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Abstract: Evanescent and tightly confined propagating waves exhibit a remarkable 

transverse spin density since the longitudinal component of the electric field is not negligible. 

In this Letter, we obtain via numerical simulations the electric field components of the 

fundamental guided modes of two waveguides typically used in silicon photonics: the strip 

and the slot waveguide. We obtain the relation between transverse and longitudinal field 

components, the transverse spin densities and other important parameters, such as the 

longitudinal component of the so-called Belinfante’s spin momentum density (BSMD). By 

asymmetrically placing a circularly-polarized point-like dipole source in regions showing 

local circular polarization, the guided mode is excited unidirectionally via spin-orbit 

coupling. In contrast to metal plates supporting surface plasmons, the multimode behavior 

of silicon waveguides results in different spin-orbit coupling properties for each guided 

mode. Our results may find application in silicon photonic devices, integrated quantum 

optics and polarization manipulation at the nanoscale.  
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It has been recently shown that, in contrast to propagating waves in free space exhibiting 

longitudinal spin, evanescent waves support transverse spin orthogonal to the wave vector [1-3]. 

This property of evanescent waves can be generally considered as a manifestation of the quantum 

spin Hall effect of light [4]. Such transverse spin is the ultimately responsible for the spin-

controlled unidirectional excitation (SCUE) of guided waves [5-14], a phenomenon that has its 

origin in the spin-orbit coupling taking place when a circularly-polarized subwavelength dipole 

is placed in the evanescent-wave region of a guided mode. The spin-momentum locking inherent 

to evanescent waves [4,15] enables to completely switch the propagation direction of the excited 

guided mode by merely changing the spin of the exciting dipole [3,8-9]. By reciprocity, the spin 

of the wave scattered by a point-like defect placed in the evanescent-field region can be switched 

by simply reversing the direction of the guided wave [11,12]. This phenomenon, which takes 

place at any wavelength regime (for instance, at microwave frequencies [6,16]), may have 

especial relevance in nano-optics, since it ultimately enables mapping the light spin into a 

propagating pathway. Indeed, such spin-orbit coupling may induce lateral optical forces in order 

to manipulate a great amount of nanoparticles over large areas, as recently proposed [17]. 

Remarkably, longitudinal components of the electric field also take place in propagating fields 

when tightly confining light via strong focusing [18] or total internal reflection in dielectric 

structures such as microresonators [19] or waveguides [20,21]. The latter case is especially 

important, since high-index contrast waveguides made of semiconductor materials allow for an 

excellent field confinement leading to extreme miniaturization of photonic circuitry whilst 

keeping low propagation losses. In particular, silicon photonics, which relies on the confinement 

and guiding of light through silicon waveguides, is expected to become the mainstream 

technology for photonic integrated circuits. Although there have been some preliminary 

demonstrations of SCUE of guided modes in silicon waveguides [8,10], a detailed analysis of the 

electric field components of the guided modes and its relation spin-orbit related phenomena is, to 

our knowledge, still lacking.  

Here, we numerically analyze the electric field components of the guided modes of two common 

silicon waveguides, the strip and the slot waveguide, at telecom wavelengths. We obtain cross-

sectional maps of the relationship between transverse and longitudinal field components, the 

transverse spin densities and the longitudinal component of the so-called Belinfante’s spin 

momentum density (BSMD) [18]. We show that, unlike surface plasmons propagating on infinite 

metal surfaces, in which the local polarization is always elliptical, silicon waveguide modes show 

points in which the projection of the electric field vector on a plane containing the propagation 

direction exhibit purely circular polarization. Moreover, such points can be found outside (in the 

evanescent region) as well as inside the waveguide core. By placing a circularly polarized point-

like dipole source at such points, we show numerically SCUE of the guided mode via spin-orbit 
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locking, being the propagating direction switched just by changing the spin of the exciting dipole. 

Remarkably, we show that each guided mode displays a different transverse spin both inside and 

outside the waveguide core. This results in completely different excitation conditions to achieve 

unidirectional guiding for each guided mode.  

