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Abstract

Mechanical vibrations as subject can be found within many Engineering and Science De-
grees. To achieve that the students understand the mathematics and its physical interpre-
tation is the objective we should get as docents. In this paper we describe how to create a
simple graphical model of a single degree of freedom vibrating system allowing us to visu-
alize concepts like above concepts damping, resonance or forced vibrations. For that, we
use the popular symbolic software Wolfram Mathematica with which, without an excessive
programming complexity, we can obtain a very satisfactory visual model capable to move
itself, controlled by parameters. In addition, the model incorporates the curve-response,
something that links the mathematical results with reality

Las vibraciones mecánicas como asignatura están en un muchos estudios de ingenieŕıa y
ciencias. Lograr que los estudiantes entiendan las matemáticas y su interpretación f́ısica
es el objetivo que debemos conseguir como docentes. En este art́ıculo describimos la forma
de crear un modelo gráfico sencillo de un grado de libertad dinámico que permita visualizar
conceptos como amortiguamiento, resonancia o vibraciones forzadas. Para ello usamos
el popular software simbólico Wolfram Mathematica. Sin un excesivo esfuerzo de progra-
mación se puede crear un modelo matemático vinculado a un modelo gráfico–dinámico
que permite visualizar el movimiento de una masa unida a un muelle. Además, el modelo
incorpora también de forma dinámica la curva de respuesta en el tiempo, algo que permite
vincular los resultados matemáticos con la realidad.

Keywords: mechanical vibrations, mass-spring-dashpot system, graphical representation, Wolfram Mathematica,
time domain animation
Palabras clave: vibraciones mecánicas, sistema masa-muelle-amortiguador, representación gráfica, Wolfram
Mathematica, animación en el tiempo
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1 Introduction

The analysis of mechanical vibrations becomes nowadays an area of special interest for scientists
and engineers due to its wide applicability. Therefore, as subject, vibrations can be found
approximately in the middle of a typical 4-year Engineering Degree (between the second and
the third year). On one hand, subjects as mathematical analysis, mechanics or algebra are
required before coursing any introductory course of vibrations. On the other, it is usually
the firs stage in a set of specific subjects linked to each engineering area and strongly related
with vibrations: isolation analysis, structural dynamics, earthquake engineering, aeroelasticity,
control engineering or acoustics, as examples.

Figure 1: Vibrations is always present all around in our daily life

In mechanical vibrations, students meet with new concepts such as damping, resonance fre-
quency, harmonic solution, frequency response function,... all of them based on mathematical
results. The complexity increases for multiple degrees of freedom systems and for continuous
structures (vibrations of beams). These results are usually presented together with graphical
support, for instance in form of response curves in time or in frequency domain.

We can find many specialized books into mechanical vibrations in the bibliography. Thus,
for example we find books that introduce vibrations for specific areas as Civil Engineering (Paz,
2013), Aerospace Engineering (Hodges & Pierce, 2001; Wright & Cooper, 2007; Garćıa-Fogeda
Sanz-Andrés, 2014) or Modal Analysis (He & Fu, 2001). Other references where we find notes
on computational and experimental methods in structural dynamics and vibrations are (Kelly,
2000; Thorby, 2008; Gatti & Ferrari, 2003; Meirovitch, 2001). We find of great didactic interest
the Open Online Course on Mechanical Vibrations published by MIT (MIT Open Course Ware.
Mechanical Vibrations, 2011)and available through a set of chapters covering from single degree
of freedom (dof) system to multiple dof and continuous systems.

In order to learn the principles of mechanical vibrations we need to know the mathematical
foundations. But as important as this latter is to understand physically how does it move a
vibrating body. In this paper we propose to work with the computational symbolic software
Wolfram Mathematica (WM) (Wolfram Mathematica, 2015) to reach the main challenges:
mathematics and graphical representation of vibrations. WM allows simultaneously to solve
and to represent a mathematical model symbolically or parametrically written. Our objective

ISSN 1988-3145 @MSEL

http://polipapers.upv.es/index.php/MSEL


M
o

de
lli

ng
in

S
ci

en
ce

E
du

ca
ti

on
an

d
L

ea
rn

in
g

ht
tp

:/
/p

ol
ip

ap
er

s.
up

v.
es

/i
nd

ex
.p

hp
/M

S
E

L
Volume 8(2), doi: 10.4995/msel.2015.3522. 95

is to describe how to create a simple but illustrative single dof model which dynamically moves
vibrating according to some parameters introduced as input data. Based on these graphical
objects we will present concepts like forced/free vibrations, resonance or damping.

