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aCenter for Petroleum and Geosystems Engineering Research, University of Texas at Austin,78712, Austin, USA
bResearch Institute of Water and Environmental Engineering, Universitat Politècnica de València, 46022, Valencia,
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Abstract

The Ensemble Kalman Filter (EnKF) has been commonly used to assimilate real time dynamic data into

geologic models over the past decade. Despite its various advantages such as computational efficiency and its

capability to handle multiple sources of uncertainty, the EnKF may not be used to reliably update models

that are characterized by curvilinear geometries such as fluvial deposits where the permeable channels play

a crucial role in the prediction of solute transport. It is well-known that the EnKF performs optimally for

updating multi-Gaussian distributed fields, basically because it uses two-point statistics (i.e., covariances)

to represent the relationship between the model parameters and between the model parameters and the

observed response, and this is the only statistic necessary to fully characterize a multiGaussian distribution.

The Ensemble PATtern matching (EnPAT) is an alternative ensemble based method that shows significant

potential to condition complex geology such as channelized aquifers to dynamic data. The EnPAT is an

evolution of the EnKF, replacing, in the analysis step, two-point statistics with multiple-point statistics.

The advantages of EnPAT reside in its capability to honor the complex spatial connectivity of geologic

structures as well as the measured static and dynamic data. In this work, the performance of the classical

EnKF and the EnPAT are compared for modeling a synthetic channelized aquifer. The results reveal that

the EnPAT yields better prediction of transport characteristics than the EnKF because it characterizes

the conductivity heterogeneity better. Issues such as uncertainty of multiple variables and the effect of

measurement errors on EnPAT results will be discussed.
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1. Introduction

Inverse methods have been used extensively in hydrology and petroleum engineering to identify spatial

variations of geological parameters conditioned to observed dynamic data such as piezometric head and

concentration, in order to improve flow and transport predictions. Inverse methods have evolved from manual

trial-and-error approaches to real-time automatic data assimilation approaches; from deterministic estimation

to stochastic simulation; from gradient-based minimization approaches to sampling-based approaches; and

from multiGaussian-based methods to those without restrictive multiGaussian assumptions. An extensive

description of the evolution of inverse methods and recent trends can be found in the work by Zhou et al.

(2014).

The widely used ensemble Kalman filter (EnKF), an ensemble-based real-time data assimilation inverse

method, was first proposed by Evensen (1994) as an extension of the extended Kalman filter. In the EnKF,

the cross-correlations of the parameters and the state variables are explicitly calculated through an ensemble

of realizations rather than approximated through a Taylor series expansion of the transfer function (e.g.,

Leng and Yeh, 2003). The ensemble Kalman filter has increasingly been used in multiple disciplines such as

petroleum engineering and hydrogeology because of its computational efficiency and its real-time data assimi-

lation capability (e.g., Wen and Chen, 2006; Gu and Oliver, 2006; Chen and Zhang, 2006; Hendricks Franssen

and Kinzelbach, 2008; Bailey and Baù, 2010; Camporese et al., 2011; Li et al., 2011; Panzeri et al., 2013,

2014b,c,a; Gharamti and Hoteit, 2014). For instance, Chen and Zhang (2006) applied standard EnKF to a

groundwater system in order to evaluate the sensitivity of inverted/updated parameters to factors such as en-

semble size and frequency of conditioning data. Hendricks Franssen and Kinzelbach (2008) applied EnKF to

a field case study and discussed the filter inbreeding issue in detail. Panzeri et al. (2013) coupled EnKF with

moment equations to circumvent the computational cost needed in the Monte Carlo simulations, and applied

this novel approach in a real case study (Panzeri et al., 2014c). Gharamti et al. (2014b) proposed a hybrid

formulation of the EnKF and optimal interpolation that integrates both the ensemble sample covariance and

a static background covariance in order to reduce the size of the ensemble and to avoid filter divergence.

Panzeri et al. (2014a) developed a two-step updating scheme to integrate dynamic data into reservoir models

exhibiting complex geology; specifically, the geometry of facies is first handled using a Markov mesh model,

and then the EnKF is applied to calibrate the conductivities within each facies.

In fluvial depositions and fractured systems, hydraulic conductivity is commonly assumed to follow a

multi-modal probability distribution. In other words, spatial variation in conductivity can be thought of

as outcome from several random processes that characterize the geo-material (i.e., facies). Winter et al.
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(2002) and Winter et al. (2003) discussed this type of “composite medium” in detail, and, for example,

Guadagnini et al. (2003) and Riva et al. (2008) have applied this concept for aquifer modeling. Multiple-

point statistics (MPS) methods are becoming popular for characterizing fluvial depositions and fractured

aquifers. MPS uses (only) the observed static data (i.e., measured conductivity data) for conditioning geologic

models. Compared to traditional two-point covariance-based geostatistical methods, MPS has the capability

to effectively reproduce complex structures observed in a conceptual model (i.e., training image). Several

MPS algorithms have been described in the literature since SNESIM, the first MPS code, was developed by

Strebelle (2002). Hu and Chugunova (2008) presented a comprehensive review of MPS methods.

