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Abstract

In this paper we introduce the Laguerre polynomials as mean
square solutions of random differential equations. The study is based
on the construction of an infinite random power series solution which
becomes a random polynomial under certain conditions to be satis-
fied by the single involved random coefficient, denoted by A. This
approach allows us to introduce the concept of Laguerre polynomi-
als associated to the random variable A retaining their deterministic
definition when the probability mass of A is concentrated in a non-
negative integer. As a result, we provide a natural way to extend
the deterministic Laguerre polynomials to the random framework.
In addition, the main statistical functions of the approximate solu-
tion stochastic process obtained by truncation of the exact power
series solution, which generates random Laguerre polynomials, are
also given. Several illustrative examples are provided.
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1 Motivation and preliminaries

In paper [1} authors studied the Legendre random differential equation
(r.d.e.) by applying mean square (m.s.) and mean fourth (m.f.) calculus
[2]. A description of its solution stochastic process (s.p.) was provided
including an approximation of its main statistical functions such as the
average and standard deviation. However, in that contribution any atten-
tion was paid to obtain (random} polynomial solutions as it is usually done
in its deterministic counterpart [3]. This aims us to obtain the random
polynomial solutions of the Laguerre r.d.e.

tX@)+ Q- )XE) +AX(E#) =0, t>0, (1)

where A is assumed to be a random variable (r.v.) which absolute mo-
ments with respect to the origin increase at the most exponentially, i.e., we
suppose that there exist a nonnegative integer ng and positive constants 5
and M such that

E[lA"] € HM" < 400, Yn>no. (2}

Notice that it is equivalent to assume that E[|A[*] = O(M™). In the deter-
ministic framework, the coefficient A that multiplies the unknown X(¢) in
(1) is just a deterministic parameter, say a. The polynomial solutions of La-
guerre deterministic differential equations, usually referred to as Laguerre
polynomials, play a relevant role in the solution of physical problems. For
instance, they appear in Quantum Mechanics in dealing with the study
of the hydrogen atom. Specifically, they allow to represent the so-called
radial function when solving the Schrédinger’s equation. The radial func-
tion involves the Bohr radius which in turns depends on the mass of the
nucleus. This crucial information is related to coefficient a. Although in
practice, this mass has to be measured by means of high-precision meth-
ods, it could involve measure errors. As a consequence, it would be more
realistic to consider a as a r.v. rather than a deterministic parameter. This
leads us to consider the r.d.e. {1). Further scientific examples from which
the randomness can also be considered in an analogous way as we have
done to motivate the study of the Laguerre random polynomials from the
deterministic context, can be found in {4] and in the references therein.

As in the paper [1], we will also require m.s. and m.f. stochastic calculus
to develop our study. Given (Q, F, P) a probability space, this means that
we will work in the Banach spaces LP endowed with the norms

X1, = EIX"HY?, p=24,

whose elements X are second and fourth order real random variables {2-
r.v.’s and 4-r.v.’s), respectively. That is, X : @ — R such that E[X?] <

284



+oo, p = 2,4, respectively, where El-] denotes the expectation operator.
The convergence in each one of these spaces is the one inferred by their
respective norms and they are referred to as m.s. and m.f. convergence, re-
spectively. By applying Cauchy-Schwartz inequality, it is straightforward
to see that m.f. convergence implies m.s. convergence. The reason to con-
sider both types of convergence (and therefore both norms) is motivated by
the necessity of legitimating algebraic operations involving non-dependent
r.v.’s. As a basic but still illustrative example, later we will require to
use the following basic property AX,, nl—-::} AX, which holds true when

{Xn: n>0}in L* such that X, nl_f—) X and A € L* (see Lemma 6
o0

in {1]). Another usual operational situation to be handled is the norm of
the product of two r.v.’s, say X, Y. When both r.v.’s are statistically in-
dependent one gets | XY » = 1IXI, Y], and, in the general case where
independence cannot be assumed the following inequality is very useful (see
Proposition 9 of [1] for p = 4)

n " " 1/n
[I%| <M (™,) " n2,
i=1 i=1
(Y, tBIY)™) <oo, 1<i <.