2 Theoretical foundations

The study of vibrations always begins with the analysis of a single degree of freedom dynamical
system. We can imagine a mass m hanging from ceiling, joined with a elastic spring of linear
constant k and with a dashpot with damping coefficient c. The latter is a device that acts when
the mass has certain velocity. In fact, its force reaction is proportional to the mass velocity.
Considering that the spring has a free length L0, then when the mass is attached it suffers

Figure 2: Mass–spring–dasphot setup for modeling a single degree of freedom vibrating system

a extra elongation ∆L. When the system is under static equilibrium in absence of external
forces, the spring force equals the weight so that k∆L = mg. We assume this equilibrium
level L0 + ∆L as the origin for the vibration amplitudes x(t). The differential equation that
describes the movement of the mass is obtained from the dynamic equilibrium, that is the
Newton’s second law

f(t) +mg −Rk(t)−Rc(t) = mẍ (1)

where ẍ = d2x/dt2. The spring and dashpot reactions are Rk(t) = k (∆L+ x) and Rc(t) = c ẋ.
Introducing these expressions in Eq. (1) and using the equality mg = k∆L from the static
equilibrium, we have

mẍ+ c ẋ+ k x = f(t) (2)

In order to complete the mathematical problem, initial conditions must be introduced. We
assume the system has certain initial position and velocity, so that

x(0) = x0 , ẋ(0) = v0 (3)

The solutions of this equation are usually separated according to the values of c and f(t) in
the Table 1.

The four problems sequentially introduce very important concepts in the study of vibrations

1. The natural frequency of a sdof system is introduced with the free–undamped vibrations
problem.
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FREE, f = 0 FORCED f 6= 0

UNDAMPED, c = 0 mẍ+ k x = 0 mẍ+ k x = f(t)

DAMPED, c 6= 0 mẍ+ c ẋ+ k x = 0 mẍ+ c ẋ+ k x = f(t)

Table 1: Nature of the vibrations depending on the external force f(t) and damping c

2. The phenomenon of resonance is studied in the forced–undamped problem.

3. Losing of energy is modeled from the viscous damping in free–damped vibrations. This
simple model produces an exponential decay of amplitudes, widely observed in Nature.

4. Finally, interaction between the three previous concepts is studied in forced–damped vi-
brations, introducing the transfer function and frequency domain solutions, very useful
tools for analyzing general forms of the acting force.

To obtain the analytical solution of Eq. (2) for the different cases presented in Table (1) is
not the objective of this work. This has already been developed by several authors using for that
different methods like Laplace transform, Fourier transform or unit-impulse force among others
(Kelly, 2000; Meirovitch, 2001). Since the software Wolfram Mathematica already obtains
analytical solutions for a great number of forms of f(t), we will focus on the advantages of this
software for representing and visualizing solutions in order to stand out the physical insight of
vibrations. In order to reduce the number of parameters of the problem, the Eq. (2) and the
initial conditions (3) can be transformed so that the magnitudes become dimensionless. Thus,
dividing by m we obtain

ẍ+
c

m
ẋ+

k

m
x =

f(t)

m
(4)

We denote ωn =
√
k/m to the natural frequency of the system. The damping coefficient is

replaced by the so called damping ratio ζ = c/2mωn. Rewriting the Eq. (4) with the new
variables

ẍ+ 2ωnζ ẋ+ ω2
n x =

f(t)

m
(5)

Now the introduce the variable Tn = 1/ωn with units of time to get a dimensionless time
τ = t/Tn = ωnt. The time derivatives must be transformed to the τ–derivatives d/dt = ωn d/dτ .
The τ–derivatives will be denoted shortly by (•)′ = d(•)/dτ . After some simplifications we have

x′′ + 2ζ x′ + x = f(τ) , x(0) = x0 , x
′(0) = ν0 (6)

where f(τ) = f(τ)/mω2
n represents the external force and ν0 = v0/ω0 the initial velocity. Note

that as f(τ) as ν0 have units of length as x(τ), therefore the Eq. (7) has units of length too.
This equation could be divided by some representative length of the problem in order to do it
completely dimensionless, although for our proposes we can consider it reduced enough.