The challenge is to integrate dynamic data into the MPS-based geological modeling procedures. More

specifically, the key question is how to condition non-multiGaussian fields to dynamic data that are related

to the model parameters through highly non-linear relationships. Recently, a number of authors have tried to

apply the EnKF to an ensemble of MPS-based non-multi-Gaussian conductivity fields where the uncertainty

is mainly due to the spatial distribution of geologic facies. However, the fact that the analysis equations

in EnKF are equivalent to the normal equations (or cokriging equations) implies that the EnKF is optimal

for multi-Gaussian fields and linear state equations (Aanonsen et al., 2009). In other words, using only

two-point covariances and cross-covariances between parameters and state variables in the analysis step of

the EnKF, the heterogeneity features that are controlled by higher-order statistics may not be preserved

during the updating process. For this reason, a number of variations to the EnKF-based methods have

been proposed to ensure that the connectivity prescribed by MPS simulations is preserved. For instance,

Jafarpour and Khodabakhshi (2011) introduced a probability conditioning method, in which a probability

field (i.e., ensemble mean of the indicator values of conductivity) is first derived by assimilating the dynamic

data, and then the MPS conductivity realizations are regenerated using the calculated probability field as

soft data. Sun et al. (2009) and Dovera and Della Rossa (2011) proposed to couple mixture Gaussian models

and the EnKF to preserve the spatial structure of MPS conductivity simulations. Sarma and Chen (2009)

introduced a kernel EnKF approach applied to MPS conductivity simulations. Zhou et al. (2011) and Li

et al. (2012b) developed a normal score EnKF (NS-EnKF) approach in which a normal-score transformation

is applied to both the non-Gaussian parameters and state variables prior to the analysis step. Hu et al.

(2013) proposed to update the uniform random numbers that are used to draw the conductivity values from

local conditional probability in the context of a sequential MPS simulation (as implemented in SNESIM,

for example). Ping and Zhang (2013) presented a vector-based level-set parameterization approach for

channelized aquifers, and then combined it with the EnKF to match the observed dynamic data. All of the
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above mentioned EnKF-based methods accomplish the goal of reproducing non-Gaussian reservoir models

to varying degrees of success but they may still result in suboptimal solutions because the analysis step is

still based on two-point covariances and cross-covariances.

Unlike the previous variants of the EnKF, Zhou et al. (2012) proposed a fully non-Gaussian stochastic

inverse method, termed the Ensemble PATtern matching method (EnPAT), which is an evolution of the

EnKF to deal with the issue of reproduction of spatial patterns prescribed by MPS simulations. In EnPAT,

the correlation between model parameter and state variables is delineated by MPS (i.e., pattern) rather

than by traditional two-point covariances, and thus curvilinear heterogeneities can be preserved while the

dynamic data are integrated. Li et al. (2014) further extended this method to simultaneously estimate

parameter and state variables so that a better characterization at multiple scales is achieved. To improve

the computational efficiency, Li et al. (2013) coupled the EnPAT algorithm with a pilot-point scheme such

as in the implementation of the self-calibration inverse method (Gómez-Hernández et al., 1997; Wen et al.,

1999).

In this work, we highlight the capabilities of the EnPAT method to assimilate dynamic data by comparing

its performance to the standard EnKF. First, the EnPAT is extended to handle continuous conductivity fields.

Then, the performance of EnKF and EnPAT is compared on a synthetic aquifer example that is characterized

by curvilinear channels with high permeability. Also, in order to explore the space of posterior uncertainty,

Bayes’ rejection sampling method is applied in a benchmark case. The performance of EnPAT is evaluated

in terms of aquifer characterization, and flow and transport predictions. Finally, we discuss the advantages

and drawbacks of the EnPAT method.

The paper will continue as follows: the EnKF and EnPAT algorithms are described in section 2; in section

3, a synthetic example is analyzed using both the EnKF and the EnPAT methods. There is a discussion of

the main results in section 4; the paper ends with a summary.

2. The EnKF and EnPAT algorithms

2.1. General framework

The main procedure of both algorithms includes two steps: forecast and analysis. The difference between

the EnKF and the EnPAT resides in the analysis step, the EnKF is based on two-point covariances and the

EnPAT on multiple-point statistics. The specifics are as follows:

1. Initialization step
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Generate a set of initial models conditioned to the measured static data. In complex geological for-

mations such as fluvial deposits, an MPS simulation method is commonly employed, which uses a

conceptual model represented by a training image. Examples of MPS algorithms are the single nor-

mal equation simulation (SNESIM) (Strebelle, 2002) and the direct sampling method (DS) (Mariethoz

et al., 2010b). Note that the initial conductivity realizations are the same for both the comparison of

the EnKF and EnPAT methods in this paper.

