

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1007/978-3-642-38718-0_8

http://hdl.handle.net/10251/74384

Springer Verlag (Germany): Series

Tomás Domínguez, AE.; Bai, Z.; Hernández García, V. (2013). Parallelization of the QR
Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and
GPU Processors. En High Performance Computing for Computational Science - VECPAR
2012. Springer Verlag (Germany): Series. 50-58. doi:10.1007/978-3-642-38718-0_8.

Parallel Algorithm for the QR Decomposition
with Column Pivoting in Multicore and GPU

Processors

Andrés Tomás1, Zhaojun Bai2, and Vicente Hernández3

1 University of California, Davis
andres@cs.ucdavis.edu

2 University of California, Davis
bai@cs.ucdavis.edu

3 Universitat Politècnica de València
vhernand@dsic.upv.es

Extended Abstract

Abstract. The QR decomposition with column pivoting (QRP) is a
popular method for computing a rank revealing QR factorization. Cur-
rent QRP algorithm implemented in LAPACK is block based, but its
performance is limited by the BLAS level 2 operations required for piv-
oting criteria updates.
In this work an alternative parallel algorithm for QRP is proposed. This
algorithm is column based with the columns distributed among proces-
sors. Our preliminary results show better performance than optimized
LAPACK on current multicore processors. This algorithm is also suit-
able for GPU processors, where no other implementations of QRP has
been presented in the literature.

Topics. Parallel and Distributed Computing

1 QR Decomposition with Column Pivoting

The QR decomposition with pivoting column (QRP) was the first method pro-
posed [6] for computing a rank revealing QR factorization (RRQR). Although
QRP could fail to fully reveal the rank of some matrices, it is still a popular
method for practical applications. Besides, QRP can be used as a first step to
more robust RRQR methods [2, 7]. Recently, QRP has been used for accelerating
a practical implementation of the Jacobi SVD method [4, 5].

For A ∈ Rm×n, the QRP algorithm computes permutation matrix P , or-
thonormal Q and upper triangular matrix R such that

AP = QR,

where

|Rii| ≥

√√√√ j∑
k=i

|Rkj |2, for all 1 ≤ i ≤ j ≤ n.

Algorithm 1. QR decomposition with column pivoting

p1:n = 1 : n
c1:n = ‖Ae1:n‖22
for j = 1 : n

Choose i such that ci = max(cj:n)
if i 6= j

swap(pi, pj); swap(Ai, Aj); swap(ci, cj)
end
Determine a Householder matrix Hj such that

HjAj:m,j = ±‖Aj:m,j‖2e1
Aj:m,j+1:n = HjAj:m,j+1:n

cj+1:n = cj+1:n −Aj,j+1:n ·Aj,j+1:n

end

The formula for the norm downdate used in Algorithm 1 is simplified for read-
ability, the current LAPACK implementation uses a more robust approach [3].

The main difference among the practical implementations of Algorithm 1 is
how the application of the Householder reflectors is made. Since a Householder
matrix H is a rank-1 modification of the identity,

H = I − τvvT ,

its application requires the computation

HA = A− τvvTA,

which can be implemented using the three different BLAS levels:

Level 1 xQRDC is from the LINPACK library (predecessor of LAPACK). This
implementation is column oriented in the sense that the matrix update is
done column by column. For each column j, it uses xDOT to compute vTAej
and then it updates Aej using xAXPY.

Level 2 xGEQPF is the original LAPACK routine (now deprecated). This imple-
mentation is matrix-vector oriented, it first computes the row vector vTA
using xGEMV for a matrix-vector product, then applies a rank-1 update with
the Level 2 BLAS routine xGER.

Level 3 xGEQP3 is the current block based LAPACK implementation, it groups
several rank-1 updates allowing to exploit BLAS level 3 operations [8].

The left plot in Figure 1 shows the performance of DGEQP3 in three different
multicore platforms, two from Intel and one from AMD. All these platforms
have two processors but a different number of cores. The Intel Xeon X5530 and
X5670 processors have 4 and 6 cores each, while the AMD Opteron 6172 has
12 cores. In these tests, the execution is set up to use one thread per core on
the Intel platforms with the optimized MKL library. On the AMD platform the
performance is measured using only 6 cores, because this configuration gives
the best performance with the optimized Cray LAPACK library. The right plot

Fig. 1. Performance of DGEQP3 on three different multicore platforms (left). Time ex-
pend on DGEMV and DGEMM routines with respect of the total execution time of DGEQP3

on the Intel 12 core platform (right).

in Figure 1 shows the amount of time spent by DGEQP3 on calls to DGEMV and
DGEMM with respect of the total execution time on the Intel 12 core platform.
The reported amount of time for DGEMV do not include the unblocked part of
DGEQP3, which is negligible for all the sizes reported.

