
Final Project of Master

Implementation of resilient algorithm Backpropagation

on ARM-FPGA through OpenCL

Contents

Introduction

Chapter 1. Introduction to OpenCL

Conclusion

Chapter 2. OpenCL with Altera SDK

Chapter 3. Matrix-multiplication Tiling

Chapter 4. Backpropagation Algorithm

Chapter 5. integrate IPs in OpenCL and Results

Introduction

OpenCL

The open standard for parallel

programming of heterogeneous systems

found in personal computers, servers, mobile

devices and embedded platforms

improves the speed and responsiveness of a

wide spectrum of applications in numerous

market categories such gaming and medical

software

Chapter 1. Introduction to OpenCL

OpenCL Platform Model

• A host is connected to one or

more OpenCL devices

• OpenCL device is collection

of one or more compute units

• A compute unit is composed

of one or more processing

elements

Chapter 1. Introduction to OpenCL

OpenCL Platform Model - Application

Chapter 1. Introduction to OpenCL

Execution Model NDRange index Space

kernels executes on one or more

OpenCL devices and a host program

executes on the host

The host defines

• the collection of OpenCL devices

• the OpenCL functions

• Applications queue kernels and data

transfers

• Performed in-order or out-of-order

Chapter 1. Introduction to OpenCL

The BIG Idea behind OpenCL

- Define N-dimensional computation domain

- Execute a kernel at each point in computation domain

__kernel void

dp_mul(__global const float *a,

__global const float *b,

__global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];}

// execute over n“work items”

Void

trad_mul(int n,

const float *a,

const float *b,

float *c)

{

int i;

for (i=0; i<n; i++)

c[i] = a[i] * b[i];

}

Traditional loop as a function in C OpenCL C kernel

Chapter 1. Introduction to OpenCL

Memory Model

•Private Memory

Per work-item

implemented with registers

•Local Memory

Per workgroup

implemented using on-chip memory

•Global/Constant Memory

Per read/write work-items

is resides in off-chip DRRx memory

•Host Memory

On the host CPU

Chapter 2. OpenCL with Altera SDK

Overview of OpenCL

Chapter 2. OpenCL with Altera SDK

FPGA OpenCL Architecture

The SoC platform resembles the

traditional OpenCL model with a

shared global memory that is used to

pass data between the ARM host and

the FPGA accelerator.

Chapter 2. OpenCL with Altera SDK

kernel.cl host.c

C-language

front end
C

Cmpiler

Live-value

Analysis
program.exe

Scheduling

CDFG

Generation

RTL

generator
Verilog HDL

System integration

(Quartus 2)

ACL

runtime

Library

Auto

Discovery

OpenCL-to-FPGA framework

Kernel Compiler

 C-language front end: parses a kernel

description and creates an LLVM

Intermediate Representation (IR)

 Live-value analysis: identifies

variables consumed and produced by

each basic block.

 CDFG Generation: create a Control-

Data Flow Graph (CDFG) to represent

the operations inside basic block,

 Scheduling: to determine the clock

cycles in each operation is performed.

 Hardware generation: To generate a

hardware circuit for a kernel

Chapter 2. OpenCL with Altera SDK

OpenCL Host Program

1. Query host for OpenCL devices

2. Create a context to associate

OpenCL devices

3. Create programs for execution on

one or more associated devices

4. Select kernels to execute from the

programs

5. Create memory objects accessible

from the host and/or the device

6. Copy memory data to the device

as needed

7. Provide kernels to command queue for execution

8. Copy results from the device to the host

Chapter 2. OpenCL with Altera SDK

OpenCL Kernels

 Data-parallel function
 Defines many parallel threads of

execution

 Each thread has an identifier specified

by “get_global_id”

 Contains keyword extensions to specify

parallelism and memory hierarchy

 Executed by OpenCL device

 CPU

 GPU

 Accelerator

Chapter 3. Matrix-multiplication Tiling

C = A * B

sub-C=sub-A*sub-B

sub-C=(sub-A1*sub-B1)

+(sub-A2*sub-B2)

• implementation doesn't perform
So Well because the accessing of

kernel Device to off-chip memory.

 Tiling saves time accessing of

kernel device to off-chip memory.

Chapter 4. Backpropagation Algorithm

 main candidates for the kernels

are the lines 1, 2, 3, 4, 5, 6, 7 and 8

of algorithm.

 Each kernel would have a similar

structure based on a matrix

matrix-multiplication

 the better solution exist is

implement a unique kernel and reuse

7 times in each iteration

 matrix-multiplications of

forward phase(1,2 and 3)

backward1 phase(5 and 7)

backward2 phase(4,6 and 8)

Chapter 5. integrate IPs in OpenCL and Results

To create an OpenCL library we need
 RTL Components

 RTL source file: Verilog, VHDL.

 eXtensible Markup Language

File (.xml): The Altera Offline Compiler uses it to

integrate RTL components into OpenCL pipeline.

