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Evaluaciones genómicas utilizando secuencias del 

proyecto de los 1000 genomas bovinos 
 

Se presenta un enfoque de regresión sobre haplotipos para la evaluación genética usando 

una muestra de la población Holstein de 450 animales, con datos de secuencia completa 

procedente del proyecto 1000 genomas bovino. Este enfoque se basa en la hipótesis de 

que los haplotipos procedentes de datos de secuenciación están en un desequilibrio de 

ligamiento (LD) con los QTLs mucho mayor que los marcadores (SNP) procedentes de 

genotipados. Este estudio se centra en la extracción de los haplotipos en la población y su 

incorporación en el modelo de predicción de secuencia completa. En total, se incluyeron 

38.319.258 (SNPs y indeles) procedentes de Next Generation Sequencing (NGS). Las 

variantes con menores frecuencias alélicas (MAF <0,025) fueron descartadas dejando un 

total de 13.912.326 SNPs disponible para los análisis.  

Se usó el programa Findhap.f90 para la extracción de los haplotipos. El número de SNPs 

en el haplobloque varió de 799 en BTA 13 a 1285 en BTA 12, con una media de 924 SNP 

(166.552 pb). Los haplotipos con una frecuencia inferior al 1% fueron de alrededor del 

97% en todos los cromosomas. Aquellos fueron ignorados dejando 153.428 haplotipos 

para los demás análisis. Cada haplotipo se identificó por cromosoma y el segmento en el 

que se encuentra, así como el número del haplotipo ordenado dentro del segmento. Los 

caracteres analizados fueron las pruebas MACE para proteína (Prot), Índice Global 

de Tipo (IGT), Recuento de Células Somáticas (SCS) y Días Abiertos (DO) 

proporcionadas por CONAFE. Los datos fenotípicos se fusionaron con el archivo de 

haplotipos y se usó un modelo bayesiano para predecir valores genómicos estimados 

(GEBV). Los haplotipos estimados mostraron una alta contribución a la varianza total de 

GEBV (entre 32 y 99.9%). Se observó que la mayoría de los haplotipos para Prot, IGT 

and DO están a frecuencia baja-intermedia, mientras que los haplotipos encontrados para 

SCS están mayoritariamente a bajas frecuencias. Por lo tanto, esperamos que nos aporten 

información adicional a los genotipados de SNP acerca de las variantes menos frecuentes 

para explorar su contribución en la variación genética, ya que los chips de SNPs están 

diseñados para marcadores a frecuencias intermedias-altas. 

Con el fin de reducir el número de haplobloques necesarios para realizar la predicción 

genómica, se seleccionaron un subconjunto de haplobloques que contienen haplotipos 

con mayores efectos. Nuestro análisis estadístico detectó 1264, 1909, 851 y 1450 

haplotipos distintos que tuvieron una estima del efecto superior a 3 desviaciones estándar 
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(sd) sobre la media para los kg de proteína, IGT, SCS y DO, respectivamente. En el 

segundo criterio, se seleccionaron los que superaron el umbral de 1 sd sobre la media y 

se detectaron un total de 44.319 haplotipos para Prot, 39.975 para IGT, 46.132 para SCS 

y 42.878 para DO. A continuación, los haplotipos seleccionados en cada criterio fueron 

sometidos a un nuevo análisis. La proporción de varianza de los valores genómicos 

estimados correspondiente al efecto de los haplotipos fue de 1.06, 5.24, 15.29 y 11.64% 

para Prot, IGT, SCS y DO, respectivamente, con aquellos haplotipos que superaron el 

primer criterio (3sd) y de 10.92, 101.62, 33.30 y 53.93%  para el segundo criterio (1sd). 

Se esperaría que las predicciones genómicas utilizando solamente un conjunto de 

haplobloques adecuadamente seleccionados puede aportar información adicional a la 

predicción de GEBV, y deben ser considerados más en profundidad en los estudios. 

 

Palabras clave: Evaluación genética, secuencia completa, Holstein, Findhap, haplotipos, 

modelo bayesiano. 
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Genomic evaluations using sequences 

of the 1000 bull genomes project 

 
A haplotype regression approach for genetic evaluation using population sample of 450 

Holstein animals, with full-sequence data from the 1000 bull genomes project is presented 

in this thesis. This approach is based on the assumption that haplotypes from sequencing 

data are in stronger linkage disequilibrium (LD) with Quantitative Trait Loci (QTL) than 

markers from SNP chips. This study focuses on the extraction of haplotypes in the 

population and their incorporation in the whole sequence prediction model. In total, 

38,319,258 SNPs (and indels) from Next Generation Sequencing (NGS) were included. 