(3)

The paper is organized as follows. Section 2 is addressed to construct
a m.s. convergent power series solution to (1) under condition (2). The
case where A is a discrete r.v. taking a finite number of integer values
leads to the concept of Laguerre random polynomials whose definition and
computing js shown in Section 2. We close this section by computing the
main statistical functions (average and standard deviation) of the truncated
random power series solution to {1) previously constructed, and particularly
of the Laguerre random polynomials. Finally, some illustrative examples
and conclusions are presented in Section 3.

2 Obtaining the random Laguerre polynomi-
als and their main statistical functions

Let us seek a formal power series solution s.p. to problem (1)

X(£) =" Xnt", (4)

n>0

where coefficients X, are 2-1.v.’s to be determined. Assuming that X (¢) is
termwise m.s. differentiable, by Example 3 of [1], and imposing that (4) is
a solution to (1), one gets a formal power series solution to the Laguerre
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r.dee. (1)

X()= 3 XoPte, PA=]] (ﬁ”—;;’i) . ®)

n>0 =1

Notice that we have implicitly applied the commutation between the r.v.
A and the random infinite sum given by (4), whose coefficients X, n >
1, depend on A. Thus, according to Lemma 6 of [1], we must justify
the m.f. convergence of random power series defined by (5). By assuming
independence between r.v.’s Xy and A, one follows

S KaPA 1™ = > 1 Xolly 1B, 181 - (6)

n>0 nz0

Bearing in mind the definition of P2, under hypothesis (2), we firstly apply
inequality (3) and secondly c,-inequality (see [5, p.157]) for X = —A,
Y =k — 1 and s = 4n, this yields:

e, < [tz an”
- I:Iki( {5’“—1—Al4n])1/4n
= ﬁ kl (24n_ {E [EA|4"'] + (k- 1)4n )1/4'n.

(24n— [E[la1] + (- 1" )1/ "

- (nl)?

Taking into account hypothesis (2), one gets

e G
(2* 1{MH4n(:!§: 1n*}) .

Notice that we can always choose an integer ny > ng > 1, large enough
such that: (n — 1)* > HM*" for each n > ny, therefore

2(n—1)
< 2

So, for each t, the series given by (6) can be majorized by

S e e = 2 Kol 7

=Ty

122,

Hprﬂlzi Vn 2.
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which is convergent on the whole real line as can be directly checked by
D’Alembert test. Therefore, random series X(¢) given by (5) is m.f. con-
vergent for each ¢, then by Lemma 5 of [1] it is m.s. convergent. Notice
that the previous reasoning also shows that series solution X {t) is m.s.
uniformly convergent, therefore taking into account Example 3 of [1] and
Theorem 11 of [6], the formal differentiation required to obtain (5) is jus-
tified. Summarizing the following result has been established:

Theorem 2.1 Let us assume that r.v. A satisfies condition (2) and it is
independent of r.v. Xo = X(0). Then the random differential equation (1)
admits the power series solution (5) which is mean square convergent for
every t.

Remark 2.2 Due to the lack of ezplicitness of the absolute moments of
some r.v.’s, condition (2) could be difficult to check in practice. As a con-
sequence, applicability of Theorem 2.1 could seem limited. Fortunately, if
A is a r.v. with finite codemain, say a1 < A(w) < ay, for each w € Q,
condition {2) holds true since

E{A[™ = f ol fa(e) da < P, where H = max(|oa], Joal),

ay

where fa(a) denotes the probability density function of the continuous r.v.
A. Substituting the integral for a sum, previous conclusion remains true
if A ts a discrete r.v. Notice that important r.v.’s such as binomial, hy-
pergeometric, uniform or beta have finite codomain. Otherwise, we can
take advantage of the so-called truncation method (see [5]) to deal with
unbounded r.v.’s such as exponential or Gaussian by censuring adequately
their codomain. This approwimation can be further improved by enlarging
enough the truncaled codomain (see second part of Ezample 3.1).

