

FINAL PROJECT OF MASTER

TITLE: Implementation of resilient algorithm

Backpropagation on ARM-FPGA through OpenCL

QUALIFICATIONS: Master of Electronics Systems

Engineering

AUTHOR: Messelka Mohamed

SUPERVISORE: Rafeal Gadea Girones

Dedicated to:

I would to thank all who helps me to finish my

master study at UPV, my Parents, the

EMMAG team, supervisor Rafeal Gadea

Girones, all my Professors and classmates in

UPV, all my professors and classmates in

UMBB-IGEE, the international office in UPV,

laboratory technicians and all family members

of UPV.

Thank you all

Contents

Introduction……………………………………………………………………..…..01

Chapter 1. Conceptual Foundations of OpenCL…………………….…03
 1.1. Platform Model……………………………………………………………………03

 1.2. Execution Model………………………………………………………………….04

 1.2.1. How a Kernel Executes on an OpenCL Device……………..04

 1.2.2. Context…………………………………………….……………………….06

 1.2.3. Command-Queues………………………………………..…………..07

 1.3. Memory Model……………………………………………………………….…..08

 1.4. Programming Model…………………………………………………………...09

 1.5. The OpenCL Framework……………………………………………………….10

 1.5.1. Platform API………………………………………………………………10

 1.5.2. Run Time API…………………………………………………………..…10

 1.5.3. Kernel Programming Language………………………………….11

 1.6 OpenCL Overview…………………………………………………………………14

Chapter 2. Conceptual Foundations of OpenCL with Altera

SDK…………………………………………………………………………..…………..15

2.1. The OpenCL Stander on FPGA……………………………………………...15

 2.2. FPGA OpenCL Architecture………………………………………….……….18

 2.3. OpenCL-to-FPGA framework……..………………………….……………..19

 2.4. Kernel Compiler………………………………………………….……………..20

 2.5. Memory Organization……………………………………….………….……..24

 2.5.1. Optimize Global Memory Accesses……………………….…25

 2.5.2 Contiguous Memory Accesses………………………………..…26

 2.5.3 Constant Cache Memory…………………………………………..27

2.6. Strategies for Improving NDRange Kernel Data Processing

Efficiency………………………………………………………………….………………..28

 2.7 Optimize Floating-Point Operations…………………………..…………32
 2.7.1. Floating-Point versus Fixed-Point Representations….…34

Chapter 3. Matrix-multiplication (Study an example)…….………35

 3.1. Tiling in the local memory…………………………………………….……..35

 3.2. Host Code……………………………………………………………………….……36

 3.3. Kernel code.……..……………………………………………………….………..37

Chapter 4. Application of matrix-multiplication kernel

in Backpropagation…………………………………………………..…………..38
 4.1. The time execution……………………………………………………………..38
 4.1.1 Tcw..38

 4.1.2 Tuw………………………………………………………………………………40

 4.2. Original algorithm………………………………………………………….……41

 4.3 Final algorithm…………………………………………………………………….42

Chapter 5. Ability to quickly integrate IPs in OpenCL and

Results………………………………………………………………………….………45

5.1. OpenCL Library…………………………………………………………..………45

 5.1.1. RTL Modules and the OpenCL Pipline…………………….…46

 5.1.2. Packaging an OpenCL Helper Function File……………….48

 5.1.3. Packaging an RTL Component for an OpenCL Library…49

 5.1.4. Restrictions and Limitations in RTL Support……………….49

 5.1.5. Verifying the RTL Modules…………..…………………………….50

 5.1.6 .Packaging Multiple Object Files into a Library File…..…50

 5.1.7. Specifying an OpenCL Library when Compiling………….51

 5.1.8 OpenCL Library Command-Line Options………………….….51

5.2. Function Tangent hyperbolic ‘tanh’….…………………….……………52

 5.3. Results………………………………………………………………………………..53

 5.3.1. Comparison..………….………………………………………………….57

 5.3.1. Comments……………..………………………………………………….68

Conclusion………………………………………………………………….…………69

References……………………………………………………………….…………..68

INDEX OF FIGURES

Figure 1.1 OpenCL Platform………………………………………………………..………….03
Figure 1.2 An example of how the global IDs, local IDs, and work-group
indices are related for a two-dimensional NDRange…………………....….…....06
Figure 1.3 The Memory Model in OpenCL……………………………………………...09
Figure 1.6 general block diagram of OpenCL…………………………………………..14
Figure 02 Trend of Programmable and Parallel Technology…………….………15

Figure 2.1.1 Overview of OpenCL…………………………………….………..……………16

Figure 2.1.2 Example of OpenCL Implementation on an FPGA………………..16

Figure 2.1.3 Pipelined information……………….…………………………………………17

Figure 2.2 OpenCL system implementation………………..…………………………..18

Figure 2.3 OpenCL-to-FPGA framework…………………………………………………..19

Figure 2.4.1 basic blocks…………………………………………………………………………21

Figure 2.4.2 basic block module………………………………………………………………22

Figure 2.5.1 Global Memory Partitions……………………………………….…………..25

Figure 2.5.2 Contiguous Memory Access………………………………………………..27

Figure 2.6.1 Compute Unit Replication versus Kernel SIMD

Vectorization………………………………………………………………………………………….31

Figure 2.6.2 Combination of Compute Unit Replication and Kernel SIMD

Vectorization………………………………………………..………………………………………..31

Figure 2.7.1 Default Floating-Point Implementation……………………………….32

Figure 2.7.2 Balanced Tree Floating-Point Implementation…………………….32

Figure 03 matrix-multiplication by sub-block………………………….………………36

Figure 4.1.1 Multiplayer perceptron………………………………………………………39

Figure 4.2 Resilient Backpropagation original………………………………………..42

Figure 4.3 Resilient Backpropagation…………………………………………………….43

Figure 5.1 Overview of Altera SDK for OpenCL's Library Support…..………45

Figure 5.1.1 Parallel Execution Model of AOCL Pipeline Stages………………46

Figure 5.1.2 Integration of an RTL Module into an AOCL Pipeline……………47

Figure 5.2 The structure of the function tangent hyperbolic……………..…….52

INDEX OF Graphs

Graph 5.1 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numPatterns_max

is Variable……………………………………………………………………………………………….59

Graph 5.2 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden1 is

Variable………………………………….………………………………………………………………59

Graph 5.3 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden2 is

Variable………………………………………………………………………………………………….60

Graph 5.4 Comparison Kernel VS ARM CPU, BZ=8 WI=8,

numPatterns_max is Variable………………………………………………………………...60

Graph 5.5 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden1 is

Variable………………………………………………………………………………………………….61

Graph 5.6 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden2 is

Variable………………………………………………………………………………………………….61

Graph 5.7 Comparison Kernel VS ARM CPU, BZ=16 WI=4,

numPatterns_max is Variable………………………………………………………………..62

Graph 5.8 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is

Variable………………………………………………………………….……………………………..62

Graph 5.9 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is

Variable……………………………………………………………………..………………………….63

Graph 5.10 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numPatterns_max is Variable……………………………………………………………….63

Graph 5.11 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numHidden1 is Variable………………………………………………………………………..64

Graph 5.12 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numHidden2 is Variable………………………………………………………………………..64

Graph 5.13 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numPatterns_max is Variable……………………………………………………………….65

Graph 5.14 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numHidden1 is Variable……………………………………………………………………….65

Graph 5.15 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numHidden2 is Variable……………………………………………………………………….66

Graph 5.16 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numPatterns_max is Variable………………………………………………………………66

Graph 5.17 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numHidden1 is Variable………………………………………………………………………67

Graph 5.18 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numHidden2 is Variable………………………………………………………………………67

INDEX OF tables

Table 1.3 Memory Region - Allocation and Memory Access Capabilities…08

Table 5.1 Sample Result of ARM CPU……………………………………………………..54

Table 5.2 Sample Result of Kernel, BZ=4 and WI=4……………………………..….54

Table 5.3 Sample Result of Kernel with ‘Tanh’, BZ=4 and WI=4…………..….54

Table 5.4 Sample Result of Kernel, BZ=8 and WI=8…………………….…………..55

Table 5.5 Sample Result of Kernel with ‘Tanh’, BZ=8 and WI=8………………55

Table 5.6 Sample Result of Kernel with, BZ=16 and WI=4……………………….56

Table 5.7 Sample Result of Kernel with ‘Tanh’, BZ=16 and WI=4…………….56

Table 5.8 Hardware Comparision, Just a Kernel……………………………………...57

Table 5.9 Hardware Comparison. Kernel with ‘tanh’……………………………….58

Introduction 01

Introduction

In our project we will introduce a new programming language for hardware

which is OpenCL, OpenCL is an industry standard framework for

programming computers composed of a combination of CPUs, GPUs, and

other processors. These so-called heterogeneous systems have become an

important class of platforms, and OpenCL is the first industry standard that

directly addresses their needs. First released in December of 2008 with

early products available in the fall of 2009, OpenCL is a relatively new

technology.

Justification

The OpenCL with Altera SDK has many advantages for hardware programing

in our life, it is good industry challenges such as power efficient

acceleration, FPGA lifecycle over 15 years, allows for streaming IO channels

and kernel channels and shared virtual memory, also OpenCL flow abstracts

away FPGA hardware flow bringing the FPGA to low level software

programmers and the OpenCL optimization doesn’t require a board. It fits

all markets like medical, military, automotive, industrial and broadcast.

Objectives

The aim goal of our project are:

 Know and understand the main construction and structure of

OpenCL.

 Introduce for the first time the flow of design of OpenCL with

FPGAs.

 We will do a study about the algorithm Matrix-multiplication on

deferent hardware configurations by using OpenCL programing and

we see the faster case, we will improve the performance by using

the Kernel function in FPGA with embedded ARM CPU, first we will

run our algorithm on CPU ARM and this a simple way, than we add

kernel and we run our algorithm on that kernel.