3 Working with Wolfram Mathematica

3.1 Solving the equation

The software Wolfram Mathematica (WM) allows to obtain a symbolic solution as function of
all parameters of Eq. (7) (ζ, x0 and ν0), although for that a specific form of f(τ) is needed. In
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Table 2: Definition of parameters and types of external forces

our WM file the user can chose among five different mathematical forms for f(τ)

1. Constant function f1(τ) = H(r − τ)

2. Armonic function f2(τ) = H(r − τ) sin(λeτ)

3. Parabolic function f3(τ) = H(r − τ) 4τ
r

(
1− τ

r

)
4. Armonic–Parabolic function f4(τ) = H(r − τ) 4τ

r

(
1− τ

r

)
sin(λeτ)

5. Null function f5(τ) = 0

where H(τ) denotes the unit–step function, defined as

H(τ) =

{
1 if τ > 0

0 if τ < 0
(7)

Hence, we consider that the force is applied from τ = 0 to τ = r. In the range τ > r there
are not applied forces and the mass is left under free vibrations. Note also that the parameter
λe represents the ratio between the excitation force and the natural force, that is λe = ωe/ωn.
Therefore, if λe = 1 the excitation frequency is equals to the natural frequency, which means
resonance. The fig. 3 shows the plot of each one of the non trivial considered time forces for
r = 60 and λe = 1/2. The numerical parameters that control the mathematical problem are
five:

• Initial conditions (2 parameters), x0, ν0

• Damping ratio (1 parameter ), ζ

• Parameters of external force (2 parameters), r, λe

Let us see that programming the script for the dynamic representation of mechanical vibra-
tions just takes few lines. In Table 2 the first command lines of the WM file are showed. We
leave these first lines (1 to 3) to define the value of parameters and the choice of the external
force. Note that more type of functions could be defined just adding their expressions in line
2. The parameter tmax defines the maximum value of τ used in the different response plots.

Now, we are ready to solve the differential equation (7) and to obtain the response x(t).
However, in this work we will use all computing power of WM, letting it do the needed cal-
culations for solving analytically the differential equations with the DSolve[...] command.
We must take into account that the external force has been defined in two different intervals,
consequently also the solution must be separately calculated in these two intervals. Therefore,
initial conditions for the second range are position and velocity calculated at the end of the
first one in order to guarantee function and derivative continuity. Table 3 shows the needed
lines to construct the response xs[t], valid for the full range of (dimensionless) time.

With the analytical solution, each one of the particular cases shown in Table 1 can be
calculated (and their solution represented) using the correct values of parameters. Thus, for
example, free-undamped vibrations response is obtained with ζ = 0 and f[t_]=f5[t] in lines
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Figure 3: Plots of the different time–functions. f1(τ), left-top. f2(τ), right-top. f3(τ), left-bottom. f4(τ),
right-bottom. The value of parameters: r = 60, λe = 0.50

Table 3: Command lines for solving the differential equation, using WM function DSolve. The line 3 shows
how to put together the two separated solutions using the unit step function of Heaviside, HeavisideTheta[t]

1 and 3. The mathematical expression is too long for writing here and itself is not of interest
for students interested in the physical insight of mechanical vibrations. The objective of this
work is not to derive the mathematical expressions of the solution, but visualizing and plotting
the response together with external force. The graphic representations are directly related with
our interpretation of vibrations and WM provides easy and powerful tools for it.

3.2 Plotting the solution

We consider the graphic output of the mechanical vibrations of special interest from a learning
point of view. Sometimes, undergraduate students are overrun by mathematical machinery
used in mechanical vibrations: differential equations, Fourier/Laplace transforms, harmonic
series expansion, algebra and eigenvalue problems (for multiple dof problems), etc... Although
they have been observing vibrations all around in real life, they find difficulties to relate their
experiences with the new physical concepts shown in the equations. We suggest to exploit the
plotting and animating tools of WM to cover this deficiency. First, we describe in this point
how to create a high quality plot, ready for be introduced in any report or technical document.
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Secondly, in the next point we will create a short script to animate the solution of a single
degree of freedom vibration problem (that one shown in Fig. 2).

