

Dimensionado de una instalación solar térmica para el abastecimiento de agua caliente sanitaria de un colegio público de educación primaria en el municipio de L'Eliana

Grado en Ingeniería Mecánica Escuela Técnica Superior de Ingeniería del Diseño

> Autora: Marta Pérez Argilés Tutor: Jorge Payá Herrero

> > **JUNIO 2016**

Agradecimientos

Gracias a mi tutor, Jorge Payá Herrero por darme la oportunidad de hacer el trabajo de final de grado con él, asistiendo también como oyente a sus clases de energía solar fototérmica.

Gracias al ayuntamiento de L'Eliana por proporcionarme la información necesaria para el desarrollo del proyecto.

Y por último gracias al Colegio Virgen del Carmen por permitirme tomar medidas y fotos, así como por facilitarme los planos del colegio.

Índice de tablas

Tabla 1. Ocupación diaria en horario lectivo.	13
Tabla 2. Ocupación diaria en horario no lectivo.	13
Tabla 3. Consumo medio de ACS.	17
Tabla 4. Consumo unitario de ACS a 60ºC (Fuente: DB HE-4)	18
TABLA 5. CONSUMO COMEDOR (FUENTE: DB HE-4)	18
Tabla 6.Demanda energética de ACS	19
Tabla 7. Contribución solar mínima anual para ACS en % (Fuente: DB HE-4)	20
Tabla 8. Características del acumulador (Fuente: Catálogo Lapesa)	22
Tabla 9. Características del captador solar (Fuente: Catálogo Astersa)	24
Tabla 10. Módulo 1 sombras.	29
Tabla 11. Módulo 2 sombras.	29
Tabla 12. Módulo 3 sombras.	29
TABLA 13. VELOCIDAD DEL VIENTO (FUENTE: AEMET).	33
Tabla 14. Velocidad y presión frontal del viento (Fuente: Asignatura Energía Solar Fototérmica)	33
Tabla 15. Modelos de intercambiadores (Fuente: Catálogo Salvador Escoda).	34
Tabla 16. Factores limitantes de tuberías.	37
Tabla 17. Tubería seleccionada caudal Q.	38
Tabla 18.Tubería seleccionada caudal Q/3.	38
TABLA 19. SELECCIÓN TUBERÍA COMERCIAL (FUENTE: CATÁLOGO GLOBAL COBRE)	39
Tabla 20. Aislante tuberías (Fuente: Asignatura de Energía Solar Fototérmica)	40
TABLA 21. FACTOR DE CORRECCIÓN PARA TEMPERATURAS MEDIAS DEL AGUA DISTINTAS DE 45ºC (FUENTE: ASIGNATURA	
Energía Solar Fototérmica).	42
Tabla 22.Tabla de pérdidas de los captadores (Fuente: Astersa)	44
Tabla 23. Características bomba (Fuente: Catálogo Wilo)	46
Tabla 24. Volumen del circuito hidráulico	47
Tabla 25. Selección vaso de expansión (Fuente: Catálogo Salvador Escoda)	48
Tabla 26. Característica tubería circuito secundario.	49
Tabla 27. Factor de corrección para temperaturas medias del agua distintas de 45ºC (Fuente: Asignatura	
Energía Solar Fototérmica).	49
Tabla 28. Selección vaso de expansión (Fuente: Catálogo Salvador Escoda)	52
TARIA 29 PRECIOS DE LAS TARIEAS DE SLIMINISTRO DE GAS (FLIENTE: ROE NUM 78 OCTURRE 2016)	55

Índice de figuras

Figura 1. Localización L'Eliana (Fuente: Google Maps)	11
Figura 2. Localización colegio (Fuente: Google Maps)	11
Figura 3. Plano de la distribución de edificios (Fuente: Colegio Virgen del Carmen)	12
Figura 4. Edificios colindantes (Fuente: Google Maps).	14
Figura 5. Mapa de distribución de las zonas climáticas (Fuente: INM)	20
Figura 6. Esquema general de la instalación (Fuente: Asignatura de Energía Solar Fototérmica)	21
Figura 7. Acumulador (Fuente: Catálogo Lapesa)	22
FIGURA 8. EDIFICIO DE PRIMARIA (FUENTE: COLEGIO VIRGEN DEL CARMEN)	23
Figura 9. Captador solar (Fuente: Catálogo Astersa).	24
Figura 10. Certificado de validación CHEQ4	26
FIGURA 11. PLANO DE LA TERRAZA	27
FIGURA 12. CAPTADOR SOLAR (FUENTE: ASIGNATURA ENERGÍA SOLAR FOTOTÉRMICA).	28
FIGURA 13. PÉRDIDAS DE RADIACIÓN SOLAR POR ORIENTACIÓN E INCLINACIÓN (FUENTE: ASIGNATURA ENERGÍA SOLAR	
FOTOTÉRMICA)	28
Figura 14. Módulo captador solar	29
FIGURA 15. PLANO DEL ESTUDIO DE SOMBRAS	30
Figura 16. Diagrama sombras (Fuente: Asignatura Energía Solar Fototérmica)	30
FIGURA 17. FOTO SOMBRAS TERRAZA	31
Figura 18. Plano distribución de tuberías.	32
Figura 19. Fuerza que actúa sobre el captador (Fuente: Asignatura Energía Solar Fototérmica)	33
Figura 20. Estructura de fijación (Fuente: Catálogo Escosol)	33
Figura 21. Intercambiador (Fuente: Catálogo Salvador Escoda).	34
Figura 22. Purgador manual	45
Figura 23. Esquema del sistema de apoyo (Fuente: Asignatura Energía Solar Fototérmica)	52
FIGURA 24. EDIFICIO DE PRIMARIA, ESQUEMA DE FONTANERÍA (FUENTE: COLEGIO VIRGEN DEL CARMEN)	53

Índice de graficas

GRÁFICO 1. CONSUMO DE AGUA FRÍA (L/DÍA) POR MES	15
GRÁFICO 2. CONSUMOS DE LOS AÑOS SELECCIONADOS	16
Gráfico 3. Consumo de agua caliente (l/día) por mes.	17
GRÁFICO 4. CURVAS DE CONGELACIÓN EN FUNCIÓN DE LA CONCENTRACIÓN (FUENTE: ASIGNATURA ENERGÍA SOLAR	
FOTOTÉRMICA)	35
GRÁFICO 5. VISCOSIDAD Y DENSIDAD DEL FLUIDO (FUENTE: ASIGNATURA ENERGÍA SOLAR FOTOTÉRMICA)	36
GRÁFICO 6. DIMENSIONADO DE LA TUBERÍA PARA EL CAUDAL Q (FUENTE: ASIGNATURA ENERGÍA SOLAR FOTOTÉRMICA))37
Gráfico 7. Dimensionado de la tubería para el caudal Q/3 (Fuente: Asignatura Energía Solar Fototérmic	:a) 38
GRÁFICO 8. VISCOSIDAD DEL FLUIDO CALOPORTADOR (FUENTE: ASIGNATURA ENERGÍA SOLAR FOTOTÉRMICA)	42
GRÁFICO 9. CURVA PÉRDIDAS DE CARGA DEL CAPTADOR (FUENTE: CATÁLOGO ASTERSA)	44
GRÁFICO 10. CURVAS CARACTERÍSTICAS DE LAS BOMBAS DE CIRCULACIÓN CIRCUITO PRIMARIO (FUENTE: CATÁLOGO WIL	0).46
GRÁFICO 11. CURVAS CARACTERÍSTICAS DE LAS BOMBAS CIRCUITO SECUNDARIO (FUENTE: CATÁLOGO WILO)	50

Resumen

La instalación solar térmica objeto del presente proyecto se ha diseñado para el Colegio Virgen del Carmen de L'Eliana Valencia. Su función es abastecer con agua caliente sanitaria al edifico principal del centro escolar, concretamente al comedor y a la cocina. Para satisfacer dicho consumo, necesita el apoyo de un sistema auxiliar, caldera mural, que sólo se emplea en caso de que la instalación no pueda cubrir toda la demanda. El sistema de captación consta de 24 captadores, divididos en tres módulos de 8 captadores cada uno, los cuales están situados sobre la terraza del primer piso, cerca de los puntos de consumo y de la sala de máquinas, donde está situado el acumulador, que tiene un volumen de 5000 litros. La instalación proporciona una contribución solar térmica de 48781 kWh al año, lo que supone una reducción de emisiones de CO₂ de 10530 kg. La inversión total del proyecto tiene un coste de 39793 euros y una amortización de 17 años.

ÍNDICE GENERAL

MEMORIA	
PLIEGO DE CONDICIONES	68
PRESUPUESTO	83
PLANOS	91

MEMORIA

INDICE DE LA MEMORIA

1	Obj	jeto d	el proyecto	10
2	Des	scripci	ión del centro escolar	11
	2.1	Empl	azamiento geográfico	11
	2.2	Distr	ibución del centro escolar	12
	2.3	Ocup	pación diaria	13
	2.4	Edific	cios colindantes	14
3	Cál	culo e	nergético	15
	3.1	Dem	anda de ACS	15
	3.2	Dem	anda energética	19
		Cont	ribución solar mínima	20
4	Din	nensio	onado de la instalación	21
	4.1	Desc	ripción general de la instalación	21
	4.2	Com	ponentes de la instalación	22
4.1 4.2 4.2.1 4.2.2 4.3		1	Depósito de acumulación	22
	4.2.	.2	Captadores solares	23
	4	.2.2.1	Localización	23
	4	.2.2.2	Modelo de captador	24
4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.2.5		.2.2.3	Número de captadores	25
	4	.2.2.4	Distribución de los captadores	26
	4	.2.2.5	Estudio de pérdidas por sombras	27
	4	.2.2.6	Conexión de los captadores	32
	4	.2.2.7	Sistema de anclaje de los captadores	32
	4.2.	.3	Intercambiador de placas	34
	4.2.	4	Fluido caloportador	35
	4.2.	.5	Sistema hidráulico del circuito primario	36
	4	.2.5.1	Tuberías	36
	4	.2.5.2	Pérdidas de carga	42
	4	.2.5.3	Purgadores	45
	4	.2.5.4	Bomba de circulación	45
	4	.2.5.5	Vasos de expansión	47

	4.2.	6 Sistema hidráulico del circuito secundario	49
	4	.2.6.1 Pérdidas de carga	49
	4	.2.6.2 Bomba del circuito secundario	50
	4	.2.6.3 Vaso de expansión	51
	4.2.	7 Sistema de poyo	52
	4.2.	8 Sistemas de control y protección	53
5	Aná	ilisis económico	55
6	Aná	ilisis medioambiental	56
7	Con	iclusiones	56
8	Ref	erencias bibliográficas	57
9		exo	
	9.1	Catálogos de los componentes	58
	9.2	Certificación CHEQ4	
	9.3	Consumo histórico de agua	66

1 Objeto del proyecto

El objetivo principal es la modificación y mejora de la instalación de agua caliente sanitaria (ACS), en el Colegio Virgen del Carmen de L'Eliana (Valencia), mediante el uso de captadores solares térmicos.

La instalación solar térmica aportará gran parte de la energía demandada por el centro escolar, teniendo una caldera mural de gas que le servirá de sistema de apoyo.

Para realizar el proyecto de forma más realista, se han recopilado datos de la zona de estudio. Por una parte se obtuvieron y analizaron las facturas de la demanda de agua del colegio proporcionadas por el ayuntamiento, ya que al ser un colegio público es quien lo gestiona. Este tuvo que tramitar una solicitud a Hidraqua, la cual proporcionó el histórico de los consumos de agua, adjunto en los anexos. También se visitó el colegio para ver las instalaciones y tomar medidas de donde se tendrían que ubicar los distintos componentes.

En la memoria se han realizado los cálculos para el dimensionado de la instalación, los cuales permiten determinar cada uno de los componentes por los que está formada, basándose principalmente en la demanda diaria de ACS que se debe satisfacer. Para ello, se ha seguido la normativa vigente del Código Técnico de la Edificación, concretamente la sección HE4.

2 Descripción del centro escolar

2.1 Emplazamiento geográfico

El Colegio Virgen del Carmen se encuentra en la comarca de Camp de Turia, en el municipio de L'Eliana, el cual está situado al Nord-Oeste de la ciudad de Valencia.

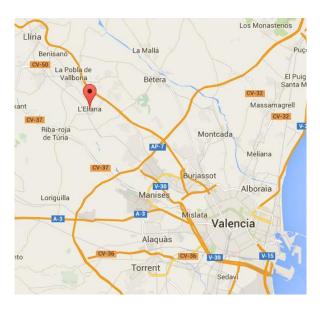


Figura 1. Localización L'Eliana (Fuente: Google Maps).

Concretamente, está situado entre la avenida Alcalde Enrique Daries, la calle Papa Juan XXIII y la Calle Bonaire.

Figura 2. Localización colegio (Fuente: Google Maps).

2.2 Distribución del centro escolar

El centro escolar está compuesto por cuatro edificios: un edificio principal, donde se imparten las clases de primaria; un segundo edificio, donde están las clases de infantil; el gimnasio y un edificio de dirección.

El proyecto se va a centrar en la demanda de ACS en el edificio principal, concretamente en el comedor y en la cocina, que se sitúan en la planta baja del edificio principal, donde ya se dispone de la instalación de agua caliente que emplea una caldera mural de gas.

En el resto de tomas de agua de los diferentes edificios no se dispone de agua caliente, exceptuando las duchas del gimnasio, que sí tienen instalación de ACS, pero no se utilizan.

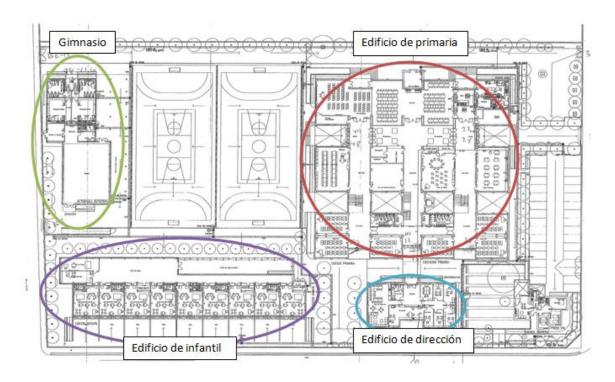


Figura 3. Plano de la distribución de edificios (Fuente: Colegio Virgen del Carmen).

2.3 Ocupación diaria

Para calcular correctamente la demanda de ACS, es necesario conocer la ocupación diaria del colegio.

El horario lectivo del colegio empieza a principios de septiembre hasta mediados de junio, entorno 180 días al año. Los alumnos entran de lunes a viernes a las 08:45 y salen a las 4:30, exceptuando los viernes que terminan a las 12:30. A medio día desde la 13 hasta las 15 h, tienen descanso para comer, donde se realizan dos turnos de comida en el comedor, al haber gran demanda.

El colegio está formado por clases de infantil y de primaria, teniendo tres líneas por cada curso. Por lo tanto el total de ocupación diaria en el edificio es:

Alumnos infantil	212
Alumnos primaria	461
Profesores	42
Monitores de comedor	28
Cocineros	4
Personal de limpieza	8
Conserje	1
Total	756

Tabla 1. Ocupación diaria en horario lectivo.

Todo esto supone un total de 756 personas, de los cuales se quedan a comer en el comedor 550.

Por otra parte una vez que termina el horario lectivo, de mitad de junio y todo el mes de julio, se lleva a cabo la escuela de verano del municipio y se quedan a comer niños con la beca de comedor social que proporciona el ayuntamiento.

Por tanto la ocupación diaria del edificio en estos meses es de aproximadamente:

Niños escuela de verano	40
Niños beca comedor	25
Monitores	5
Cocineros	2
Personal de limpieza	4
Conserje	1
Total	77

Tabla 2. Ocupación diaria en horario no lectivo.

La ocupación es de 77 personas, por lo que en estos meses de junio y julio, como se ve en los apartados siguientes, se reducirá el consumo de ACS. El mes de agosto permanecerá cerrado el colegio.

2.4 Edificios colindantes

Los edificios colindantes no generan sombras sobre las terrazas del edificio de primaria, al estar rodeado a cierta distancia y ser chalets de altura inferior.

Figura 4. Edificios colindantes (Fuente: Google Maps).

Lo que sí podría generar sombras a ciertas horas del día, es el propio edificio, es decir, la segunda planta sobre la terraza de la primera planta que es donde se tiene pensado instalar los captadores. Este problema se tratará más adelante en el estudio de sombras.

3 Cálculo energético

3.1 Demanda de ACS

Es necesario saber la demanda de ACS en el colegio para dimensionar la instalación. Para calcularla se han empleado dos métodos:

- a) Estimar el consumo suponiendo que un 20% del agua consumida será de agua caliente.
- b) Estimar el consumo en base a valores medios de referencia establecidos por el Código Técnico de la Edificación (CTE).

a) Estimar el consumo suponiendo que un 20% del agua consumida será de agua caliente.

Los históricos del consumo del agua desde el 2005 hasta el 2015, han sido proporcionados por el ayuntamiento al ser un colegio público.

El gráfico siguiente muestra el consumo promedio de m³ al día para cada mes, de los años estudiados.

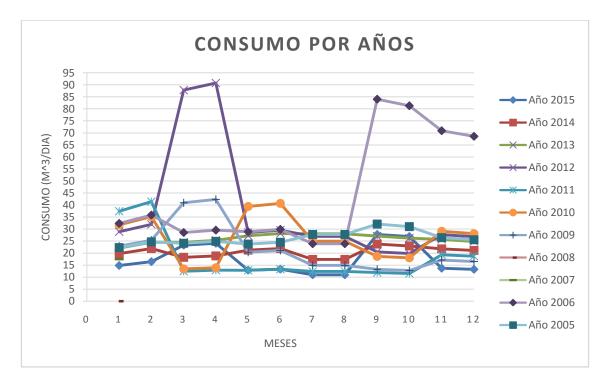


Gráfico 1. Consumo de agua fría (I/día) por mes.

Se han descartado varios años al tener valores anómalos en comparación con el resto y se ha investigado las posibles causas.

- En el año 2009-2012-2015 se produce un consumo excesivo en el mes de marzo, es debido a que en el colegio se celebran las fallas y se emplea agua para apagarla.
- El año 2010 tiene en los meses de mayo y junio una subida de consumo debido a que se celebró una fiesta especial de final de curso y en junio se llenaron las piscinas de la escuela de verano que se realiza durante el mes de julio.
- El año 2007 presenta unos consumos muy inferiores a lo largo del año en comparación con el resto de años, el cual bajaría el valor del consumo medio.
- En el año 2006 en septiembre se produce un consumo que triplica el habitual, debido a una fuga, ya que aumenta bruscamente teniendo los años anteriores a este un consumo coherente.

Los casos anteriores no influyen en el proyecto al ser empleada gran cantidad de agua fría, por lo tanto se pueden descartar a la hora de realizar el estudio, que para ello se utilizarán los consumos de los años que se muestran en el gráfico siguiente.

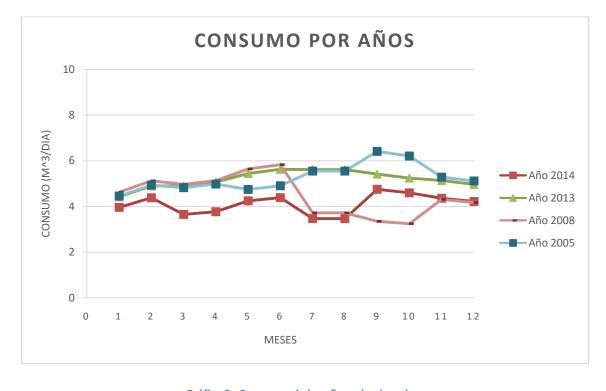


Gráfico 2. Consumos de los años seleccionados.