Variants with Minor Allele Frequency (MAF< 0.025) were discarded leading a total of 

13,912,326 SNPs available for the analyses. 

Haplotypes were obtained from version 3 of findfhap.f90 software. The number of SNPs 

in the haploblocks ranged from 799 in BTA 13 to 1285 in BTA 12, with a mean of 924 

SNP (166,552 pb). The haplotypes with a frequency below 1% were around 97% in all 

chromosomes. These haplotypes were ignored leaving 153,428 haplotypes for subsequent 

analyses. Each haplotype was identified by chromosome and segment where it is located 

as well as the ordered number of the haplotype within the segment. The haploblocks were 

then used to predict four economically important traits: kg of protein (Prot), Global Type 

Index (IGT), Somatic Cell Score (SCS) and Days Open (DO). The phenotypic values 

were the MACE proofs provided by the Spanish Holstein Association CONAFE. The 

phenotypic data were merged with the haplotype file and a Bayesian model was 

implemented to predict Genomic Estimated Breeding Value (GEBV). Estimated 

haplotypes had a large contribution to the total variance of GEBV (between 32 and 

99.9%). Most of the haplotypes for Prot, IGT and DO have low-intermediate frequencies 

while haplotypes found for SCS are mostly at low frequencies. We expect that these 

haplotypes will give us additional information to SNP genotypes on those less common 

variants, as SNP beadchips are designed to genotype intermediate-high MAF. 

In order to reduce the number of haploblocks needed to perform genomic prediction, a 

subsets of haploblocks that contained haplotypes with large effects were selected. A total 

of 1264 haplotypes exceeded the genome wide threshold of 3 standard deviation (sd) 

above mean (in absolute value) for Prot, 1909 for IGT, 851 for SCS and 1450 for DO 

distributed along the genome. In the second criterion, those with effect estimate (in 

absolute value) larger than 1 sd above mean which led to a total of 44,319 haplotypes for 
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Prot, 39,975 for IGT, 46,132 for SCS and 42,878 for DO. Then, haplotypes selected in 

each criteria were subjected to a new analysis.  

The proportion of the genetic variance estimated values corresponding to the haplotypes 

effect was 1.06, 5.24, 15.29 and 11.64% for Prot, IGT, SCS and DO, respectively, using 

the first criterion (3 sd) and 10.92, 33.30 and 53.93% for Prot, SCS and DO, respectively, 

using the second criterion (1 sd). 

Genomic predictions using only a set of appropriately selected haploblocks can provide 

additional information to GEBV prediction, and should be considered in more in-depth 

studies. 

 

Keywords: Genetic evaluation, full sequence, Holstein, Findhap, haplotypes, Bayesian 

model. 
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Introduction 

The improvement of farm animals is a major concern for breeders looking for selecting 

the best candidates to obtain the best performing descendants and better adapted to current 

and next future farming conditions. Most of the economic characters in farm animals that 

are of interest for breeders commonly show continuous variation. There is a wide range 

of variability in these characters, which partly depends on the genes. 

Traditional genetic improvement of livestock, using information on phenotypes and 

pedigrees to predict breeding values of the selection candidates based on Fisher’s 

infinitesimal model, has been very successful. Nevertheless, we should be able to predict 

breeding value with higher accuracy using information from differences between animal 

DNA sequence (Goddard and Hayes, 2007). 

Marker-assisted selection (MAS) has been proposed extensive, although in most cases it 

did not provide options for extra gains by increasing selection accuracy unless a 

sufficiently large number of markers were used (Meuwissen et al., 2001; Villanueva et 

al., 2005). However, the complexity of calculating breeding values including marker 

information was a further barrier to the application of MAS (Hayes et al., 2009). Its 

implementation has been limited and increments in genetic gain have been very limited 

(Dekkers, 2004). 