 We demonstrate that the use of HDL IP (RTL code) can improve the

results of standard kernel, our experiment consists a introduce the

nonlinear function IP (tanh) in a generic kernel (matrix-

02 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

multiplication), we add new technic it called Hyperbolic Tangent

‘tanh’ to our kernel and we run our algorithm on it.

 We represent the results of application of this kernel (matrix-

multiplication) in a very important algorithm in training of neural

networks: Backpropagation algorithm.

Structure of TFM

In our thesis we will give a description of new programing OpenCL in first

chapter as general and in the second chapter the OpenCL with Altera SDK,

so we talk about the structure of OpenCL. Than we will study an example of

implementation and optimization of the matrix-multiplication kernel cod

also the host code that execute in the kernel in chapter three, in chapter

four we will talk about the application of matrix-multiplication in

Backpropagation algorithm, and finally we describe of ‘tanh’ IP and present

the result that we collect in our study.

Conceptual foundation of OpenCL 03

Chapter 1. Conceptual Foundations of OpenCL

We can define OpenCL by the following models:

• Platform model: a high-level description of the heterogeneous system

• Execution model: an abstract representation of how streams of

instructions execute on the heterogeneous platform

• Memory model: the collection of memory regions within OpenCL and

how they interact during an OpenCL computation

• Programming models: the high-level abstractions a programmer uses

when designing algorithms to implement an application

1.1 Platform Model

An OpenCL platform always includes a single host. The host interacts with

the environment external to the OpenCL program, including I/O or

interaction with a program’s user. This model is shown in Figure below:

Figure 1.1 OpenCL Platform

04 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

The host is connected to one or more OpenCL devices. A device can be a

CPU, a GPU, a DSP, or any other processor provided by the hardware and

supported by the OpenCL vendor. The OpenCL devices are further divided

into compute units which are further divided into one or more processing

elements.

1.2 Execution Model

An OpenCL application consists of two distinct parts: the host program and

a collection of one or more kernels. The host program runs on the host. The

kernels execute on the OpenCL devices. Kernels are typically simple

functions that transform input memory objects into output memory

objects.

 OpenCL defines two types of kernels:

 OpenCL kernels: functions written with the OpenCL C programming

language and compiled with the OpenCL compiler

 Native kernels: functions created outside of OpenCL and accessed

within OpenCL through a function pointer. These functions could be,

for example, functions defined in the host source code or exported

from a specialized library. And it is an optional functionality within

OpenCL.

1.2.1 How a Kernel Executes on an OpenCL Device

Execution of an OpenCL program occurs in two parts: kernels that execute

on one or more OpenCL devices and a host program that executes on the

host. A kernel is defined on the host. The host program issues a command

that submits the kernel for execution on an OpenCL device. When this

command is issued by the host, the OpenCL runtime system creates an

integer index space. An instance of the kernel executes for each point in this

index space. We call each instance of an executing kernel a work-item,

which is identified by its coordinates in the index space. These coordinates

are the global ID for the work-item.

Conceptual foundation of OpenCL 05

The command that submits a kernel for execution, therefore, creates a

collection of work-items. Work-items are organized into work-groups.

Work-groups are the same size in corresponding dimensions, and this size

evenly divides the global size in each dimension. The work-items in a given

work-group execute concurrently on the processing elements of a single

compute unit.

The index space spans an N-dimensioned range of values and thus is called

an NDRange (N can be 1, 2 or 3). Each work-item’s global and local ID is an

N-dimensional tuple. Work-groups are assigned IDs using a similar approach

to that used for work-items.

In figure 2.1 shown a 2D NDRange, each small square is a work-item. Let’s

us define that uppercase letter Gx/y is the size of the index space in each

dimension and lowercase letter gx/y is the global ID of a work-item in each

dimension, and uppercase letter Wx/y is the number of work-groups in each

dimension and lowercase letter wx/y the work-group ID.

OpenCL requires that the number of work-groups in each dimension evenly

divide the size of the NDRange index space in each dimension. We will refer

to this index space inside a work-group as the local index space. The size of

our local index space in each dimension (x and y) is indicated with an

uppercase L and the local ID inside a work-group uses a lowercase l.

So we get this results:

 Lx/y = Gx/y / Wx/y

 gx/y = wx/y * Lx/y + lx/y (the index space starts with a zero in each

dimension)

From the figure 2.1 and we use the default offset of zero in each dimension.

The shaded block has a global ID of (gx, gy) = (6, 5) and a work-group plus

local ID of (wx, wy) = (1, 1) and (lx, ly) =(2, 1).

06 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Figure 1.2 An example of how the global IDs, local IDs, and work-group

indices are related for a two-dimensional NDRange

1.2.2 Context

The computational work of an OpenCL application takes place on the

OpenCL devices. The host defines a context for the execution of the kernels.

The context includes the following resources:

• Devices: the collection of OpenCL devices to be used by the host

• Kernels: the OpenCL functions that run on OpenCL devices

• Program objects: the program source code and executables that

implement the kernels

• Memory objects: a set of objects in memory that are visible to

OpenCL devices and contain values that can be operated on by

instances of a kernel

Conceptual foundation of OpenCL 07

The context is created and manipulated by the host using functions from

the OpenCL API. The context included one or more program objects that

contain the code for the kernels.

1.2.3 Command-Queues

The interaction between the host and the OpenCL devices occurs through

commands posted by the host to the command-queue. A command-queue

is created by the host and attached to a single OpenCL device. OpenCL

supports three types of commands:

• Kernel execution commands execute a kernel on the processing

elements of an OpenCL device.

• Memory commands transfer data between the host and different

memory objects, move data between memory objects, or map and unmap

memory objects from the host address space.

• Synchronization commands put constraints on the order in which

commands execute.

In a typical host program, the programmer defines the context and the

command-queues, defines memory and program objects, and builds any

data structures needed on the host to support the application. When

multiple kernels are submitted to the queue, they may need to interact.

Commands within a single queue execute relative to each other in one of

two modes:

• In-order execution: a prior command on the queue completes before

the following command begins.

• Out-of-order execution: Commands are issued in order but do not wait

to complete before the following commands execute.

All OpenCL platforms support the in-order mode, but the out-of-order

mode is optional. And it is possible to associate multiple queues with a

single context for any of the OpenCL devices within that context.

08 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

1.3 Memory Model

OpenCL defines two types of memory objects: buffer objects and image

objects. A buffer object, is just a contiguous block of memory made

available to the kernels. A programmer can map data structures onto this

buffer and access the buffer through pointers. Image objects are restricted

to holding images. An image storage format may be optimized to the needs

of a specific OpenCL device.

The OpenCL memory model defines five distinct memory regions:

• Host memory: This memory region is visible only to the host.

• Global memory: This memory region permits read/write access to all

work-items in all work-groups.

• Constant memory: This memory region of global memory remains

constant during the execution of a kernel.

• Local memory: This memory region is local to a work-group.

• Private memory: This region of memory is private to a work-item.

Table describes whether the kernel or the host can allocate from a memory

region, and the type of access allowed.

Table 1.3 Memory Region - Allocation and Memory Access Capabilites

The memory regions and how they relate to the platform model are

described in figure below.

Conceptual foundation of OpenCL 09

Figure 1.3 The Memory Model in OpenCL

1.4 Programming Models

Programming Models are intimately connected to how programmers

reason about their algorithms. OpenCL was defined with two different

programming models in mind: task parallelism and data parallelism.

 Data-Parallel Programming Model: A data parallel programming
model defines a computation in terms of a sequence of instructions
applied to multiple elements of a memory object. The index space
associated with the OpenCL execution model defines the work-items
and how the data maps onto the work-items.

 Task-Parallel Programming Model: The OpenCL task parallel

programming model defines a model in which a single instance of a
kernel is executed independent of any index space.

10 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

 Other Programming Models

A programmer is free to combine OpenCL’s programming models to create

a range of hybrid programming models.

1.5 The OpenCL Framework

The OpenCL framework is divided into the following components:

• OpenCL platform API: The platform API defines functions used by the

host program to discover OpenCL devices and their capabilities

• OpenCL runtime API: This API manipulates the context to create

command-queues and other operations that occur at runtime.

• The OpenCL programming language: This is the programming language

used to write the code for kernels.

1.5.1 Platform API

The term platform has a very specific meaning in OpenCL. It refers to a

particular combination of the host, the OpenCL devices, and the OpenCL

framework. Multiple OpenCL platforms can exist on a single heterogeneous

computer at one time.
1.5.2 Runtime API

The tasks of the runtime API are:

 To set up the command-queues.

 When the command-queues in place, the runtime API is used to

define memory objects.

 Managed by the runtime API is to create the program objects used

to build the dynamic libraries from which kernels are defined. The

program objects, the compiler to compile them, the definition of

the kernels.

 Issues the commands that interact with the command-queue.

 Synchronization points for managing data sharing and to enforce

constraints on the execution of kernels

Conceptual foundation of OpenCL 11

1.5.3 Kernel Programming Language

OpenCL consists two program, the OpenCL Host Program and the OpenCL

Kernel, The host program is very important, but it is the kernels that do the

real work in OpenCL.

 The OpenCL Host Program

Pure software written in standard ‘C’. Communicates with the Kernel
Device via a set of library routines which abstract the communication
between the host processor and the kernels.

Example:

 The OpenCL Kernel

The kernel programming language in OpenCL is called the OpenCL C
programming language. It is derived from the ISO C99 language.