Tras haber analizado los consumos del histórico y haber seleccionado los años representativos, se estima que el 20 % de la demanda de cada mes es de agua caliente.

	Consumo medio agua caliente (I/día)						
Meses	Meses Años 2014 2013 2008 2005 Media(m³/día) %						%
Enero		3958	4426	4626	4458	4,37	84,18
Febrero		4382	4900	5121	4936	4,83	93,20
Marzo		3648	4903	4968	4819	4,58	88,38
Abril		3770	5067	5133	4980	4,74	91,33
Mayo		4245	5445	5642	4748	5,02	96,77
Junio		4387	5627	5830	4907	5,19	100,00
Julio		3471	5613	3723	5548	4,59	88,46
Agosto		3471	5613	3723	5548	1,038	20,00
Septiemb	re	4753	5417	3350	6417	4,98	96,08
Octubre		4600	5242	3242	6210	4,82	92,98
Noviemb	re	4360	5137	4310	5287	4,77	92,02
Diciembre		4219	4971	4171	5116	4,62	89,05

Tabla 3. Consumo medio de ACS.

En agosto se ha reducido la media de consumo hasta un 20% porque no tiene sentido que estando cerrado el colegio consuma una cantidad parecida al resto de meses, esto es debido a que las facturas son bimensuales y al hacer el reparto de consumo se ha hecho equitativamente.

Se obtiene una demanda media anual de 4453 litros al día, valor que servirá para calcular el volumen del depósito de acumulación.

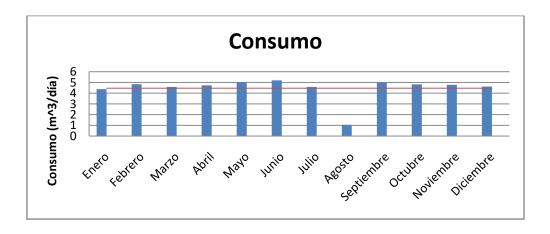


Gráfico 3. Consumo de agua caliente (I/día) por mes.

b) Estimar el consumo en base a valores medios de referencia.

El Documento Básico HE4. Ahorro de energía, (DB HE4) establece los consumos unitarios de ACS a 60ºC.

Criterio de demanda	Litros/día·unidad	unidad
Vivienda	28	Por persona
Hospitales y clínicas	55	Por persona
Ambulatorio y centro de salud	41	Por persona
Hotel *****	69	Por persona
Hotel ****	55	Por persona
Hotel ***	41	Por persona
Hotel/hostal **	34	Por persona
Camping	21	Por persona
Hostal/pensión *	28	Por persona
Residencia	41	Por persona
Centro penitenciario	28	Por persona
Albergue	24	Por persona
Vestuarios/Duchas colectivas	21	Por persona
Escuela sin ducha	4	Por persona
Escuela con ducha	21	Por persona
Cuarteles	28	Por persona
Fábricas y talleres	21	Por persona
Oficinas	2	Por persona
Gimnasios	21	Por persona
Restaurantes	8	Por persona
Cafeterias	1	Por persona

Tabla 4. Consumo unitario de ACS a 60ºC (Fuente: DB HE-4).

Se puede considerar que el proyecto trata de un restaurante, al tener el comedor que suplir la demanda de 550 comensales.

	I/día*persona	Persona	l/día
Restaurante(comedor)	8	550	4400

Tabla 5. Consumo comedor (Fuente: DB HE-4).

El valor obtenido de la demanda en el método (a) es de 4453 litros/día y el método (b) es de 4400 litros/día, ambos presentan valores prácticamente iguales. Por lo que se tomará para la realización de los cálculos una demanda de 4453 litros/día.

3.2 Demanda energética

Empleando los datos de la Tabla 3. Consumo medio de agua caliente (Cm) y los datos de densidad $\rho=1~kg/litro$, $Cp=4,18\frac{kJ}{kg~K}$, la Tc=60°C y la temperatura de red.

Los datos de la temperatura de red se han obtenido del CHEQ4, que es una herramienta informática, de carácter voluntario, que permite validar el cumplimiento de la contribución solar mínima exigida en la sección HE4 del Código Técnico de la Edificación (CTE), aprobado por Real Decreto 314/2006 de 17 de marzo actualizada por la Orden FOM/1635/2013 de 10 de septiembre, cuando las características de la instalación se encuentren incluidas en su rango de aplicación.

Por lo que se calcula la demanda energética como:

Demanda
$$\left(\frac{KJ}{dia}\right) = Cm \cdot \rho \cdot Cp \cdot (Tc - Tred)$$

Meses	T red(ºC)	Días del mes	Demanda (MJ/día)	Demanda (KWh/día)	Demanda (MJ/mes)	Demanda (KWh/mes)
Enero	9,5	31	922	256	28576	7938
Febrero	10,5	28	1000	278	28010	7781
Marzo	11,5	31	929	258	28813	8004
Abril	12,5	30	941	261	28219	7839
Mayo	14,5	31	955	265	29598	8222
Junio	16,5	30	943	262	28297	7860
Julio	18,5	31	796	221	24676	6854
Agosto	19,5	31	155	43	4816	1338
Septiembre	17,5	30	885	246	26563	7379
Octubre	15,5	31	897	249	27813	7726
Noviembre	12,5	30	948	263	28432	7898
Diciembre	10,5	31	956	265	29630	8230
Promedio	14,1		854	237		
				TOTAL	313445	87068

Tabla 6.Demanda energética de ACS.

Comparando el resultado obtenido con los cálculos, 87068 kW h, con el del CHEQ, 80723 kW h, podemos decir que hemos realizado los cálculos con coherencia, al obtener un resultado con un valor del mismo rango.

3.3 Contribución solar mínima

La contribución solar mínima anual es la fracción entre la energía solar aportada exigida y la demanda energética anual.

El Documento Básico HE-4 exige una contribución solar mínima en función de la zona climática y de la demanda de ACS. Estos datos se obtendrán del siguiente mapa y tabla.

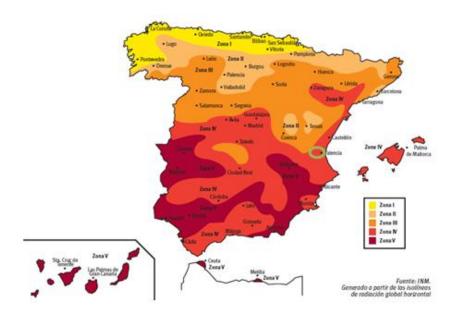


Figura 5. Mapa de distribución de las zonas climáticas (Fuente: INM).

Localizando el municipio de L'Eliana en el mapa anterior, se determina la zona climática a la que pertenece, la cual es, la zona IV.

Si se considera que se trata de una instalación de caso general, al ser la fuente de apoyo el gas natural, y sabiendo que la demanda diaria media del centro escolar es de 4453 l/día y que se encuentra en la zona climática IV, la sección HE4 establece una fracción mínima exigida para el proyecto del 50%.

Demanda total de ACS del			Zona climátic	a	
edificio (l/d)	1	II	ш	IV	V
50 - 5.000	30	30	40	50	60
5.000 - 10.000	30	40	50	60	70
> 10.000	30	50	60	70	70

Tabla 7. Contribución solar mínima anual para ACS en % (Fuente: DB HE-4).

4 Dimensionado de la instalación

4.1 Descripción general de la instalación

El proyecto consistirá en una instalación centralizada de captación, acumulación y apoyo, con intercambiador independiente, porque son más económicas, fáciles de integrar y tienen buenos rendimientos.

Está compuesto por dos circuitos:

- El circuito primario: Se encarga de captar la radiación solar mediante los captadores y transformarla en energía térmica, que se transfiere mediante un fluido caloportador hasta el intercambiador, donde se realiza el intercambio de calor con el circuito secundario.
- El circuito secundario: Está compuesto por el intercambiador, el acumulador y el sistema de apoyo. Se encarga de transferir y almacenar la energía térmica generada por los captadores durante los periodos en los que la captación sea elevada, y así poder disponer de ella cuando se produzcan los picos de consumo. El acumulador está conectado en línea con el sistema de apoyo, una caldera mural de gas, que es el sistema actual que satisface el ACS.

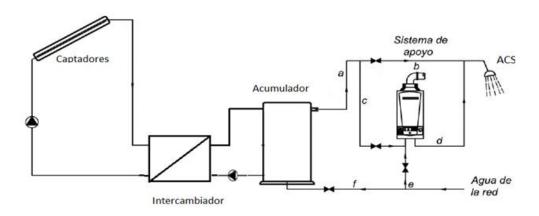
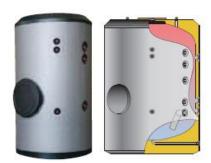


Figura 6. Esquema general de la instalación (Fuente: Asignatura de Energía Solar Fototérmica).

4.2 Componentes de la instalación


4.2.1 Depósito de acumulación

Se dispondrá de un acumulador centralizado situado en la sala de máquinas.

El volumen del depósito de acumulación se rige en base a la demanda media diaria del edificio, el cual es de 4453 litros/día. Se debe seleccionar un volumen de acumulación que sea comercial, para el proyecto el más adecuado es un depósito de 5000 litros de capacidad de la empresa "Lapesa" concretamente el modelo "MVV5000RB", depósito de acero vitrificado sin serpentín.

El acumulador tiene varias conexiones:

- En su parte superior, se sitúa la conexión para extraer el agua para el consumo.
- En su parte inferior, se encuentra la conexión de agua fría hacia el intercambiador y la conexión de retorno de consumo y agua fría de red.

Capacidad (litros)	5000
Temperatura máxima (ºC)	90
Presión máxima (bar)	8
Diámetro (mm)	1910
Longitud (mm)	2710

Tabla 8. Características del acumulador (Fuente: Catálogo Lapesa)

Figura 7. Acumulador (Fuente: Catálogo Lapesa).

4.2.2 Captadores solares

4.2.2.1 Localización

Los captadores se podrían instalar en las terrazas del edificio principal, tanto en la del primer piso como en el segundo. Pero se decide situarlos en la terraza del primer piso por cercanía a los puntos de consumo, la cocina y el comedor, y a la sala de máquinas, donde se encontrará el acumulador. También facilitando así los trabajos de instalación y mantenimiento.

En el plano expuesto abajo, se puede ver la terraza de la primera planta donde se situarán los captadores.

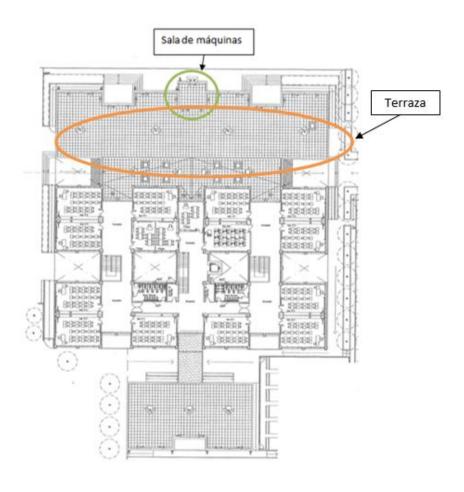
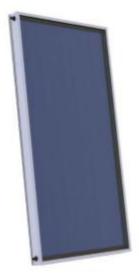



Figura 8. Edificio de primaria (Fuente: Colegio Virgen del Carmen)

4.2.2.2 Modelo de captador

El captador seleccionado para el proyecto es el modelo "NEO24" de "Astersa" que tiene las siguientes características.

Captador solar plano	NEO 24
Área (m²)	2,41
Alto (mm)	2098
Ancho (mm)	1256
Peso (kg)	47
Rendimiento (%)	75.70
Coeficiente de pérdidas k1	3,994
k2	0,009
Capacidad Térmica Efectiva (J/K)	8,931
Caudal (l/h/m²)	64,8

Tabla 9. Características del captador solar (Fuente: Catálogo Astersa).

Figura 9. Captador solar (Fuente: Catálogo Astersa).

- Material absorbedor: Lámina de cobre.
- Cubierta frontal: Vidrio solar templado de alta transparencia, resistente y bajo contenido en hierro, con espesor de 3,2 mm. Transmisividad>91%.
- Caja: Aislamiento de lana mineral de alta densidad.
- Hidráulica: Fluido caloportador agua y glicol (recomendado concentración 30%). Presión máxima de trabajo 10 bares.
- Norma de certificación: EN 12975-1:2000, AC: 2002, ME-542-01.

Este modelo se encuentra además en la base de datos de "CHEQ4" lo que nos permite seleccionarlo para el estudio energético.

4.2.2.3 Número de captadores

Cálculo teórico

Para calcular el número óptimo de captadores solares se ha realizado una estimación inicial.

1º. Se obtiene la superficie (m²) de captación necesaria para cubrir la demanda de ACS. Según el CTE50<Volumen/Superficie captación<180 l/m², pero se ha establecido 75 l/m² al ser un valor habitual de la capacidad del captador.

$$S = \frac{Volumen\ acumulador}{Capacidad\ colector} = \frac{5000}{75} = 66,67\ m^2 \rightarrow 67m^2$$

2º Sabiendo la superficie necesaria y el modelo de captador, se calcula el número de captadores necesarios.

$$N^{\circ}$$
 captadores = $\frac{Superficie}{\text{Área cantador}} = \frac{67}{2,41} = 27,8 \text{ captadores} \rightarrow 28 \text{ captadores}$

Comprobación con el programa CHEQ4

Si se introducen los 28 captadores en el CHEQ4, se obtiene una fracción solar de 68%, que cumple la contribución solar mínima establecida para el municipio de L'Eliana (zona IV de un 50%), teniendo margen.

Por lo que se puede reducir el número de captadores para reducir así el coste de la instalación. Si se reduce a un valor de 24 captadores se obtiene una fracción solar de un 60%, valor que aún cumple con el mínimo y tiene un rango para poder cubrir posibles pérdidas.

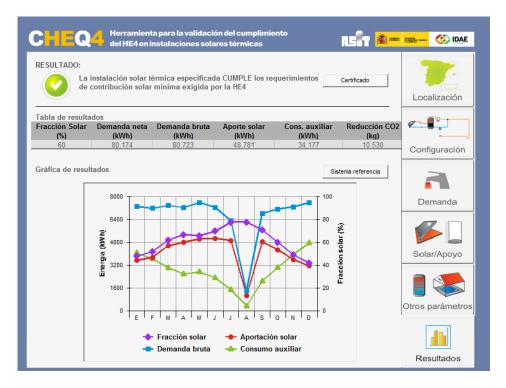


Figura 10. Certificado de validación CHEQ4

4.2.2.4 Distribución de los captadores

La distribución se realizará de tal manera que se minimicen las pérdidas por sombras, orientación e inclinación, para optimizar el rendimiento y el espacio disponible.

Por lo tanto se decide que la instalación solar va a estar formada por un total de 24 captadores agrupados en tres módulos de 8 captadores cada uno, situados en fila en paralelo con el murete de la terraza. Suponen un total de 57,84 m² de superficie de captación.

Se ha comprobado la distancia mínima necesaria entre el murete de la terraza y las placas para evitar posibles sombras. Se considera el muro como una superficie vertical de longitud=altura del muro y de inclinación $\beta=90^\circ$.

$$ho = 90 - latitud - 23.5 = 90 - 39,34 - 23,5 = 27,16^{\circ}$$

$$Z = Sen(\beta) \cdot l = Sen(90) \cdot 700 = 700 \text{ mm}$$

$$d = \frac{Z}{tan(ho)} = \frac{700}{tan(27,16)} = 1364,4 \text{ mm}$$

Tras los cálculos anteriores se ha decidido establecer una separación entre los módulos y respecto al muro en 1,5 m, evitando así posibles sombras y facilitando las tareas de montaje y mantenimiento.

Se ha decidido realizar la distribución de la instalación como se ve en la figura a continuación:

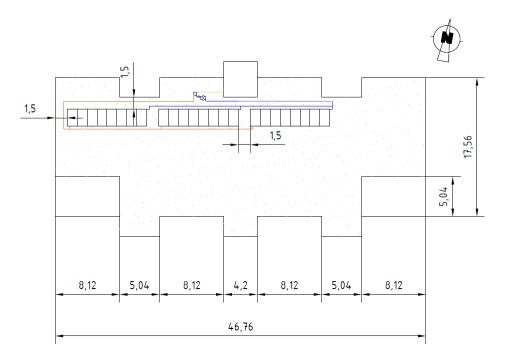


Figura 11. Plano de la terraza.

4.2.2.5 Estudio de pérdidas por sombras

Se ha realizado el estudio de pérdidas para comprobar que la distribución establecida es óptima, para ello se sigue el método HE-4.

Pérdidas por orientación

Para minimizar las pérdidas se ha decidido orientar los captadores solares hacia el sur geográfico, es decir azimut=0, así conseguimos que el valor por pérdidas de orientación sea de 0.

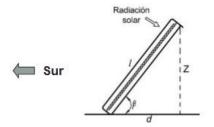


Figura 12. Captador solar (Fuente: Asignatura Energía Solar Fototérmica).

Pérdidas por inclinación

Para optimizar la captación durante todo el año se ha decidido instalar los captadores con un inclinación de 45º, en vez de a la latitud del lugar de estudio, L'Eliana, que es de 39,34º, ya que en un rango de ±10º las pérdidas que se producen son bajas.

Mediante la figura siguiente se puede determinar el conjunto de pérdidas de orientación e inclinación, teniendo en cuenta que las pérdidas respecto a la orientación son 0, las pérdidas de inclinación tienen un rango de 0-5%, pero se ha estimado concretamente unas pérdidas de un 3%.

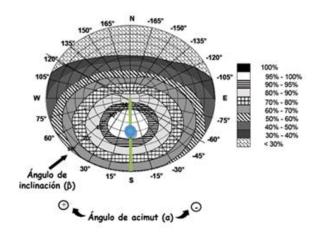


Figura 13. Pérdidas de radiación solar por orientación e inclinación (Fuente: Asignatura Energía Solar Fototérmica)

Pérdidas por sombras

Para calcular las pérdidas por sombras se han establecido 4 puntos de estudio, que hay que aplicar a los tres módulos de placas que tiene la instalación. Se sitúan los ejes cartesianos sobre el centro del módulo. La numeración de los módulos es de oeste a este, siendo el primero el más hacia el oeste.

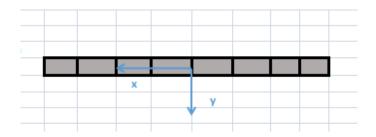


Figura 14. Módulo captador solar

Cálculos realizados mediante un Excel utilizada en la asignatura, que permite introducir las coordenadas "X", "Y", "Z" y obtener el valor del azimut y la inclinación.

Módulo 1 (naranja)

	Α	В	С	D
x (m)	-6,53	40,23	8,97	24,5
y (m)	15	15	15	15
z (m)	4	4	4	4
Azimut (º)	-24	70	31	48
Inclinación (º)	14	5	13	8

Tabla 10. Módulo 1 sombras.

Módulo 2 (azul)

	A'	В'	C'	D'
x (m)	-18,08	28,68	-2,58	15,5
y (m)	15	15	15	15
z (m)	4	4	4	4
Azimut (º)	-50	62	-10	46
Inclinación (º)	10	7	15	11

Tabla 11. Módulo 2 sombras.

Módulo 3 (verde)

	Α"	В"	C"	D"
x (m)	-30,08	16,68	-14,6	0,92
y (m)	15	15	15	15
z (m)	4	4	4	4
Azimut (º)	-64	48	-44	4
Inclinación (º)	7	10	11	15

Tabla 12. Módulo 3 sombras.