New technological advances such as Single Nucleotide Polymorphism (SNP) discovery 

through deep sequencing and throughput SNP genotyping with SNP chips, have led to a 

new strategy of selection called genomic selection (GS) that has revolutionized breeding 

in some species such as dairy cattle, and at the same time posed new challenges (Hayes 

et al., 2009). This concept was introduced by Meuwissen et al., (2001), where genetic 

markers covering the whole genome were proposed to be in linkage disequilibrium (LD) 

with all quantitative trait loci (QTL). The SNP in close LD with QTLs enable us to divide 

the entire genome into thousands of relatively small chromosome segments. Then the 

effects of each chromosome segment are estimated simultaneously. Finally, the genomic 

breeding value equals to the sum of all estimated chromosome segment effects. However, 

the theory described by Meuwissen et al., (2001) was not applicable at this time because 

of the high cost of genotyping and the large number of markers required. Both limitations 

have been recently overcome by the dramatic development in sequencing technology, 
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which can sequence thousands of SNP, and by the development of genome-enhanced 

evaluations. GS offers many advantages at improving the rate of genetic gain in dairy 

cattle breeding programs. The most important factors that contribute to faster genetic gain 

include: 

• Greater accuracy of predicted genetic merit for young animals. 

• Shorter generation interval because of heavier use of young, genetically superior males 

and females. 

• Larger selection intensity, because breeders can use genomic testing to screen a larger 

group of potentially elite animals. 

The genetic gain (∆G) in animal breeding programs can be calculated as: 

∆𝐺 =
𝑖𝜌𝜎𝑎

𝐿
 

where 𝑖: the intensity of selection;  𝜌: the accuracy of selection; 𝜎𝑎: the additive genetic 

standard deviation; and L: the generation interval. 

By increasing the accuracy and intensity of selection and shortening the generation 

interval, the rate of genetic progress for economically important traits can be 

approximately doubled (Van der Werf, 2013). Meuwissen et al., (2001), suggested by 

simulations that the breeding value could be predicted only from marker data with an 

accuracy of 0.85. 

In practice, GS refers to selection decisions based on genomic estimated breeding values 

(GEBV) and other genome wide marker information. These GEBV are calculated by 

estimating SNP effects from prediction equations, which are derived from a subset of 

animals in the population (i.e., a reference population) that have SNP genotypes and 

phenotypes for traits of interest, and then used to predict the breeding values of new 

selection candidates (Hayes et al., 2009). 

According to Goddard (2009) and Hayes et al., (2009), the accuracy of GEBV depends 

on 4 parameters. The first two of these are under the control of the experimenters while 

the last two are not: 
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1. The level of LD between the markers and the QTL; 

2. The number of animals with phenotypes and genotypes in the reference 

population from which the SNP effects are estimated; 

3. The heritability of the trait in question, or, if de-regressed breeding values are 

used, the reliability of these breeding values; and  

4. The distribution of QTL effects. 

There are some other parameters not mentioned by the authors such us: 

1. The relationship between reference population animals and also between 

reference population and the candidates; 

2. The statistical method used; and 

3. The allelic frequencies of QTLs and markers. 

In this section, we review a number of methodologies that have been proposed for 

estimating the single marker or haplotype effects across chromosome segment effects for 

GS and we will present a brief overview on our research context about genomic prediction 

using sequence data. 

Approaches for genomic assisted predictions 

Genomic selection depends on the possibility of predicting accurately the genetic merit 

of selection candidates based on their genotypes for SNP markers. The reasoning behind 

this process is that whenever marker density is high enough, most QTL will be in high 

LD with some markers, and marker effects estimation lead to accurate predictions of 

genetic merit for a trait. 

Despite this, the amount of information to be analysed in this situation poses new 

challenges from statistical and computational point of view. The number of predictor 

variables (markers) is generally much higher than the number of observations 

(phenotypes), hence, there is lack of degrees of freedom to estimate all marker effects 

simultaneously, which is aggravated by the fact that models may suffer from 

multicollinearity, especially because markers in close positions are expected to be highly 

correlated. 

Several approaches have been proposed to estimate the marker or haplotype effects across 

chromosome segments for GS. A key difference between these approaches is the 
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assumption they make about the variances of haplotype or single marker effects across 

chromosome segments. 

Below, we briefly review some of the methods that have been proposed for genomic 

enhanced evaluations, based most of them on different regularization strategies. 