Next, we address to introduce the Laguerre polynomials in the random
framework. First, we recall the following

Definition 2.3 Given a collection of r.v.’s {X : k >0} andt € T, Zth’“

k>0
is called o random power series. If P[{w € Q: Xx(w)=0,Vk >m}] =1,
s
then Zthk is said to be a random polynomial in t of degree m.
k=0

Taking into account previous development, this will be made in a natural
way by following an analogous approach to its deterministic counterpart.
Therefore, we are going to present the Laguerre random polynomials as
finite series solutions to r.d.e. (1). First at all, notice that from (5) one de-
duces that if there exists a non-negative integer n such that P [A = n] = 1,
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that is, A is a {degenerate) discrete r.v. whose total probability mass is
concentrated in the non-negative integer value =, then the r.d.e. (1)} has
a (random) polynomial solution. For every n, each (random degenerate)
solution can be interpreted as the correspondent Laguerre polynomial of
degree n that one presents in the deterministic scenario. However, in the
random framework one appears further situations that deserve to be con-
sidered. In fact, let us assume that A is a continuous r.v., taking into
account that P[A =n] = 0 for every integer n > 0, then with probabil-
ity 1, one can conclude that there are not random polynomial solutions to
r.d.e. {1). Whereas if A is a non-negative discrete r.v. that takes different
integer values, then there will exist with probability 1, random polyno-
mial solutions (see comments in this issue in Remark 2.6). This situation
generalizes the concept of Laguerre-type polynomial solution from the de-
terministic framework (note that this situation contains the previous one
where A was a non-negative degenerated r.v. concentrated in an integer
value). Previous considerations motivate the following result:

Corollary 2.4 Let us consider the r.d.e. (1) where the r.v. A takes only
a finite number of non-negative integer values, 0 < n < N < oo, that is,
N

P{A=n]=p, >0, with an = 1. In this context, this r.d.e. (1) has a
n=0

random polynomial solution L5 (t) of degree N given by

N on k—1—-A
LA®@) = LR
vo=2 1 ()

Definition 2.5 In the contezt of Corollary 2.4, L4 (t} is referred to as the
Laguerre random polynomial of degree N associated to r.v. A.

Remark 2.6 With respect to Definition 2.5 and keeping the notation, it is
important to point out that under conditions of Corollary 2.4, a Laguerre
random polynomial solution can be interpreted as a collection of determin-
istic polynomials, which, for each n: 0 < n < N, has a probability p, of
be sampled, being pn(t) the Laguerre deterministic polynomial of degree N.
For a fired r.v. A, the degree N of the Laguerre random polynomial L5 (t) is
the greatest of all degrees corresponding to each (deterministic) polynomial.
For instance, if A has the probability mass: pg = 1/8, py =1/4, pz = 1/3,
ps = 7/24, then each of these values generates the sample polynomials 1,
1--3t, 1—3¢t+(3t%)/2 and 1 -3t + (3t2) /2 — 3 /6, respectively. Notice that
the last one is just the Laguerre (deterministic) polynomial of degree 8 and
it has a probability of 7/24 of being sampled.
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Remark 2.7 Let us assume that A is the discrete r.v. taking every non-
negative integer value such that P[A=n] =27 n = 0,1,2,..., then
for each n one obtains o sample polynomial solutzon but the degree af the
random polynomial solution cannot be defined according to Definition 2.5.