2. Forecast step

For each conductivity realization X, the groundwater flow equation is solved from time t = 0 to t = k,

i.e.,

Yk = f(Xk−1) (1)

where f represents the groundwater flow model, boundary conditions as well as sources and sinks. Yk

denotes the simulated piezometric head at time t = k. The conductivity Xk−1 and corresponding head

Yk will be used in the analysis step to derive an updated conductivity Xk.

3. Analysis step

Given the mismatch between the observed state Yobs
k and the forecasted state values, the ensemble

of conductivity X is updated from time t = k − 1 to time t = k . Specific analysis schemes for each

method will be discussed in subsequent subsections for the EnKF and EnPAT.

4. Loop back to step 2 for the next time step. The forecast and analysis loop starts again with the

updated conductivity Xk as the new parameters in equation (1). The loop ends when all observation

data have been integrated.

Both methods are based on utilizing the ensemble of realizations and the corresponding responses com-

puted using a nonlinear model (e.g., physical model) to infer the statistics needed for the analysis step. The

resultant updated ensemble provides a quantification of the residual uncertainty. We demonstrate the method

in the framework of groundwater modeling, but it is very easy to replace the groundwater flow equation in

(1) by any other state equation, so that both methods could be applied to a variety of data conditioning

problems, i.e. multiphase and compositional flow simulation in the context of petroleum engineering.

We also note that both the spatially varying rock conductivity and piezometric head are updated in

the analysis step in the original implementation of EnKF/EnPAT. However, we only retain the updated

conductivities for the next time step data assimilation because the updated piezometric head realizations

might not be fully consistent with the updated conductivities in terms of satisfying mass balance constraints.
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For this reason, after updating the conductivities at each time step, equation (1) is rerun from time t = 0

to ensure that the piezometric heads used for the analysis at the next time step are fully consistent with

the current conductivities. This rerun procedure significantly increases the computational cost of the filter.

There has been some debate regarding the use of the updated piezometric heads obtained after the analysis

step for the the subsequent update steps (e.g., Wen and Chen, 2006; Hendricks Franssen and Kinzelbach,

2008; Schöniger et al., 2012; Jafarpour and Khodabakhshi, 2011), however, for data integration in strongly

heterogeneous systems it is quite possible that statistical updating of dynamic variables such as head and

saturations may result in serious mass balance errors.

2.2. Analysis step for the EnKF

An extensive description of the EnKF algorithm can be found in Burgers et al. (1998) and Evensen

(2003). The algorithm for the analysis step is as follows:

(a) Build the augmented vector Ψk, which includes both the conductivity Xk and piezometric head Yk. It

can be expressed as,

Ψk,j =

[
X

Y

]
k,j

(2)

where Ψk,j denotes the jth ensemble member of the augmented vector at time t = k.

(b) Calculate the Kalman gain (Gk),

Gk = Pf
kH

T
(
HPf

kH
T + Rk

)−1
, (3)

where the superscript f means forecast; H is an observation matrix generally composed of 0′s and 1′s;

Rk is the measurement error covariance matrix, assumed diagonal (i.e., measurement errors between

well locations are independent); Pf
k is the covariance matrix of the augmented vector Ψk, which can be

estimated from the ensemble as,

Pf
k ≈ 1

Ne − 1

Ne∑
j=1

(
Ψf
k −Ψ

f

k

)(
Ψf
k −Ψ

f

k

)T
(4)

Ψ
f

k ≈ 1

Ne

Ne∑
j=1

Ψf
k,j (5)

where Ne is the ensemble size and Ψ denotes ensemble mean.
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Note that, in the numerical implementation, it is not necessary to calculate the full ensemble covariance

Pf
k since we can compute the terms Pf

kH
T and HPf

kH
T directly taking the advantage of the sparsity

of matrix H.

(c) Update the augmented vector Ψk by assimilating the observation data Yobs
k .

Ψa
k,j = Ψf

k,j + Gk

(
Yobs
k + εj −HΨf

k,j

)
, (6)

where superscript a denotes analysis and εj represents a random observation error vector.