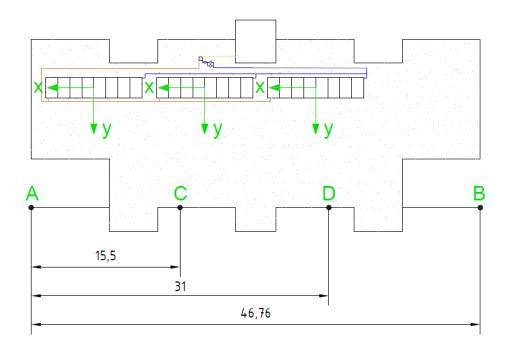


Figura 15. Plano del estudio de sombras

Con el azimut y la inclinación se ha calculado el porcentaje de pérdidas atendiendo a los perfiles de sombra ilustrados en la figura 16.

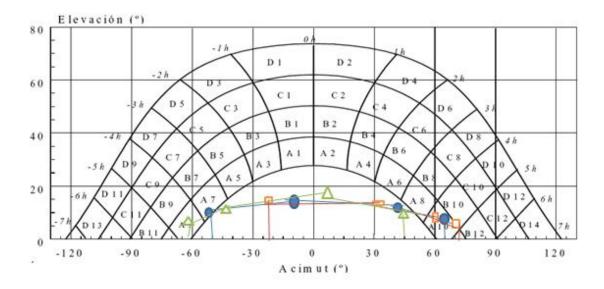


Figura 16. Diagrama sombras (Fuente: Asignatura Energía Solar Fototérmica)

De esta manera, se obtiene un valor de pérdidas por sombras de un 0,64 %, que es un porcentaje prácticamente despreciable.

Comprobación de la normativa

Según el DB HE-4, las condiciones que deben cumplir este tipo de instalaciones son:

- Los captadores se deben situar de tal forma que el día más desfavorable del periodo de utilización no haya más de un 10% de su superficie útil sombreada.
- El conjunto de las pérdidas de orientación e inclinación no deben superar el 10%.
- Las pérdidas totales en el caso general no pueden superar el 15%.

La instalación cumple dichas restricciones:

- Pérdidas por orientación e inclinación → Entre 3% <10%</p>
- Pérdidas por sombras →0,64% <10%
- Pérdidas totales → 3%+0,64% <15%

Se realizaron fotos de la terraza, el día 18 de diciembre cercano al día más desfavorable del año, el solsticio de invierno, (21 diciembre). Estas fotos acreditan que donde se situarían los captadores no habría sombras.

Figura 17. Foto sombras terraza

4.2.2.6 Conexión de los captadores

Las conexiones de los captadores, se tienen que diseñar intentando minimizar las pérdidas de carga de la instalación.

Para ello se deben realizar todas las conexiones en paralelo, por una parte las conexiones entre captadores dentro de un mismo módulo, consiguiendo así que las pérdidas de todos ellos sean equivalentes a las de uno solo y por otra parte las conexiones entre módulos, consiguiendo que las pérdidas de los tres módulos sean las de uno solo. Por lo tanto, combinando ambas conexiones se consigue reducir las pérdidas totales.

También, el circuito debe estar equilibrado hidráulicamente, esto se consigue mediante la aplicación del retorno invertido, que consiste en que la pérdida de carga debe ser independiente del recorrido que haga el fluido en la instalación. Por tanto el recorrido desde el punto "a" al "b" es el mismo, independientemente del camino que recorra el fluido, de este modo el caudal por cada captador es el mismo y las pérdidas iguales.

En la figura siguiente se pueden ver las conexiones de los captadores.

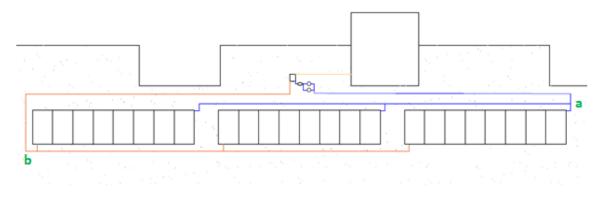


Figura 18. Plano distribución de tuberías.

4.2.2.7 Sistema de anclaje de los captadores

Para establecer el anclaje de los captadores, se ha calculado la fuerza máxima que puede soportar el captador en función del viento.

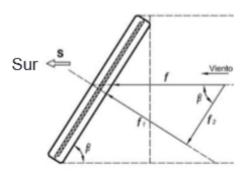

CARACTERISTICA / VALOR	(Velocidad m/s)	(Velocidad Km/h)	FECHA	HORA
Racha de Viento más alta Registrada:	26.4	95.04	14-01-2010	11:10
Velocidad Media más alta Registrada:	6.7	24.12	16-12-2011	

Tabla 13. Velocidad del viento (Fuente: Aemet).

v (m/s)	v (km/h)	P(N/m ²)
5	18	15
15	54	138
28	100	479
42	151	1078
56	201	1917

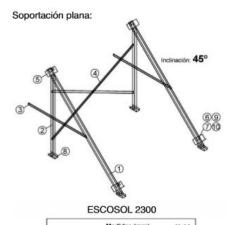

Realizando una interpolación lineal obtenemos un valor de presión frontal del viento de 35,91 N/m² para la velocidad media más alta.

Tabla 14. Velocidad y presión frontal del viento (Fuente: Asignatura Energía Solar Fototérmica).

$$f = P \cdot S \cdot sen \ \beta = 35,91 \cdot 2,41 \cdot sen \ (45) = 61,195 \ N$$
$$f1 = f \cdot sen \ \beta = 61,195 \cdot sen \ (45) = 43,27 \ N$$

Figura 19. Fuerza que actúa sobre el captador (Fuente: Asignatura Energía Solar Fototérmica).

		Medidas (mm)	Unid.
1	1710		1
2	t.t	1153	1
3	+	965	1
4	+	760	4
5	^	Accesorios	1
6	â	Accesorios	1
7	=	Accesorios	4
8		Accesorios	2
9	-	M8 X 20	14
10	0	Tuerca M8	8

Se ha seleccionado una estructura para lo captadores solares, del fabricante "Escosol" el modelo "SO 05 112 ALPIN RKQ 2500".

Es un kit que permite dimensionar baterías de cualquier número de colectores. La estructura está diseñada para cubiertas planas y captadoras con una inclinación de 45º y está fabricada con acero inoxidable. La estructura se puede fijar al suelo sobre zapatas de hormigón o directamente sobre la terraza.

A pesar que el fabricante directamente no cita que pueda soportar la fuerza anteriormente calculada, se considera que es adecuada al ser una estructura rígida y resistente.

Figura 20. Estructura de fijación (Fuente: Catálogo Escosol)

4.2.3 Intercambiador de placas

El intercambiador será exterior al depósito de acumulación debido a que su volumen es mayor a 1500 litros, pudiendo así obtener la potencia necesaria sin limitaciones.

Para seleccionar el más adecuado, nos fijamos en la potencia. Según el CTE la potencia de intercambio deber ser mayor o igual a 500 W por m² de captador pero se aconseja una potencia entre 600 y 660 W por m² de captador.

Superfice de captación = n° placas · sup. cap = $24 \cdot 2,41 = 57,84 \text{ m}^2$

Potencia, int
$$req = 660 \frac{W}{m^2} \cdot 57,84 m^2 = 38,174 kW$$

Buscando en catálogos, del fabricante "Salvador Escoda", se selecciona el modelo IDS30-20M.

Producción de ACS con Energía Solar Térmica

Ref. Escoda	Modelo	Nº Placas	Nº Paneles Solares 2 m²	Potencia Energ. Solar	Caudal I/h Caldera (1º)	Caudal I/h ACS (2º)
CC 08 002	IDS14-20H	20	5	7 kW	600	600
CC 08 002	IDS14-20H	20	10	14 kW	1200	1200
CC 08 003	IDS14-30H	30	15	21 kW	1800	1800
CC 08 004	IDS14-40H	40	25	35 kW	3000	3000
CC 08 022	IDS30-20M	20	30	40 kW	3500	3500
CC 08 023	IDS30-30M	30	35	50 kW	4400	4300
CC 08 024	IDS30-40M	40	45	70 kW	5300	5200
CC 08 052	IDS110-20M	20	90	100 kW	11100	10600
CC 08 053	IDS110-30M	30	135	150 kW	15900	15000
CC 08 054	IDS110-40M	40	175	200 kW	21000	20200

Primario: 55°C/45°C Secundario: 35°C/45°C PdC Circuito Solar: Max. 3 m.c.a.

Tabla 15. Modelos de intercambiadores (Fuente: Catálogo Salvador Escoda).

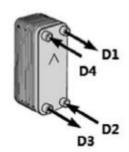
IDROTED CONTRACTOR OF THE PARTY OF THE PARTY

Características:

Peso: 3,7 kg

Medidas: 57 x 110 x 310 mm

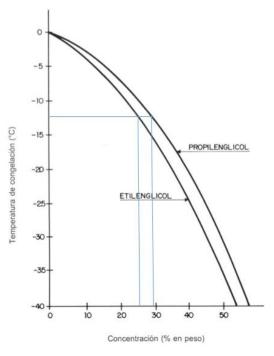
■ Placas: acero inoxidable


Pérdidas de carga máximas de 3

m.c.a.

 El diseño crea un intercambiador de calor que consta de dos circuitos separados.

Figura 21. Intercambiador (Fuente: Catálogo Salvador Escoda).


4.2.4 Fluido caloportador

El fluido caloportador, mezcla de agua y refrigerante, va a circular por el circuito primario aumentando la temperatura de ebullición y disminuyendo la temperatura de congelación.

Para determinarlo se necesita saber la temperatura mínima histórica del municipio del proyecto. La temperatura mínima histórica se dio el 11 de febrero de 1956 con un valor de -7,2 ºC.

Si aplicamos el factor de seguridad que es de 5ºC, obtenemos una temperatura mínima de seguridad de -12,2 ºC.

Utilizando el gráfico en función de la temperatura mínima de seguridad, obtenemos dos resultados posibles dependiendo del tipo de refrigerante:

- Propilenglicol: Un mezcla con concentración del 29 % de refrigerante y 71% de agua.
- Etilenglicol: Un mezcla con concentración del 25% de refrigerante y un 75% de agua.

Gráfico 4. Curvas de congelación en función de la concentración (Fuente: Asignatura Energía Solar Fototérmica)

Seleccionamos la opción del propilenglicol porque el fabricante nos lo recomienda, es menos tóxico y es biodegradable.

Obtenemos las características del fluido mediante las siguientes gráficas.

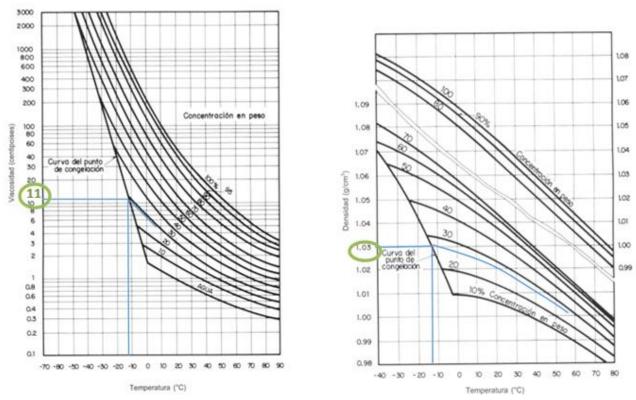


Gráfico 5. Viscosidad y densidad del fluido (Fuente: Asignatura Energía Solar Fototérmica)

4.2.5 Sistema hidráulico del circuito primario

4.2.5.1 Tuberías

Dimensionado de tuberías

Siguiendo el CTE, en el circuito primario se utilizará como material de las tuberías el cobre, al ser uno de los más adecuados para ACS junto con el acero inoxidable. También establece que el caudal que circula por el captador debe estar entre 50 y 75 l/h/m², siguiendo los datos del fabricante, el caudal es de 64.8 l/h/m² por lo tanto cumple la normativa.

El gráfico 6 permite determinar el diámetro interior y la velocidad del agua en las tuberías, conocido el caudal y la pérdida de carga por rozamiento. El gráfico supone una temperatura del agua de 45º, como en el proyecto la establecemos en 60º habrá que utilizar factores de corrección.

Se dividirá el circuito hidráulico en dos caudales para simplificar la instalación:

Tuberías por las cuales circula el caudal Q

Son las tuberías que van desde el intercambiador hasta la primera bifurcación, tanto para la impulsión como para el retorno.

Factores limitantes:

Velocidad máxima (m/s)	1.3
Caudal (m3/h)	3,75
Pérdidas máximas (mm.c.a)	40

Recomendada para el circuito primario, siendo el diámetro mínimo.

Recomendado por el fabricante para el captador seleccionado, $Q=64.8\frac{litros}{h~x~m^2}\cdot 57.84~m^2=3748.03~litros/h$

Obligatoriamente pérdidas de carga≤100 m.c.a por metro lineal de tubería pero aconsejable perdidas ≤ 40 mm.c.a

Tabla 16. Factores limitantes de tuberías.

En el gráfico se debe seleccionar el diámetro de tubería siguiente al mínimo, que es el que corta con la curva de caudal en el punto más cercano a las pérdidas de carga máximas.

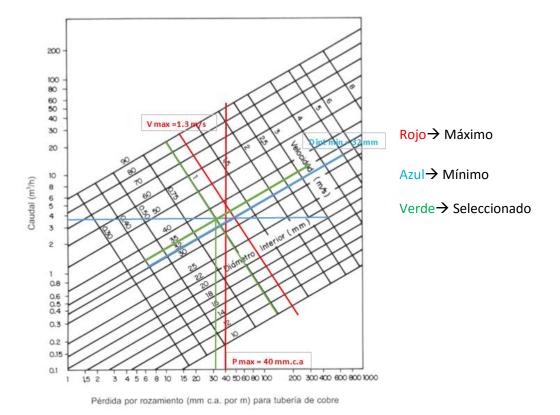


Gráfico 6. Dimensionado de la tubería para el caudal Q (Fuente: Asignatura Energía Solar Fototérmica)

Se ha seleccionado una tubería con las siguientes características:

Velocidad (m/s)	1
D interior (mm)	35
Pérdidas de carga (mm.c.a)	31

Tabla 17. Tubería seleccionada caudal Q.

Tuberías por las cuales circula el caudal Q/3

Son las tuberías que se encuentran detrás de la primera bifurcación, en este caso al tener tres módulos idénticos y para que este equilibrado hidráulicamente el caudal se divide entre tres. Por lo tanto se tiene por dichas tuberías un caudal de 1.25 m³/h.

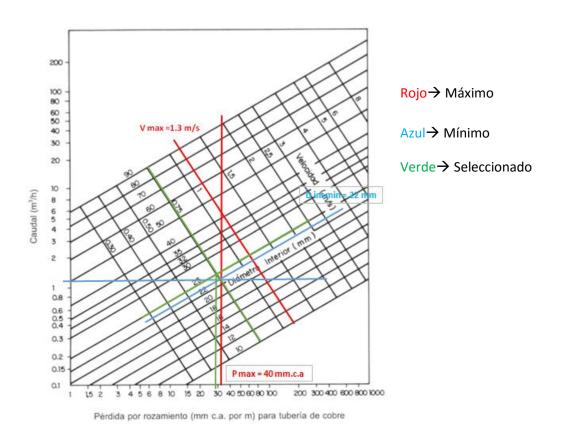


Gráfico 7. Dimensionado de la tubería para el caudal Q/3 (Fuente: Asignatura Energía Solar Fototérmica)

Se ha seleccionado una tubería con las siguientes características:

Velocidad (m/s)	0.75
D interior (mm)	25
Pérdidas de carga (mm.c.a)	29.9

Tabla 18. Tubería seleccionada caudal Q/3.

Ahora se deben seleccionar las tuberías comerciales que cumplan las características obtenidas. Se ha determinado mirando el catálogo de "Global Cobre" en tuberías de tipo K, que su uso es para refrigeración y para fluidos con alta presión.

Diámetro Nominal	Diámetr	o Exterior	Espesor de Pared	Espesor	Peso Teórico	Presión de Trabajo
pulg.	pulg.	mm	pulg.	mm	kg/m	Psi a 38°C
1/4	3/8	9,52	0,035	0,89	0,216	1595
3/8	1/2	12,70	0,049	1,24	0,400	1745
1/2	5/8	15,87	0,049	1,24	0,512	1375
5/8	3/4	19,05	0,049	1,24	0,622	1135
3/4	7/8	22,22	0,065	1,65	0,954	1315
1	1 1/8	28,57	0,065	1,65	1,249	1010
1 1/4	1 3/8	34,92	0,065	1,65	1,548	820
1 1/2	1 5/8	41,27	0,072	1,83	2,024	765
2	2 1/8	53,97	0,083	2,11	3,066	665
2 1/2	2 5/8	66,67	0,095	2,41	4,360	520
3	3 1/8	79,37	0,109	2,77	5,953	605
3 1/2	3 5/8	92,07	0,120	3,05	7,619	570
4	4 1/8	104,77	0,134	3,40	9,688	555

Tabla 19. Selección tubería comercial (Fuente: Catálogo Global Cobre)

Por lo tanto se calcula el diámetro interior real de la tubería.

■ Tuberías por las cuales circula el caudal Q:

Dinterior comercial = Dexterior $-2 \cdot espesor = 41,27 - 2 \cdot 1,83 = 37,61 \text{ mm}$

■ Tuberías por las cuales circula el caudal Q/3:

Dinterior comercial = $28.57 - 2 \cdot 1,65 = 25.27 \, mm$

Dichos valores un poco superiores al obtenido con la gráfica anterior, pero podemos considerarlo como válido, al poder haber cometido errores de precisión en el gráfico ya que dichos valores son próximos.

Aislante de tuberías

El aislante de las tuberías es importante para reducir las pérdidas calor.

El espesor del aislante se determinará mediante la siguiente tabla, sabiendo los diámetros exteriores y la temperatura de operación, 60ºC. Los valores de la tabla calculados están calculados para una conductividad térmica típica de un aislante de 0.04 W/mK.

Fluido interior caliente						
Diámetro exterior	Temperatura del fluido (°C) (**)					
(mm) (*)	40 a 60 61 a 100 101 a 180					
D ≤ 35	25	25	30			
35 < D ≤ 60	30	30	40			
60 < D ≤ 90	30	30	40			
90 < D ≤ 140	30	40	50			
140 < D	35	40	50			

Tabla 20. Aislante tuberías (Fuente: Asignatura de Energía Solar Fototérmica)

Condiciones de seguridad:

Para las tuberías situadas en el exterior, lo valores de la tabla se incrementarán 10 mm como mínimo.

Las redes de tuberías que tengan funcionamiento continuo deben aumentar el espesor en 5 mm.

Se obtiene unos valores de espesor de:

Tuberías por las cuales circula el caudal Q:

espesor =
$$30 + 10 + 5 = 45 \text{ mm}$$

Tuberías por las cuales circula el caudal Q/3:

espesor =
$$25 + 10 + 5 = 40 \text{ mm}$$

Longitud de tuberías

Una vez hecha la distribución de los captadores sobre la terraza, se ha determinado la longitud de las tuberías tanto de impulsión como de retorno.

Circuito de impulsión

Tuberías por las cuales circula el caudal Q, con un diámetro aproximado de 35 mm:

$$Limp_0 = 0.5 + 16.7 + 0.4 + 0.16 + 0.6 = 18.36 m$$

Tuberías por las cuales circula el caudal Q/3, con un diámetro aproximado de 25 mm:

$$L imp_{0/3} = 0.45 \cdot 3 + 0.3 \cdot 3 + 11.54 \cdot 2 = 25.33 m$$

La longitud de tubería total de impulsión es:

$$Limp = Limp_0 + Limp_{0/3} = 18,36 + 25,33 = 43.69 m$$

Circuito de retorno

Tuberías por las cuales circula el caudal Q, con un diámetro aproximado de 35 mm:

$$Lret_0 = 0.8 + 16.4 + 3.5 + 0.73 = 21.43 m$$

Tuberías por las cuales circula el caudal Q/3, con un diámetro aproximado de 25 mm:

$$L ret_{0/3} = 11,55 \cdot 2 + 0,44 \cdot 3 = 24,42 m$$

La longitud de tubería total de retorno es:

$$Lret = Lret_0 + Lret_{0/3} = 21,43 + 24,42 = 45.85 m$$

La longitud de las tuberías para cada módulo de captadores ha de ser la misma para que este equilibrado.

$$Lmod = 0.5 + 16.7 + 0.4 + 0.16 + 0.6 + 0.45 + 0.3 + 0.44 + 11.54 \cdot 2 + 0.73 + 3.5 + 16.4 + 0.8 = 64.06 m$$

De los 64,06 m \rightarrow 39,79 m son de caudal Q, con diámetro de 35 mm.