In our study, we consider first the silicon strip waveguide with rectangular cross-section, which 

is typically used in silicon photonics for guiding and processing light at telecom wavelengths. We 

assume that the silicon core is surrounded by air, although similar results could be obtained if 

other low-index materials such as silica or a polymer were considered as cladding. The waveguide 

axis is along the z-direction. Notice that, unlike in photonic crystal waveguides where the 

polarization distribution also changes along the waveguide axis [22], the strip waveguide exhibits 

continuous translational symmetry along this axis. Therefore, the polarization properties will not 

change with the z coordinate so we restrict our study to the transverse z=0 plane. The propagating 

guided modes are characterized by three electric field components with a certain amplitude 

profile, Ex(x,y), Ey(x,y) and Ez(x,y), and a real wave vector kz = 2neff/ , where neff is the effective 

index of the mode and  is the free-space wavelength. We consider the fundamental even mode, 

usually called TE-like mode, characterized by a strong electric field component along the x 

direction. Indeed, this mode is typically excited in experiments by using an external light beam 

polarized in such direction. In waveguides with large-size core and low-index contrast, such as 

standard single-mode optical fibers, the longitudinal component of the electric field is negligible. 

However, as mentioned above, high-index contrast waveguides with strong confinement leads to 

considerable values of Ez. Unlike waveguides with cylindrical symmetry [9], there is not an exact 

analytical solution for the guided modes in the strip waveguide. Therefore, we have calculated 

numerically the fundamental even mode distribution by using the finite-element method 

(Synopsys FemSIM). In the calculations, we have considered a wavelength = 1550 nm, a grid 

size of 5 nm and a total simulation domain of 3x3 m2.  

Figure 1(a) shows a cross-sectional map of the amplitude of the z-component of the electric field 

multiplied by the imaginary unit (iEz) for propagation of the guided mode along +z. Throughout 

this work, we show the electric field components normalized with respect to the value of Ex at the 

origin of coordinates. It can be seen that the Ez field is asymmetric with respect to the x=0 plane, 

being its magnitude comparable to Ex but with a phase shift of /2 between them. To better 

appreciate the relation between the longitudinal and transverse components of the electric field, 

in Figs. 1(b) and (c) we plot the maps of iEz/Ex and Ey/(iEz) respectively. Notice that for each case 

we have chosen the order of the field components when performing the ratio in order to get a 

better visual representation. In contrast to surface plasmons on metallic surfaces or guided modes 

in cylindrical waveguides, in which the ratio between the longitudinal and transverse field 
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components only depends to the distance to the interface, here we have a very inhomogeneous 

distribution, extremely different depending on the transverse field component we consider (Ex or 

Ey). Remarkably, we find regions, both inside and outside the waveguide core, in which the 

longitudinal component is much higher (in absolute value) than the transverse ones. This 

behavior, which could be expected for the Ey/(iEz) case, is quite surprising for the iEz/Ex case, 

since Ex is the fundamental component of the guided mode. It is also noticeable that maximum 

values of |iEz/Ex| are obtained mainly inside the waveguide core, this is, within the guided-wave 

region. Such high values take place in the core regions close to the lateral sidewalls as a result of 

the reduction of the Ex component because of the strong index discontinuity along x.  

 

Figure 1. Numerically calculated cross-sectional maps of (a) iEz; (b) iEz/Ex; and (c) Ey/ iEz for 

the fundamental even mode of a silicon strip waveguide (with 450 nm x 220 nm cross-section) at 

 = 1550 nm. Contours with iEz/Ex or Ey/iEz = 1 and - 1, corresponding to points exhibiting 

local circular polarization of the field projected on the corresponding planes, are also 

highlighted. The dashed rectangle highlights the interface between the silicon core and the air 

cladding.  

From the electric field components, it is straightforward to obtain the electric contribution of the 

transverse spin densities of the guided mode as ∝ ∗ 	  and ∝ ∗ 	  [3,18]. The 

cross-sectional maps for both x and y spin densities (in normalized units) of the silicon strip 

waveguide are depicted in Figs. 2(a) and (b) respectively. In addition, we can also obtain the 

electric contribution to the longitudinal component of the so-called Belinfante’s spin momentum 

density (BSMD) [23] as , ∝  [18], which is plotted in Fig. 2(c). Notice the 

strong resemblance between  (almost negligible),  and ,  along the x axis for an x-polarized 

tightly focused beam (Fig. 3 in [18]) and our fundamental even in a high-index dielectric 
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waveguide, as a result of the non-negligible longitudinal component of the electric field. 