The update of the augmented vector depends on the Kalman gain, which, in turn, depends only on the

sample covariance derived from the ensemble of realizations. Only two-point covariances are used, these

covariances would completely characterize the multivariate distribution of the augmented state variables

if they follow a multiGaussian distribution. The two-point covariances are insufficient to describe a non-

Gaussian multivariate distribution. Besides, an intrinsic problem of the EnKF is that the experimental

covariances computed from (4) are only an approximation of the “true” covariance unless large ensembles

are used. Some approaches have already been implemented to alleviate this covariance inference issues such

as localization and hybrid formulation (e.g., Hamill et al., 2001; Gharamti et al., 2014b).

The entire augmented vector, that is, both conductivity and piezometric heads, is updated during the

analysis step. The computational cost of the analysis step is small as compared with the forecast step.

Gharamti et al. (2014a) discussed the computational cost of each EnKF step in detail. Moreover, as men-

tioned before, the resulting updated piezometric heads may not be consistent with the updated conductivity

values, in the sense that they might violate the physics of the flow equation, and for this reason we choose

to rerun the forecast step from time zero with the latest updated conductivities.

The EnKF is designed for updating continuous variables, although some authors have proposed some

types of reparameterization of categorical variables (Wen et al., 2000; Hu et al., 2013) which can be used

in EnKF. Note also that the updating Equation (6) does not take into account the underlying physics, and

therefore, updating some variables, such as porosity, can result, directly, in non-physical values.

2.3. Analysis step for the EnPAT

The EnPAT method was first proposed by Zhou et al. (2012) and further improved by Li et al. (2013).

Figure 1 shows the flowchart of the EnPAT algorithm. The implementation of the analysis step in the EnPAT

algorithm is as follows.
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(a) Start the loop for the estimation of conductivity for realization number 1, Xk,j (t = k; j = 1)

(b) Define a set of randomly distributed pilot points Pi(X), i = 1, 2, · · · , Np, where the number of pilot

points, Np, is defined by the user.

(c) Start the loop to estimate both the conductivity xi and piezometric head yi at pilot point i; if the

location of ith pilot point coincides with measurement, go to step (d); otherwise,

(I) Build the spatial pattern ψk,i,j of both conductivity as well as piezometric head data as shown in

Figure 2A.

ψk,i,j =

[
x

y

]
k,i,j

(7)

where ψk,i,j represents the joint pattern of conductivity and piezometric head values associated

with the ith node to be estimated, for the jth member of ensemble and at time t = k. x and y

denote conductivity and piezometric head data, respectively, and they can be either measured data

or previously simulated values. The size of the joint pattern ψk,i,j depends on a user-predefined

maximum search radius and maximum number of conditioning data. The conditioning data are

searched following a spiral path away from the node to be updated.

(II) Look for a matching pattern in the ensemble of joint realizations of conductivity and piezometric

head. This search is performed by visiting each pair of realizations (conductivity and head)

according to a random path Pλ, λ = 1, 2, · · · , Nr, where Nr is the number of realizations in the

ensemble.

(III) Start the loop with realization λ = 1:

i. Locate the candidate pattern ψk,i,λ in the pair of training images for conductivity and piezo-

metric head. The candidate pattern ψk,i,λ is fixed at location i since piezometric head is

affected by boundary conditions and source terms.

ψk,i,λ =

[
x

y

]
k,i,λ

(8)

where x and y represent the last conductivity estimate (from the analysis step at time t = k−1)

and the corresponding simulated head for time t = k, respectively.

ii. Calculate the distance d(ψ,ψ) between the conditional pattern (ψk,i,j) and the candidate pat-

tern (ψk,i,λ). Because the pattern is composed of both conductivity and piezometric head, in

order to avoid specifying a weight to be assigned for each variable, distance is calculated for
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the conductivity d(x,x) and head d(y,y), separately and then each distance is tested against

tolerance values as explained below. Zhou et al. (2012) discussed, in details, several possible

distance functions: Specifically, the Manhattan distance is best for categorical variables while

the weighted Euclidean distance is preferred for continuous variables.

iii. Compare the calculated distance values with predefined tolerance values (ξx, ξy). If both

distances for conductivity and head are lower than their tolerances (dλ(x,x) < ξx and dλ(y,y) <

ξy), copy the conductivity and piezometric head values at node i from the joint realizations

λ to the node being estimated i (xi,j = xi,λ, yi,j = yi,λ) and go to step (d).

iv. Otherwise, go to next realization looking for a better candidate pattern (i.e., step (i)) and set

λ = λ+ 1.

(IV) When none of the candidate patterns meets the tolerance restrictions, chose the ϑth realization

having the smallest distances for both conductivity and piezometric head (dϑ(x,x) = dx,min and

dϑ(y,y) = dy,min), and then copy the conductivity and head from this realization onto the node

being estimated i (xi,j = xi,ϑ, yi,j = yi,ϑ).

(d) Go to the next pilot point (i.e., step (b)) and set i = i+ 1.