 

Linear Least squares regression model  

One of the simplest models in GS to predict the individual’s breeding value by modeling 

the relationship between the individual’s genotype and phenotype is: 

𝑦𝑖 = 𝜇 + ∑ 𝐱ijgj + 𝑒𝑖

𝑝

𝑗=1

 

Where i = 1. . .n individual, j = 1. . .p marker position/segment, yi is the phenotypic value 

for individual i, 𝜇 is the overall mean, 𝐱ij is an element of the incidence matrix 

corresponding to marker j, individual i, 𝑔𝑗 is the effect associated with marker j, and ei is 

a random residual term. Typically, e is chosen to have a normal distribution with mean of 

0 and variance 𝜎𝑒
2. 

In order to estimate (𝜇,𝑔), we can use least squares to minimize the sum of squared 

distance between the observed response and the estimated response. 

We obtain the estimate of 𝑔 obtained by solving the linear equations X'X 𝐠 = X'y, as �̂� =

(𝐗′𝐗)−𝟏𝐗′𝐲. The elements of the design matrix X depend on the number of alternative 

alleles that the animal presents. For example, individuals having marker genotypes AA, 

Aa, aa, have elements coded as -1, 0, and 1 in xij respectively, although other codifications 

are also possible. 

Usually the number of markers available is much greater than the number of individuals 

with phenotypic information, which means that p is much larger than n, and it is not 

possible to perform the estimation. Meuwissen et al., (2001) used a modification of least 

squares regression for GS using preselection. This approach makes no assumptions about 

the distribution of chromosome segment effects, because these effects are treated as fixed 

(Hayes, 2007). First, they performed least squares regression analysis on each segment 

separately using the model:  y= µ + 𝐱j𝑔j + e. Where y is the vector of the phenotypic 

information, µ is the overall mean vector, 𝐱j is the jth column of the design matrix 

corresponding to the jth segment, 𝑔j is the genetic effect associated with the jth segment, 
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and e is the vector of the error terms. By plotting the log likelihood of this model, 

segments with significant effects were found. 

Then the segments with the most significant effect were used for simultaneous estimation 

by the model: 

𝑦𝑖 = 𝜇 + ∑ 𝑥𝑖𝑗𝑔𝑗 + 𝑒𝑖

𝑞

𝑗=1

 

where q is the number of segments. This approach does not fully take advantage of the 

whole marker information because only markers with a significant effect are included in 

the final model. Further, this preselection procedure might bias the results. Other methods 

for GS have been introduced to overcome some of the drawbacks of the linear regression 

approach. 

Ridge regression and BLUP 

In ridge regression, estimates of the genetic effects are shrunk towards the mean. It is 

based on the assumptions that SNP marker effects are normally distributed, are 

uncorrelated, and have equal variances. The estimate of the regression coefficient is given 

by: 

 �̂� = (𝐗′𝐗 +  𝜆𝐈)−𝟏𝐗′𝐲 

The difficulty with ridge regression is that the choice of λ is arbitrary. Ridge regression 

BLUP uses the same estimator as ridge regression but estimates the penalty parameter by 

REML as λ=𝜎𝑒
2/𝜎𝛽

2, where 𝜎𝑒
2 is the residual variance, 𝜎𝛽

2 is the variance of the regression 

coefficients and var (β) =I𝜎𝛽
2. These methods do not fit well for those cases where genes 

with large effect are involved (Xu, 2003). 

G-BLUP 

The genomic BLUP (G-BLUP) model proposed by (Meuwissen et al., 2001) is very close 

to pedigree BLUP (Henderson, 1975). In the G-BLUP, the markers effects are assumed 

to be randomly and normally distributed with uniform variance for all markers. 
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Goddard (2009) showed that the G-BLUP is equivalent to a traditional model BLUP 

replacing traditional pedigree relationship matrix A by a genomic relationship matrix G 

built from molecular information. Those individuals sharing identical by state genotype 

for a larger number of markers are expected to be genetically more similar and will have 

larger values in the corresponding cells of the matrix. 

Genomic relationship matrix G can be constructed in several ways (Gianola and Van 

Kaam, 2008), and various G matrices used in a genetic evaluation have resulted in 

different scaling and accuracies of GEBV (Aguilar et al., 2010; Forni et al., 2011). 