 \rightarrow 24,27 m son de Q/3, con diámetro de 25 mm.

4.2.5.2 Pérdidas de carga

Pérdidas de carga en las tuberías

Para determinar las pérdidas de carga de las tuberías del circuito primario, hay que tener en cuenta la temperatura de operación del sistema de ACS, que en este proyecto es de T=60º.

La tabla muestra los factores de corrección de temperatura necesarios al ser la temperatura de operación distinta a 45°C.

Temperatura		10	20	40	45	50	60	00	90	95
del agua (°C)	,	10	20	40	45	30	60	80	90	93
Factor corrector	1.24	1.18	1.09	1.02	1.00	0.99	0.96	0.92	0.91	0.91

Tabla 21. Factor de corrección para temperaturas medias del agua distintas de 45°C (Fuente: Asignatura Energía Solar Fototérmica).

Obtenemos un factor de corrector de temperatura K1=0,96

Como el fluido caloportador es una mezcla de agua y anticongelante, es necesario aplicar otro factor de corrección, K2.

Para ello necesitamos saber la viscosidad del agua a 60°C, $v_{agua~(60^{\circ}C)}=0.467~centipoises$ y la viscosidad del fluido caloportador, también a 60°C, (29%Propilenglicol-71%Agua), $v_{mezcla}=0.95~centipoises$, dicho valor obtenido con el gráfico 8.

Por lo tanto el factor corrector de viscosidad del fluido es:

$$K2 = \sqrt[4]{\frac{\nu_{mezcla}}{\nu_{agua (60^{\circ}C)}}} = \sqrt[4]{\frac{0.95}{0.467}} = 1.19$$

Gráfico 8. Viscosidad del fluido caloportador (Fuente: Asignatura Energía Solar Fototérmica).

Una vez obtenidos los factores de corrección, se deben aplicar a las pérdidas de carga obtenidas anteriormente con el gráfico.

Tuberías por las cuales circula el caudal Q, con un diámetro aproximado de 35 mm.

$$Perdidas\ de\ carga_{reales} = Perd_{tuber\ ia} \cdot K1 \cdot K2 = 31 \cdot 0,96 \cdot 1,1943 = 35,5\ mm.\ c.\ a\ por\ m$$

Como el circuito está equilibrado hidráulicamente, para calcular las pérdidas en las tuberías, solo es necesario tener en cuenta la longitud del circuito cerrado para un módulo, con caudal Q.

$$P_{tub~Q} = Perd.~de~carga_{reales}~\cdot~Longitud_{modQ}~=~35, 5~\cdot~39, 79~=~1412, 5~mm.~c.~a~=~1, 4~m.~c.~a~=~1, 4~m.~c.~a~=~1,$$

Tuberías por las cuales circula el caudal Q/3, con un diámetro aproximado de 25 mm.

Perdidas de carga
$$_{reales} = Perd_{tuber ia} \cdot K1 \cdot K2 = 29.9 \cdot 0.96 \cdot 1.1943 = 34.3 \ mm. \ c. \ a \ por \ m$$

Para saber las pérdidas de carga se necesita tener en cuenta la longitud de tubería con Q/3 en el circuito de un módulo.

$$P_{tub\ 0/3} = Perd.\ de\ carga_{reales} + Longitud_{mod\ Q/3} = 34,3 \cdot 24,27 = 832,5\ mm.\ c. = 0,8\ m.\ c.\ a$$

Las pérdidas de carga totales son:

$$P_{tub} = P_{tub \ 0} + P_{tub \ 0/3} = 1.4 + 0.8 = 2.2 \ m. c. a$$

Pérdidas de carga en los captadores

El fabricante de los captadores, "ASTERSA" no proporciona las pérdidas de carga del captador. Pero si se puede saber que las pérdidas totales al estar los captadores conectados en paralelo serán iguales a las de un único captador solar.

Como no se tienen las pérdidas de carga exactas para el captador seleccionado, se han buscado varios casos para determinar y ajustar dichas pérdidas.

La primera opción es la siguiente tabla que proporciona el fabricante para todos sus productos de la gama del captador seleccionado.

	18	20M	24	26
Caudal recomendado por captador (I/h)	80	90	110	120
Pérdida de carga con Q rec. (mm.c.a.)	6	10	12,3	13,9

Tabla 22. Tabla de pérdidas de los captadores (Fuente: Astersa)

Sabiendo que el fabricante nos recomienda un caudal unitario de 108 l/h y con la tabla anterior, se obtiene unas pérdidas de carga de 0,01208 m.c.a.

La segunda opción es que se ha encontrado un captador del mismo fabricante con características muy parecidas al seleccionado, que sí proporciona la gráfica de las pérdidas de carga. Por lo que se han determinado en función de la siguiente gráfica.

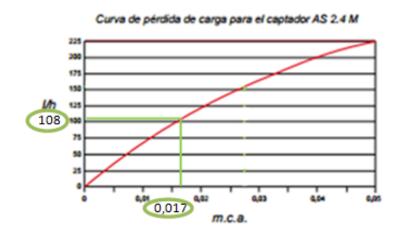


Gráfico 9. Curva pérdidas de carga del captador (Fuente: Catálogo Astersa)

Sabiendo que el fabricante recomienda un caudal unitario de 108 l/h y con el gráfico anterior, se obtiene unas pérdidas de carga de 0,017 m.c.a.

Tras analizar las dos opciones, se puede decir que ambas son un valor bajo en comparación con el valor de las tuberías, por lo que de acuerdo a la seguridad de la instalación se suponen unas pérdidas de carga de los captadores de 0,02 m.c.a.

Pérdidas de carga de los accesorios

Para el cálculo de las pérdidas de carga en accesorios se utiliza el método de las longitudes equivalentes. Para simplificar el cálculo se ha considerado que estas pérdidas son un 30% de las pérdidas totales en las tuberías.

$$P_{acc} = 0.3 \cdot P_{tub} = 0.3 \cdot 2.2 = 0.66 \text{ m. c. a}$$

Pérdidas de carga en el intercambiador

Las pérdidas de carga producidas por el intercambiador nos la indica el fabricante en la ficha técnica. En este caso para el modelo IDS30-20M del fabricante "Salvador Escoda" no las indica. Pero sabiendo el caudal y la capacidad del intercambiador se puede estimar unas pérdidas de carga de 2 m.c.a.

Pérdidas de carga del circuito

Las pérdidas de carga totales se calculan como la suma de todas las pérdidas calculadas en los apartados anteriores:

$$P_{Total\ ciruito} = P_{tub} + P_{cap} + P_{acc} + P_{int} = 2.2 + 0.02 + 0.66 + 2 = 4.88\ m.\ c.\ a$$

4.2.5.3 Purgadores

Los purgadores son necesarios para purificar el fluido de la instalación, extrayendo el aire contenido en los circuitos, evitando así posibles obstrucciones.

Se instalarán en los puntos altos de la salida de los captadores y en aquellos puntos donde pueda quedar aire acumulado.

Se emplearán purgadores manuales, ya que en el circuito primario no son aconsejables los automáticos.

Figura 22. Purgador manual

4.2.5.4 Bomba de circulación

Las bombas de circulación se encargan de bombear el fluido caloportador a un caudal y presión determinados.

En este proyecto el Q=3,75 m³/h y la altura manométrica debe compensar la pérdida de carga del circuito que es de 4,88 m.c.a.

En base a los datos anteriores, mediante las curvas características de las bombas del catálogo del fabricante "WILO", se determinará cuál es la bomba óptima para las condiciones de trabajo.

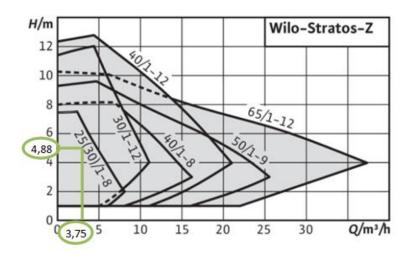


Gráfico 10. Curvas características de las bombas de circulación circuito primario (Fuente: Catálogo Wilo).

Se ha seleccionado la bomba Wilo-Stratos-Z modelo 25/1-8.

Rango de temperaturas de trabajo	080°C
Presión de trabajo máxima	10 bar
Potencia nominal	100 W
Velocidad	1400-3700 rpm
Consumo de potencia	9-125 W
Peso	4.5 kg
Caudal máximo	8,8 m ³ /h
Altura de impulsión máxima	7,69 m

Tabla 23. Características bomba (Fuente: Catálogo Wilo).

Respecto a la disposición de las bombas al ser una instalación de más de 50 m², se instalarán dos bombas iguales conectadas en paralelo, dejando una en reserva. El funcionamiento de estas será alternativo activado de forma manual por los operarios de mantenimiento de la instalación.

4.2.5.5 Vasos de expansión

El vaso de expansión se encargará de absorber el aumento de volumen que se produce cuando el fluido caloportador se expande al calentarse.

Para determinar el vaso de expansión se deben tener en cuenta diversos factores como la cantidad de fluido de trabajo en el circuito primario, las características del fluido de trabajo y la localización del vaso en la instalación para calcular la presión estática que soporta.

Volumen del circuito hidráulico:

Tramo tubería	Longitud (m)	Diámetro (m)	Área (m²)	Volumen total (litros)
Impulsión	18,36	0,035	0,00096	17,6
Impulsión	25,33	0,025	0,00049	12,4
Dotorno	21,43	0,035	0,00096	20,5
Retorno	24,42	0,025	0,00049	11,9
Total circuito	-	-	-	62,4

Tabla 24. Volumen del circuito hidráulico

- Volumen captadores $Vc = capacidad \cdot n^{\circ} capt = 1,7 \cdot 24 = 40,8 \ litros$
- Volumen intercambiador, el fabricante no lo especifica, por lo que se puede suponer un valor de 1 litro.

Volumen total de la instalación $V_T = V_{ch} + V_c + V_{int} = 62,4 + 40,8 + 1 = 104,2 \ litros$

El cálculo del volumen total del vaso se basará en la norma UNE-100-155.

$$V_t(l) = (V_T \cdot C_e + 1, 1 \cdot V_{vap}) \cdot C_{pre}$$

V → Volumen total de fluido en el circuito.

 $C_e \rightarrow$ Coeficiente de expansión o dilatación del fluido, que depende de la proporción de mezcla agua-anticongelante. Para una T_{max} =212,1 o C, se considera como tal, la temperatura de estancamiento del captador.

$$Ce = (3.24 \cdot T^2 + 102.13 \cdot T - 2708.3) \cdot 10^{-6} \cdot a \cdot (1.8 \cdot T + 32)^b = 0.163$$

Siendo a y b factores que depende del porcentaje de propilenglicol (29%).

$$a = -0.0134 \cdot (G^2 - 143.8 \cdot G + 1918.2) = 18.91$$

$$b = 3.5 \cdot 10^{-4} \cdot (G^2 - 94.57 \cdot G + 500) = -0.49$$

 $V_{vap}
ightarrow ext{Volumen vaporizado, considerado el de los captadores.}$

$$V_{vap} = V_{cap} \cdot 1,1 = 40,8 \cdot 1,1 = 44,88 \ litros$$

 $C_{pre} \rightarrow$ Coeficiente de presión

$$P_{est \acute{a}tica} = h \ (m) \cdot 0.1 \ (bar/m) = 4 \cdot 0.1 = 0.4 \ bar$$

$$P_{min} = P_{mh} + P_{est \acute{a}tica} = 0.5 + 0.4 = 0.9 \ bar$$

$$P_{max} = P_{vs} - 0.1 \cdot P_{tarado} = 3 - 0.1 \cdot 3 = 2.7$$

$$C_{pre} = \frac{(Pmax + 1)}{(Pmax - Pmin)} = \frac{(2.7 + 1)}{(2.7 - 0.9)} = 2.06$$

Tras calcular todos los parámetros necesarios el cálculo del volumen total del vaso es:

$$V_{t}\left(l\right) = \left(V_{T} \cdot C_{e} + 1.1 \cdot V_{vap}\right) \cdot C_{pre} = (104.2 \cdot 0.163 + 1.1 \cdot 44.88) \cdot 2.06 = \ 136.68 \ litros$$

Por tanto seleccionamos el vaso de expansión del fabricante "Salvador Escoda" mediante la tabla siguiente.

Vasos expansión energía solar

Código	Artículo	Capa- cidad		Dimen- siones D x H	Conex. agua Ø	Precar ga bar				
	Temperatura máxima: 130°C Precarga: 2,5 bar Apto para el uso hasta 50% anticongelante									
		MEI	MBRAN	A FIJA						
SO 09 021 SO 09 022 SO 09 023 SO 09 024 SO 09 025	5 SMF 8 SMF 12 SMF 18 SMF 24 SMF	5 8 12 18 24	10 10 10 10 8	200x250 200x340 270x310 270x415 320x430	3/4" 3/4" 3/4" 3/4"	2,5 2,5 2,5 2,5 2,5 2,5				
	ME	MBRAN	A INTE	RCAMBIAE	BLE					
SO 09 026 SO 09 027 SO 09 028 SO 09 029	35 SMR-P 50 SMR-P 80 SMR-P 100 SMR-P	35 50 80 100	10 10 10 10	360x615 360x750 450x750 450x850	1° 1° 1°	2,5 2,5 2,5 2,5 2,5				
SO 09 030	220 SMR	200	10	485x1400	1-1/2"	2.5				
SO 09 031 SO 09 032 SO 09 033	350 SMR 500 SMR 700 SMR	300 500 700	10 10 10	485x1965 600x2065 700x2145	1-1/2" 1-1/2" 1-1/2"	2,5 2,5 2,5				

Tabla 25. Selección vaso de expansión (Fuente: Catálogo Salvador Escoda).

4.2.6 Sistema hidráulico del circuito secundario

El circuito secundario está compuesto por las tuberías que unen el intercambiador con el acumulador, tanto de impulsión como de retorno, y está determinado por el caudal y por la longitud de sus tuberías.

Se podría estimar una longitud igual de la tubería de impulsión y retorno del intercambiador al acumulador de aproximadamente 8 m (3,44 m por la terraza + 4 m de altura del edificio), lo que supondría un total de 16 m de longitud.

El caudal será el mismo que en el circuito primario, Q=3,75 m³/h, para facilitar el funcionamiento y evitar problemas en el intercambiador, por lo tanto las tuberías tendrán las mismas características que por las que circula dicho caudal.

Caudal (m ³ /h)	3,748
Velocidad (m/s)	1
Diámetro interior (mm)	35
Pérdida de carga (mm.c.a por m)	31
Aislante (mm)	45

Tabla 26. Característica tubería circuito secundario.

4.2.6.1 Pérdidas de carga

Pérdidas de carga en las tuberías

Se tiene que aplicar el factor de corrección para la temperatura, ya que el acumulador se mantendrá periódicamente a temperatura superior a 70ºC para evitar problemas de legionela.

Tabla 27. Factor de corrección para temperaturas medias del agua distintas de 45°C (Fuente: Asignatura Energía Solar Fototérmica).

Utilizando la tabla anterior se calculan las pérdidas de carga como:

Perdidas de carga
$$_{reales} = Perd_{tuber \, ia} \cdot K1 = 31 \cdot 0,92 = 28,5 \, mm. \, c. \, a \, por \, m \, de \, tuber ia$$

$$P_{tub \, 0} = Perd. \, de \, carga_{reales} \, \cdot \, Longitud = 28,5 \cdot 16 = 456 \, mm. \, c. \, a = 0,46 \, m. \, c. \, a$$

Pérdidas de carga en los accesorios

Para el cálculo se ha considerado que estas pérdidas son un 30% de las pérdidas totales en las tuberías.

$$P_{acc} = 0.3 \cdot P_{tub} = 0.3 \cdot 0.46 = 0.14 \text{ m. c. a}$$

Pérdidas de carga en el intercambiador

Las pérdidas de carga producidas por el intercambiador no las indica el fabricante, pero sabiendo el caudal y la capacidad del intercambiador se puede estimar unas pérdidas de carga de 2 m.c.a.

Pérdidas de del circuito secundario

Las pérdidas de carga totales del circuito secundario son el sumatorio de las pérdidas calculadas anteriormente.

$$P_{Total\ ciruito} = P_{tub} + P_{acc} + P_{int} = 0.46 + 0.14 + 2 = 2.6\ m.\ c.\ a$$

4.2.6.2 Bomba del circuito secundario

Sabiendo el caudal que va a circular por ella y las pérdidas de carga que tiene que hacer frente, se selecciona mediante el siguiente gráfico la bomba.

El caudal es el mismo que circula por el circuito primario y las pérdidas son 2,6 m.c.a.

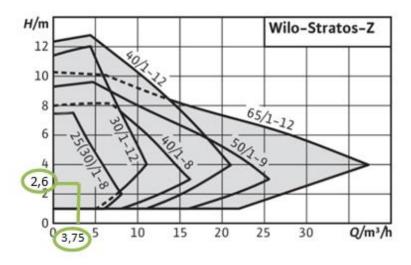


Gráfico 11. Curvas características de las bombas circuito secundario (Fuente: Catálogo Wilo)

Aunque respecto al circuito primario han disminuido las pérdidas, se ha seleccionado también la misma bomba, del fabricante "Wilo-Stratos-Z" modelo 25/1-8.

4.2.6.3 Vaso de expansión

Para determinar el vaso de expansión se necesita calcular el volumen total del circuito secundario, compuesto por el volumen del intercambiador, las tuberías y el acumulador.

- Volumen del circuito hidráulico $Vh=16\cdot 2\pi\cdot (\frac{0.035}{2})^2=30.8\ litros$
- Volumen intercambiador 1 litro
- Volumen acumulador 5000 litros

Volumen total del circuito secundario $V_T = Vh + Vint + Vac = 5031,8 litros$

El volumen total del vaso se calculará como en el circuito primario, mediante las siguientes fórmulas:

$$V_t(l) = V_T \cdot C_e \cdot C_{pre}$$

Para calcular el coeficiente de expansión o dilatación del fluido, se considera una T_{max} =80°C, al tener que calentarse periódicamente a más de 70 °C para eliminar la legionela.

$$Ce = (3.24 \cdot T^2 + 102.13 \cdot T - 2708.3) \cdot 10^{-6} = 0.026$$

Como presión mínima, se considera la presión de llenado estimada en 1,5 bar y la presión máxima, como la presión de la válvula de entrada al vaso de expansión, con un valor de 2,5 bar.

$$C_{pre} = \frac{(\text{Pmax} + 1)}{(\text{Pmax} - \text{Pmin})} = \frac{(2,5+1)}{(2,5-1,5)} = 3,5$$

Tras calcular todos los parámetros necesarios el cálculo del volumen total del vaso es:

$$V_t(l) = V_T \cdot C_e \cdot C_{pre} = 457,9 \ litros$$

Seleccionando el vaso de expansión del mismo fabricante, "Salvador Escoda", que en el circuito primario, concretamente el modelo "500 SMR".