Language Features Added like Work-items and work-groups, Vector types,
Synchronization and Address space qualifiers. Also includes a large set of
built-in functions like Image manipulation, Work-item manipulation and
Math functions.

main()
{
read_data_from_file(…);
maninpulate_data(…);
clEnqueueWriteBuffer(…);
clEnqueueTask(…,my_kerne,…);
clEnqueueReadBuffer(…);
display_result_to_user(…);
}

Copy data from
Host to Kernel
Device

Ask the Kernel

Device to run a
particular kernel

Copy data from
Kernel Device to
Host

12 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

The OpenCL working group has already approved many extensions to the
OpenCL specification:

—Double precision floating-point types
—Built-in functions to support doubles
—Atomic functions
—Byte-addressable stores (write to pointers to types < 32-bits)
—3D Image writes
—Built-in functions to support half types

 OpenCL Language Restrictions:

 Pointers to functions are not allowed

 Pointers to pointers allowed within a kernel, but not as an argument

 Bit-fields are not supported

 Variable-length arrays and structures are not supported

 Recursion is not supported

 Writes to a pointer to a type less than 32 bits are not supported

 Double types are not supported, but reserved

 3D Image writes are not supported

 The BIG idea behind OpenCL

Replace loops with functions (a kernel) executing at each point in a problem
domain, define N-dimensional computation domain and execute a kernel at
each point in computation domain.

The following example, we have two codes, the left code with traditional
loop as a function in C and the right code with OpenCL C kernel. We can see
the different in the declaration of function and the variables, and the most
important one is the loop.

Conceptual foundation of OpenCL 13

Traditional loop as a function in C OpenCL C kernel

Example:

We will give an example for a kernel function, the Output is square of Input,
so we have the following code:

 get_globa_id(0) = 4

 get_globa_id(0) = 0 1 2 3 4 5 6 7
Input:

2 5 4 9 3 7 0 8

Output:

4 25 16 81 9 49 0 64

_kerner void square(_global float* input, _global float* output)
{

int i = get_globa_id(0) ;
output[i] = input[i] * input[i] ;

}

Void

trad_mul(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

__kernel void

dp_mul(__global const float *a,

 __global const float *b,

 __global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];}

// execute over n“work items”

14 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

1.6 Opencl Overview

In figure we can see general block diagram of OpenCL. First, the host
program that defines the context. The context contains two OpenCL
devices, a CPU and a GPU. Next we define the command-queues. In this
case we have two queues, an in-order command-queue for the GPU and an
out-of-order command-queue for the CPU. The host program then defines
a program object that is compiled to generate kernels for both OpenCL
devices (the CPU and the GPU). Next the host program defines any memory
objects required by the program and maps them onto the arguments of the
kernels. Finally, the host program enquires commands to the command-
queues to execute the kernels.

Figure 1.6 general block diagram of OpenCL

Conceptual foundations of OpenCL with Altera SDK 15

Chapter 2. Conceptual Foundations of OpenCL

with Altera SDK

Utilizing the OpenCL standard on an FPGA may offer significantly higher

performance than other hardware architectures such as CPU, GPU and DSP.

Moreover, an FPGA-based heterogeneous system (CPU + FPGA) using the

OpenCL standard.

In Figure 02 we see the programmable technologies, is represented by

CPU, DSP, Multicores and Arrays.

Figure 02 Trend of Programmable and Parallel Technology

2.1 The openCL stander on FPGA

As we mention on chapter 1, the OpenCL application has two part, one part

is OpenCL host program, is a pure software routine written in standard

C/C++ that runs on any sort of microprocessor. That processor may be, an

embedded soft processor in an FPGA, a hard ARM processor, or an external

x86 processor. And second part is OpenCL Kernels program is written in

standard C that make our kernel circuit on FPGA.

In Figure 2.1.1 we provide an overview.

16 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Figure 2.1.1 overview of OpenCL

In figure 2.1.2 we have an example shown that circuit architecture to

perform the vector addition of two arrays, a and b.

Figure 2.1.2 Example of OpenCL Implementation on an FPGA

Conceptual foundations of OpenCL with Altera SDK 17

OpenCL Compiler translates an OpenCL kernel to hardware by creating a

circuit that implements each operation. These circuits are wired together

to mimic the flow of data in the kernel. For example in victor addition, The

loads from arrays A and B are converted into load units, which are small

circuits responsible for issuing addresses to external memory and

processing the returned data. The two returned values are fed directly into

an adder unit responsible for calculating the floating-point addition of these

two values. Finally, the result of the adder is wired directly to a store unit

that writes the sum back to external memory.

The most important concept behind the OpenCL-to-FPGA compiler is the

notion of pipeline parallelism. For simplicity, in figure 2.1.3 we have a

circuit has three pipeline stages for the kernel. On the first clock cycle,

thread 0 is clocked into the two load units. This indicates that they should

begin fetching the first elements of data from arrays A and B. On the second

clock cycle, thread 1 is clocked in at the same time that thread 0 has

completed its read from memory and stored the results in the registers

following the load units. On cycle 3, thread 2 is clocked in, thread 1 captures

its returned data, and thread 0 stores the sum of the two values that it

loaded. It is evident that in the steady state, all parts of the pipeline are

active, with each stage processing a different thread.

Figure 2.1.3 pipelined information

18 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

2.2 FPGA OpenCL Architecture

The figure 2.2 represents the high level of a complete OpenCL system

containing multiple kernel pipelines and circuitry connecting these

pipelines to off-chip data interfaces. In addition to the kernel pipeline,

Altera's OpenCL compiler creates interfaces to external and internal

memory. The load and store units for each pipeline are connected to

external memory via a global interconnect structure that arbitrates multiple

requests to a group of DDR DIMMs. Similarly, OpenCL local memory

accesses are connected through a specialized interconnect structure to on-

chip M9K RAMs. These specialized interconnect structures are designed to

ensure high operating frequency and efficient organization of requests to

memory.

Figure 2.2 OpenCL system implementation

Conceptual foundations of OpenCL with Altera SDK 19

2.3 OpenCL-to-FPGA framework

We define the OpenCL-to-FPGA framework in the following schematic:

Figure 2.3 OpenCL-to-FPGA framework

The schematic presents the flow of our compilation framework, based on

an LLVM compiler infrastructure. The input is an OpenCL application

comprising a set of kernels (.cl files) and a host program (.c file). The kernels

are compiled into a hardware circuit, starting with a C-language parser that

produces an intermediate representation for each kernel. The intermediate

representation (LLVM IR) is in the form of instructions and dependencies

_kernel.cl host.c

C-language

front end
C

Cmpiler

Live-value

Analysis
program.exe

Scheduling

CDFG

Generation

RTL

generator

Verilog

HDL

System integration

(Quartus 2)

ACL

runtime

Library

Auto

Discovery

20 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

between them. This representation is then optimized to target an FPGA

platform. An optimized LLVM IR is then converted into a Control-Data Flow

Graph (CDFG), which can be optimized to improve area and performance of

the system, prior to RTL generation that produces Verilog HDL for a kernel.

For the host program, we compile it using a C/C++ compiler. There are two

elements in the compilation of the host program. One is the Altera

OpenCL (ACL) Host Library, which implements OpenCL function calls that

allow the host program to exchange information with kernels on an FPGA.

The second is the Auto-Discovery module which allows a host program to

detect the types of kernels on an FPGA.

2.4 Kernel Compiler

To compile OpenCL kernels into a hardware circuit, we extended the LLVM

Open-Source compiler to target an FPGA platform as shown in schematic.

The LLVM compiler represents a program as a sequence of instructions,

such as load, add, subtract, store. A group of instructions in a contiguous

sequence constitutes a basic block. At the end of a basic block there is

always a terminal instruction that either ends the program or redirects

execution to another basic block. The compiler uses this representation to

create a hardware implementation of each basic block, which are then put

together to form the complete kernel circuit.

There are six basic group for kernel compiler, and they are:

 C-Language Front-End:

The first step in the conversion of a high-level description to a hardware

circuit is to produce an intermediate representation (IR). To illustrate the

IR, consider a program in following example kernel code :

__kernel void triangle(_global int *x, _global int *y) {

 int i, t = get global id(0), sum=0;

 for (i=0; i < t; i++) sum += x[i];

 y[id] = sum;

}

Conceptual foundations of OpenCL with Altera SDK 21

In this example, each thread reads its ID using the get_global_id(0) function

and stores it in variable t. It then sums up all elements of array x beginning

at the first and ending at t-1. Finally, the result is stored in array y. C-

Language front-end parses a kernel description and creates an LLVM

Intermediate Representation (IR), which is based on static single

assignment. It comprises basic blocks connected by control-flow edges as

shown in Figure2.4.1. The first basic block, Entry, performs initialization for

the kernel and ends with a branch instruction that decides if a thread should

bypass the loop. The second basic block represents the loop body and the

last basic block stores the result to memory. To determine the data each

basic block consumes and produces, we perform Live Variable Analysis.

Figure 2.4.1 basic blocks

 Live Variable Analysis

Live Variable Analysis identifies variables consumed and produced by each

basic block. In our example, the Entry basic block contains only kernel

arguments as input variables (x, y). At the output of the basic block,

variables sum, t and i are also created. This tells us that each thread

produces these values when it completes execution in this basic block.

22 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

The For.body basic block includes all kernel arguments as well as the three

arguments produced by the first basic block. It then produces y, t, i.next and

add as output live variables. Notice that i.next and add effectively replace i

and sum when the basic block loops back to itself, allowing the loop to

function correctly. Finally, the last basic block has input live variables y, t

and add, while no variables are live after the return instruction.

 CDFG Generation

Once each basic block is analyzed, we create a Control-Data Flow Graph

(CDFG) to represent the operations inside it. Each basic block module takes

inputs either from kernel arguments or another basic block, based on the

results of Live Variable Analysis. Each basic block then processes the data

according to the instructions contained within it and produces output that

can be read by other basic blocks.

A basic block module, shown in Figure 2.4.2, consists of three types of

nodes. The first node is the merge node, which is responsible for

aggregating data from previously executed basic blocks. This ensures that

for each thread, its id as well as all other live variables are valid when the

execution of the basic block begins.