The poor performance of DGEQP3 on these multicore platforms is because of
the extensive use of DGEMV, which is limited by the memory bandwidth and do
not scale with the number of cores. DGEQP3 uses the Y TY T representation [9] like
the regular QR decomposition routine DGEQRF, but is not fully blocked because
of the norm downdate. This downdate requires to compute the row vector vTA
for each Householder reflection applied to A. Although DGEQP3 only updates the
columns of A every k (block size) times, still has to fetch the whole trailing
matrix for the matrix-vector product. As the matrix size gets sufficiently big to
not fit entirely in cache memory, the performance of DGEQP3 decreases to the
level of DGEMV.

The DQRDC and DGEQPF routines have also this limitation, but DQRDC has the
potential to have the best data locality of all three algorithms for small matrix
sizes. If one column of the matrix fits entirely on cache memory, the DAXPY

update in DQRDC would not fetch this column again. Therefore, DQRDC fetches
each column of the matrix only once for each Householder reflection applied. In
contrast, DGEQPF and DGEQP3 fetch each column of the matrix more than once.

While both DGEQPF and DGEQP3 require for good performance to fit the whole
trailing matrix in cache memory, an implementation based on BLAS level 1 only
requires to fit one column. With the large cache memory available in current
processors, this allows good performance with practical matrix sizes.

2 Parallel QRP for Multicore Processors

In this work we propose a parallel algorithm for the QRP based on BLAS level 1
operations and a data distribution that provides good cache locality in current
multicore architectures.

Algorithm 2. OpenMP parallel QR decomposition with pivoting

p1:n = 1 : n
#pragma omp parallel
{

i = omp get thread num()
t = omp get num threads()
for j = 1 : n

if i = j mod t then cj = ‖Aej‖22
end
for j = 1 : n

#pragma omp barrier
if i = j mod t

Choose k such that ck = max(cj:n)
if k 6= j

swap(pk, pj); swap(Ak, Aj); swap(ck, cj)
end
Determine a Householder matrix Hj such that

HjAj:m,j = ±‖Aj:m,j‖2e1
end
#pragma omp barrier
for r = j + 1 : n

if i = r mod t
Aj:m,r = HjAj:m,r

cr = cr −A2
j,r

end
end

end
}

The original design of LAPACK is to enclose parallelism inside BLAS rou-
tines. In a typical multicore implementation this means that each BLAS routine
contains at least one OpenMP parallel section. Therefore, for each call to a BLAS
routine a whole set of threads is started and stopped. This thread management
overhead is negligible for level 3 routines, but it could be very significant for
level 1 and 2 routines which have a lower operation count. In contrast, the par-
allelism in Algorithm 2 is not inside the BLAS operations, but among the vector
operations required for all columns. Therefore, this algorithm only requires one
OpenMP parallel section for the whole process. The critical part of the algorithm
is implemented with synchronization primitives which should be more efficient
than starting and stopping threads.

The Householder QR algorithm processes the columns of the matrix in their
natural order from left to right. In a a parallel machine, it is natural to group
the processors into a logical ring and deal out columns in a round-robin fashion.
This technique staggers the computation across the processors and guarantees a
load balanced computation. This distribution was first proposed in the context
of the parallel implementation of a QR decomposition with local pivoting [1].

With this parallel distribution, each thread is ensured to work with the same
subset of matrix columns during all the process. If the OpenMP runtime guar-
antees processor affinity, this will provide good memory locality at the lower
levels of memory hierarchy. That is, as each core works only with a subset of the
columns, there is a good probability of accessing a column already stored in the
cache memories associated with this core.

As the number of cores increases in recent multicore processors, the archi-
tecture is gearing towards a NUMA (Non-Uniform Memory Access) model. In
these architectures each core has direct access to a small part of the memory, but
the rest must be accessed via some communication network to other core. This
network is implemented by the cache hardware and is transparent to the user.
Therefore, these processors can be still programmed using the same shared mem-
ory model as previous multicore processors. However, the memory access latency
could have large variations depending on which part is accessed. In order to get
good performance in these processors, techniques from the distributed memory
programming paradigm can be used to reduce the communication among cores.

From the parallel distribution of Algorithm 2 a straightforward memory dis-
tribution can be easily derived. The memory physically close to each core should
contain the columns updated by the thread associated to this core. This can be
implemented in current operating systems by allocating and filling this memory
from the thread itself. This technique is known in the literature as first touch
policy. As Algorithm 2 creates all threads at the start, this initialization can be
efficiently performed at the start of the process.