(e) Complete the realization by using the pilot point conductivities generated as conditioning data and

employing a traditional MPS method such as DS to perform spatial interpolation.

(f) Go to the next conductivity realization (i.e., step (a)) and set j = j + 1.

In the EnPAT, unlike in the EnKF, during the analysis step, conductivities and piezometric heads are

sequentially generated, node by node, and realization by realization. This pixelwise simulation therefore

follows the characteristics of traditional sequential simulation geostatistical methods. Actually, the EnPAT

method is developed based on the direct sampling (DS) MPS method (Mariethoz et al., 2010b) by adding

the state variable (piezometric head, here) into the parameter pattern and by using the ensemble pairs of

conductivity and piezometric joint training images to search for matching spatial pattern instead of using a

single training image as in DS. It is the use of the ensemble of joint training images, and the location-specific

search through the ensemble for suitable candidate patterns that differentiates this method from others

and renders it possible to condition this method to dynamic data (see Figure 2B). To keep parameter and

state variables balanced in the patterns, conductivity and piezometric head are both estimated at the pilot

point locations (Li et al., 2014). Then, pilot point values are used as conditioning data, and the traditional

Direct Sampling MPS method is used to extrapolate the pilot point values to generate conductivities at

the remaining unsampled locations. This dual approach, that is, first generate the conductivities at the
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pilot points using an ensemble of training images, and filling in the gaps by standard MPS, reduces the

computational cost without unduly impacting the accuracy of the generated models. Li et al. (2013) analyzed

the impact of the number of pilot point on the computational cost. The larger the number of pilot points,

the better the accuracy of predictions made using the models but the higher the associated computational

cost of generating the models.

The EnPAT can be applied to both categorical and continuous variables. The only difference resides in

the specification of the distance function used to quantify the dissimilarity between conditioning pattern and

the candidate patterns. Li et al. (2013) demonstrates the application of EnPAT to categorical conductivity

fields.

3. An illustrative example

3.1. Reference Field

A single-phase transient groundwater flow example is presented to compare the effectiveness of the EnKF

and the EnPAT for dynamic data integration when considering non-multiGaussian conductivity fields. The

aquifer has 50 × 50 × 1 cells of size 1 m × 1 m × 1 m. The east and west sides of the aquifer are constant

head boundaries with prescribed head values of 0 m, the other two sides are no flow boundaries. Porosity

and specific storage are assumed to be constant and set equal to 0.3 and 0.02 m−1, respectively. An injection

well (#5) is located at the center of the aquifer with a constant injection rate Q = 25 m3/d (see Figure 3).

The total simulation time is 30 days, discretized into 10 time steps with varying time step size following a

geometric sequence of ratio 1.2. The head data collected from 9 wells in the first five time steps will be used

for conditioning.

Several MPS algorithms presented in the literature have the capability to handle continuous variables

such as hydraulic conductivity. Here, the DS method is used to generate the reference conductivity field.

The training image is obtained by superimposing a continuous conductivity field generated by sequential

Gaussian simulation (Gómez-Hernández and Journel, 1993; Gómez-Hernández and Cassiraga, 1994) on the

facies model in Strebelle (2002) (see Figure 3A). The distance function plays a key role in DS and EnPAT.

Because the conductivity and piezometric head are both continuous variables, the weighted Euclidian distance

function is used to calculate the distance between the patterns, and it is defined as

d(ψ,ψ) =

[
1∑n

i=1 h
−1
i

n∑
i=1

h−1i
(ψ(xi)− ψ(xi))

2

d2max

]1/2
d ∈ [0, 1] (9)
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where n is the number of elements in the pattern; xn represents the elements in the pattern, which can be

conductivity or head values; ψ(xn) and ψ(xn) are the conditional pattern and candidate pattern, respectively;

hi is the Euclidean distance between element i and the element being simulated, dmax is the maximum

absolute difference between the conditional pattern and the candidate pattern. As already mentioned, in

order to avoid specifying the weight of each variable in the joint pattern, we calculate the distances for the

conductivity and piezometric head, separately, and thus two distance tolerance values have to be predefined

to decide whether a candidate joint pattern is accepted or not.

The set of parameters used in DS and EnPAT such as search radius, number of conditioning data and

distance tolerances, are listed in Table 1. To understand the specific role of these parameters in the DS, the

reader is referred to the work by Mariethoz et al. (2010b). Also, Meerschman et al. (2012) conducted an

extensive sensitivity analysis of those parameters. Figure 3B shows the reference conductivity field generated

by DS, which will be used as the “true” conductivity field. The conductivities collected from 9 wells will be

used as the observed conductivity data (i.e., hard data). The spatial locations of the 9 wells can be found

in Figure 3B.