Figure 2.4.2 basic block module

Conceptual foundations of OpenCL with Altera SDK 23

Operational nodes represent instructions that a basic block needs to

execute, such as load, store, or add. They are linked by edges to other nodes

to show where their inputs come from and where their outputs are used.

Each operational node can be independently stalled when the successor

node is unable to accept data, or not all inputs of the successor node are

ready.

The last node in a basic block module is a branch node. It decides which of

the successor basic blocks a thread should proceed to.

 Loop Handling

Loops are handled at a basic block level. A simple example of a loop is a

basic block whose output is also an input to it, such as shown in Figure 2.4.1.

The loop itself presents a problem in that it is entirely possible that a loop

can stall. To remedy the problem, we insert an additional stage of registers

into the merge node, that allows the pipeline to have an additional spot into

which data can be placed.

When loops comprise many basic blocks, it is possible that stalling can occur

when loop-back paths are unbalanced. In such cases, we instantiate a loop

limiter that allows only specific number of threads to enter the loop. The

number of threads is equal to the length of the shortest path in a loop.

 Scheduling

Once each basic block is represented as a CDFG, scheduling is used to

determine the clock cycles in which each operation is performed. This is

important because not all instructions require the same number of clock

cycles to complete. For example, an AND operation may be purely

combinational, but a floating point addition may take eight cycles. In some

cases, it may be necessary to insert pipeline balancing registers into the

circuit because one execution path is longer than another.

To solve the scheduling problem we apply SDC(system of difference

constraints) scheduling algorithm. The SDC scheduler uses a system of

linear equations to schedule operations, while minimizing a cost function.

In the context of scheduling, each equation represents a clock cycle

relationship between connected operations. For example, in implementing

an equation f = a ∗ b + c ∗ d, the scheduler has ensure that both

multiplications occur before addition. A secondary objective is the

reduction of area, and in particular the amount of pipeline balancing

24 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

registers required. To minimize the impact on area, we minimize a cost

function that reduces the number of bits required by the pipeline.

 Hardware Generation

To generate a hardware circuit for a kernel we build it out of basic block

modules. To achieve high performance, we implement each module as a

pipelined circuit, rather than a finite state machine with datapath (FSMD).

This is because a potentially large number of threads need to execute using

a kernel hardware, and their computation is largely independent. Hence,

the kernel hardware should be able to execute many threads at once, rather

than one at a time.

In a pipelined circuit, a new thread begins execution at each clock cycle.

Thus, a basic block with pipeline depth of 100 executes 100 threads

simultaneously. This is similar to replicating an FSMD circuit 100 times,

except that subsequent threads execute different operations. Once each

basic block is implemented, we put the basic blocks together by linking the

stall, valid and data signals as specified by the control edge. We then

generate a wrapper around a kernel to provide a standard interface to the

rest of the system.

2.5 Memory Organization

OpenCL defines three types of memory spaces: global, local and private.

The global memory space is designated for access by all threads. Read and

write operations to this memory can be performed by any thread. The

global memory space resides in off-chip DRRx memory. It has large capacity

allowing us to store data, but long access latency. Accesses to this memory

are coalesced when possible to increase memory throughput.

Local memory is used by work groups to enable synchronized exchange of

data. To synchronize threads within a workgroup, barriers/memory fences

are used to force threads to wait on one another before proceeding further.

This allows complex algorithms that require collaboration of threads to be

implemented. Local memory is implemented using on-chip memory. It has

short latency and multiple ports, allowing the kernel to access it efficiently.

To do this we create a shared memory space for each load and store unit to

any local memory.

Conceptual foundations of OpenCL with Altera SDK 25

Private memory is implemented with registers that store the data on a per-

thread basis, and are pipelined through the kernel to ensure that each

thread keeps the data it requires as it proceeds with the execution through

the kernel.

2.5.1 Optimize Global Memory Accesses

The Altera Offline Compiler (AOC) uses SDRAM as global memory. By

default, the AOC configures global memory in a burst-interleaved

configuration. The AOC interleaves global memory across each of the

external memory banks, the default burst-interleaved configuration leads

to the best load balancing between the memory banks.

The figure below illustrates the differences in memory mapping patterns

between burst-interleaved and non-interleaved memory partitions.

Figure 2.5.1 Global Memory Partitions

26 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

2.5.2 Contiguous Memory Accesses

Contiguous memory access optimizations analyze statically the access

patterns of global load and store operations in a kernel. For sequential load

or store operations that occur for the entire kernel invocation, the Altera

Offline Compiler (AOC) directs the kernel to access consecutive locations in

global memory. Consider the following code example:

The load operation from array a uses an index that is a direct function of

the work-item global ID. By basing the array index on the work-item global

ID, the AOC can direct contiguous load operations. These load operations

retrieve the data sequentially from the input array, and sends the read data

to the pipeline as required. Contiguous store operations then store

elements of the result that exits the computation pipeline in sequential

locations within global memory.

The following figure illustrates an example of the contiguous memory

access optimization:

__kernel void sum (__global const float * restrict a,

 __global const float * restrict b,

 __global float * restrict c)

 {

 size_t gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

 }

Conceptual foundations of OpenCL with Altera SDK 27

Figure 2.5.2 Contiguous Memory Access

Contiguous load and store operations improve memory access efficiency

because they lead to increased access speeds and reduced hardware

resource needs. The data travels in and out of the computational portion of

the pipeline concurrently, allowing overlaps between computation and

memory accesses. If possible, use work-item IDs that index consecutive

memory locations for load and store operations that access global memory.

Sequential accesses to global memory increase memory efficiency because

they provide an ideal access pattern.

We can execute our kernel on an FPGA board that includes multiple global

memory types, such as DDR, quad data rate (QDR), and on-chip RAMs.

2.5.3 Constant Cache Memory

Constant memory resides in global memory, but the kernel loads it into an

on-chip cache shared by all work-groups at runtime. For example, if we have

read-only data that all work-groups use, and the data size of the constant

buffer fits into the constant cache, allocate the data to the constant

memory. The constant cache is most appropriate for high-bandwidth table

lookups that are constant across several invocations of a kernel. The

constant cache is optimized for high cache hit performance.

28 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

2.6 Strategies for Improving NDRange Kernel Data Processing

Efficiency

Consider the following kernel code:

This kernel adds arrays a and b, one element at a time. Each work-item is

responsible for adding two elements, one from each array, and storing the

sum into the array answer. Without optimization, the kernel performs one

addition per work-item.

To maximize the performance of our OpenCL kernel, consider implementing

the applicable optimization techniques to improve data processing

efficiency.

 Specify a Maximum Work-Group Size or a Required Work-Group

Size

Specify the max_work_group_size or reqd_work_group_size attribute for

our kernels whenever possible. These attributes allow the Altera Offline

Compiler (AOC) to perform aggressive optimizations to match the kernel to

hardware resources without any excess logic.

For example, the code fragment below assigns a fixed work-group size of 64

work-items to a kernel:

__kernel void sum (__global const float * restrict a,

 __global const float * restrict b,

 __global float * restrict answer)

 {

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

 }

__attribute__((reqd_work_group_size(64,1,1)))

__kernel void sum (__global const float * restrict a,

 __global const float * restrict b,

 __global float * restrict answer)

 {

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

 }

Conceptual foundations of OpenCL with Altera SDK 29

 Kernel Vectorization

To achieve higher throughput, we can vectorize our kernel. Kernel

vectorization allows multiple work-items to execute in a single instruction

multiple data (SIMD) fashion.

Include the num_simd_work_items attribute in our kernel code to direct

the AOC to perform more additions per work-item without modifying the

body of the kernel. The following code fragment applies a vectorization

factor of four to the original kernel code:

 Static Memory Coalescing

Static memory coalescing is an Altera Offline Compiler (AOC) optimization

step that attempts to reduce the number of times a kernel accesses non-

private memory.

In previous code. The OpenCL kernel performs four load operations that

access consecutive locations in memory. Instead of performing four

memory accesses to competing locations, the AOC coalesces the four loads

into a single wider vector load. This optimization reduces the number of

accesses to a memory system and potentially leads to better memory

access patterns. Although the AOC performs static memory coalescing

automatically when it vectorizes the kernel.
 Multiple Compute Units

To achieve higher throughput, the Altera Offline Compiler (AOC) can

generate multiple compute units for each kernel. The AOC implements each

__attribute__((num_simd_work_items(4)))

__attribute__((reqd_work_group_size(64,1,1)))

__kernel void sum (__global const float * restrict a,

 __global const float * restrict b,

 __global float * restrict answer)

 {

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

 }

30 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

compute unit as a unique pipeline. Generally, each kernel compute unit can

execute multiple work-groups simultaneously.

To increase overall kernel throughput, the hardware scheduler in the FPGA

dispatches work-groups to additional available compute units. A compute

unit is available for work-group assignments as long as it has not reached

its full capacity.

Assume each work-group takes the same amount of time to complete its

execution. If the AOC implements two compute units, each compute unit

executes half of the work-groups. Because the hardware scheduler

dispatches the work-groups, you do not need to manage this process in

your own code.

The AOC does not automatically determine the optimal number of compute

units for a kernel. To increase the number of compute units for our kernel

implementation, we must specify the number of compute units that the

AOC should create using the num_compute_units attribute, as shown in the

code sample below.

 Combination of Compute Unit Replication and Kernel SIMD

Vectorization

If our replicated or vectorized OpenCL kernel does not fit in the FPGA, we

can modify the kernel by both replicating the compute unit and vectorizing

the kernel. Include the num_compute_units attribute to modify the number

__attribute__((num_compute_units(2)))

__kernel void sum (__global const float * restrict a,

 __global const float * restrict b,

 __global float * restrict answer)

 {

 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];

 }

Conceptual foundations of OpenCL with Altera SDK 31

of compute units for the kernel, and include the num_simd_work_items

attribute to take advantage of kernel vectorization.