Table 4: Plot parameters definition: axis, ticks, labels and legends

In Table 4 we define the numerical values of parameters which control the axis and their
labels of the plots. In lines 7 and 8 we define the shown ranges and the associated labels. Lines
9 and 10 assign to variables Ejex and Ejey character strings which will be visualized near the
axis. The last line shows how to use the import command to attach a figure within the graphic
plot.

The command Plot[...] is used by WM for plotting mathematical functions. A detailed
explanation of the different inputs and their syntax can be found in the Help of WM. In addi-
tion, many examples illustrating the different cases and situations are also very helpful. Since
as the response x(t) as the external force f(t)/k have units of length, both can be plotted in
the same axes. While x(t) is said to be the dynamic response, f(t)/k represents the static one,
that is, the response if both velocity and acceleration were null. This affirmation is directly
derived from Eq. (2) doing mẍ = cẋ = 0. Thus, if curves x(t) and f(t)/k are close, the dynamic
effects are negligible. In contrast, the more the discrepancy the higher the influence of inertial
and damping forces. To represent simultaneously both curves helps us in the interpretation of
the cause-effect relationship of the mechanical problem. The proposed script to generate the
plots will be described and applied to three different examples.

Table. 5 shows the command lines used to draw curves x(t) and f(t)/k. Line 11 contains
the arguments of the function Plot[...]. It can be seen from above to below the instructions
which control the different variables. We can remark, for instance, the argument Prolog used
to overlay another imported figure (see Table. 4) on the plot (in this case we attach a sketch
of the model). The rest of the arguments do not need to be described with detail since their
particular syntax can be found in the Help of WM. The set of properties associated with this
plot are saved in a variable named “g”. To export the figure with different formats we use
Export[...]. Thus, in lines 12 and 13 the plot saved as g is exported in eps and jpg formats,
respectively. The eps format is widely used for scientific texts generated with LATEXas for ex-
ample the present paper. Other formats are available just changing the extension in the given
file name.

To illustrate different scenarios, three examples will be constructed covering some of the
proposed external functions (see Table 6 for more information on each example). In particular,
in order to simplify the parameters influence, the initial conditions for the three examples are
assumed to be null, x0 = ν0 = 0.

In Fig. 4 the generated plots with response x(τ) (dynamic response) and external force
f(t)/k (static response) are shown. In the range 0 ≤ τ ≤ r the external force excites the
system with three different forms. Their values are highlighted with background on grey color.
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Table 5: Plot command in Wolfram Mathematica to show and export high quality 2D graphic representations

f(τ)/k r ζ λe = ωe/ωn Response plot Animation frames
Example 1 −f3(τ) 20 0.05 — Fig. 4 (top) Fig. 5
Example 2 −f1(τ) 40 0.10 — Fig. 4 (middle) Fig. 6
Example 3 +f4(τ) 40 0.10 1.00 Fig. 4 (bottom) Fig. 7

Table 6: Values of the parameters for each example and figures where plots and animation frames are shown

As said before, the discrepancy between x(τ) and f(τ)/k curves give information about the
dynamic effects from intertial and damping forces. Thus, In Example 1, these effects are much
less important than Examples 2 and 3. In fact, this latter could be taken as a good example to
describe the resonance effect. Indeed, f4(τ) is an harmonic force with amplitude bounded by
a parabolic function (see Fig. 3 right-bottom) and with relative frequency λe = ωe/ωn = 1. In
Fig. 4-bottom we see that relatively low amplitudes of exciting force induces large amplitudes
in the response. We note that the force is positive (upward direction) when velocity of mass is
also positive. In the next oscillation the same occurs but in negative direction, that is, negative
force act when velocity is downward, increasing the absolute amplitude more and more. This
coupling is known as resonance. Understanding and interpreting this concept should be one
of the main objectives of a first course on mechanical vibrations. Also the free-motion can be
observed in the three examples in the range τ ≥ r where the amplitude decay depend directly
on the assigned value of damping ratio ζ.