However, the strong discontinuities of the field components perpendicular to the boundaries in 

the guided mode result in some differences, mainly the positive and negative 	spots near the 

waveguide corners and the existence of maximum values of | , | at the waveguide boundaries 

for the guided mode.  

 

Figure 2. Numerically calculated cross-sectional maps of (a) ,(b) , and (c) ,  for the 

fundamental mode of the silicon strip waveguide at  = 1550 nm.  

In Figs. 1(b) and (c) we have highlighted contours in which iEz/Ex or Ey/iEz equals ±1 since such 

regions exhibit local circular polarization on the xz and yz planes (such points are commonly  

referred to as C-points [22])) associated to the guided even mode propagating along +z. This is a 

clear example of spin-momentum locking, which ultimately results in the SCUE of guided modes: 

when placing a point dipole emitting circularly polarized waves - or a point scatterer externally 

illuminated by a circularly polarized wave – at a point in such regions, the even guided mode will 

be excited towards one direction of the waveguide or the opposite depending on the sign of the 

spin of the excitation wave [10,13]. This idea is illustrated in Fig. 3(a) and checked via numerical 

simulations using a full 3D solver (CST Microwave Studio). The simulation has been performed 

using a time domain solver and hexahedral mesh with 10 cells per wavelength, except near the 

dipole where a refinement has been done (reaching 83 thousand cells in total). Open boundary 

conditions are chosen for all external faces. In Fig. 3(b) we show a snapshot of the propagating 

Ex field on the y=0 plane when a point-like dipole with a dipolar moment ∝ ̂ is introduced 

at (x,y)=(1.39, 1.3 μm, where iEz/Ex = 1. Notice that the even mode is clearly excited only towards 

one of the two possible directions. Such direction could be changed just by switching the spin of 
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̂) at a spatial point in which Ey/iEz = 1, as shown in Fig. 3(c). Now, the guide mode propagates 

towards negative z values, as the spin of the source is -1. This case is especially remarkable since 

the waveguide mode is unidirectionally excited by an optical source not containing any 

component along x, being Ex the main polarization component of the guided mode under 

consideration. Simulations also show that the power contrast ratio between forward and backward 

directions is 17dB in the first case (b) and 25dB in the second case (c), which is a clear signature 

of unidirectional propagation. Nevertheless, even though very high values of the contrast ratio are 

achieved, the contrast ratio should be – ideally - infinite. We can explain the observation of a non-

infinite contrast ratio by considering that diffraction and reflection of the launched waves in the 

waveguide boundaries will make the polarization at the dipole position not completely circular 

[9], resulting in a reduction of the unidirectionality.  

 

Figure 3. (a) Scheme of the SCDE of the fundamental even mode in a silicon strip waveguide by 

using a circularly polarized point-like dipole with moment ; Snapshots of the Ex component 

(fundamental TE-like mode) for (b)  ∝ ̂ placed at (x, y)=(1.39, 1.3  (y=0 cut) ; and 

(c) ∝ ̂ placed at (x, y)=(0.22, 1.21)  (x=0 cut). (d) Snapshot of Ey (TM-like mode) for 

(b)  ∝ ̂ placed at (x, y)=(1.39, 1.3  (y=0 cut) 
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instance, let us consider the second guided mode, usually termed TM-like mode and characterized 

by a main electric field component along the y-axis. The field components of this modes will 

resemble those for the TE-like mode (Figs. 1 and 2) but rotated 90º around the z-axis. Therefore, 

Ex (Ey) for the TM-like mode will look similar to Ey (Ex) for the TE-like mode, resulting in 

completely different conditions to get SCUE of the guide mode. This is checked in Figs. 3(d), 

which is similar to Fig. 3(b) in what refers to excitation conditions but depict the electric field 

component along y (and therefore, show the propagation of the TM-like mode).  It can be seen 

that in these case the TM-like mode is not unidirectionally excited because the local polarization 

of the evanescent tails at the point where the dipole is placed is not completely circular but 

elliptical. This proves that spin-orbit coupling in multimode waveguides depends on the mode we 

are exciting, which has to be taken into account when using this effect to build nano-optical 

devices aimed at polarization manipulation.      