Figure 2.6.1 Compute Unit Replication versus Kernel SIMD Vectorization

Figure 2.6.2 Combination of Compute Unit Replication and Kernel SIMD

Vectorization

32 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

2.7 Optimize Floating-Point Operations

For floating-point operations, we can manually direct the Altera Offline

Compiler (AOC) to perform optimizations that create more efficient

pipeline structures in hardware and reduce the overall hardware usage.

These optimizations can cause small differences in floating-point results.

 Tree Balancing

We have this equation:

 result = (((A * B) + C) + (D * E)) + (F * G);

By default, the AOC creates an implementation that resembles a long vine

for such computations:

Figure 2.7.1 Default Floating-Point Implementation

Long, unbalanced operations lead to more expensive hardware. A more

efficient hardware implementa‐ tion is a balanced tree, as shown below:

Conceptual foundations of OpenCL with Altera SDK 33

Figure 2.7.2 Balanced Tree Floating-Point Implementation

In a balanced tree implementation, the AOC converts the long vine of

floating-point adders into a tree pipeline structure. The AOC does not

perform tree balancing of floating-point operations automatically because

the outcomes of the floating-point operations might differ. As a result, this

optimization is inconsistent with the IEEE Standard 754-2008.

If we want the AOC to optimize floating-point operations using balanced

trees and your program can tolerate small differences in floating-point

results, include the --fp-relaxed option in the aoc command.

 Rounding Operations

The balanced tree implementation of a floating-point operation includes

multiple rounding operations. These rounding operations can require a

significant amount of hardware resources in some applications. The AOC

does not reduce the number of rounding operations automatically because

doing so violates the results required by IEEE Standard 754-2008.

We can reduce the amount of hardware necessary to implement floating-

point operations with the -- fpc option of the aoc command.

34 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

2.7.1 Floating-Point versus Fixed-Point Representations

An FPGA contains a substantial amount of logic for implementing floating-

point operations. However, we can increase the amount of hardware

resources available by using a fixed-point representation of the data

whenever possible. The hardware necessary to implement a fixed-point

operation is typically smaller than the equivalent floating-point operation.

As a result, you can fit more fixed-point operations into an FPGA than the

floating-point equivalent.

 The OpenCL standard does not support fixed-point representation; we

must implement fixed-point representations using integer data types.

Hardware developers commonly achieve hardware savings by using fixed-

point data representations and only retain a data resolution required for

performing calculations. We must use an 8, 16, 32, or 64-bit scalar data type

because the OpenCL standard supports only these data resolutions

Matrix-multiplication (Study an example) 35

Chapter 3. Matrix-multiplication (Study an
example)

According to the definition of BLAS libraries, we define the computation of
Matrix-multiplication as follow: the single-precision general matrix-
multiplication (SGEMM) computes the following form:

C = alpha* A * B + beta * C

Where: A is a K by M input matrix, B is an N by K input matrix, C is the M by
N output matrix, and alpha and beta are scalar constants. For simplicity, we
assume the common case where alpha is equal to 1 and beta is equal to
zero, we get:

C = A * B

There is a condition for the matrix sizes must be equal or multiples
of OpenCL workgroups.

There are many ways for implementations of single-precision matrix-
multiplication, we will study ‘’ Tiling in the local memory’’.

3.1 Tiling in the local memory

The main reason the naive implementation doesn't perform so well is
because we are accessing the kernel device's off-chip memory way too
much. We have M*N*K multiplications and additions, we need M*N*K*2
loads and M*N stores. To avoid that we compute by sub-block, so we divide
the matrixes to sub-block and work with them, in figure 03 we multiply sub-
A with sub-B and we get sub-C and this save time of accessing to kernel
device's off-chip memory.

36 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Figure 03 matrix-multiplication by sub-block

3.2 Host Code

The version of SGEMM can be implemented in plain C using 3 nested loops,

we see code below

Matrix-multiplication (Study an example) 37

3.3 Kernel code

The following code is an implementation of tiling:

We see that the original accumulation loop over K has been split into two

new loops: first one over all K/TS tiles and second one over all TS elements

within a tile. We can identify two parts which are separated with

synchronization barriers: first loading from off-chip memory to local

memory, and second computation based on local memory data.

38 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Chapter 4. Application of matrix-multiplication

kernel in Backpropagation

In this chapter we will talk about the algorithm of Backpropagation that

we used in our study.

4.1 The time execution

The following equation defines the time execution of the algorithm

Backpropagation.

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑖𝑛𝑖 + 𝐸 ∙ (𝑇𝐶𝑊 + 𝑇𝑢𝑤) + 𝑇𝑡𝑒𝑠𝑡 (1)

Where:

𝑇𝑖𝑛𝑖 : is the time of initialization.

𝐸 : is the number of iterations of a loop.

𝑇𝑐𝑤 : is the calculus of partial derivative of the error with respect to each

weight.

𝑇𝑈𝑤: is the update of the weights.

𝑇𝑡𝑒𝑠𝑡 : is the time of obtaining of calculus with test set.

4.1.1 𝑻𝒄𝒘

The time dedicated to calculus of partial derivative of the error with

respect to each weight is usually broken down into three phases to be

performed iteratively for each pattern. If we had Np patterns it would be

𝑇𝑐𝑤 = 𝑁𝑝 ∙ (𝑇𝑓 + 𝑇𝑏1 + 𝑇𝑏2) (2)

The three steps involved in this time taking one pattern 𝑚 at a time,

having 𝐿 layers of neurons and 𝑁𝑙 neurons in each layer, and calculating

the partial derivative of the error with respect to each weight are as

follows:

 Forward step. Apply the pattern 𝑦𝑖
𝐾 to the input layer and

propagate the signal forward through the network until the final

outputs 𝑦𝑖
𝐿 have been calculated for each 𝑖(index of neuron) and

𝑙(index of layer)

 Application of matrix-multiplication kernel in Backpropagation 39



Figure 4.1.1: Multiplayer Perceptron

𝑢𝑖
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 𝑦𝑗
𝑙−1𝑁𝑙−1

𝑗=0 (3)

𝑦𝑖
𝑙 = 𝑓(𝑢𝑖

𝑙) (4)

𝑦𝑖
′𝑙 = 𝑓′(𝑢𝑖

𝑙) (5)

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿

where y is the activation, w the weights and f the non-linear

function

 Backward step 1. Compute the δ’s for the output layer 𝐿 and

compute the δ’s for the preceding layers by propagating the errors

backwards using

𝛿𝑗
𝐿 = 𝑓′(𝑢𝑗

𝐿)(𝑡𝑖 − 𝑦𝑖) (6)

𝜃𝑖
𝑙−1 = ∑ 𝑤𝑖𝑗𝛿𝑖

𝑙𝑁𝑙
𝑖=1 (7)

𝛿𝑗
𝑙−1 = 𝑓′(𝑢𝑗

𝑙−1) 𝜃𝑖
𝑙−1 (8)

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿

where 𝛿 are the error terms, 𝑡 the targets and 𝑓′ the derivative

function of 𝑓

 Backward step 2. Meanwhile we obtain the delta errors en

backward step 1 we can obtain the accumulation of partial

derivative of the error with respect to each weight using

𝑒 = 1/2∑ (𝑡𝑖 − 𝑦𝑖
𝐿)2

𝑁𝑙
𝑖=1 (9)

𝑚
𝜕𝑒

𝜕𝑤𝑖𝑗
𝑙 = 𝛿𝑖

𝑙𝑦𝑗
𝑙−1 (10)

𝑐𝑤𝑖𝑗
𝑙𝑚 = 𝑐𝑤𝑖𝑗

𝑙𝑚−1 + 𝑚
𝜕𝑒

𝜕𝑤𝑖𝑗
𝑙 (11)

1 ≤ 𝑖 ≤ 𝑁𝑙 , 1 ≤ 𝑙 ≤ 𝐿

40 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

where cw is the accumulation of the direction of the gradient of the

error . When we finish with all the patterns, this accumulation will

be

𝑐𝑤𝑖𝑗
𝑙 =

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑙 (12)

𝐸 =
1

2
∑ ∑ (𝑡𝑖 − 𝑦𝑖

𝐿)2
𝑁𝑙
𝑖=1

𝑁𝑝
𝑚=1 (13)

1 ≤ 𝑙 ≤ 𝐿

4.1.2 𝑻𝒖𝒘

The time dedicated to update the weights of the ANN is dedicated to

actualize all the weights of the ANN when each EPOCH has finished

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑗𝑖
(𝑡)
+ ∆𝑤𝑖𝑗

(𝑡)
 (14)

∆𝑤𝑖𝑗
(𝑡)
=

{

 −∆𝑤𝑖𝑗

(𝑡−1)
, 𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

−∆𝑖𝑗
(𝑡)
, 𝑒𝑙𝑠𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

> 0

−∆𝑖𝑗
(𝑡)
, 𝑒𝑙𝑠𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

0, 𝑒𝑙𝑠𝑒

 (15)

∆𝑖𝑗
(𝑡)
=

{

 𝜂+ ∗ ∆𝑖𝑗

(𝑡−1)
, 𝑖𝑓 (

𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

> 0

𝜂− ∗ ∆𝑖𝑗
(𝑡−1)

, 𝑖𝑓 (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡−1)

∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)
(𝑡)

< 0

∆𝑖𝑗
(𝑡−1)

, 𝑒𝑙𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 0 < 𝜂− < 1 < 𝜂+

 (16)

 Application of matrix-multiplication kernel in Backpropagation 41

If we combine the Equations 14, 15 and 16 we consider the following

pseudo code

for each 𝑤𝑖𝑗do {

 if (∂E/∂wij)(t-1). (∂E/∂wij)(t)> 0 then {

 ∆ij
(t):=min(∆ij

(t-1).η+,∆max)

 ∆wij
(t):=-sign((∂E/∂wij)(t)). ∆ij

(t)

 wij
(t+1)):= wij

(t)+ ∆wij
(t) }

 elsif (∂E/∂wij)(t-1). (∂E/∂wij)(t)< 0 then { (17)

 ∆ij
(t):=max(∆ij

(t-1).η-,∆min)

 wij
(t+1)):= wij

(t)- ∆wij
(t-1)

 (∂E/∂wij)(t):= 0 }

 elsif (∂E/∂wij)(t-1). (∂E/∂wij)(t)= 0 then {

 ∆wij
(t):=-sign((∂E/∂wij)(t)). ∆ij

(t)

 wij
(t+1)):= wij

(t)+ ∆wij
(t) }

}

4.2 Original algorithm

We can perform the equation 01 by implementing this algorithm with

OpenCL, our main candidates for the kernels are the tasks called in lines

1,2,3,4 and 5 (see Figure 4.2). The tasks called in lines 1, 2 and 3 are

implementing the Equation 3, and the tasks called in lines 4 and 5 are

implementing the Equation 7. Each kernel would have a similar structure

based on a matrix vector multiplication, and how a path dependence

between them, the better solution exist is implement a unique kernel and

reuse 5 times in each iteration. Therefore we would use the same kernel in

5 · Np · E times in our algorithm. .