 Header file (.h):declares the signatures of

function(s) that are implement by the RTL

component

 OpenCL emulation model file (.cl): Provides

C model for the RTL component that is used only

for emulation.

OpenCL Functions
 OpenCL source files (.cl): Contains definitions of

the OpenCL functions.

 Header file (.h): declares the signatures of

function(s) that are defined in the OpenCL source

files.

Chapter 5. integrate IPs in OpenCL and Results

Integration of an RTL Module into the AOCL Pipeline

Parallel Execution Model of AOCL Pipeline

Stages

Integration of an RTL Module into an AOCL

Pipeline

Chapter 5. integrate IPs in OpenCL and Results

Function tangent hyperbolic ‘tanh’

Chapter 5. integrate IPs in OpenCL and Results

Study of Backprobagation algorithm

1. ARM-CPU

2. Kernel and Kernel with ‘Tanh’

1. Block Size = 4 and Work Items =4

2. Block Size = 8 and Work Items =8

3. Block Size = 16 and Work Items =4

 numHidden1_MAX ={4, 8, 16, 32, 48, 64}

 numHidden2_MAX ={4, 8, 16, 32, 48, 64}

 numPatterns_MAX ={256, 1024, 4096, 16384, 65536}

 numInputs_max and numOutputs_max are fixed

Chapter 5. integrate IPs in OpenCL and Results

Results

In seconds (s)

numPattern

s_MAX

256 1024 4096 16384 65536

numHidden

1
64 64 64 64 64

numHidden

2
64 64 64 64 64

CPU time 4,95 16,86 64,8 263,59 1048,06

Forward

time
3,2 11,69 45,86 179,74 717,26

Backward

time
1,51 4,89 18,68 83,56 330,18

numPattern

s_MAX

256 1024 4096 16384 65536

numHidden

1
16 8 48 32 64

numHidden

2
64 64 64 64 64

CPU time 2,78 8,22 30,16 125,72 485,97

Forward

time
0,97 2,96 11 41,82 160,41

Backward

time
1,63 5,04 18,95 83,61 324,99

numPattern

s_MAX

256 1024 4096 16384 65536

numHidden

1
16 8 48 32 64

numHidden

2
64 64 64 64 64

CPU time 9,72 51,6 411,84 2288,62 9257,73

Forward

time
5,04 15,78 63,02 256,38 1005,28

Backward

time
5,52 35,57 348,63 2031,91 8251,92

ARM-CPU

Kernel, BZ=4 and WI=4 Kernel with ‘tanh’, BZ=4 and WI=4

Chapter 5. integrate IPs in OpenCL and Results

Comparison

ARM-CPU BZ=4, WI=4 BZ=8, WI=8 BZ=16,WI=4

Logic

utilization

(in ALMs)

14,328 /

32,070

(45 %)

26,978 /

32,070

(84%)

25,536 /

32,070

(80 %)

Total

registers

27659 56719 49801

Total block

memory bits
783,992 /

4,065,280

(19%)

961,720 /

4,065,280

(24%)

1,327,024 /

4,065,280

(33%)

Total DSP

Blocks
26 / 87

(30 %)

74 / 87

(85 %)

74 / 87

(85 %)

HPS Dynamic

(Dual core)

Power
1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW

Total FPGA

and HPS Power

2524.70 mW 3030.51 mW 2980.95 mW

Hardware Comparison, Just a Kernel Hardware Comparison, Kernel with ‘tanh’

Hardware

ARM-CPU BZ=4, WI=4 BZ=8, WI=8 BZ=16,WI=4

Logic

utilization

(in ALMs)

15,047 /

32,070

(47 %)

28,327 /

32,070

(88%)

26,241/

32,070

(82 %)

Total

registers

28690 58763 50914

Total block

memory bits
783,992 /

4,065,280

(19%)

961,720 /

4,065,280

(24%)

1,327,024 /

4,065,280

(33 %)

Total DSP

Blocks
26/87

(30 %)

74 / 87

(85 %)

74 / 87

(85 %)

HPS Dynamic

(Dual core)

Power
1392.92 mW 1392.92 mW 1392.92 mW 1392.92 mW

Total FPGA and

HPS Power

2539.87 mW 3053.78 mW 2995.10 mW

Chapter 5. integrate IPs in OpenCL and Results

Comparison

Kernel vs ARM-CPU

Chapter 5. integrate IPs in OpenCL and Results

Comparison

Kernel with ‘tanh’ vs ARM-CPU

Conclusion

 For the best case,

 kernel acceleration Matrix-multiplication with ‘tanh’

 Work Size = 4

 Work Items = 4

 numPatterns_max =65536

 numHidden1 =64

 numHidden2 =64

 Speed up

 9257.73/485.97= 19.05 times faster for CPU time

 1005.28/160.41= 6.27 times faster for Forward time

 8251.92/324.99=25.39 times faster for Backward time