Similar results can also be obtained for another kind of waveguide commonly employed in silicon 

photonics: the slot waveguide [24]. The slot waveguide comprises two parallel strip waveguides 

with a small gap between them. Remarkably, if the gap is sufficiently small, the fundamental even 

mode exhibits a strong Ex confinement in the slot region, making this waveguide well suited for 

sensing [25] and all-optical processing [26,27]. Therefore, it makes sense to find out if such 

waveguide also present useful properties in what refers to the transverse spin of its fundamental 

mode, especially in the active slot region. Figure 4 shows the simulation results obtained for a 

slot waveguide. Since the slot waveguide can be considered as two coupled strip waveguides, 

many of the observations on polarization properties previously done for the strip case can also be 

applied here, mainly the existence of very high values of the transverse spin densities. The SCUE 

of the slot mode is demonstrated in Fig. 5 by using both xz and yz point-like circular dipoles. In 

both cases, the power ratio between forward and backward directions higher than 10 dB. Again, 

this is a signature of unidirectional propagation, but the value is not infinite because of the 

existence of diffracted and reflected waves that modify the polarization at the position of the 

excitation source. Remarkably, a guided mode with odd symmetry with respect to the x=0 plane 

(see the Ex field pattern in the inset) propagating along negative z values is observed. This mode 

also arises from the splitting of the fundamental even mode of the isolated strip waveguide as a 

consequence of the strong coupling between parallel waveguides. As for the case of the strip 

waveguide, we see here that the condition for SCUE of the fundamental even mode only hold for 

that mode, and a higher-order mode is also excited without unidirectional behavior.  
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Figure 4. Numerically calculated cross-sectional maps of (a) iEz/Ex, (b) Ey/iEz, (c) ,(d) , 

and (e) ,  for the fundamental mode of the silicon slot waveguide (comprising two strip 

waveguides with 300 nm x 220 nm cross-section spaced by a 100 nm gap) at  = 1550 nm. 

 

Figure 5. (a) Scheme of the SCDE of the fundamental even mode in a silicon slot waveguide by 

using a circularly polarized point-like dipole with moment ; Snapshots of the Ex component for 
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(b)  ∝ ̂ placed at (x, y)=(-0.59, 1.15	 m) (y=0 cut) and (c) ∝ ̂ placed at (x, 

y)=(0.01, 1.01) m (x=0 cut).  

Summarizing, we have numerically analyzed the transverse spin as well as the orbit-coupling 

features in silicon strip and slot waveguides, providing cross-sectional maps that lock the position 

and polarization of a point-like source with the propagation direction of the excited guided mode. 

We have shown that the transverse spin can be significant not only in the evanescent region but 

also inside the waveguide core. Unlike more symmetric waveguides such as metal plates or 

cylindrical fibers, silicon waveguides exhibit local points exhibiting circular polarization in 

transverse planes both in the evanescent and guided regions. Importantly, the spin-momentum 

locking producing the SCUE of guided waves is different for each guided mode. Therefore, the 

unidirectional excitation for a certain excitation dipole will only take place for the mode satisfying 

the local polarization conditions imposed by the electric field components of the mode. This 

should be carefully taken into account in real applications, for instance, by engineering the 

waveguide to be single mode at the working wavelength or by externally filtering the undesired 

modes.  Our results can be relevant for studying spin-orbit coupling effects (such as the SCUE of 

guided modes) in a photonic integrated platform, including not only silicon but also active III-V 

materials, with applications in multiple disciplines ranging from quantum processing to optical 

processing. In addition, we envisage that the existence of relevant transverse spin must be 

properly considered when coupling plasmonic metallic scatterers or nanoantennas to silicon 

waveguides [28,29,30].  
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