42 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Figure 4.2 Resilient Backpropagation original

4.3 Final algorithm

We can perform the equation 01 by implementing this algorithm with

OpenCL, our main candidates for the kernels are the lines 1, 2, 3, 4, 5, 6, 7

and 8 of algorithm 2(see Figure 4.3). Each kernel would have a similar

structure based on a matrix matrix-multiplication, and how a path

dependence between them, the better solution exist is implement a unique

kernel and reuse 7 times in each iteration. Therefore we would use the

same kernel in 7 · E times in our algorithm. In equation 18 we can see the

matrix matrix-multiplications of forward phase, in equation 19 we can see

the matrix matrix-multiplications of backward1 phase and in equation 20

we can observe the matrix matrix-multiplications of backward2 phase. In

each matrix matrix-multiplication the size of the matrices must be modified

and of course our OpenCL implementation must permit to change this

parameters. This algorithm use Matrix-multiplication with tiling that we had

it in chapter 3.

 Application of matrix-multiplication kernel in Backpropagation 43

Figure 4.3 Resilient Backpropagation

{

 (
𝐼𝑛𝑝𝑢𝑡 11⋯𝐼𝑛𝑝𝑢𝑡1𝑛
⋮ ⋱ ⋮

𝐼𝑛𝑝𝑢𝑡𝑚1…𝐼𝑛𝑝𝑢𝑡𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘
⋮ ⋱ ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘
⋮ ⋱ ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐼𝑛𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟1

(

𝑦 11⋯𝑦1𝑛
⋮ ⋱ ⋮
𝑦𝑚1…𝑦𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘
⋮ ⋱ ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘
⋮ ⋱ ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟2

(

𝑦 11⋯𝑦1𝑛
⋮ ⋱ ⋮
𝑦𝑚1…𝑦𝑚𝑛

)(

𝑤 11⋯𝑤1𝑘
⋮ ⋱ ⋮
𝑤𝑛1…𝑤𝑛𝑘

) = (

𝑢 11⋯𝑢1𝑘
⋮ ⋱ ⋮
𝑢𝑚1…𝑢𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑘 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠

} → 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑙𝑎𝑦𝑒𝑟3
}

→ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝ℎ𝑎𝑠

 (18)

44 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

{

(

𝛿11⋯𝛿1𝑛
⋮ ⋱ ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑤11⋯𝑤1𝑘
⋮ ⋱ ⋮
𝑤𝑛1⋯𝑤𝑛𝑘

) = (

𝜃11⋯𝜃1𝑘
⋮ ⋱ ⋮
𝜃𝑚1⋯𝜃𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 − 𝑙𝑎𝑦𝑒𝑟2

(

𝛿11⋯𝛿1𝑛
⋮ ⋱ ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑤11⋯𝑤1𝑘
⋮ ⋱ ⋮
𝑤𝑛1⋯𝑤𝑛𝑘

) = (

𝜃11⋯𝜃1𝑘
⋮ ⋱ ⋮
𝜃𝑚1⋯𝜃𝑚𝑘

)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑘 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 − 𝑙𝑎𝑦𝑒𝑟1
}

→ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑1 𝑓𝑎𝑠𝑒

 (19)

{

(

𝛿11⋯𝛿1𝑛
⋮ ⋱ ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮ ⋱ ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮ ⋱ ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑛 = 𝑛𝑢𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟3

(

𝛿11⋯𝛿1𝑛
⋮ ⋱ ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮ ⋱ ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮ ⋱ ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛2
𝑛 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑘 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟2

(

𝛿11⋯𝛿1𝑛
⋮ ⋱ ⋮
𝛿𝑚1⋯𝛿𝑚𝑛

)(

𝑦11⋯𝑦1𝑘
⋮ ⋱ ⋮
𝑦𝑛1⋯𝑦𝑛𝑘

) = (

𝑐𝑤11⋯𝑐𝑤1𝑘
⋮ ⋱ ⋮

𝑐𝑤𝑚1⋯𝑐𝑤𝑚𝑘
)

→ {
𝑚 = 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛1
𝑛 = 𝑛𝑢𝑚𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑘 = 𝑛𝑢𝑚𝐼𝑛𝑡𝑝𝑢𝑡𝑠

} → 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 − 𝑙𝑎𝑦𝑒𝑟1
}

→ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑2 𝑓𝑎𝑠𝑒

 (20)

Ability to quickly integrate IPs in OpenCL and results 45

Chapter 5. Ability to quickly integrate IPs in

OpenCL and Results

In this section we will see one advanced features for OpenCL Altera SDK

how we can write our own code HDL inside OpenCL kernel and create its

library. And we present our result with graphs.

5.1 OpenCL Library

The Altera SDK for OpenCL provides advanced features we can create our

OpenCL library, OpenCL library is a single file that contains multiple

functions and we can create it in OpenCL or RTL.

Figure 5.1 Overview of Altera SDK for OpenCL's Library Support

To create an OpenCL library we need the following files:

 RTL Components

 RTL source file: Verilog, VHDL.

 eXtensible Markup Language File (.xml): The Altera Offline

Compiler uses these properties to integrate the RTL

component into the OpenCL pipeline.

 Header file (.h): A C-style header file that declares the

signatures of function(s) that are implement by the RTL

component.

46 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

 OpenCL emulation model file (.cl): Provides C model for the

RTL component that is used only for emulation.

 OpenCL Functions

 OpenCL source files (.cl): Contains definitions of the OpenCL

functions.

 Header file (.h): A C-style header file that declares the

signatures of function(s) that are defined in the OpenCL

source files.

5.1.1 RTL Modules and the OpenCL Pipeline

In the following figure represent the architecture of an AOCL pipeline

Figure 5.1.1 Parallel Execution Model of AOCL Pipeline Stages

In the figure 5.1.1 the operations on the right represent the AOCL pipeline

implementation of the OpenCL kernel code on the left. At each stage, the

AOC executes all operations in parallel by the thread existing at that stage.

 Integration of an RTL Module into the AOCL Pipeline

In the figure 5.1.2 we see how the AOC integrates the RTL module myMod

within the library into the AOCL pipeline. The RTL module has a balanced

latency where the threads of the RTL module match the number of pipeline

stages.

Ability to quickly integrate IPs in OpenCL and results 47

Figure 5.1.2 Integration of an RTL Module into an AOCL Pipeline

 RTL Reset and Clock Signals

Resets and clocks of RTL modules are connected to the same clock and reset

drivers as the rest of the OpenCL pipeline.

The following steps outline the process of setting the kernel clock

frequency:

1. The Quartus Prime software's Fitter applies an aggressive constraint on

the kernel clock.

2. The Quartus Prime software's TimeQuest Timing Analyzer performs

static timing analysis to determine the frequency that the Fitter actually

achieves.

3. The phase-locked loop (PLL) that drives the kernel clock sets the

frequency determined in Step 2 to be the kernel clock frequency.

 XML Syntax of an RTL Module

Elements and Attributes in the XML Specification File:

RTL_SPEC: Top-level element in the XML specification file. There can only

be one such top-level element in the file.

48 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

FUNCTION: defines the OpenCL function that the RTL module implements.

We can have multiple function.

ATTRIBUTES: containing other XML elements that describe various

characteristics (for example, latency) of the RTL module.

INTERFACE: containing other XML elements that describe the RTL

module's interface.

C_MODEL: specifying one or more files that implement OpenCL C model

for the function.

REQUIREMENTS: specifying one or more RTL resource files (that is, .v,

.vhd…..)

 Order of Threads Entering an RTL Module

That threads entering an RTL module not follow a defined order.

 OpenCL C Model of an RTL Module

Each RTL module within an OpenCL library must have an OpenCL C model,

if we decide not to emulate our OpenCL system, we have to create an empty

function with a name that matches the function name you specified in the

XML specification file.

 Potential Incompatibility between RTL Modules and Partial

Reconfiguration

If a library user then uses the library's RTL module inside a PR region, the

module might not function correctly after PR. To ensure that the RTL

modules function correctly on a device that uses PR:

1-The RTL modules do not use memory logic array blocks (MLABs) with

initialized content.

2-The RTL modules do not make any assumptions regarding the power-up

values of any logic.

5.1.2 Packaging an OpenCL Helper Function File

Before creating an OpenCL library file, package each OpenCL source file

with helper functions into a .aoco file. Unlike RTL modules, we do not need

to create an XML specification file.

To package an OpenCL source file into a .aoco file, invoke the following

command:
aoc -c -shared <OpenCL_source_file_name>.cl –o <OpenCL_object_file_name>.aoco

Ability to quickly integrate IPs in OpenCL and results 49

where the -shared AOC command option instructs the AOC to create a

.aoco file that is suitable for inclusion into an OpenCL library.