Five hundred conductivity realizations, conditioned to the measured conductivity data, are generated

by DS using the same training image as in the reference. The EnKF and the EnPAT are used to update

the prior models by conditioning to the piezometric head data computed on the reference model. Table 1

summarizes the parameters used and flow configurations of the synthetic example.

The major goal of this paper is to compare the performance of the EnKF and the EnPAT to integrate

dynamic data on a channelized aquifer. In order to check the posterior uncertainty after data integration,

the Bayesian rejection sampling is included in the comparison as well, and described in the next section.

3.2. Rejection Sampling

The Bayesian rejection sampling has been implemented in the studies by Mariethoz et al. (2010a), Scheidt

et al. (2014) and Satija and Caers (2015) to explore the posterior uncertainty after the integration of dynamic

data. Unlike the EnKF that is based on model updating and the EnPAT that is based on model generation

using training sets of conductivity and piezometric head, rejection sampling is based on sampling a subset of

prior models that exhibit flow characteristics most similar to the observed dynamic data. Its implementation

steps are briefly introduced as follows,

(a) Generate a prior model (m) using, for instance, a geostatistical method;

(b) Run a physical model (i.e., MODFLOW) to get the simulated heads;
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(c) Evaluate an objective function O(m). Here, the objective function is defined as the weighted square

difference between the simulated and observed head data.

O(m) =
1

Nwell ×Ntimes

Nwells∑
w=1

Ntimes∑
k=1

(
yk,wobs − yk,w(m)

)2

(10)

where Nwell and Ntimes indicate the number of wells and times in the data conditioning.

(d) Evaluate a likelihood L(m). We assume the likelihood function to be Gaussian.

L(m) = Kle
−O(m)

2σ2 (11)

where Kl is a scaling factor such that the maximum L(m) value is 1; σ is related to the measurement

error of head.

(e) Sample a random number u from a uniform distribution over (0, 1);

(f) Accept the model m if u < L(m).

Repeat the above procedure until an adequate number of models are sampled that could be used to represent

the posterior uncertainty. As we see, the result of rejection sampling method is dependent on the definition

of the objective and likelihood functions and the measurement error σ. In the benchmarking case, 114

models are sampled by evaluating 10000 forward simulations. The rejection sampling method is prohibitively

expensive and quite likely inapplicable for most practical applications.

3.3. Results

3.3.1. Hydraulic Conductivity Characterization

Figure 4 shows the histogram of logconductivity for the reference field, and the histograms computed

on the ensemble of conductivity fields after assimilating piezometric head data corresponding to the first

five time steps for EnKF, EnPAT and rejection sampling. For the ensemble obtained by the EnKF, the

histogram loses its bimodal characteristic and becomes more Gaussian-like (results which are consistent with

those by Zhou et al. (2011)). On the contrary, EnPAT preserves the bimodal features of the reference field.

In essence, the EnPAT preserves not only the lower-order moments (i.e., the mean and variance) but also the

complex spatial structure of the conductivity field described by the multiple-point statistics. It is evident

that rejection sampling preserves both the lower-order moments of the spatial distribution as well as the

higher-order moments because a subset of the prior models is retained after evaluating the likelihood.
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Figure 5 displays two individual realizations before and after conditioning to head data using the EnKF,

the EnPAT and rejection sampling. The updated realizations using the EnKF tend to lose the channel

features of the training image. Partly, this is expected because in the EnKF each updated realization can be

interpreted as a linear combination of the ensemble of prior models. Another reason is that, in the long run,

the EnKF realizations tend to lose the bimodality exhibited by the channelized prior model. For the EnPAT

and rejection sampling, the individual conductivity realizations retain the channel features of the training

image, and end with similar channel structures as the ones in the reference field because of the conditioning

on piezometric head.

Figure 6 shows the ensemble mean and variance of logconductivity before and after conditioning to

piezometric head data using the EnKF, the EnPAT and rejection sampling. In all cases, the mean maps of

logconductivity patterns capture the main patterns of heterogeneity after head conditioning. Recall that the

prior geological structures are lost in the updated models obtained using the EnKF. Looking at the ensemble

variance maps, the one obtained by the EnKF has quite large values overall except in the vicinity of hard

conditioning data, whereas the ensemble obtained by the EnPAT has low ensemble variance overall with only

some uncertainty remaining at the location of the channel borders in the reference. Comparing the EnPAT

with rejection sampling, both cases could identify the location of the channels, while the EnPAT yields

smaller posterior uncertainty as shown in the variance maps. This is because the EnPAT is a multiple-point

statistics-based method in which the ensemble pattern-searching procedure would require the ensemble size

to be large enough in order to reproduce the characteristics of the “true” multivariate distribution. Small

ensemble size could lead to overestimation of the posterior uncertainty and may lead to filter collapse as

commonly observed in EnKF.