3.3 Animating the results

Some guidelines to construct high-quality plots of the vibrating response have been given in
the previous point. The new challenge is to relate the real movement of the mass with the
graphical results derived from the solved differential equation. For that, we will use a very
useful and easy function implemented in WM: Manipulate[...]. This function allows any
graphical input depending on one or more parameters to be animated. In our particular case
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some graphical objects are created so that geometry depend on the response x(t) and f(t),
which in addition depend on time. Consequently time (denoted by t in WM lines and by τ in
equations, both represent dimensionless time) is the parameter whose variation produces the
animation effect on the objects.

The Table 7 shows the complete script to generate the animated graphic. Two parts are
clearly differentiated: lines 14 to 17 define the geometry of the system, whereas line 18 contains
the necessary commands for Manipulate[...] function. We describe with more detail each
line

Table 7: Code lines in Mathematica to define the animation graphics

Line 14. We define some parameters to control the geometries: sizes, scales, etc.... In this line,
particular values are assigned to these parameters. For example L0, R0 and n0 represent,
respectively, the length, radius and number of spirals of the spring. e and ef are two scale
factors and Xmax is the visual horizontal range of the plot.

Line 15. The force is represented by a red arrow, created using a function named
Vectorfuerza[...] whose arguments are the position, length and head size.

Lines 16 and 17. Two functions Masa[...] and Muelle[...] return the graphical objects
representing the mass and the spring as function of different arguments like length L, radius
R and number of spirals n. The input argument U denotes the response x(τ) and is used
to locate the mass and the spring each time.
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Line 18. Command Manipulate[...] animates a plot or graphic via a continuous variation
of one or more parameters. Our variable parameter is obviously the time and all the
graphics object previously defined depend on the displacement of the mass x(t), denoted
as xs[t] in Table 7. From line 18a to 18f, the different graphical objects are sequentially
added: In 18a and 18b, a brown block and the spring is drawn, this latter with its end
point attached to the mass (defined in line 18e) and animated by the x(t). Lines 18c and
18d plot the curves response x(t) and force f(t)/k with different colors. The curves seem
to be drawn by the mass creating an interesting dynamical effect. In line 18f we define the
force arrow attached to the mass and dynamically sized depending on its absolute value,
given by the curve. Lines 18g control the general aspect of the graphic plot: size, labels
and plot range. Line 18h creates the control bar to manipulate the time domain, starting
at the frame located at time tex, and ending at time tmax previously defined in lines 18a
and 1 respectively

Figs. 5, 6 and 7 show different instantaneous frames of the animation for each one of the
three examples presented at Fig. 4. In each example, the movement of the mass generates
the response curve (blue) while simultaneously the force evolution (red) is also plotted. Both
curves moves to the right like a wave in order to overview the complete force-response solution.

This form of representing models using command Manipulate[...] have become very
popular to visualize a large number of mathematical models. Even there exists a free access
platform named Wolfram Demonstration projects and linked to Wolfram Mathematica, where
we can find a huge amount of uploaded files with dynamical and interaction demonstrations
solved with Mathematica. The files are built under the CDF Technology (Computable Docu-
ment Format). We can use their own words to describe it “[...] launched by the Wolfram Group,
the CDF standard is a computation-powered knowledge container-as everyday as a document,
but as interactive as an app”. (CFD Technology, 2015).

4 Conclusions

In this paper we describe how to program in Wolfram Mathematica a simple, but didactic,
graphical single degree of freedom vibrating model. The objective is to complete the learning
process of students in mechanical vibrations with a resource capable to move itself dynamically
controlling some parameters. In addition to the graphical objects, also the curve-response
and the force-input are embedded putting together the mathematical results with the physical
insight of the phenomenon. In order to describe the process, some visual examples are also
presented.
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Figure 4: Output plots of response x(t) and external force f(t)/k according to script shown in Table 5. Top,
parabolic force with downward direction up to τ = 20. Middle, uniform downward force up to τ = 40. Bottom,
harmonic force with resonance frequency bounded by a parabolic function up to τ = 40
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Figure 5: Three frames of animating video generated with the Mathematica file for parabolic-type external
force. Upper: during applied force. Center: end of applying force. Bottom: free-damped vibrations
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Figure 6: Three frames of animating video generated with the Mathematica file for constant-type external force.
Upper: during applied force. Center: end of applying force. Bottom: free-damped vibrations
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Figure 7: Three frames of animating video generated with the Mathematica file for harmonic-parabolic-type
external force. Upper: force downwards. Center: force upwards. Bottom: free-damped vibrations
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