5.1.3 Packaging an RTL Component for an OpenCL Library

To package an RTL component into a .aoco file, invoke the following

command:
aoc -c <RTL component description file name>.xml -o <RTL object file name>.aoco

5.1.4 Restrictions and Limitations in RTL Support

The Altera SDK for OpenCL supports the use of RTL modules in an OpenCL

library with the following restrictions:

1- An RTL module must contain one Avalon-ST interface. In particular, a

single ready or valid logic must control all the inputs.

2- The RTL module must work correctly with exactly one clock, regardless

of clock frequency.

3- Data input and output sizes must match valid OpenCL data types, from

8 bits for char to 1024 bits for long16.

4- RTL modules cannot connect to external I/O signals. All input and

output signals must come from an OpenCL kernel.

5- An RTL module must have a clock port, a resetn port, and Avalon-ST

input and output ports (that is, ivalid, ovalid, iready, oready).

6- RTL modules that communicate with external memory must have

Avalon Memory-Mapped (AvalonMM) port parameters that match the

corresponding Custom Platform parameters.

7- RTL modules that communicate with external memory cannot burst

across the burst boundary also cannot make requests every clock cycle

and stall the hardware by monopolizing the arbitration logic.

8- RTL modules cannot act as stand-alone OpenCL kernels.

9- Every function call that corresponds to RTL module instantiation is

completely independent of other instantiations. There is no hardware

sharing.

10- Do not incorporate kernel code (that is, functions marked as kernel)

into a .aoclib library file.

11- An RTL component must receive all its inputs at the same time.

50 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

12- AOCL does not support I/O RTL modules.

13- You can only set RTL module parameters in the <RTL module

description file name>.xml specification file, not the OpenCL kernel source

file.

 AOCL's RTL module support for the library feature has the following

limitations:

1- We can only pass data inputs to an RTL module by value via the OpenCL

kernel code.

2- We cannot include the -g AOC command option when compiling kernels

that use libraries.

3- Names of RTL module source files cannot conflict with the file names of

AOC IP.

4- AOCL does not support .qip files. We must manually parse nested .qip

files to create a flat list of RTL files.

5- It is very difficult to debug an RTL module that works correctly on its

own but works incorrectly as part of an OpenCL kernel.

6- All AOC area estimation tools assume that RTL module area is 0.

7- RTL modules cannot access a 2x clock that is in-phase with the kernel

clock and at twice the kernel clock frequency.

5.1.5 Verifying the RTL Modules

We verify each RTL module using standard hardware verification methods

and we can also modify one of Altera's OpenCL library design examples to

test our RTL modules inside the overall OpenCL system.

5.1.6 Packaging Multiple Object Files into a Library File

To package multiple object files into a single library file, invoke the

following command:

 aocl library create -o <library file name>.aoclib <object file 1>.aoco [<object file

2>.aoco ... <object file N>.aoco]

The aocl library utility command creates a <library file name>.aoclib library

file, which includes the .aoco object files we specify in the command.

A library file may contain both RTL-based object files and OpenCL-based

object files.

Ability to quickly integrate IPs in OpenCL and results 51

5.1.7 Specifying an OpenCL Library when Compiling an OpenCL Kernel

We can specify an OpenCL library to the AOC by invoke the following

command:

aoc –l <library_file_name>.aoclib [-L <library directory>] <kernel file

name>.cl

Where the command -l <library_file_name>.aoclib specifies the library file

name, and the command -L <library directory> specifies the directory

containing the library files.

5.1.8 OpenCL Library Command-Line Options

We can invoke the following commands to perform OpenCL library-related

tasks:

1-Library-Related AOC Command Options

‘’-shared’’: In conjunction with the -c command option, compiles an

OpenCL source file into an object file (.aoco)

‘’ -I <library_directory>’’: Adds <library directory> to the header file search

path.

‘’ -L <library directory>’’: Adds <library directory> to the OpenCL library

search path.

‘’-l <library_file_name>.aoclib’’: Specifies the OpenCL library file

(<library_file_name>.aoclib).

‘’--library-debug’’: Generates debug output that relates to libraries.

2- AOCL Library Utility (aocl library) Command Options

‘’hdl-comp-pkg <XML_specification_ file>.xml’’ or ‘’aoc -c

<XML_specification_file>.xml.’’: Packages a single HDL component into a

.aoco file that we then include into a library.

‘’ -c <XML_specification_file>.xml’’: Same function as hdl-comp-pkg

<XML_specification_file>.xml.

‘’create’’: Creates a library file from the .aoco files.

‘’list <library_name>’’: Lists all the RTL components in the library.

‘’help’’: Prints the list of AOCL library utility options and their descriptions

on screen.

52 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

5.2 Function tangent hyperbolic ‘tanh’

The function Tangent hyperbolic is a no linear function for the hardware

accelerate, we had wrote this function inside OpenCL Kernel and we get

better result than the kernel alone, the function work on fixed point so it

must create two converter: Floating point to fixed point and fixed point to

floating point, the following photo shows the structure of the function

tangent hyperbolic.

Figure 5.2 The structure of the function tangent hyperbolic

Ability to quickly integrate IPs in OpenCL and results 53

5.3 Results

In this part we will present the results on our study of Backprobagation

algorithm with acceleration kernel on FPGA Cyclon 5 DE1-Soc with ARM

CPU embedded, we have three sets of results depends on Block Size and

Work items and they are

1- Block Size = 4 and Work Items =4

2- Block Size = 8 and Work Items =8

3- Block Size = 16 and Work Items =4

We start our study by applying our algorithm on ARM CPU without kernel

and then we apply the algorithm on the Kernel in deferent parameter of

Block Size and Work Items, we have three sets as mention before and in

each set we apply the algorithm on kernel acceleration Matrix-

multiplication than we apply it another time on kernel acceleration with

Hyperbolic Tangent ‘tanh’.

Our algorithm have 5 parameters, two fixe are numInputs_MAX and

numOutputs_MAX, three variable are numHidden1_MAX,

numHidden2_MAX, numPatterns_MAX, we vary the parameters

numHidden1_MAX and numHidden2_MAX from 4 to 64, the

numPatterns_MAX from 256 to 65536. And we have four results, CPU

time, Forward time and backward time, we do all possibility by varying the

parameter.

For each set of Work size and Work Items we have the following

parameters:

numHidden1_MAX ={4, 8, 16, 32, 48, 64}

numHidden2_MAX ={4, 8, 16, 32, 48, 64}

numPatterns_MAX ={256, 1024, 4096, 16384, 65536}

From that parameter we have 6*6*5 =180 study cases so we three sets of

Work Size and Work Items so in total we have 180*3 =540 study cases.

The first subset of our results is applying our algorithm Backpropagation on

ARM CPU in FPGA, we got slow result and we give a sample about the

results in the following table.

54 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 8 32 32 64 64

numHidden2 4 16 48 48 64

CPU time 0,98 16,58 199,46 1970,38 9257,73

Forward time 0,41 6,2 36,83 222,4 1005,28

Backward time 0,37 10,23 162,44 1747,68 8251,92

Table 5.1 Sample Result of ARM CPU

First set (Block size = 4 and Work Items =4)

The first subset we applying our algorithm backprobagation on Kernel

Matrix-multiplication and we got better result than the previous subset.

A sample :

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 16 8 48 32 64

numHidden2 4 16 48 64 64

CPU time 1,87 5,87 51,24 210,68 1048,06

Forward time 1,05 3,55 35,51 140,69 717,26

Backward time 0,67 2,14 15,52 69,72 330,18

Table 5.2 Sample Result of Kernel, BZ=4 and WI=4

The second subset we applied our algorithm on the kenel Hyperbolic

Tangent. We give a sample one in the following table:

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 4 16 16 48 64

numHidden2 8 16 32 8 64

CPU time 1,33 4,1 17,07 73,4 485,97

Forward time 0,46 1,56 6,44 25,96 160,41

Backward time 0,72 2,37 10,44 47,19 324,99

Table 5.3 Sample Result of Kernel with ‘Tanh’, BZ=4 and WI=4

Ability to quickly integrate IPs in OpenCL and results 55

The second set (Block size = 8 and Work Items =8)

The first subset we applying our algorithm backpropagation on Kernel

Matrix-multiplication.

A sample:

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 4 8 32 48 64

numHidden2 4 16 8 16 64

CPU time 1,77 6,09 29,39 154,51 1048,12

Forward time 0,78 3,5 18,95 102,24 718,53

Backward time 0,82 2,41 10,25 51,98 328,98

Table 5.4 Sample Result of Kernel, BZ=8 and WI=8

The second subset we applied our algorithm on the kernel Hyperbolic

Tangent. We give a sample one in the following table:

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 16 32 16 64 64

numHidden2 8 32 48 8 64

CPU time 1,58 5,65 20,55 89,63 497,24

Forward time 0,54 2,17 7,32 31,03 164,74

Backward time 0,86 3,3 13,02 58,29 331,96

Table 5.5 Sample Result of Kernel with ‘Tanh’, BZ=8 and WI=8

56 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

The third set (Block size = 16 and Work Items =4)

The first subset we applying our algorithm backpropagation on Kernel

Matrix-multiplication,

A sample:

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 8 8 32 48 64

numHidden2 4 8 48 64 64

CPU time 2,28 7,19 46,27 237,66 1039,09

Forward time 1,09 3,68 31,17 158,38 700,24

Backward time 1,02 3,33 14,89 79,01 338,26

Table 5.6 Sample Result of Kernel with, BZ=16 and WI=4

The second subset we applied our algorithm on the kernel Hyperbolic

Tangent, we give a sample one in the following table:

numPatterns_MAX 256 1024 4096 16384 65536

numHidden1 4 4 16 48 16

numHidden2 4 16 32 48 16

CPU time 1,95 5,37 19,77 110,28 511,95

Forward time 0,71 1,99 7,24 36,56 167,24

Backward time 1,07 3,22 12,32 73,36 344,13

Table 5.7 Sample Result of Kernel with ‘Tanh’, BZ=16 and WI=4

Ability to quickly integrate IPs in OpenCL and results 57

5.3.1 Comparison

This part we will compare our result which case is better, so we have three

hardware which are ARM CPU without kernel, kernel acceleration

Matrix-multiplication and kernel acceleration Matrix-multiplication with

Hyperbolic Tangent ‘tanh’.