3.3.2. Flow and Transport Predictions

Essentially, we perform assimilation of dynamic data in order to improve the accuracy of our forecasts.

The updated models are expected to have a better prediction performance since they are conditioned to dif-

ferent types of data (here, both the measured conductivities and piezometric head data). We have performed

a flow and transport simulation to check how the updated models obtained by the EnKF and the EnPAT

compare.

For the flow simulation, the configuration of wells is kept the same as before. The flow simulation is rerun

from time zero until 30 days using the updated models. Figure 7 displays the piezometric head predictions

for two wells, using the prior models and the updated models obtained by the EnKF and the EnPAT. As

we can see, in both cases, the mean of the ensemble of heads is close to the reference head and the spread
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of heads about the mean diminishes after conditioning to the first five time steps of head data. Also, the

performance of the EnKF and the EnPAT is similar in this example, even if the individual realizations of the

EnKF can not preserve the prior geological structures. This maybe because flow reaches almost steady-state

after the first five-time steps and thus the forecast is almost unchanged.

For the transport simulation, using the same flow configuration as before, a conservative tracer with a

concentration of 10 ppm is continuously injected at well #5. Figure 8 shows the concentration after 30 days,

for the reference field, and the ensemble mean and variance of the predicted concentrations for the prior

models and for the updated models using the EnKF and the EnPAT. Because no tracer data are used for

conditioning, prediction of concentration profile would be a good check on the effectiveness of the algorithms

for data conditioning and parameter estimation, particularly to see how effectively they have captured the

effect of the channels in the transport simulations (Gómez-Hernández and Wen, 1994). The results show

that, the concentration profile is heavily impacted by the connectivity of the conductivity channel structures.

For the EnKF, the ensemble mean map of concentration does not show much improvement after head data

conditioning. Whereas, for the EnPAT, the reproduction of the main patterns in the reference concentration

map is remarkable. This is due to the ability of the EnPAT to replicate the channel structures. Also note

the reduction in uncertainty of the predicted concentration profile after conditioning to head data using the

EnPAT (see the variance maps).

4. Discussion

The EnPAT was demonstrated as a promising approach to integrate dynamic data into conductivity

fields not necessarily multi-Gaussian; however, for practical applications, some issues have to be addressed

as discussed next:

• The EnPAT is an extension of the direct sampling MPS method, thus the same issues confronting DS

must be addressed in the EnPAT also. For example, the maximum number of conditioning data in a

pattern would define the size of pattern; the larger the number of conditioning data, the better the

reproduction of patterns from the training images, but also the larger the computational demand of

the algorithm. Thus, there is a trade-off between the quality of the model and computational cost.

This is also true when specifying distance tolerance values (see Mariethoz et al. (2010b)).

• The EnPAT is a multiple-point statistics-based data integration method. The matched pattern is

directly sampled from the ensemble of training images, and thus the curvilinear structures could be
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preserved through the process of data conditioning. This distinguishes the method from non-Gaussian

particle filter methodology (Moradkhani et al., 2012; Chang et al., 2012) where each particle (i.e.,

the realization) is sampled from the posterior distribution by evaluating the likelihood. As we know,

particle filtering can only be applied to low-dimensional cases because of the problem of filter divergence.

Applying particle filters to high-dimensional case is still a very active research topic.

• The exclusive parameter in the EnPAT, which does not appear in DS is the number of pilot points.

It was used to reduce computational cost and to improve image quality. Specifically, conductivity

and head values are simulated at the pilot point locations at first, and then an MPS method (Direct

Sampling here) is used to fill in the spatial patterns in the rest of the domain. The locations of the

pilot points are randomly distributed from one realization to the next as well as from one time step to

the next one. Li et al. (2013) presented an extensive sensitivity analysis on the choice of the optimum

number of pilot points.

• As in the EnKF, the correlation between parameter and state variables are explicitly estimated through

the ensemble of training images in EnPAT. Thus, the number of ensemble models is a key parameter

that will determine the accuracy of the inferred correlations: the larger the ensemble, the better the

estimation, but also the larger the computational cost.

• Measurement error is not considered in the current implementation of the EnPAT algorithm. However,

it is straightforward to integrate it into the algorithm. It simply requires the redefinition of the

piezometric head distance, such that when the prediction is within a certain interval about the measured

value (this interval would be defined by the measurement error), the distance is set equal to zero.

• In the EnKF, multiple parameters can be easily handled by adding additional variables into the joint

state vector. For example, Li et al. (2012a) simultaneously updated both porosity and conductivity

by conditioning to both piezometric head and concentration data. However, in the EnPAT, this

would be very challenging within the current framework. Conceptually, the implementation is quite

straightforward by incrementing the variables in the joint pattern, but in practice, a conditional pattern

with many variables would be very difficult to match. A hierarchical pattern matching approach could

be a possible way to alleviate the strong constraints imposed by a multiple variable pattern match

requirement.