Genomic relationship matrix G can be obtained by at least 3 methods (VanRaden, 2008): 

The first one uses the formula: G = 
𝐙𝐙´

2 ∑ 𝑝𝑖 (1−𝑝𝑖)
  where p is the frequency of the second 

allele and i is the locus, Z is a matrix that results from the subtraction of P from M, 

being P = 2(pi − 0.5), and M the matrix of genotypes codified as –1, 0, and 1 for the 

homozygote, heterozygote, and other homozygote, respectively. 

The second method for obtaining G weights markers by reciprocals of their expected 

variance instead of summing expectations across loci and then dividing: G = ZDZ′, where 

D is diagonal with: 𝐃𝑖𝑖= 
𝟏

𝑚[2𝑝𝑖(1−𝑝𝑖)]
  . That formula was proposed for human genetic 

studies (Leutenegger et al., 2003; Amin et al., 2007). 

The third method for obtaining G does not require allele frequencies and instead adjusts 

for mean homozygosity by regressing MM′ on A to obtain G using the formula:  

G = 
𝐌𝐌′− 𝑔0  (𝟏𝟏′)

𝑔1
 

where MM′ = 𝑔011′ + 𝑔1A + E, g0 is the intercept and g1 is the slope. Matrix E includes 

differences of true from expected fractions of DNA in common plus measurement error. 

The G-BLUP method does not suffer from large p small n problem since the amount of 

unknown effects is usually the same as in traditional BLUP (González-Recio et al., 2008).  
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Bayesian regression on markers 

Bayes theorem is given as: P(x|y) ∝ P(y|x) P(x), where the symbol ∝ indicates ‘is 

proportional to’. The probability P(x|y) is called the posterior probability. It is calculated 

from two terms. P(y|x) is a pseudo likelihood used by frequentists, and P(x) is called the 

prior probability. The different Bayesian methods used in GS are distinguished by the 

assumptions made concerning the distribution of SNP effects. According to Hayes 

(2007), we can make up our prior knowledge that there are some chromosome segments 

containing QTL of large effects, some segments with moderate to small effects, and some 

segments with no QTL at all when we estimate the effects of markers within the 

chromosome segments.  

 Bayes A 

In Bayes A, Meuwissen et al., (2001) stated that the effects of SNP come from a normal 

distribution with a specific variance associated to each marker. The variances are 

modelled as an inverted χ2 law. However, the specification of this model assumed the 

same a priori variance for all SNP effects, contrary to what was initially claimed in the 

original paper. 

The prior distribution of SNP effect variances is: P (𝜎𝑔𝑗
2  ) ~ χ-2 (v, S) where S is the scale 

parameter and v is the number of degrees of freedom. Gibbs sampling can be used to 

estimate the SNP effects and variances (Meuwissen et al., 2001). 

 Bayes B 

The Bayes B has the advantage of selecting only markers with large effects. Meuwissen 

et al., (2001), proposed this model in which a proportion, π (arbitrarily set to 0.95), of 

markers has zero variance. The prior distribution is then: 

𝜎𝑔𝑗
2 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 π 

                      𝜎𝑔𝑗
2   ~ χ-2 (v, S) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 −π) 
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The Gibbs sampler described in method Bayes A cannot be used in method Bayes B, as 

it will not move through entire sampling space. This problem was resolved by sampling 

𝜎𝑔𝑗
2  and 𝑔𝑗 simultaneously using a Metropolis-Hastings algorithm. 

The only difference between Bayes A and B is the prior for the variance components. 

Bayes B assumes that not all markers contribute to the genetic variation. 

According to the results of Meuwissen et al., (2001) and the others studies, the Bayes B 

is often considered as the reference in terms of efficiency of genomic prediction, but it is 

extremely time consuming calculation. However, as Gianola et al., (2009) pointed out, 

this model is ill-posed because it originally specified the mixture distribution on the SNP 

effect variance. Assuming that 95% of the SNP effects have variances equal to zero 

implies that the effect is known without uncertainty. Further the choice of the degrees of 

freedom and the scale parameters of the scaled inverse chi-square distribution can 

influence the outcome. 