Vasos expansión energía solar

Código	Artículo	Capa- cidad	Presió n máx. bar	Dimen- siones D x H	Conex. agua Ø	Precar ga bar					
	Precarga: 2	Temperatura máxima: 130°C Precarga: 2,5 bar Apto para el uso hasta 50% anticongelante									
		MEI	MBRAN	A FIJA		_					
SO 09 021 SO 09 022 SO 09 023 SO 09 024 SO 09 025	5 SMF 8 SMF 12 SMF 18 SMF 24 SMF	5 8 12 18 24	10 10 10 10 8	200x250 200x340 270x310 270x415 320x430	3/4" 3/4" 3/4" 3/4" 3/4"	2,5 2,5 2,5 2,5 2,5					
	ME	MBRAN	A INTE	RCAMBIAE	LE						
SO 09 026 SO 09 027 SO 09 028 SO 09 029	35 SMR-P 50 SMR-P 80 SMR-P 100 SMR-P	35 50 80 100	10 10 10 10	360x615 360x750 450x750 450x850	1" 1" 1" 1"	2,5 2,5 2,5 2,5 2,5					
SO 09 030 SO 09 031	220 SMR 350 SMR	200 300	10 10	485x1400 485x1965	1-1/2"	2,5 2,5					
SO 09 032 SO 09 033	500 SMR 700 SMR	700	10	600x2065 700x2145	1-1/2"	2,5					

Tabla 28. Selección vaso de expansión (Fuente: Catálogo Salvador Escoda)

4.2.7 Sistema de poyo

El sistema de apoyo es necesario para asegurar la demanda de ACS cuando haya escasa radiación solar o una demanda superior a la prevista. Para llevarlo a cabo, el sistema de apoyo debe estar conectado en serie con la instalación solar.

En este caso se trata de una caldera mural de gas, que está situada cerca de la zona de consumo, la cocina. Esta caldera es exclusivamente para el ACS.

Se ha establecido un sistema de apoyo en línea, el cual es capaz de proporcionar la potencia demandada como si no existiera la instalación solar. Esta opción es viable ya que actualmente se dispone de una caldera mural que cubre dicha demanda, por lo que ahorraríamos en la inversión inicial al disponer del sistema de apoyo.

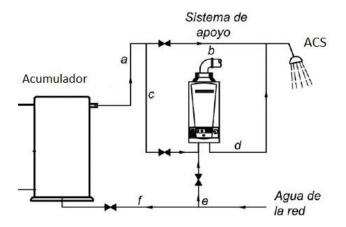


Figura 23. Esquema del sistema de apoyo (Fuente: Asignatura Energía Solar Fototérmica).

Este sistema tendría tres modos de funcionamiento:

- En caso de que el agua calentada mediante el sistema de captación alcanzará la temperatura adecuada, no pasaría por la caldera y directamente iría al punto de consumo (trayectos a y b).
- En caso de que no se alcanzará dicha temperatura, el agua procedente del acumulador, pasaría por la caldera, que la calentaría de forma instantánea hasta la temperatura de consumo (trayectos a, c y d).
- Por último, en caso de que el sistema de captación no pudiera cubrir la demanda, el sistema de apoyo calentaría agua de red y la impulsaría hasta el punto de consumo (trayectos e y d).

En el siguiente esquema se muestra la instalación actual de fontanería. Los puntos de consumo de ACS son las flechas en negrita y las flechas blancas son de agua fría.

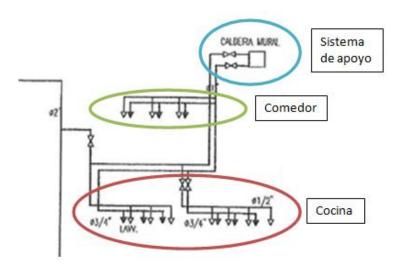


Figura 24. Edificio de primaria, esquema de fontanería (Fuente: Colegio Virgen del Carmen)

4.2.8 Sistemas de control y protección

El sistema de control se encarga de asegurar el correcto funcionamiento de la instalación, para que proporcione la mayor energía solar posible y protegerla frente a diversos factores.

Para evitar posibles congelaciones y ebulliciones del fluido, en el circuito primario se emplea, como se ha dicho en apartados anteriores, un fluido caloportador que es una mezcla de agua con anticongelante, que tiene una temperatura de congelación más baja y una temperatura de ebullición más alta que la del agua.

También se puede llevar a cabo la recirculación de agua en los circuitos, que se activará cuando la temperatura ambiente sea de 4ºC.

Respecto a la regulación de temperaturas, para mantener una diferencia de temperaturas constante se utiliza un termostato diferencial, el cual mediante la información que recibe de dos sondas de temperatura, la temperatura de salida de los captadores (punto más caliente) y la parte inferior del acumulador (punto más frio), activa o desactiva el dispositivo que acciona la bomba de circulación. Para la toma de temperaturas se utilizarán sondas de inmersión, que se introducirán en los conductos por donde pasa el fluido caloportador.

En caso de darse una sobreproducción en el sistema solar se pondrían en marcha unos disipadores de calor, aerotermos, para evitar el sobrecalentamiento de los elementos del circuito primario.

También se debe disponer de un sistema de control para que la temperatura de consumo sea inferior a 50°C, y así evitar posibles quemaduras.

Circuito antilegionela

La legionela es una bacteria que está presente cuando hay agua estancada y caliente en grandes cantidades. Como se puede dar en nuestra instalación hay que establecer un sistema de prevención y control de la bacteria, previniendo así posibles síntomas y enfermedades en los usuarios. Los criterios higiénico-sanitarios para la prevención y control de la legionelosis son una obligación legal según el Real Decreto 865/2003, cuyo artículo 13 ha sido modificado por el Real Decreto 830/2010.

En las aplicaciones de energía solar para ACS la legislación antilegionela dictamina que: "Cualquier punto del circuito de ACS de consumo se ha de poder calentar por encima de 70°C, incluso el acumulador de ACS". Ya que la bacteria muere estando a T≥70°C y se podría realizar una esterilización completa del circuito en 2h a estas temperaturas.

El método utilizado para combatir la legionela consiste en calentar periódicamente el agua almacenada en el acumulador de ACS a una temperatura superior a 70ºC. Este método tiene ciertos inconvenientes ya que reduce la producción solar.

5 Análisis económico

La inversión inicial necesaria para la instalación, se analiza posteriormente en los presupuestos, supone treinta y nueve mil setecientos noventa y tres euros y cuarenta y siete céntimos.

Se puede calcular el ahorro anual que supone la instalación solar respecto al consumo de gas natural del sistema de apoyo. La energía solar aportada al año por la instalación, obtenido con el CHEQ4, tiene un valor de 48781 KWh/año, el cual tendría que suplir la caldera de gas si no existiera la instalación. Mediante la tabla siguiente que muestra las tarifas de gas natural fijadas por el Ministerio de Industria, se calculará dicho ahorro.

	Ta	rifa
	Fijo (€/cliente)/ mes	Variable cent/kWh
TUR.1 Consumo inferior o igual a 5.000 kWh/año		4,762449 4,075049

Tabla 29. Precios de las tarifas de suministro de gas. (Fuente: BOE num.78. Octubre 2016)

En el proyecto se tiene una tarifa de tipo TUR.2. :

Termino fijo: 8,67 €/mes que es el importe debido a la disponibilidad continua del servicio.

Término Variable: 0,04075 €/KWh que es el importe de gas natural.

Ahorro anual = (8,67 €/mes · 12 meses) +
$$\left(0,04075 €/kWh \cdot \frac{48781 kWh}{0,85}\right)$$
 = 2442,65 €

Tras obtener el ahorro anual se ha calculado el periodo de retorno de la inversión:

$$Periodo\ de\ retorno = \frac{Coste\ de\ inversi\'on}{Ahorro\ anual} = 17\ a\~nos$$

Por lo tanto si consideramos una vida útil de la instalación de 25 años y en aproximadamente 17 años recuperamos la inversión, podemos decir que se amortiza la inversión aunque el beneficio económico será bajo.

6 Análisis medioambiental

En el análisis medioambiental de la instalación se ha evaluado el impacto del sistema de apoyo que tiene como fuente de energía el gas natural, debido a que produce emisiones de CO_2 a la atmósfera.

Se ha analizado la reducción de CO_2 que se obtiene al poner en funcionamiento la instalación solar. El programa CHEQ4 estima un valor de reducción de CO_2 de 10530 kg al año, si se considera aproximadamente 25 años de vida útil de la instalación, se puede decir que se ha evitado emitir 263,25 toneladas de CO_2 a la atmósfera.

7 Conclusiones

Una vez realizado el estudio completo de la instalación solar para el abastecimiento de agua caliente sanitaria del Colegio Virgen del Carmen de L'Eliana, se puede decir que se ha cumplido el objetivo principal que es mejorar la instalación actual, porque se ha reducido el consumo de gas natural, reduciendo así las emisiones y el coste de combustible. También con el dimensionado del sistema de captación se ha ajustado la fracción solar (60%) respecto a la mínima permitida por CTE para reducir así el número de captadores, teniendo una aportación solar de 48781 kWh.

Con dichas medidas se ha obtenido un ahorro anual de alrededor de 2500 euros, que han permitido ajustar el presupuesto inicial a un valor de 39793,47 euros con un periodo de amortización de 17 años.

Por otra parte se podría considerar que el proyecto establece una base para proyectos futuros como ampliar el suministro de ACS al resto de puntos de consumo del centro escolar y también la posibilidad ampliarlo para satisfacer la demanda de calefacción, aunque en ambos casos habría que redimensionar la instalación.

8 Referencias bibliográficas

Fuente

Temario de la asignatura de Energía Solar Fototérmica Manual de energía solar térmica. Diseño y cálculo de instalaciones. Javier Cañada Rivera

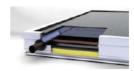
Código Técnico de la Edificación (CTE), Documento Básico HE-4.

Fuente		Fecha de consulta
Aemet	www.aemet.es http://datosclima.es/Aemethistorico/Viento.php	03/04/2016
Acumulador	http://www.lapesa.es	07/05/2016
Captador solar	http://www.astersa.net	07/05/2016
Tuberías cobre	http://www.cobreglobal.com	09/05/2016
Bombas de circulación	http://www.wilo.es/	10/05/2016
Vaso de expansión	http://www.yubasolar.net	11/05/2016
Gas natural	http://www.energia-info.es	17/05/2016
Generador de precios CYPE	http://www.generadordeprecios.info/	20/5/2016

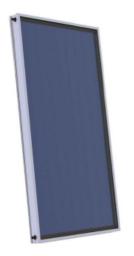
9 Anexo

Catálogos de los componentes

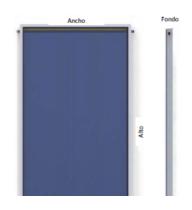
Captadores Solares Selectivos de Alto Rendimiento


astersa

Los captadores ASTERSA están fabricados bajo las más estrictas normas de calidad. Disponen de un absorbedor continuo de cobre con tratamiento selectivo BLUETEC soldado a un colector de cobre tipo aipa. Las soldaduras en el absorbedor se realizan por


coore tpo agia. Las soigaduras en el absorbedor se realizan por inducción y cada unidad producida se somete a un test de estanqueidad a 15 bar. La carcasa es de aluminio anodizado de alta calidad. La cubierta transparente es un vidilo solar templado de alta resistencia y baja emisividad. La cubierta posterior es una lamina termica de polietibano. Todo el proceso dispone de certificaciones ISO 9001 e ISO 14001.

Porta sonda integrado Norma de certificación

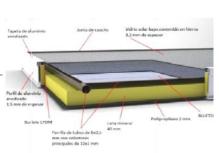

Contraseña de homologación Certificación Keymark

10 años de garantía

			NEO18	NEO20M	NEO24	NEO26	NEO20MH	NEO26H
CAPTADOR SOLAR PLA	NO							
Area de Apertura		m²	1,77	1,96	2,41	2,50	1,96	2,50
Alto		mm	1.861	2.058	2.098	2.177	1.056	1.256
Ancho		mm	1.056	1.056	1.256	1.256	2.058	2.177
Fondo		mm	94,5	94,5	94,5	94,5	64,5	94,5
Área Total		m ²	1,97	2,17	2,64	2,73	2,17	2,73
Peso		Kg	35,5	40,0	47,0	48,0	41,0	51,0
Rendimiento		%	75,70	75,70	75,70	76,90	75,70	75,70
Coeficiente de pérdidas:	k ₁	W/m2-K	3,994	3,994	3,994	3,957	3,994	3,994
•	k ₂	W/m ² -K ²	0,009	0,009	0,009	0,010	0,009	0,009
Factor corrección k ₍₅₀₎			0,94	0,94	0,94	0,94	0,94	0,94
Capacidad Térmica Efectiv	/a	J/K	8.931	8.931	8.931	11.921	8.931	8.931
ABSORBEDOR								
Emisión (ε) / Absorción (α)	%	5,0/95,0	5,0/95,0	5,0/95,0	5,0/95,0	5,09/5,0	5,0/95,0
Área del absorbedor		m ²	1,79	1,99	2,44	2,53	1,99	2,54
Material					Lámina	de cobre		
Tratamiento selectivo					BLUE	ETEC		

CUBIERTA FR	ONTAL			Faranta da alta		alatanta ir balais	antanida an bian	_
Vidrio solar				Templado de alta		esistente y bajo d r de 3,2 mm.	ontenido en nien	ю
Viurio suar						ridad >91%		
					Transmisi	nuau >3176		
CAJA								
Material				Aluminio extrusio	nado Al-6063 T5	mecanizado y a	nodizado posterio	or
spesor		mm	1,50	1,50	1,50	1,50	1,50	1,50
Juntas			Sellado es	tanco con silicon	a neutra y junta (le EPDM entre vi	drio solar y caja	de aluminio
Aislamiento				Lana m	ineral de alta de	nsidad. ξ = 0,035	W/m·K.	
Alsiamiento				δ med	lia posterior 30 K	g/m3 y lateral 50	Kg/m³.	
Espesor	Posterior	mm	40	40	40	40	40	40
	Lateral	mm	20	20	20	20	20	20
Acabado poste	rior				Polietile	no 3 mm		
HIDRÁULICA								
Fluido caloporta	ador			Agua má	s glicol. Concent	ración recomend	ada 30%.	
Capacidad		1	1,40	1,50	1,70	1,80	1,90	2,20
Caudal unitario	recomendado	l/h	80	90	108	117	90	117
Presión máxima	a de trabajo	bar	10,0	10,0	10,0	10,0	10,0	10,0
Presión de prue	eba	bar	16,0	16,0	16,0	16,0	16,0	16,0
Temperatura de	e estancamiento	°C	212,1	212,1	212,1	212,1	212,1	212,1
Relación en par	rrilla (Ø22/Ø8)	n/n	2/8	2/8	2/10	2/10	2/16	2/18
Conexiones ext	ternas			1	ubo liso de cobr	e rígido de 22 mr	n.	

NPS-4213


NPS-3913

EN 12975-1:2000; EN 12975-1:2001; EN 12975-2:2001; AC:2002; ME-542-01

NPS-4413 NPS-4513 011-7S1517F

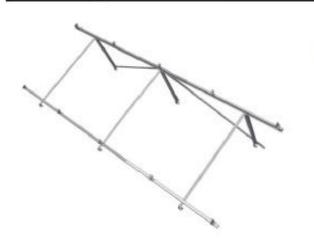
NPS-4613

NPS-13113

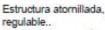
58

SUNFER ENERGY STRUCTURES

Instalación en cubierta o suelo


Instalación 1 línea

Artículo nº CVA915


Soporte diseñado para instalar 1 fila de módulos fotovoltaicos en vertical sobre cubiertas modificando la inclinación... Inclinación 30º.

Puede instalarse sobre zapatas de hormigón o incluso sobre subestructuras en cubiertas.

Artículo	Capacidad	Tamaño de módulo	Materiales
CVA915 [1x4]	4 Módulos Fotovoltaicos Disponible de 1 a 20 módulos	1650x1000x[35,40,45,50]	Alumínio EN AW 6005A T6 Tornillería Acero Inoxidable

Montaje: Estructura


Guía módulos

Presor lateral

Presor intermedio

Unión guía módulos

Este soporte está disponible en dos versiones:

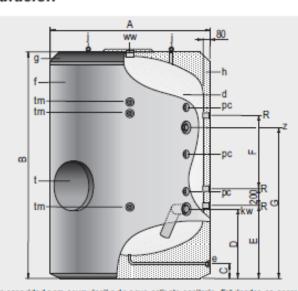
CVA915, 15 °

CVA915. 30 °

Condiciones de diseño:

UNE-EN 1991-1-3:2004 Cargas de nieve. 200 N/m2

UNE-EN 1991-1-4:2007 Cargas de viento. V_b: 29 m/s


Consultar la normativa vigente en el punto de instalación.

Nota:

Para la elección correcta del contrapeso consulte las cargas transmitidas por el soporte.

Para acumulación

De scripc ión

- d Depósito a cumulador A.C.S.
- f Forro externo (opcional)
- g Cubierta superior (opcional) h Aistamiento térmico j Cáncamo s para transporte t Boca de hombre DN400

De pósitos de gran capacidad para acumulación de agua caliente sanitaria. Fabricados en acero inoxidable, decapado químicamente y pasivado después de ensamblar, con capacidad es de 1500 a 5000 litros.

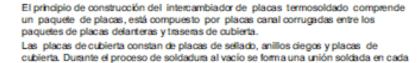
Aislados térmicamente con espuma rígida de poliuretano inyectada en molde, libre de CFC.

Todos los modelos disponen de conexiones para la incorporación de resistencias elédricas de calentamiento como sistema principal de producción de ACS, o como sistema de apoyo.

Como opción pued en incorporan e quipo de protección cató dica permanente e specifica para depósitos inoxidables "Lapesa Correx-up INOX", para casos de agua se specialmente agresivas o con contenidos en doruros superiores a 150 mg/l (ver pag. 42).

Capacidad de A.C.S	L	1500	2000	2500	3000	3500	4000	5000
Temperatura máx. en continuo depásito de A.C.	s °C	90	90	90	90	90	90	90
Presión máx. depósito de A.C.S. (*)	bar	8	8	8	8	8	8	8
Peso en vacio aprox.	Kg	265	305	450	485	520	600	670
Cota A: diámetro exterior	mm	1360	1360	1660	1660	1660	1910	1910
Cota B: longitud total	mm	1830	2280	2015	2305	2580	2310	2710
Cota C:	mm	175	175	175	175	175	175	175
Cota D:	mm	670	670	800	800	800	865	865
Cota E:	mm	685	685	805	805	805	875	875
Cota F:	mm	330	780	300	590	875	465	870
Cota G:	mm	1115	1560	1250	1530	1745	1450	1805
kw: entrada agua fria	'GAS/M	2	2	2	2	3	3	3
e: desagüe	'GAS/M	1	1	1	1	1	1	1
ww: salida agua caliente	'GAS/M	2	2	3	3	3	3	3
z: recirculación	'GAS/M	1-1/2	1-1/2	2	2	2	2	2
R: conexión resistencia	"GAS/H	2	2	2	2	2	2	2
tm: conexión sensores laterales	*GAS/H	1/2	1/2	1/2	1/2	1/2	1/2	1/2
pc: conexión protección catódica	"GAS/H	3/4	3/4	3/4	3/4	3/4	3/4	3/4
nº de conexiones de protección catódica	und.	2	2	2	3	3	3	3

(*) Otras presiones, consultar.


ErP		MXV1500RB	MXV2000RB	MXV2500RB	MXV3000RB	MXV3500RB	MXV4000RB	MXV5000RB
Pérdidas estáticas	W	154	174	194	215	232	245	266
Clase de eficiencia energética		C	C	С	C	C	C	С
Volumen	I.	1500	2000	2500	3000	3500	4000	5000

Provença, 392 pl. 2 08025 BARCELONA Tel. 93 446 27 80 Fax 93 456 90 32

punto de contacto entre dos placas.