• As we know, the EnKF is optimal as a Gaussian-based (two-point statistics) data assimilation method-

ology, while the EnPAT is a non-Gaussian (multiple-point statistics) method. We also know that the
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computational cost of multiple-point statistics is much higher than traditional two-point statistics.

Development of approaches (such as those based on cumulants) to reduce the computational cost of

multiple-point statistics algorithm is currently a very active research topic. The computational cost

of EnPAT for each time step is almost the same as generating the channelized realizations without

conditioning on head data using direct sampling MPS method, which itself is much higher than the

computational cost used in the two-point covariance based EnKF.

• In the current implementation of the EnPAT, we assume that there is no uncertainty associated with the

training image. Specifically, the uncertainties of facies and the corresponding hydraulic conductivity

within each facies in the training image are not considered in the comparison. At each time step, the

interpolation of simulated values at the pilot points relies on the prior training image. If the training

image is wrong, the EnPAT could not identify the structures, accordingly. How to integrate the

uncertainty of prior training image would be the future research direction, but the ability to reproduce

the curvilinear structures with known training image would be the first step.

5. Conclusions

We compared the EnKF and the EnPAT methods for inverse modeling of a conductivity field charac-

terized by curvilinear channel structures. The EnKF has been widely used in petroleum engineering and

hydrogeology over the past decade. The remarkable advantages of the EnKF are the capability to handle

multiple parameters, computational efficiency, real-time data assimilation and the ease with which it can be

coupled with any forward simulator. However, one significant drawback of the EnKF is that, because it is

based on two-point statistics (i.e., covariances) it is optimal only for linear state functions and parameters

following multi-Gaussian distributions. As we show in a synthetic subsurface flow and transport example,

the EnKF performs poorly when dealing with channelized aquifers with bimodal distribution of conductivity.

As an alternative to the EnKF, the EnPAT method was proposed to condition to dynamic data without

the limitation that state variables should follow a multi-Gaussian distribution. It is based on a sequential

simulation paradigm similar to any MPS algorithm with the exception that there is an ensemble of training

images for both conductivities and piezometric heads.

The application of the EnKF and the EnPAT to a synthetic case shows that the EnPAT yields a more

accurate characterization of conductivity than the EnKF, and more importantly, the updated models ob-

tained using the EnPAT honor the prior geologic features exhibited in the training image. As a consequence,
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the EnPAT has much better accuracy of transport prediction than EnKF. These results stress the capability

of EnPAT for conditioning MPS generated conductivity field to observed dynamic data.

For comparison purposes we also implemented a rejection sampling algorithm to generate inverse con-

ditional realizations of conductivity. While the method works comparably to the EnPAT, its cost was

prohibitively large in comparison with the EnPAT.
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Li, L., Zhou, H., Hendricks Franssen, H., Gómez-Hernández, J. J., 2011. Modeling transient flow by coupling

ensemble kalman filtering and upscaling. Water Resources Research, doi:10.1029/2010WR010214.
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Table 1: Aquifer configuration and parameters used in the DS and the EnPAT.

Aquifer size 50 × 50 × 1 m
Gridblock size 1 × 1 × 1 m
Log-conductivity mean -0.12 md−1

Log-conductivity standard deviation 2.51 md−1

Porosity 0.3
Specific storage 0.02 m−1

Number of time steps 10
Total simulation time 30 days
Number of observation k 9
Number of observation wells 9
Initial head 0 m
Boundary conditions no flow (north and south); h = 0 (east and west)
Injection well 25m3/d
Number of realizations 500
Search radius for k (EnPAT & DS) 25 m
Search radius for h (EnPAT) 25 m
Max. number of element in the pattern for k (EnPAT & DS) 15
Max. number of element in the pattern for h (EnPAT) 15
Distance function for k (EnPAT & DS) Weighted Euclidian
Distance function for h (EnPAT ) Weighted Euclidian
Distance tolerance for k (EnPAT & DS) 0.05
Distance tolerance for h (EnPAT) 0.0
Fraction of scan on training image (DS) 0.5
Number of pilot points (EnPAT ) 300
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Figure 1: Flowchart of the EnPAT algorithm.
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Figure 5: Randomly selected two individual realizations before and after head data conditioning using the EnKF, the EnPAT
and rejection sampling.
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Figure 7: The simulated head at two wells before and after head data conditioning using the EnKF, the EnPAT and rejection
sampling.
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EnPAT: Ensemble mean (nT=10)
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Figure 8: Ensemble mean and variance of concentration (nT = 10) before and after head data conditioning using the EnKF
and the EnPAT.
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