 Bayes C 

Bayes C was proposed to overcome the statistical problems associated with the Bayes B, 

as the estimation of the probability π or the mixture distribution. The Bayes C model 

(Kizilkaya et al., 2010) differs from Bayes B by using a common variance for SNP with 

a non-zero effect, instead of a locus-specific variance. This variance is estimated, in 

contrast to G-BLUP, where it is supposed as known. The model is similar to the Bayes B 

model but for an uniform variance effect on all the loci: 

𝜎𝑔
2 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − π 

P (𝜎𝑔
2 ) ~ χ-2 (v, S) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  π 

Using simulated data in a comparison, Bayesian BLUP, Bayes A, Bayes B and Bayes C 

achieved similar predictive ability and over 0.85 in terms of Pearson correlation (Verbyla 

et al., 2010). 

 Bayes Cπ & Dπ 

Habier et al., (2010) extended the panel of Bayesian methods with Bayes Cπ and Bayes 

Dπ. Bayes Cπ method assumes a common variance to non-zero effect markers with 
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probability 1-π and null effect with probability π. Additionally, the proportion π of 

markers is treated as unknown and is estimated from the data. Bayes Dπ denotes that each 

SNP has its own variance, but similar to Bayes Cπ, the π value is unknown (Habier et al., 

2010). Both methods proved similar to the original methods regarding the accuracies. 

 Bayesian LASSO 

De Los Campos et al., (2009b), González-Recio et al., (2009b) and Usai et al., (2009) 

proposed the Bayesian least absolute shrinkage and selection operator (LASSO)  method 

for GS, where a double exponential prior distribution is assumed for the marker-effects 

with parameter λ (Park and Casella, 2008). This method performs a larger shrinkage on 

the marker-effects than other methods in a way that a large number of markers are 

estimated with a very small effect, and only a few markers are allowed to have larger 

effects.  

The degree of shrinkage is determined by the parameter λ, which needs to be estimated. 

Park and Casella (2008) proposed the use of Empirical Bayes by Marginal Maximum 

Likelihood using an appropriate hyper prior for the estimation of λ. Legarra et al., (2011) 

proposed a modification of this method (BL2Var) which considers two different 

variances for the distribution of marker-effects and the residuals. Using Bayesian 

analysis, there is no need to pre-estimate the parameter λ as it is estimated from the data 

simultaneously with the marker effects and a gamma distribution can be assigned a priori. 

The Bayesian LASSO appears to be an interesting alternative to the Bayes A method for 

performing linear regressions on markers. Legarra et al., (2011) and Ostersen et al., 

(2011) showed that Bayesian LASSO and G-BLUP gave comparable results for most 

traits, on real data sets of Montbéliarde and Holstein bulls, and on Danish Duroc pigs, 

respectively. 

Up until now Bayesian LASSO has been widely applied for genomic evaluations as it 

provides accurate predictions for low density genotyping (Usai et al., 2009) and for traits 

that are regulated by many genes with a small effect (Cleveland et al., 2010). 

 

 



32 
 

 Bayes Stochastic search variable selection (SSVS) 

The technique was introduced by George and McCulloch (1993). It provides a method to 

maintain a constant dimensionality across all models but allows the SNPs in the predictive 

set to change. It allows this by instead of removing all non-significant parameters (those 

that would be excluded from the predictive set using the reversible jump algorithm) from 

the model, their effects are limited to values very close to zero (Verbyla et al., 2009). This 

method has a major advantage, which is that the posterior distribution of all parameters 

can be sampled directly using the Gibbs sampler, instead of using more computationally 

demanding algorithms such as the reversible jump algorithm (Verbyla et al., 2009) 

The SSVS method has seen extensive use for applications to gene mapping (Yi et al., 

2003; Meuwissen and Goddard, 2004). When it was used to predict genomic breeding 

values for real dairy data over a range of traits it produced accuracies higher or equivalent 

to other GS methods with significantly decreased computational and time demands than 

Bayes B. The faster speed of SSVS makes it more attractive. 

However, one potential criticism of both Bayes B and Bayes SSVS is that the proportion 

of SNP in each distribution was not sampled appropriately, such that the means of the 

posterior distributions of the proportion of SNP with a zero or non-zero effect closely 

reflected the prior values of these proportions (Habier et al., 2011). 

 Bayes R 

To overcome the drawback of Bayes B and Bayes SSVS, and for computational 

efficiency, Erbe et al., (2012) proposed a new method that assumes that the true SNP 

effects are derived from a series of normal distributions, the first with zero variance, up 

to one with a variance of approximately 1% of the genetic variance. The prior of the 

proportions of SNP in each distribution was the Dirichlet distribution. 