First we do a comparison about the hardware:

 ARM-CPU BZ=4, WI=4 BZ=8, WI=8 BZ=16, WI=4

Logic utilization (in ALMs) 14,328 / 32,070
(45 %)

26,978 /
32,070(84%)

25,536 / 32,070 (
80 %)

Total registers

 27659 56719 49801

Total pins 103 / 457 (
23 %)

103 / 457 (
23 %)

103 / 457 (
23 %)

Total block memory bits 783,992 /
4,065,280(19%)

961,720 /
4,065,280(24%)

1,327,024 /
4,065,280(33%)

Total DSP Blocks

 26 / 87 (30 %) 74 / 87 (85 %) 74 / 87 (85 %)

Total PLLs

 2 / 6 (33 %) 2 / 6 (33 %) 2 / 6 (33 %)

Total DLLs

 1 / 4 (25 %) 1 / 4 (25 %) 1 / 4 (25 %)

Total FPGA Thermal
Power Dissipation

 1131.78 mW 1637.59 mW 1588.03 mW

Core Dynamic Thermal
Power Dissipation

 650.91 mW 1152.11 mW 1102.71 mW

Core Static Thermal
Power Dissipation

 433.79 mW 438.40 mW 438.24 mW

I/O Thermal Power
Dissipation

 47.08 mW 47.08 mW 47.08 mW

HPS Dynamic (Dual core)
Power

1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW

HPS Dynamic (Single core)
Power

1247.25 mW 1247.25 mW 1247.25 mW 1247.25 mW

Total FPGA and HPS
Power

 2524.70 mW 3030.51 mW 2980.95 mW

Table 5.8 Hardware Comparison, Just a Kernel

58 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

 ARM-CPU BZ=4, WI=4 BZ=8, WI=8 BZ=16, WI=4

Logic utilization (in
ALMs)

 15,047 / 32,070
(47 %)

28,327 /32,070
(88%)

26,241/32,070 (
82 %)

Total registers

 28690 58763 50914

Total pins 103 / 457 (
 23 %)

103 / 457 (
 23 %)

103 / 457 (
23 %)

Total block memory bits 783,992 /
4,065,280 (19%)

961,720 /
4,065,280(24%)

1,327,024 /
4,065,280 (33 %)

Total DSP Blocks

 26/87 (30 %) 74 / 87 (85 %) 74 / 87 (85 %)

Total PLLs

 2 / 6 (33 %) 2 / 6 (33 %) 2 / 6 (33 %)

Total DLLs

 1 / 4 (25 %) 1 / 4 (25 %) 1 / 4 (25 %)

Total FPGA Thermal
Power Dissipation

 1146.95 mW 1660.86 mW 1602.18 mW

Core Dynamic Thermal
Power Dissipation

 665.98 mW 1175.21 mW 1116.76 mW

Core Static Thermal
Power Dissipation

 433.90 mW 438.57 mW 438.34 mW

I/O Thermal Power
Dissipation

 47.08 mW 47.08 mW 47.08 mW

HPS Dynamic (Dual
core) Power

1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW

HPS Dynamic (Single
core) Power

1247.25 mW 1247.25 mW 1247.25 mW 1247.25 mW

Total FPGA and HPS
Power

 2539.87 mW 3053.78 mW 2995.10 mW

Table 5.9 Hardware Comparison, Kernel with ‘tanh’

We tested our Kernel in many case and we get results then we present this

result in graph to compare it with the results on ARM CPU, for every case

we try to fix one parameter and varying others, we have three parameter

numHidden1, numHidden2 and numPatterns. We choose the best case to

draw the graphs.

So let see what we got:

Ability to quickly integrate IPs in OpenCL and results 59

 Kernel acceleration Matrix-multiplication vs ARM CPU

 First set (Block size = 4 and Work Items =4)

Graph 5.1 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numPatterns_max

is Variable

Graph 5.2 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden1 is

Variable

60 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Graph 5.3 Comparison Kernel VS ARM CPU, BZ=4 WI=4, numHidden2 is

Variable

 Second set (Block size = 8 and Work Items =8)

Graph 5.4 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numPatterns_max

is Variable

Ability to quickly integrate IPs in OpenCL and results 61

Graph 5.5 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden1 is

Variable

Graph 5.6 Comparison Kernel VS ARM CPU, BZ=8 WI=8, numHidden2 is

Variable

62 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

 Third set (Block size = 16 and Work Items =4)

Graph 5.7 Comparison Kernel VS ARM CPU, BZ=16 WI=4,

numPatterns_max is Variable

Graph 5.8 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is

Variable

Ability to quickly integrate IPs in OpenCL and results 63

Graph 5.9 Comparison Kernel VS ARM CPU, BZ=16 WI=4, numHidden1 is

Variable

 kernel acceleration Matrix-multiplication with Tanh vs ARM CPU

 First set (Block size = 4 and Work Items =4)

Graph 5.10 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numPatterns_max is Variable

64 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Graph 5.11 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numHidden1 is Variable

Graph 5.12 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=4 WI=4,

numHidden2 is Variable

Ability to quickly integrate IPs in OpenCL and results 65

 Second set (Block size = 8 and Work Items =8)

Graph 5.13 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numPatterns_max is Variable

Graph 5.14 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numHidden1 is Variable

66 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

Graph 5.15 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=8 WI=8,

numHidden2 is Variable

 Third set (Block size = 16 and Work Items =4)

Graph 5.16 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numPatterns_max is Variable

Ability to quickly integrate IPs in OpenCL and results 67

Graph 5.17 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numHidden1 is Variable

Graph 5.18 Comparison Kernel with ‘tanh’ VS ARM CPU, BZ=16 WI=4,

numHidden2 is Variable

68 Implementation of resilient algorithm Backpropagation on ARM-FPGA through OpeCL

5.3.2 Comments

As we see in the graphs, when we varying the parameter numPatterns_max

at first increase so quickly and in one point the acceleration will stop and

this point around 20000, when we varying the parameter numHidden1 we

see the acceleration get increase when we increase numHidden1, and for

the last parameter numHidden2 we see its effect not that much as others

parameters just increase little bit each value.

For the best case, the best hardware is kernel acceleration Matrix-

multiplication with Tanh, it is the faster and for Work Size and Work Items

almost are the same but we can see the little different, for Work Size = 4

and Work Items = 4 is the best one and we have the parameters

numPatterns_max=65536 , numHidden64= and numHidden2=64 is the best

case and we got 9257.73/485.97= 19.05 times faster for CPU time,

1005.28/160.41= 6.27 times faster for Forward time and

8251.92/324.99=25.39 times faster for Backward time.

Conclusion 69

Conclusion

We started our thesis with general description of OpenCL and we spoke

about the conceptual of OpenCL such as the general structure, execution

model, memory model and platform model. In the seconde chapter we

described in detail the use of Opencl with Altera SDK, also here we spoke

about the FPGA OpenCL architecture like in previous chapter just we

specified OpenCL with FPGA.

In chapter three we had an example about the implementation and

optimization of the kernel OpenCL code for acceleration of Matrix-

multiplication with the host code to execute in the kernel, in the chapter

four we talked about the acceleration of algorithm Backprobagatin that use

the kernel of matrix-multiplication, and finally we presented the result that

we got in our study with take some graph to see more clear about the

changing of the results.

We applied the Algorithm of matrix-multiplication in our project on three

deferent hardware which are ARM CPU, Kernel acceleration and Kernel

acceleration with Hyperbolic Tangent, and with deferent parameters. We

get result faster and better in kernel acceleration and especially Kernel

acceleration with Hyperbolic Tangent where we get our best result with

the parameter numPatterns_max = 65536 , numHidden1 = 64, numHidden2

= 64, Work Size = 4 and Work Items = 4, in that case we get 19.05 times

faster for CPU time and that result considered as a good speed up.

REFERENCES

[1] Aaftab Munshi, Benedict R. Gaster, Timothy G. Mattson, James

Fung, Dan Ginsburg. OpenCL Programming Guide 2011.

http://www.it-ebooks.info/book/1602/

[access 02/2016]

[2] Aaftab Munshi. The OpenCL Specification version: 1.0, 12/08/2008.

https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[access 02/2016]

[3] Cedric Nugteren. Tutorial: OpenCL SGEMM tuning for Kepler 2014.

 http://www.cedricnugteren.nl/tutorial.php?page=1

[access 02/2016]

[4] Altera Corporation. Implementing FPGA Design with the OpenCL

Standard November 2013.

https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-

opencl.pdf

[access 03/2016]

[5] Altera Corporation. Altera SDK for OpenCL Best Practices Guide

04/05/2015.

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/hb/opencl-

sdk/aocl_optimization_guide.pdf

[access 03/2016]

[6] Tomasz S. Czajkowski and others. OpenCL for FPGAs: Prototyping a

Compiler 2012.

http://ersaconf.org/ersa12/papers/Brown-opencl-for-fpgas.pdf

[access 03/2016]

[7] Altera Corporation. Altera SDK for OpenCL Best Practices Guide

02/05/2016.

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/hb/opencl-

sdk/aocl_programming_guide.pdf

[access 06/2016]

http://www.it-ebooks.info/book/1602/
https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.cedricnugteren.nl/tutorial.php?page=1
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://ersaconf.org/ersa12/papers/Brown-opencl-for-fpgas.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf

[8] Acceleration of optimization of neural networks throught on SoC

with OpenCL. Rafael Gadea-Gironés, Jorge Fe. 03/2010.