CC INTERCAMBIADORES DE PLACAS TERMOSOLDADOS

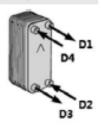
ci diserio drea un intercambiador de calor que consta de dos cilcuitos separados.									
Código	Artículo	Peso Kg	Medidas mm	€					
CC 08 002	IDS14-20H de 20 placas	1,2	55 x 78 x 209	110,00					
CC 08 003	IDS14-30H de 30 placas	2,4	78 x 78 x 209	140,00					
CC 08 004	IDS14-40H de 40 placas	3	101 x 78 x 209	170,00					
CC 08 022	IDS30-20M de 20 placas	3,7	57 x 110 x 310	205,00					
CC 08 023	IDS30-30M de 30 placas	4,9	81 x 110 x 310	255,00					
CC 08 024	IDS30-40M de 40 placas	6,1	105 x 110 x 310	305,00					
CC 08 052	ID\$110-20M de 20 placas	14,2	58 x 191 x 616	595,00					
CC 08 053	IDS110-30M de 30 placas	17,8	82 x 191 x 616	755,00					
CC 08 054	IDS110-40M de 40 placas	21,4	105 x 191 x 616	915,00					

Modelo	Rosca	Temp. Máx.	Caudal máx. m ³ /h	Presión bar
IDS 14	ISO-G 3/4" M		3,6	
IDS 30	ISO-G 1" M	225	8,1	0 a 30
IDS 110	ISO-G 2" M		34	

Materiales estándar:

- · Placas de cubierta: 304 acero inoxidable.
- Conexiones: 316L acero inox.
- · Placas: 316Lacero inoxidable.
- · Material de soldadura: 99,99% cobre.

Conexiones roscadas externamente (macho)


Producción de ACS con Energía Solar Térmica

Ref. Escoda	Modelo	Nº Placas	Nº Panel es Solares 2 m²	Potencia Energ. Solar	Caudal I/h Caldera (1º)	Caudal I/h ACS (2º)
CC 08 002	IDS14-20H	20	5	7 kW	600	600
CC 08 002	IDS14-20H	20	10	14kW	1200	1200
CC 08 003	IDS14-30H	30	15	21 kW	1800	1800
CC 08 004	IDS14-40H	40	25	35 kW	3000	3000
CC 08 022	IDS30-20M	20	30	40kW	3500	3500
CC 08 023	IDS30-30M	30	35	50 kW	4400	4300
CC 08 024	IDS30-40M	40	45	70 kW	5300	5200
CC 08 052	IDS110-20M	20	90	100 kW	11100	10600
CC 08 063	IDS110-30M	30	135	150 kW	15900	15000
CC 08 054	IDS110-40M	40	175	200 KW	21000	20200

Primario: 55°C/45°C Secundario: 35°C/45°C PdC Circuito Solar: Max. 3 m.c.a.

APLICACIONES 1 FASE Calefacción, Solar, Clima ...

ENERGÍA SOLAR TÉRMICA

05 COMPLEMENTOS PARA INSTALACIONES DE ENERGÍA SOLAR TÉRMICA

BYPASS

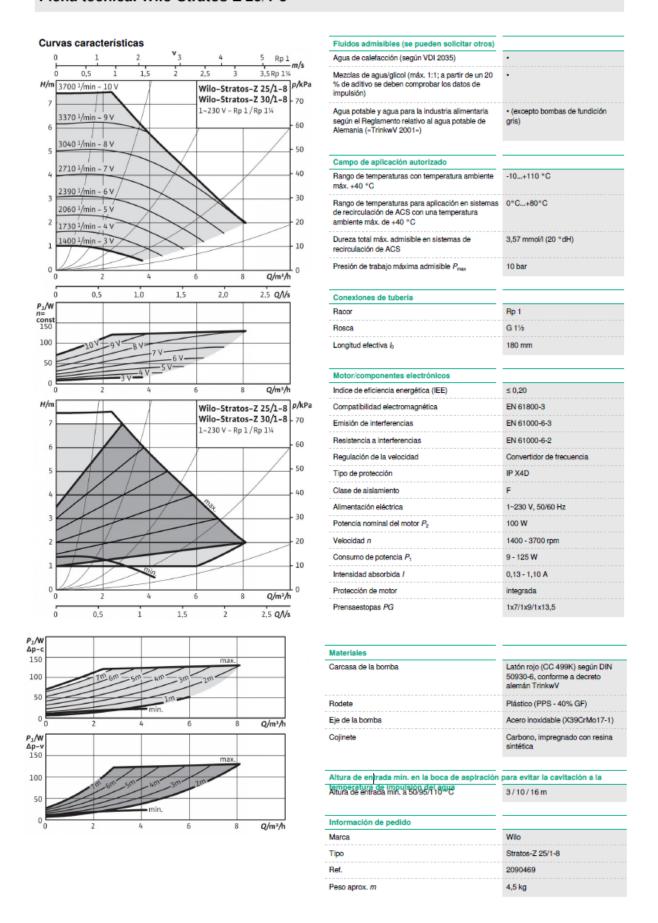
· Reguladores de caudal

Código	Artículo	l/min	€
SO 05 621	223.1209 inline SETTER M-H 3/4"-1/2"	3-12	39.00
90 05 622	223.1203 inline SETTER M-H 3/4"-1/2"	0,6-2,4	39,00
SO 05 623	223.2372 bypass SETTER H-H 1"-1"	8-30	197,00
SO 05 624	223.2471 bypass SETTER H-H 1 1/4"-1 1/4"	10-40	204,00
SO 05 625	223.2151 bypass SETTER DN 65	60-325	708,00
SO 05 626	223.1208 inline SETTER M-H 3/4"-1/2"	2-8	39,00
SO 05 627	223.1239 inline SETTER M-M 3/4"-3/4"	3-12	39,00
SO 05 628	223.1305 inline SETTER H-H 1"-1"	10-40	74,00
SO 05 629	223.2571 RG.C bypass SETTER H-H		
	1 1/2" - 1 1/2"	20-70	227,00

Vasos expansión energía solar

Código	Articulo		Presió n máx bar	Dimen- siones Dx H	Conex. agua Ø	Precar- ga bar	€
	Temperatura Precarga: 2,5 Apto para el						
		MEN	IBRAN	IA FIJA			
SO 09 021	5 SMF	5	10	200x250	3/4"	2,5	27,30
SO 09 022	8 SMF	8	10	200x340	3/4"	2,5	30,45
SO 09 023	12 SMF	12	10	270x310	3/4"	2,5	34,65
SO 09 024	18 SMF	18	10	270x415	3/4"	2,5	36,76
SO 09 025	24 SMF	24	8	320x430		2,5	44,10
	MEN	IBRAN.	A INTE	RCAMBIAB	LE		
SO 09 026	35 SMR-P	35	10	360x615	1°	2,5	120,75
SO 09 027	50 SMR-P	50	10	360x750	1°	2,5	141,75
SO 09 028	80 SMR-P	80	10	450x750	1°	2,5	178,50
SO 09 029	100 SMR-P	100	10	450x850	1°	2,5	280,36
SO 09 030	220 SMR	200	10	485x1400	1-1/2"	2,5	591,16
SO 09 031	350 SMR	300	10	485x1965	1-1/2"	2,5	751,81
SO 09 032	500 SMR	500	10	600x2065	1-1/2"	2,5	1.057,35
SO 09 033	700 SMR	700	10	700x2145	1-1/2"	2,5	1.781,85

DIMENSIONAMIENTO DEL VASO DE EXPANSIÓN (*):


Nº colect	ores	Conten	Contenido de agua en litros					
ESCOSOL 2800 S	ESCOSOL 2500 (***)	Colectores + instalación	Intercam- biadores	total	Capacidad del vaso			
1	2	3,6	15	18,6	12			
2	4	7,2	15	22,2	18			
4	8	14,4	21	35,4	25			
6	12	21,6	42	63,6	50			
8	15	28,8	42	70,8	80			
10	20	36	60	96	80			
12	26	43,2	65	108,2	100			
16	35	57.6	80	137.6	150			
20	_	72	85	157	150			
24	40	86.4	85	171.4	200			
28	-	100.8	90	190.8	200			
32	60	115,2	100	215,2	300			
36	-	129,6	110	239,6	300			
40	75	144	120	264	300			
44	_	158,4	150	308,4	300			
48	90	172,8	150	322,8	350			
52	_	187,2	180	367,2	350			
60	110	216	200	416	500			
70	120	252	250	502	500			
80	140	288	300	588	700			

^(*) Exclusivamento como valor orientativo (**) Presión llenado: 3,5 bar. Máx. presión trabajo: 6 bar (***) Presión llenado: 1,5 bar. Máx. presión trabajo: 3 bar

Ficha técnica: Wilo-Stratos-Z 25/1-8

9.2 Certificación CHEQ4

La instalación solar térmica especificada CUMPLE los requerimientos mínimos especificados por el HE4

Datos del proyecto Nombre del proyecto Comunidad Localidad Dirección	Instalación solar para ACS Comunidad Valenciana L'Eliana C/Juan XXIII						
Datos del autor Nombre Empresa o institución Email Teléfono	Marta Pérez Argilés						
Características del sistema sol	ar						
Localización de referencia Altura respecto la referencia [m] Sistema seleccionado	Eliana (l') (Valencia/València) 0 Instalación de consumidor único con intercambiador independiente						
Demanda [l/dia a 60°C] Ocupación Ene Feb Mar Abr May	4.767						
% 84 93 88 091 97	100 89 20 96 93 92 89						
Resultados	100						
Fracción solar [%] Demanda neta [kWh] Demanda buta [kWh]	lor 📤 Aporteción solar						
Fracción solar [%] Demanda neta [kWh]	Aportación solar rata Consumo aucillar 60 80.174						



La instalación solar térmica especificada CUMPLE los requerimientos mínimos especificados por el HE4

Parámetros del sistema	Verificación en obra
Campo de captadores Captador seleccionado Contraseña de certificación Número de captadores Número de captadores en serie Pérdidas por sombras (%) Orientación [°] Inclinación [°]	NEO 24 (Astersa Aplicaciones Solares) NPS-6011 - Verificar vigencia 24,0 1,0 0,6 0,0 45,0
Circuito primario/secundario Caudal circuito primario [Vh] Porcentaje de anticongelante [%] Longitud del circuito primario [m] Diámetro de la tubería [mm] Espesor del aislante [mm] Tipo de aislante	3.748,0 29,0 100,0 31,0 45,0 genérico
Sistema de apoyo Tipo de sistema Tipo de combustible	Caldera convencional Gas natural
Acumulación Volumen [I]	5.000,0
Distribución Longitud del circuito de distribución [m] Diámetro de la tubería [mm] Espesor del aislante [mm] Tipo de aislante Temperatura de distribución [°C]	100,0 25,0 30,0 genérico 60,0

9.3 Consumo histórico de agua

EXPEDIENTE CONTRATO

DIRECCION SUMINISTRO: PAPA JUAN XXIII SN BJ ES - 46183 L' ELIANA VALENCIA

Nombre:	AJUNTAMENT DE L'ELIANA	NIF: P46	311800F
Tfnos:	962740101		
Canal:	Sin domiciliación bancaria		
Fecha asignación señas cebro:	01 de enero de 1950		

FACTURACION

Fecha	Concepto	Tarifa		
22/11/2011	CANON SANEAMIENTO	INDUSTRIAL		

CONTADORES

Esfera	Marca	Modelo	Calibre	Nº Serie	F.Instalación	Estado
1	WEHRLE	GENERICO	40	03279400	12/05/2003	BAJA
1	SENSUS	420 PC	40	E14JE33313	30/06/2014	INSTALADO

CICLOS

Periodo	F.Lectura	Lectura	Obs	Ori	Cons.	F.Factura	Importe (€)	F.Oper.	Operación
2016-1					0				
2015-6	16/11/2015	9.369	MA	L	823	the same and			
2015-5	15/09/2015	8.546	100	L	1.667	disconstru	distances		
2015-4	15/07/2015	6.879	MA	L	679	\$00000000	100.07		
2015-3	15/05/2015	6.200	MA	L	800	08/05/0005	SAMESO	4	
2015-2	17/03/2015	5.400	100	L	1.446	100000045	STREET, SQUARE, SQUARE		
2015-1	16/01/2015	3.954		L	921	60/04/0049	THE		
2014-6	17/11/2014	3.033		L	1.308	MACHINETTE	SERVICE OF		
2014-5	15/09/2014	1.725		L	1.426	1200000FF	1		
2014-4	14/07/2014	299		L	1.076	CONTRACTOR	Charles .		
2014-3	14/05/2014	95.295	100	L	1.316	АБІОВІВОНІ	255.00		
2014-2	13/03/2014	93.979	MA	L	1.131	-SAIDDINGS.	98807		
2014-1	13/01/2014	92.848		L	1.227	AMDRODES	"WHEN		
2013-6	11/11/2013	91,621		L	1.641	200110010	Same Annual		
2013-5	12/09/2013	89.960		L	1.625	10/08/0010	101137		
2013-4	12/07/2013	88.355		L	1.740	1608/8070	*(40000007		
2013-3	15/05/2013	86.615	MA	L	1.668	100000013	9,000,000		
2013-2	15/03/2013	84,947	BG	L	1.520	2010049018	-		
2013-1	16/01/2013	83.427		L	1.372	-ATTION/0046			
2012-6	16/11/2012	82.055	BG	L	1.653	SHORMANDE	- geome		
2012-5	17/09/2012	80.402	BG	L	1.232	PRICEPOTO	- QUALITY		
2012-4	18/07/2012	79,170	BG	L	1.674	CHOQUOUS,	(COLUMN)		
2012-3	18/05/2012	77,496	FI	1	1.773	D410010010	CONTRACT		
2012-2	21/03/2012	75.723	FI	1	5.447	CERTIFICATION	9.599.50		
2012-1	20/01/2012	70.276		L	1.791	ATTOMOTIVE STATE	500000		
2011-6	21/11/2011	68.485	MA	L	1.160	SECTION AND	Gapine		T
2011-5	23/09/2011	67,325	MA	L	715	\$0.000mm	25000		
2011-4	26/07/2011	66.610	MA	L	768	GEOGRAPHI	DESCRIPTION OF THE PARTY OF THE		
2011-3	24/05/2011	65.842	MA	L	798	STUNDET	SERVICE .		
2011-2	25/03/2011	65.044	-	L	773	CHICAGOST	2006.65		

USUARIO:0000000213 18/11/2015 14:07:27

Página 1(2)

DIRECCION SUMINISTRO: PAPA JUAN XXIII SN BJ ES - 46183 L' ELIANA VALENCIA

Latindo	F.Lectura	Lectura	Obs	Ori	Cons.	F.Factura	Importe (€)	F.Oper.	Operación	
2011-1	25/01/2011	64,271		Ł	2.320	SAME DESCRIPTION OF THE PERSONS PROPERTY.	-90000			
2010-6	25/11/2010	81.951		L	1.744	THE PERSON NAMED IN	190000		1 100	
2010-5	24/09/2010	60.207	1	L	1,118	THE RESERVE	-008 ML			
2010-4	27/07/2010	59.089		1.	1.549	DOMBNINGS	-GHIND			
2010-3	27/05/2010	57.540	BG	L	2.442	2440642010	40000			
2010-2	29/03/2010	55.098	MA	L	635	- Total Service	10000			
2010-1	28/01/2010	54.463		1	1.968	ASSESSMENTS.	9			
2009-6	25/11/2009	52.495		L.	1.025	AND PERSONS	70000			
2009-5	30/09/2009	51.470		L	794	- Market Company	CHARLES			
2009-4	04/08/2009	50.676		L	925	-Western	-			
2009-3	04/06/2009	49.751		L	1.265	SHORTING.	1982.00			
2009-2	03/04/2009	48,486	BG	L	2.541	CHICAGO CO.	-			
2009-1	04/02/2009	45.945		L	1.422	- STATUTE	NAMES OF			
2008-6	05/12/2008	44.523		L	1.293	CALL DO NOT THE	101170			
2008-5	07/10/2008	43.230		L	1.005	SCHOOLS.	25000			
2008-4	09/08/2008	42.225		L	1.154	100000000	QUEST'			
2008-3	11/06/2008	41.071	BG	L.	1.749	A STATE OF THE PARTY OF	PERMIT			
2008-2	11/04/2008	39.322	BG	L	1.540	DESCRIPTION.	100000			
2008-1	11/02/2008	37.782	BG	L	1.434	CHESTON	SERVER.			
2007-6	13/12/2007	35.348	1000	L	1.084	COSMODS	400.00			
2007-5	13/10/2007	35.264	MA.	L	703	- THE PERSON	02000			
2007-4	13/08/2007	34.561	MA	t.	705	-CHOSTOSTP	*(510)			
2007-3	13/06/2007	33.856	MA	L	847	780530W	1000			
2007-2	13/04/2007	33.009	MA.	L	485	SHOWING	STREET,			
2007-1	14/02/2007	32.524	MA	L	508	SECURITIES	127.00			
2006-6	18/12/2006	32.016	BG	L	4.254	- COMMERCIAL PROPERTY.	*85884			
2006-5	20/10/2006	27.762	FI	1	5.041	*History	-(1188)			
2006-4	21/08/2006	22,721		L	1.484	- CHARGOS	93839			
2006-3	21/06/2006	21.237		I.	1.792	400000000	450.50			
2006-2	27/04/2006	19,445		L	1,772	08888886	HPH40			
2006-1	24/02/2006	17.673		L	2.008	QUARTE STOP	THE REAL PROPERTY.			
2005-6	21/12/2005	15.665	1000	L.	1.586	-PROFESSION	-			
2005-5	26/10/2005	14.079	BG	L	1.928	THE PERSONS	*200.00			
2005-4	28/08/2005	12,151	BG	L	1.720	SECURIOR STATE	THE REAL PROPERTY.			
2005-3	24/05/2005	10.431	BG	L	1.472	THE PERSON NAMED IN	100000			
2005-2	26/04/2005	8.959	BG	L	1.494	THE PERSONS	THE REAL PROPERTY.			
2005-1	28/02/2005	7.465	BG	L	1.369	THE REAL PROPERTY.	- BEARING			
2004-6	29/12/2004	6.096	MA	L	458	TERMINOS	10000			
2004-5	29/10/2004	5.638	37.00	L	984	TATANDOO.	VISITED,	PERSONAL PROPERTY.	TENNING !	
2004-4	01/09/2004	4.674		L	528	COMMUNICATION .		WEST COST	CHEMINATE OF	
2004-3	25/05/2004	4.146	BG	L	1.027	- AMERICAN	"830 R.D.	A DEPARTMENT OF	DEBOARDA	
2004-2	30/04/2004	3.119	CD	TE	0	-TERMONAP	*500	20012060	THURSDA	
2004-1	11/03/2004	3.119		1	604	- SERVICE PROPERTY	ALC: UNKNOWN	CHARLES THE	-DOMESTIC A	
	31/12/2003		BG	L	2.513	*Quanting*	TARREST.	Provide St	GA	
2003-5	29/10/2003	200	CD	TE	0	TOWAYSDEED	10000	PROPRIOTIO	ALCO NO.	
2003-4	05/09/2003		CD	TE	0	ETITIVE DES	1882	PROMINE	ACCOUNTED.	
	08/07/2003			1	2	Design Autor	** The same of the	PROPERTY	- AGBONADA	
2003-2	12/05/2003	0		LI	0		100000		1100	

USUARIO:0000000213 18/11/2015 14:07:27 Página 2(2)

PLIEGO DE CONDICIONES

INDICE DEL PLIEGO DE CONDICIONES

1.	Normativa para la selección de los equipos y materiales	. 70
2.	Requisitos generales	. 73
3.	Especificaciones mecánicas	. 77
4.	Especificaciones eléctricas	. 78
5.	Materiales de la instalación	. 78
6.	Limpieza interior del circuito hidráulico	. 79
7.	Pruebas para la certificación final de la obra	. 79
8.	Operaciones de mantenimiento y documentación.	. 80

Pliego de condiciones

El objetivo es establecer las condiciones técnicas mínimas que debe cumplir la instalación solar térmica para agua caliente sanitaria descrita en este proyecto, determinando los requisitos de durabilidad, fiabilidad y seguridad de los sistemas mecánicos, hidráulicos y eléctricos de la instalación.