Next we address to compute approximations of the average and the stan-
dard deviation of the m.s. solution defined by (5) including the particular
case in which this series becomes the Laguerre random polynomials. In
this latter case, the obtained formulaes will not be approximation but ex-
act. The aforementioned approximation will be expressed in terms of the

data E[Xy|, E (Xo)z] and certain statistical moments related to algebraic

transformations of the random coefficient A that will be specified later.
Notice that the solution X{t) is an infinite series, then in practice its trun-
cation is demanded to keep computationally feasible. So we will consider
the truncation of order M

M n
Xa() =3 XoPitr, PA=T] (.’%ﬂ) : (7)

n=0 k=1

Assuming that r.v.’s A and X(0) = X, are independent, then taking the
expectation operator in (7) and considering whether r.v. A is discrete, with
probability mass function pa(a), or continuous, with probability density
function f4{a), one gets

M
E[Xu(t)] =E[Xo] }_E[PA]¢»
n=0

where

) H( E2) pato),

[PA] — a:pa(a)>0k=1
n /-oo n b—1—
|} (—kz—-—-) Fa(a) da.
3 =1

Taking into account that Var [Xa(t)] = E [(XM(t))z] — (B[X(2)))?, for
computing the variance (or equivalently, the standard deviation) we only
need to calculate E [(X M (t))z]. Using again independence between A and
Xy, from (7) one gets

E [(XM (t))z] =E [(Xo)2] {iE [(P;jf] £2r 49 i nfE [PAPA] t“"‘m} ,

n=0 n=1lm=0
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and [0, 10], which contain the 99.3262% and 99.995% of the total probability
mass, respectively. We observe that approzimations for averages (M[;?'ﬁ] ()
and p!g,;o] (t)) and standard deviations (ag?::] (t) and agg;iol(t)), for a com-
mon truncation order M are quite similar, although they improve as the
length of the censured interval increases. These values are also compared

with the ones provided by Monte Carlo method.

t | owo®) | weg® | w0 | s @) | ERE), m=10°
0.00 1 1 1 1 1.00089
0.25 | 0.770457 0.770457 | 0.764836 | 0.764836 0.765381
0.50 | 0.563023 0.563023 0.556 0.556 0.556532
0.75 0.37497 0.37497 | 0.369176 | 0.369176 0.369831
1.00 | 0.203616 0.203616 0.20047 0.20047 0.201248
2.00 | -0.3681728 | -0.368172 | -0.360765 | -0.360765 -0.360953
3.00 | -0.894135 | -0.804157 | -0.887424 | -0.887447 -0.892175
4.00 -1.60168 -1.60226 -1.60038 | -1.60095 -1.61362
5.00 | -2.86326 -2.87074 | -2.85681 | -2.86424 -2.88683

Table 3: Comparison of the average in Example 3.1 using random power
series {taking {0, 5] and [0, 10] as censured intervals) and Monte Carlo meth-

ods when A ~ Exp(1).

t | o) | oletl(t) [ o) [ o) | 7%(2), m =5 x 10°
0.00 1 1 1 1 0.999512
0.25 | 0.810237 | 0.819237 | 0.819441 | 0.819441 0.818774
0.50 | 0.74039 0.74039 | 0.743921 | 0.743921 0.743789
0.75 | 0.726797 | 0.726797 | 0.728998 } 0.728998 0.729442
1.00 | 0.746931 | 0.746931 | 0.746042 | 0.746042 0.746783
2.00 | 0.996511 | 0.996510 | 0.999257 | 0.999257 0.998757
3.00 | 1.67333 1.67334 1.67114 1.67115 1.6699
4.00 | 3.06809 3.06872 3.06051 3.06114 3.06902
5.00 | 5.78033 5.79088 57667 R.TTT21 5.77292

Table 4: Comparison of the standard deviation in Example 3.1 using ran-
dom power series (taking [0, 5] and [0, 10] as censured intervals) and Monte
Carlo methods when A ~ Exp(1).

In this paper we have shown that mean square and fourth calculus consti-
tute powerful tools to introduce random Laguerre polynomials as solutions
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of random differential equation (1). Our approach permits to extend the
Laguerre polynomials to the random scenario retaining its deterministic
definition as a particular case. In addition, we have computed their main
statistical functions such as the average and the standard deviation.
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