameters 

numPatterns_max=65536 , numHidden64= and numHidden2=64 is the best 

case and we got 9257.73/485.97= 19.05 times faster for CPU time, 

1005.28/160.41= 6.27 times faster for Forward time and 

8251.92/324.99=25.39 times faster for Backward time. 
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Conclusion  

 

We started our thesis with general description  of OpenCL and we spoke 

about the conceptual of OpenCL such as the general structure, execution 

model, memory model and platform model. In the seconde chapter we 

described in detail the use of Opencl with Altera SDK, also here we spoke 

about the FPGA OpenCL architecture like in previous chapter just we 

specified OpenCL with FPGA. 

In chapter three we had an example about the implementation and 

optimization of the kernel OpenCL code for acceleration of Matrix-

multiplication with the host code to execute in the kernel, in the chapter 

four we talked about the acceleration of algorithm Backprobagatin that use 

the kernel of matrix-multiplication,  and finally we presented the result that 

we got in our study with take some graph to see more clear about the 

changing of the results. 

We applied the Algorithm of matrix-multiplication in our project on three 

deferent hardware which are ARM CPU, Kernel acceleration and Kernel 

acceleration with Hyperbolic Tangent, and with deferent parameters. We 

get result faster and better in  kernel acceleration and especially Kernel 

acceleration with Hyperbolic Tangent  where we get our best result with 

the parameter numPatterns_max = 65536 , numHidden1 = 64, numHidden2 

= 64, Work Size = 4 and Work Items = 4, in that case we get 19.05 times 

faster for CPU time and that result considered as a good speed up. 
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