2.1 Preliminary Performance Results

Figure 2 shows our preliminary results from the OpenMP implementation of
Algorithm 2 in the three different multicore platforms studied. In these tests,
the execution of the proposed algorithm is set up to use one thread for each
available core. To made this comparison fair, the performance of the proposed
algorithm includes the cost of initializing the data distribution from the standard
Fortran matrix storage.

The data plot in Figure 2 shows that the proposed algorithm is a huge im-
provement over the optimized DGEQP3 for small to medium matrix sizes. For large
matrix sizes the performance decreases, because a whole column do no fit en-
tirely in cache memory. However, this low performance is still better that DGEQP3
because of the block computations required. Also, the proposed algorithm has
less thread management overhead than an implementation with parallel BLAS
routines.

Fig. 2. Performance in GFlops of the optimized DGEQP3 and the proposed OpenMP
algorithm using one thread per core.

Fig. 3. Elapsed times for the pivoted QR of a 2048 × 2048 matrix using the proposed
OpenMP algorithm and the optimized DGEQP3 routine on the AMD 24 core processor.

On the AMD platform the performance is reported for DGEQP3 using only 6
cores, because this configuration gives the best performance with the optimized
Cray LAPACK library. Figure 3 shows clearly the effect caused by the NUMA
architecture in the DGEQP3 performance, where the memory transfer costs cancel
out any performance increase with more than 6 cores. This is precisely the num-
ber of cores that physically share a block of memory in this platform. In contrast,
the proposed algorithm has good scalability in all possible configurations.

3 Parallel QRP for GPU Processors

In order to achieve good performance on a GPU processor the computation
must be divided in independent parallel subtasks. Where each subtask must be
also suitable to efficient parallelization by a not so small number of processors
(typically a multiple of 32). The parallel distribution of Algorithm 2 can be
easily adapted to this GPU parallel model. The application of the Householder
matrix is totally independent among columns, and the vector operations for each
column have enough work for an efficient parallelization. Therefore, in terms of
a CUDA implementation, each block j of threads computes first the dot product
α = vTAej and then updates the column Aej = Aej − ατv. If the matrix is
sufficiently big, there is enough work to efficiently compute these two vector
operations using all the threads in a wrap. As the memory access in current
GPU processors is uniform, there is no need for the memory distribution used
in multicore processors.

3.1 Preliminary Performance Results

Figure 4 show our preliminary results from the CUDA implementation of Al-
gorithm 2 in two different GPU platforms. In contrast to the CPU case, The
performance of the proposed algorithm improves as the matrix size increases.
This is because with small sizes there is not sufficient work to exploit GPU par-
allelism and get the full bandwidth from graphics memory. The performance of
the Tesla C2050 is not as good as the GeForce GTX480 because of the impact
of ECC checking on memory bandwidth.

4 Summary and Concluding Remarks

The preliminary results show that depending on the platform and matrix size
the proposed algorithm can be more than three times faster than the optimized
DGEQP3 routine. Besides, it always outperforms the optimized LAPACK versions
for all three multicore platforms studied.

This algorithm can also be efficiently parallelized on a GPU processor, which
is the first GPU implementation of the QR decomposition with pivoting in the
literature. This implementation shows promising results, obtaining better per-
formance than DGEQP3 for big matrices.

Fig. 4. Performance of the proposed GPU implementation on a GeForce GTX 480 and
a Tesla C2050 graphics card from Nvidia.

As future work we want to include some blocking into the algorithm while
keeping its parallel distribution. In particular, the xAPXY part of the Householder
matrix application can be grouped reducing the number of memory writes. This
should give a performance boost of the GPU implementation because graphic
memory writes usually have bigger latency than reads.

References

1. Bischof, C.H.: A parallel QR factorization algorithm with controlled local pivoting.
SIAM J. Sci. Stat. Comput. 12, 36–57 (January 1991)

2. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM J. Matrix
Anal. Appl. 15, 592–622 (April 1994)

3. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software
– a case study. ACM Trans. Math. Softw. 35, 12:1–12:28 (July 2008)

4. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm I. SIAM J.
Matrix Anal. Appl. 29, 1322–1342 (January 2008)

5. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm II. SIAM J.
Matrix Anal. Appl. 29, 1343–1362 (January 2008)

6. Golub, G.H.: Numerical methods for solving linear least squares problems. Numer.
Math. 7, 206–216 (1965)

7. Gu, M., Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (July 1996)

8. Quintana-Orti, G., Sun, X., Bischof, C.H.: A BLAS-3 version of the QR factorization
with column pivoting. SIAM J. Sci. Comput. 19(5), 1486–1494 (1998)

9. Schreiber, R., van Loan, C.: A storage-efficient WY representation for products of
Householder transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (January 1989)