1. Normativa para la selección de los equipos y materiales.

Esta instalación ha seguido la normativa establecida por el Código Técnico de la Edificación (CTE).

Captadores solares

Se seleccionará y se montará el captador que mejor se adapte a las características y condiciones de trabajo de la instalación, siguiendo las especificaciones y recomendaciones del fabricante.

El captador llevará en lugar visible una placa, redactada como mínimo en castellano, que contenga los siguientes datos:

- I. Nombre y domicilio de la empresa fabricante.
- II. Modelo, tipo y año de producción.
- III. Número de serie de fabricación.
- IV. Área total del captador.
- V. Peso del captador en vacio y capacidad de fluido.
- VI. Presión máxima de servicio.

Los captadores se dispondrán en filas formadas por el mismo número de elementos, y recomendable, por el mismo modelo y características energéticas y constructivas. Dicho número de captadores estará limitado por el Código Técnico de la Edificación y por las especificaciones del fabricante.

Dentro de cada módulo y entre los diferentes módulos, los captadores se conectarán en paralelo, dicha conexión se realizará utilizando el retorno invertido para que el circuito resulte equilibrado hidráulicamente.

Acumuladores

El acumulador está compuesto de los manguitos de acoplamiento necesarios, soldados antes del tratamiento de protección, para las siguientes funciones:

- I. Manguitos roscados para la entrada de agua fría y salida de agua caliente.
- II. Registro embridado para inspección del interior del acumulador y eventual acoplamiento del serpentín.
- III. Manguitos roscados para la entrada y salida del fluido primario.
- IV. Manguitos roscados para accesorios como termómetro y termostato.
- V. Manguito para el vaciado.

En la placa de características del acumulador deberá ir indicada la pérdida de carga del mismo.

Preferiblemente, los acumuladores tendrán configuración vertical y se situarán en zonas interiores, en la instalación de estudio, dentro de la sala de máquinas.

Los depósitos mayores de 750 litros, como es el caso de este proyecto, siendo de 5000 litros, deben disponer de una boca de hombre con un diámetro mínimo de 400 mm, situada en uno de los laterales del acumulador y cerca del suelo, para permitir la entrada de una persona en el interior del depósito, sin que sea necesario desmontar tubos ni accesorios.

El sistema debe aumentar la temperatura del acumulador de 60 ºC hasta 70 ºC para prevenir la legionela, tal como aparece explicado en la memoria del proyecto y especificado en la normativa correspondiente.

Intercambiador de calor

El intercambiador de calor del circuito primario no debe reducir la eficiencia de los captadores debido a un incremento de la temperatura de funcionamiento de los mismos.

El intercambiador es exterior al depósito de acumulación y debe soportar las temperaturas y presiones máximas de trabajo de la instalación.

Como sólo se utiliza un intercambiador en la instalación, concretamente en el circuito primario, la transferencia de calor del intercambiador por unidad de área de captador no debería ser menor de 40 W/m²K.

Bombas de circulación

Las bombas tendrán que tener unos materiales específicos que sean compatibles con el fluido de trabajo utilizado, teniendo en cuenta las proporciones de anticongelante en el caso del circuito primario.

La bomba permite de forma sencilla realizar la operación de desaireación o purga.

Tuberías

Las tuberías del circuito primario se pueden ser de materiales como el cobre y el acero inoxidable, con uniones roscadas, soldadas y protección exterior con pintura anticorrosiva.

En el circuito secundario se pueden emplear el cobre y acero inoxidable, pero también materiales plásticos que soporten la temperatura máxima del circuito.

Purgadores

Se debe evitar la utilización de purgadores automáticos cuando se pueda formar vapor en el circuito.

Los purgadores automáticos deben soportar la temperatura de estancamiento del captador, en este caso de 212,1 °C.

Sistema de llenado

Los circuitos que contengan vaso de expansión cerrado, deben disponer de un sistema de llenado manual o automático que permita llenar el circuito y mantenerlo presurizado.

Nunca se podrá rellenar el circuito primario con agua de red si sus características pueden producir incrustaciones, deposiciones o ataques en el circuito.

Las instalaciones que empleen anticongelante en su circuito primario deben tener un sistema que permita de forma sencilla el relleno manual del mismo.

Sistema eléctrico y de control

Los sensores de temperatura deben tener un buen contacto térmico con la parte a medir. En el caso de los sensores de inmersión se deben instalar en contra corriente con el fluido.

2. Requisitos generales

El contratista proveerá de todos los materiales, equipo, herramientas, mano de obra, dirección, supervisión y gastos generales necesarios para el correcto funcionamiento de todos los trabajos a realizar en la instalación, de acuerdo con los planos y especificaciones de diseño.

Fluido de trabajo

En el circuito primario se utiliza como fluido circulante, agua con aditivos, que dependen de las características climatológicas del municipio de estudio y del agua utilizada. Los aditivos más empleados son los anticongelantes, concretamente en esta instalación el propilenglicol en un 29% de concentración en peso.

El pH del fluido de trabajo a una temperatura de 20ºC deberá estar entre 5 y 9.

Los circuitos deben estar diseñados para evitar cualquier mezcla entre los distintos fluidos que trasiegan por la instalación.

Protección contra heladas

El fabricante o el encargado de diseñar el sistema, debe determinar la temperatura mínima permitida en el sistema, la cual deben soportar todas las partes del sistema sin sufrir daños permanentes.

También se debe describir el método de protección anti-heladas usado por el sistema.

Mezclas anticongelantes

Como anticongelante se emplea propilenglicol mezclado con agua, el cual debe seguir la reglamentación vigente y cuyo punto de congelación cumpla con las condiciones climáticas del lugar.

La instalación dispone de sistemas para realizar de manera sencilla su llenado y para asegurar que el anticongelante está correctamente mezclado.

Recirculación del agua de los circuitos

Este sistema consiste en mantener el fluido de trabajo en movimiento cuando haya posibilidad de helarse.

El sistema de control pondrá en marcha la circulación del circuito primario si la temperatura detectada en la entrada de los captadores tiene un valor superior a la de congelación del agua. Este método es adecuado para zonas climáticas en las cuales los períodos de baja temperatura son de poca duración, como es el caso de la zona de estudio, zona IV.

Sobrecalentamientos

El sistema está diseñado para que con prolongadas radiaciones solares altas sin consumo de agua caliente, el usuario no tenga que realizar ninguna acción específica para poner el sistema en su forma corriente de operación.

Si el sistema dispone drenajes para la protección ante sobrecalentamientos, la construcción se realizará para que el agua caliente o vapor del drenaje no ocasionen ningún peligro para los usuarios y no se produzcan deterioros en el sistema, ni en el edificio.

Protección contra quemaduras

Si la temperatura de agua caliente en los puntos de consumo pueda exceder de 60 ºC se instalará un sistema automático de mezcla para limitar dicha temperatura a 60 ºC, a pesar de que en la parte solar pueda alcanzar una temperatura superior para contra restar las pérdidas.

Protección de materiales y componentes contra altas temperaturas

El sistema está diseñado para que no se exceda la máxima temperatura que pueden soportar todos los materiales y componentes.

Los circuitos deben someterse a una prueba de presión, que consiste en soportar durante una hora la presión de 1,5 veces el valor de la presión máxima de servicio, comprobando que no se producen daños permanentes ni fugas en los componentes del sistema. Tras este ensayo, la presión hidráulica no debe bajar más de un 10 % del valor medio medido al empezar el ensayo.

Prevención del flujo inverso

La instalación del sistema debe evitar que se produzcan pérdidas energéticas relevantes debidas a flujos inversos no intencionados en ningún circuito hidráulico del sistema.

En sistemas con circulación forzada es aconsejable utilizar para ello, válvulas antiretorno.

Sistema de acumulación

Para aprovechar al máximo la energía captada y evitar posibles pérdidas por estratificación, las conexiones en el depósito serán las siguientes:

- La conexión de entrada de agua caliente que procede del intercambiador se realizará a una altura comprendida entre el 50 % y el 75 % de la altura total del depósito.
- II. La conexión de salida de agua fría del acumulador hacia el intercambiador se realizará por la parte inferior del mismo.
- III. La alimentación de agua fría de red al depósito se realizará por la parte inferior.
- IV. La extracción de agua caliente del depósito se realizará por la parte superior.

Tuberías

La distribución del sistema de tuberías y sus materiales deben evitar la formación de obturaciones o depósitos de cal para las condiciones de trabajo establecidas en el proyecto. Para ello en los tramos horizontales deben tener una pendiente mínima del 1% en el sentido de la circulación.

La longitud de tuberías del circuito debe ser lo más corta posible y evitar en lo posible los codos, reduciendo así las pérdidas de carga y las pérdidas térmicas.

Las tuberías ubicadas en el exterior deben llevar una protección externa, en este caso revestimiento con pinturas asfálticas y pintura de polietileno, que asegure la durabilidad y buen funcionamiento ante las situaciones climatológicas adversas.

Bombas

Las bombas se instalarán en las zonas más frías del circuito, para reducir los posibles casos de cavitación y estarán situadas con el eje de rotación en posición horizontal.

En las instalaciones con una superficie de captación mayor de 50 m², como es el caso del presente proyecto, se montarán dos bombas idénticas en paralelo, dejando una de ellas en reserva, tanto en el circuito primario como en el secundario.

Vasos de expansión

Los vasos de expansión, es recomendable que se conecten en la aspiración de la bomba.

Sistema de purga

Se colocarán purgadores manuales, en los puntos altos de la salida de los captadores y en los puntos de la instalación donde pueda quedar aire acumulado, evitando así posibles obstrucciones.

Sistema de apoyo

La instalación dispondrá de un sistema auxiliar de energía convencional, concretamente de gas, para satisfacer la demanda energética cuando sea necesaria, siempre priorizando la energía extraída de la captación solar.

Como el sistema de energía auxiliar está conectado en línea, es decir, es instantáneo, el equipo será modulante y debe regular la potencia para que se obtenga la temperatura adecuada independientemente de cuál sea la temperatura del agua de entrada a la caldera de gas, sistema de apoyo.

3. Especificaciones mecánicas

Soporte de fijación del captador

De acuerdo al CTE sección HE4:

- I. Se debe aplicar a la estructura de soporte las exigencias del Código Técnico de la Edificación en cuanto a seguridad.
- II. La estructura permitirá las dilataciones térmicas necesarias, sin que se transfiera las cargas que puedan afectar a la integridad de los captadores o al circuito hidráulico.
- III. Los puntos de sujeción del captador serán suficientes, teniendo el área de apoyo y posición relativa adecuada, para evitar flexiones en el captador, superiores a las permitidas por el fabricante.
- IV. Los topes de sujeción de captadores y la propia estructura no deben producir sombras sobre el área de captación.

Tuberías

El aislamiento se debe adherir perfectamente a la tubería.

Todos los accesorios de la red de tuberías deben cubrirse con el mismo nivel de aislamiento, y debe ser sencillo su desmontaje para operaciones de mantenimiento, sin deteriorar el material aislante y este no puede impedir la actuación sobre las válvulas, ni la lectura de instrumentos de medida y control.

Las tuberías deberán cumplir las siguientes características:

- I. Se deben instalar paralelas a las líneas del edificio y mantener cierta distancia de los demás materiales y obras, especificada en la memoria del proyecto.
- II. Deben ser lisas, de sección circular, construcción rígida y no pueden presentar rugosidades ni rebabas en sus extremos, que se limarán en chaflán para facilitar y dar robustez al cordón de soldadura.
- III. Deben ser cortadas de forma exacta, en pie de obra, y en las uniones, tanto roscadas como soldadas, presentarán un corte limpio y sin rebabas.
- IV. Se colocarán en el sitio especificado por diseño, sin ser forzadas, y podrán contraerse o dilatarse sin producir deterioro para sí mismas ni para la instalación.

4. Especificaciones eléctricas

Se cumplirán los requerimientos del Reglamento Electrotécnico de Baja Tensión vigente.

Los cuadros de protección y distribución se ubicarán en el interior de la sala de máquinas, en un lugar visible y accesible. Estos tienen un letrero de material metálico, en cual está escrito el nombre del instalador y la fecha de ejecución de la instalación.

Los conductores que entren o salgan de cualquier cuadro deben estar identificados, tanto el conjunto de cables que forman una línea, como unipolarmente. También se debe señalizar en todos los puntos que haya cambio de dirección o conexión de diversos conductos. Dichas señalizaciones deberán realizarse con placas de poliamida, cajetines porta etiquetas de policarbonato o señalizadores de PVC.

Las canalizaciones realizadas bajo tubos protectores, deben seguir líneas paralelas a las horizontales y verticales que limitan la sala de máquinas.

5. Materiales de la instalación

El aislamiento térmico de conducciones y equipos debe instalarse tras haber efectuado las pruebas de estanqueidad del sistema y haber limpiado y protegido las superficies de tuberías y aparatos.

Las tuberías aisladas de los circuitos, se identifican con colores normalizados y se indica la dirección del fluido en cada tramo recto y a distancias no superiores a los 5 metros. También se señaliza el tipo de fluido que trasiega por su interior.

Los materiales aislantes se deben determinar en base a las siguientes características, que deben ir etiquetadas por el fabricante:

- I. Conductividad térmica.
- II. Densidad aparente.
- III. Permeabilidad al vapor de agua.
- IV. Propiedades mecánicas.
- V. Envejecimiento ante la presencia de humedad, calor y radiaciones.
- VI. Coeficiente de dilatación.
- VII. Comportamiento frente a parásitos, agentes químicos y fuego.

La protección debe ser elástica, que presente durabilidad en el tiempo, y que se amolde a los movimientos del objeto protegido sin que se produzcan grietas ni fisuras.

También debe poseer una alta resistencia al desgaste mecánico, a la acción de los rayos solares y a la acción de los agentes corrosivos que contiene el agua y la atmósfera.

El material que no esté correctamente acreditado o tenga dudas sobre su calidad, deberá enviarse a un laboratorio oficial para que realice los ensayos pertinentes para su comprobación.

6. Limpieza interior del circuito hidráulico

Los circuitos de distribución de agua con propilenglicol deben ser limpiados internamente antes de realizar la prueba hidrostática y la puesta en funcionamiento, para eliminar posibles agentes externos como el polvo, cascarillas y aceites. También las tuberías, accesorios y válvulas deben ser examinados antes de su instalación y, si es necesario limpiarlos.

Durante el montaje se evitará la introducción de materias extrañas dentro de las tuberías, los aparatos y los equipos protegiendo sus aberturas con tapones adecuados.

Cuando la instalación esté finalizada, se llenará con una solución acuosa de un producto detergente, compatible con los materiales empleados en el circuito, cuya concentración estará especificada por el fabricante.

Finalmente se pondrá en funcionamiento la instalación, dejando durante una semana los filtros de malla metálica que protegen las bombas, hasta que se compruebe que se han eliminado las partículas más finas que puede retener el tamiz de la malla.

7. Pruebas para la certificación final de la obra

La empresa instaladora dispondrá de los medios humanos y materiales necesarios para efectuar las pruebas parciales y finales de la instalación. Las pruebas parciales consistirán en realizar una comprobación de los materiales en el momento de su recepción en obra.

Cuando la instalación se encuentre terminada, de acuerdo con las especificaciones del proyecto, deben realizarse las pruebas finales del conjunto de la instalación. Todas las pruebas se llevarán a cabo en presencia del director de obra, quien deberá dar su aprobación tanto del procedimiento seguido como de los resultados.

Pruebas hidrostáticas

Todos los circuitos por los que trasieguen fluidos deben ser ensayados hidrostáticamente, para asegurar su estanqueidad, antes de queden ocultos por obras de albañilería o por el material aislante.

Se deben realizar las pruebas de circulación del fluido, poniendo las bombas en funcionamiento, comprobando la limpieza de los filtros y midiendo presiones. Posteriormente, se realizará la comprobación de la estanqueidad del circuito con el fluido a la temperatura de régimen establecida. Por último, se comprobará el tarado de los elementos de seguridad.

Pruebas de dilatación

Si las pruebas anteriores han sido correctas y se hayan comprobado hidrostáticamente los elementos de seguridad, durante el enfriamiento de la instalación y al finalizar el mismo, se comprobará de forma visual que no se han producido deformaciones apreciables en ningún elemento o tramo de tubería y que el sistema de expansión ha funcionado correctamente.

Finalmente, se comprobará que la instalación cumple con las exigencias de calidad, seguridad y ahorro de energía establecidas en las especificaciones técnicas.

8. Operaciones de mantenimiento y documentación.

El instalador entregará el manual de instrucciones de la instalación al propietario, el cual se encontrará a disposición del operario en la sala de máquinas.

Además de este libro, las normas que afecten a la seguridad se colocarán próximas en placas metálicas a cada componente.

Las operaciones de mantenimiento serán realizadas por una persona formada para tal, y que contenga el carné de mantenedor, o por una empresa especializada, que especificará las operaciones realizadas y que se adjuntará al libro de mantenimiento.

Existirá un Libro de Órdenes en el que se reflejarán las incidencias y órdenes necesarias en el desarrollo de la instalación.

Recepciones de obra

Si en las pruebas finales se han obtenido resultados satisfactorios, en presencia del director de obra, se procederá al acto de recepción provisional de la instalación con el que se dará por finalizado el montaje de la instalación. En el momento de la recepción provisional, la empresa instaladora deberá entregar al director de obra la documentación siguiente:

- I. Los planos de la instalación realmente ejecutada, en la que figuren, el esquema de principio, el esquema de control y seguridad, el esquema eléctrico, los planos de plantas, donde se debe indicar el recorrido de todos los circuitos.
- II. Una memoria descriptiva de la instalación realmente ejecutada, en la que se indiquen las bases del proyecto y los criterios adoptados para su desarrollo.
- III. Un documento especificando los materiales y los equipos empleados, indicando el fabricante, la marca, el modelo, las características de funcionamiento, justificándolo con catálogos y con la correspondiente documentación de garantía.
- IV. Los manuales con las instrucciones de funcionamiento y mantenimiento.
- V. Un documento en el que se determinen los resultados de las pruebas parciales y finales realizadas.
- VI. El certificado de la instalación firmado.

El director de obra entregará los documentos citados anteriormente, cuando haya comprobado su contenido y firmado el certificado, al titular de la instalación, quién lo presentará a registro en el organismo territorial competente.

Conservación de las obras

Los contratistas deberán conservar todos los componentes de las obras desde el principio de los trabajos hasta la finalización de los mismos. Se incluirá la reposición o reparación de cualquier elemento constructivo de las obras dañadas o deterioradas, siempre que se considere necesario.

Todos los gastos que se originen por la conservación de la instalación, como es la vigilancia, revisión, limpieza de los elementos, pintura, posibles hurtos o desperfectos causados por un tercero, serán a cuenta del contratista.

La contrata será responsable de la posibilidad de una mala calidad del material, o de un montaje incorrecto y de los inconvenientes que a terceros pueda producir durante la realización de la instalación. No se aceptarán materiales sin que hayan sido admitidos por la dirección de la instalación. Esto no constituirá su recepción definitiva, pudiendo ser rechazado, si después de colocados no cumplen con las condiciones exigidas.

Garantías

Transcurrido el plazo de garantía, que es de un año, la recepción provisional pasará a ser definitiva, salvo que por parte del titular haya sido cursada alguna reclamación antes de finalizar el período de garantía.

PRESUPUESTO

INDICE DE PRESUPUESTOS

1	Presupuesto de ejecución material (P.E.M)	. 85
2.	Resumen del P.E.M	. 89
3.	Presupuesto final	. 90

1 Presupuesto de ejecución material (P.E.M)

1.	Ud	Descomposición	Rend.	Precio	Precio
Descompuesto				unitario	partida
mt38csg005a	Ud	Captador solar térmico plano, con panel de montaje vertical de 1256x2098x94,5 mm, superficie útil 2,41 m², rendimiento óptico 0,75 y coeficiente de pérdidas primario 3,994 W/m²K, según UNE-EN 12975-2, compuesto de: panel de vidrio templado de bajo contenido en hierro (solar granulado), de 4 mm de espesor y alta transmitancia (91%), estructura trasera en bandeja de polietileno reciclable resistente a la intemperie (resina ABS), bastidor de fibra de vidrio reforzada con polímeros, absorbedor de cobre con revestimiento selectivo de cromo negro de alto rendimiento, parrilla de 8 tubos de cobre soldados en omega sin metal de aportación, aislamiento de lana mineral de 60 mm de espesor y uniones mediante manguitos flexibles con abrazaderas de ajuste rápido.	24,00	391,00	9384,00
mt38csg006a	Ud	Estructura soporte, para cubierta plana, para captador solar térmico.	3,00	235,00	705,00
mt38csg040	Ud	Kit de conexiones hidráulicas para captadores solares térmicos, con conexiones aisladas, tapones, pasacables y racores.	3,00	91,67	275,01
mt38csg120	Ud	Purgador manual, especial para aplicaciones de energía solar térmica, equipado con válvula de esfera y cámara de acumulación de vapor.	3,00	72,75	218,25
mt38csg110	Ud	Válvula de seguridad especial para aplicaciones de energía solar térmica, para una temperatura máxima de 130°C.	3,00	38,80	116,40
mt38csg100	I	Solución agua-glicol para relleno de captador solar térmico, para una temperatura de trabajo de -20°C a +200°C.	40,80	4,00	163,20
mt37sve010d	Ud	Válvula de esfera de latón niquelado para roscar de 1".	3,00	9,81	29,43
mo009	h	Oficial 1ª instalador de captadores solares.	17,00	17,82	302,94
mo108	h	Ayudante instalador de captadores solares.	17,00	16,10	273,70
	%	Medios auxiliares	2,00	11467,93	229,36
	%	Costes indirectos	3,00	11697,29	350,92
Coste de manter	nimie	ento decenal: 4.666,41€ en los primeros 10 años.		Total 1:	12048,21

2.	Ud	Descomposición	Rend.	Precio	Precio
Descompuesto				unitario	partida
mt38csg060B	Ud	Acumulador de acero vitrificado, de suelo, 5000 I, 1950 mm de diámetro y 2750 mm de altura, forro acolchado con cubierta posterior, aislamiento de poliuretano inyectado libre de CFC y protección contra corrosión mediante ánodo de magnesio.	1,000	7125,30	7125,30
mt37sve010e	Ud	Válvula de esfera de latón niquelado para roscar de 1 1/4".	4,000	15,25	61,00
mt38www011	Ud	Material auxiliar para instalaciones de A.C.S.	1,000	1,45	1,45
mo004	h	Oficial 1ª calefactor.	2,910	17,82	51,86
mo103	h	Ayudante calefactor.	2,910	16,10	46,85
	%	Medios auxiliares	2,000	7286,46	145,73
	%	Costes indirectos	3,000	7432,19	222,97
Coste de manten	imiento	decenal: 1.607,58€ en los primeros 10 años.		Total 2:	7655,16

3. Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida		
mt38csg310o	Ud	Intercambiador de placas de acero inoxidable AISI 316, potencia 40 kW, presión máxima de trabajo 6 bar y temperatura máxima de 100°C.	1,000	89,00	89,00		
mt37sve010d	Ud	Válvula de esfera de latón niquelado para roscar de 1".	2,000	9,81	19,62		
mt37sve010e	Ud	Válvula de esfera de latón niquelado para roscar de 1 1/4".	2,000	15,25	30,50		
mt42www040	Ud	Manómetro con baño de glicerina y diámetro de esfera de 100 mm, con toma vertical, para montaje roscado de 1/2", escala de presión de 0 a 5 bar.	4,000	11,00	44,00		
mt42www050	Ud	Termómetro bimetálico, diámetro de esfera de 100 mm, con toma vertical, con vaina de 1/2", escala de temperatura de 0 a 120°C.	4,000	21,00	84,00		
mt38www011	Ud	Material auxiliar para instalaciones de A.C.S.	1,000	1,45	1,45		
mo004	h	Oficial 1 ^a calefactor.	1,204	17,82	21,46		
mo103	h	Ayudante calefactor.	1,204	16,10	19,38		
	%	Medios auxiliares	2,000	309,41	6,19		
	%	Costes indirectos	3,000	315,60	9,47		
Coste de manten	oste de mantenimiento decenal: 68,26€ en los primeros 10 años. Total 3: 325,07						

4. Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt37bce005m	Ud	Bomba de circulación, electrobomba, de hierro fundido, de tres velocidades, con una potencia de 0,11 kW, impulsor de tecnopolímero, eje motor de acero cromado, bocas roscadas macho de 1", aislamiento clase H, para alimentación monofásica a a 230 V.	4,000	159,08	636,32
mt37sve010d	Ud	Válvula de esfera de latón niquelado para roscar de 1".	8,000	9,81	78,48
mt37www060d	Ud	Filtro retenedor de residuos de latón, con tamiz de acero inoxidable con perforaciones de 0,4 mm de diámetro, con rosca de 1", para una presión máxima de trabajo de 16 bar y una temperatura máxima de 110°C.	4,000	12,88	51,52
mt37svr010c	Ud	Válvula de retención de latón para roscar de 1".	4,000	5,18	20,72
mt37www050c	Ud	Manguito antivibración, de goma, con rosca de 1", para una presión máxima de trabajo de 10 bar.	8,000	16,60	132,80
mt42www040	Ud	Manómetro con baño de glicerina y diámetro de esfera de 100 mm, con toma vertical, para montaje roscado de 1/2", escala de presión de 0 a 5 bar.	4,000	11,00	44,00
mt37sve010b	Ud	Válvula de esfera de latón niquelado para roscar de 1/2".	8,000	4,13	33,04
mt37tca010ba	m	Tubo de cobre rígido con pared de 1 mm de espesor y 13/15 mm de diámetro, según UNE-EN 1057.	1,400	4,82	6,75
mt35aia090ma	m	Tubo rígido de PVC, enchufable, curvable en caliente, de color negro, de 16 mm de diámetro nominal, para canalización fija en superficie. Resistencia a la compresión 1250 N, resistencia al impacto 2 julios, temperatura de trabajo -5°C hasta 60°C, con grado de protección IP 547 según UNE 20324, propiedades eléctricas: aislante, no propagador de la llama. Según UNE-EN 61386-1 y UNE-EN 61386-22. Incluso p/p de abrazaderas, elementos de sujeción y accesorios (curvas, manguitos, tes, codos y curvas flexibles).	12,000	0,85	10,20
mt35cun040ab	m	Cable unipolar H07V-K con conductor multifilar de cobre clase 5 (- K) de 2,5 mm² de sección, con aislamiento de PVC (V), siendo su tensión asignada de 450/750 V. Según UNE 21031-3.	36,000	0,40	14,40
mo005	h	Oficial 1ª instalador de climatización.	12,011	17,82	214,04
mo104	h	Ayudante instalador de climatización.	12,011	16,10	193,38
	%	Medios auxiliares	2,000	1435,65	28,71
	%	Costes indirectos	3,000	1464,36	43,93
Coste de manten	imiento	decenal: 177,36€ en los primeros 10 años.		Total 4:	1508,29

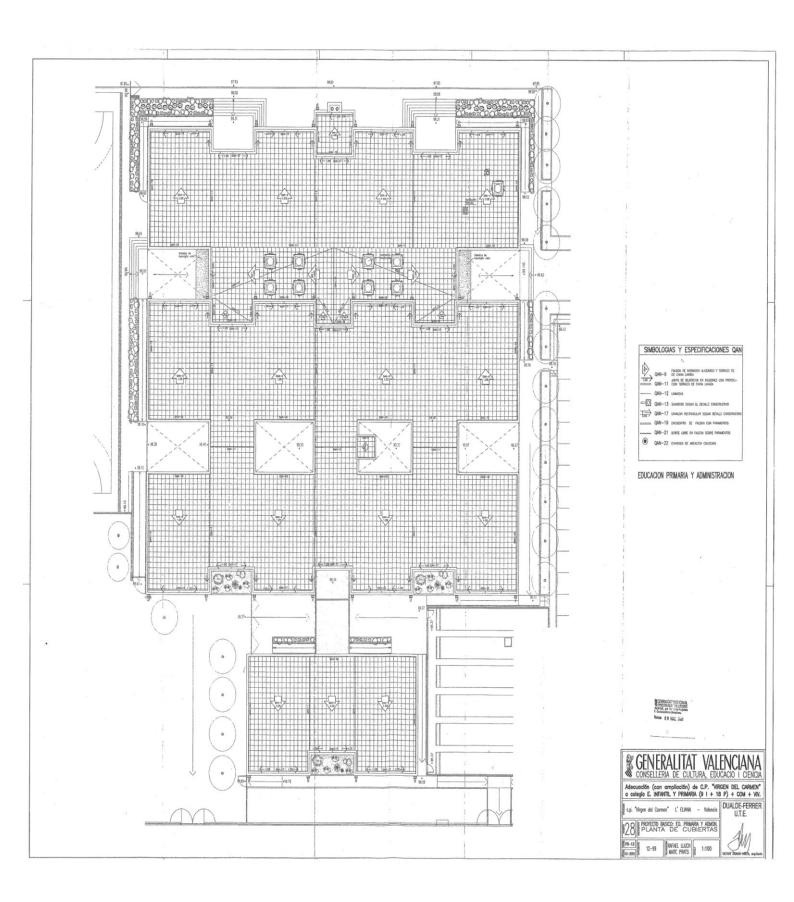
5. Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt38vex010n	Ud	Vaso de expansión cerrado con una capacidad de 140 l, 870 mm de altura, 450 mm de diámetro, con rosca de 1" de diámetro y 10 bar de presión.	2,000	271,60	543,20
mt42www040	Ud	Manómetro con baño de glicerina y diámetro de esfera de 100 mm, con toma vertical, para montaje roscado de 1/2", escala de presión de 0 a 5 bar.	2,000	11,00	22,00
mo004	h	Oficial 1º calefactor.	1,054	17,82	18,78
mo103	h	Ayudante calefactor.	1,054	16,10	16,97
	%	Medios auxiliares	2,000	600,95	12,02
	%	Costes indirectos	3,000	612,97	18,39
Coste de manteni	miento (decenal: 56,86€ en los primeros 10 años.		Total 5:	631,36

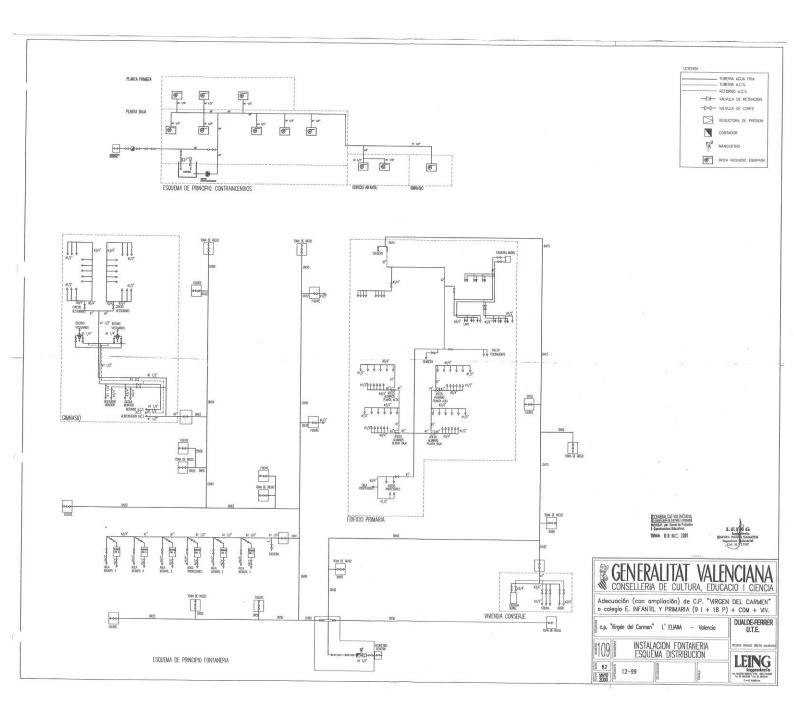
6. Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
	Tubo de cobre rígido, de 35 mm de diámetro, colocado superficialmente en el exterior del e aislamiento mediante coquilla de lana de vidrio protegida con emulsión asfáltica recubierta o protectora para aislamiento de color azul.				
mt37tca400f	Ud	Material auxiliar para montaje y sujeción a la obra de las tuberías de cobre rígido, de 35 mm de diámetro.	1,000	0,64	0,64
mt37tca010fg	m	Tubo de cobre rígido con pared de 1 mm de espesor y 35 mm de diámetro, según UNE-EN 1057, con el precio incrementado el 309 en concepto de accesorios y piezas especiales.	6 1,000	16,68	16,68
mt17coe080db	m	Coquilla cilíndrica moldeada de lana de vidrio, abierta longitudinalmente por la generatriz, de 42 mm de diámetro interior y 40,0 mm de espesor.		4,67	4,67
mt17coe120	kg	Emulsión asfáltica para protección de coquillas de lana de vidrio, tipo ED según UNE 104231.	0,575	2,04	1,17
mt17coe130d	kg	Pintura protectora de polietileno clorosulfonado, de color azul, para aislamiento en exteriores.	0,048	24,69	1,19
mo004	h	Oficial 1ª calefactor.	0,350	17,82	6,24
mo103	h	Ayudante calefactor.	0,350	16,10	5,64
	%	Medios auxiliares	2,000	36,23	0,72
	%	Costes indirectos	3,000	36,95	1,11
Coste de mantenir	Coste de mantenimiento decenal: 3,04€ en los primeros 10 años.			Total por m:	38,06
	m	Tubería de impulsión (circuito primario)			18,36
	m	Tubería de retorno (circuito primario)			21,43
	m	Tubería circuito secundario			16
		Total 6:			2123,37

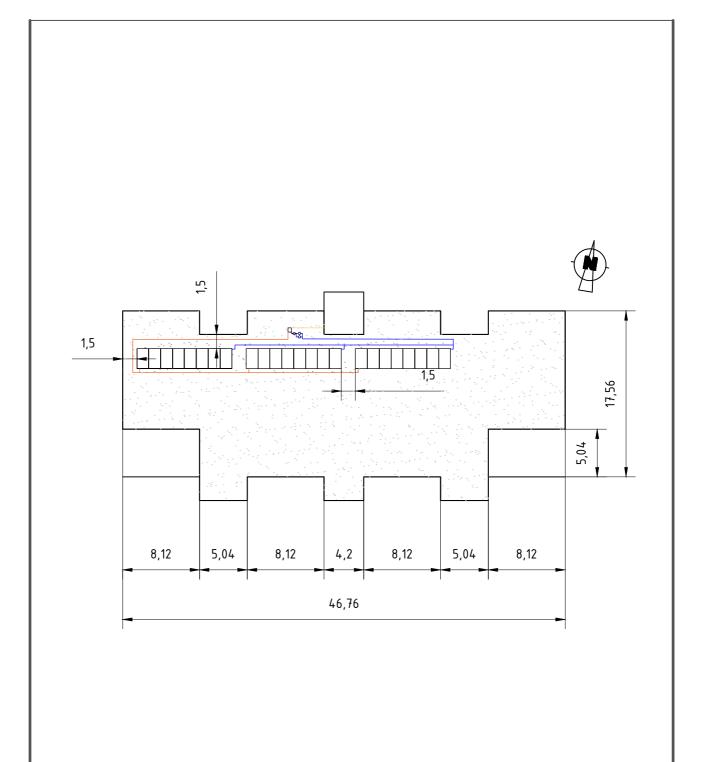
7. Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida		
		Tubo de cobre rígido, de 25 mm de diámetro, colocado superficial					
			slamiento mediante coquilla de lana de vidrio protegida con emulsión asfáltica recubierta con pintura				
		protectora para aislamiento de color azul.					
mt37tca400e	Ud	Material auxiliar para montaje y sujeción a la obra de las tuberías	1,000	0,49	0,49		
		de cobre rígido, de 25 mm de diámetro.					
mt37tca010eg	m	Tubo de cobre rígido con pared de 1 mm de espesor y 25 mm de	1,000	12,62	12,62		
		diámetro, según UNE-EN 1057, con el precio incrementado el					
		30% en concepto de accesorios y piezas especiales.					
mt17coe080db	m	Coquilla cilíndrica moldeada de lana de vidrio, abierta	1,000	4,67	4,67		
		longitudinalmente por la generatriz, de 42 mm de diámetro	2,000	.,	.,0.		
l		interior y 40,0 mm de espesor.					
mt17coe120	kg	Emulsión asfáltica para protección de coquillas de lana de vidrio,	0,575	2,04	1,17		
l		tipo ED según UNE 104231.					
mt17coe130d	kg	Pintura protectora de polietileno clorosulfonado, de color azul,	0,048	24,69	1,19		
		para aislamiento en exteriores.					
mo004	h	Oficial 1 ^a calefactor.	0,311	17,82	5,54		
mo103	h	Ayudante calefactor.	0,311	16,10	5,01		
	%	Medios auxiliares	2,000	30,69	0,61		
	%	Costes indirectos	3,000	31,30	0,94		
Coste de mantenim	Coste de mantenimiento decenal: 2,58€ en los primeros 10 años.				32,24		
	m	Tubería de impulsión (circuito primario)			25,33		
	m	Tubería de retorno (circuito primario)			24,42		
			Total 7:		1603,94		

2. Resumen del P.E.M

Código	Descripción	Coste		
1	Captador solar	Captador solar		
2	Acumulador	Acumulador		
3	Intercambiador de plac	325,07		
4	Bomba de circulación	1508,29		
5	Vaso de expansión	631,36		
6	6 Tubería 35 mm		2123,37	
7	Tubería 25 mm	1603,94		
		TOTAL	25895,40	


El presupuesto de ejecución material tiene un valor de veinticinco mil ochocientos noventa y cinco euros y cuarenta céntimos.


3. Presupuesto final


P.E.M	25895,40
13% Gastos generales	3366,40
6% Base imponible	1553,72
SUBTOTAL	30815,52
21% I.V.A	6471,26
PRESUPUESTO DE CONTRATA	37286,78
HONORARIOS +I.V.A	
4% Proyecto	1035,82
4% Dirección de obra	1035,82
SUBTOTAL	2071,64
21% I.V.A	435,05
HONORARIOS+ IVA	2506,69
PRESUPUESTO FINAL	39793,47

El presupuesto final ascienda a treinta y nueve mil setecientos noventa y tres euros y cuarenta y siete céntimos.

PLANOS

UNIVERSIDAD POLITÉCNICA DE VALENCIA

TÍTULO:

PLANO DE LA INSTALACIÓN

PROYECTO: DIMENSIONADO DE UNA INSTALACIÓN SOLAR TÉRMICA PARA EL ABASTECIMIENTO DE AGUA CALIENTE SANITARIA DE UN COLEGIO PÚBLICO DE EDUCACIÓN PRIMARIA EN EL MUNICIPIO DE L'ELIANA

AUTOR DEL PROYECTO

TUTOR DEL PROYECTO

ESCALA 1:400

FECHA:

Marta Pérez Argilés

Jorge Payá Herrero

Nº DE PLANO: 1