The superior performance of Bayes R over other methods found by Erbe et al., (2012) 

probably results from using prior empirical knowledge about r2, the assumed reliability. 

In Bayes R, 𝜎𝑔
2 = r2𝜎2 is the assumed genetic variance, r2 is the assumed reliability, and 

𝜎2 is the variance of the target trait. Presumably, the assumption about r2 is either model 

derived or based on prior cross-validation information, which is good Bayesian behavior, 
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normatively. Makowsky et al., (2011) gave evidence that what one assumes about genetic 

variance from inference in training data is not recovered in cross-validation. 

 Elastic Net (EN)  

Croiseau et al., (2011) proposed the implementation of the EN algorithm for GS. This is 

a combination of G-BLUP and Bayesian LASSO weighted by a parameter α which takes 

values from 0 to 1. When α=0, a BLUP model is defined whereas α=1, a LASSO model 

is chosen.  

�̂�𝐸𝑁= arg 𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝐱𝐢𝛃)2 +  λ((1 − 𝛼) ∑ 𝛽𝑗
2 + 𝛼 ∑|𝛽𝑗|)

𝑗𝑗

𝑛

𝑖=1

} 

where 𝛃= {𝛽𝑗} is the vector of SNP effects, 𝑦𝑖 is the phenotype of animal i and 𝐱𝐢 is its 

vector of genotypes. The λ parameter corresponds to the intensity of the penalty.  

Additionally, a pre-selection of markers can be applied prior to the analyses. EN, shares 

some variable selection properties with other methods (Bayes B, Cπ…) and limits the 

number of SNPs with non-null estimated effects in the model. The purpose of this method 

is to provide a more flexible tool to deal with the large p small n problem. Limiting the 

number of SNP effects to estimate becomes important for an accurate prediction equation. 

The study of Croiseau et al., (2011) shows that EN provides better results than G-BLUP 

for most traits in the three breeds studied (Montbéliarde, Normande and Holstein). 

Furthermore, it resulted in encouraging results especially for small populations (Sánchez 

et al., 2010). 

 

Machine learning algorithms 

Machine learning methods have been used in genetic studies to explore the underlying 

genetic profile of disease and build models capable of detecting gene-gene interactions, 

predicting disease susceptibility, predicting cancer recurrence and predicting missing 

values of a marker (Szymczak et al., 2009). Machine learning methods are an interesting 

alternative for dealing with a higher predictive accuracy for routine genome-enhanced 

evaluations in a given population (Long et al., 2007). Several studies using machine 

learning approaches have been used for genome-enabled prediction in livestock and 

plants (González-Recio and Forni, 2011; Long et al., 2011b; a; Ober et al., 2011; Vazquez 

et al., 2012; Gonzalez-Recio et al., 2013; Crossa et al., 2014). 



34 
 

These methods aim at improving the predictive performance by learning from 

observations. They are model specification free, and may capture hidden information 

from large databases. This is appealing in a genomic information context in which 

multiple and complex relationships between genes exist (González-Recio and Forni, 

2011). Some methods that have been proposed are:  

1) Reproducing Kernel Hilbert Spaces Regression (RKHS) (Gianola et al., 2006) which 

resulted in accuracies similar or even higher than the ones obtained by the Bayesian 

methods (González-Recio et al., 2009b). It has been the most used one due to its similarity 

with BLUP, as shown by (De Los Campos et al., 2009a). The performance of RKHS has 

been shown to depend greatly on the choice of the space designed (González-Recio et al., 

2008, 2009a; Konstantinov and Hayes, 2009; Ober et al., 2011). 

2) Random Forest (RF), that considers all markers and gives the possibility of capturing 

interactions between genes and between genes and environment, which constitutes a 

major advantage in the study of complex diseases (Sun, 2010). Also, it presents a 

predictive ability equal or better than other parametric methods (González-Recio and 

Forni, 2010; González-Recio et al., 2011). 

3) Neural Networks (NN), which proved to be useful for predicting complex traits as it 

can capture non-linear relations (Gianola et al., 2011). NN have been applied to genome-

wide prediction in several studies (Long et al., 2011a; b). The comparison of RKHS and 

two different neural networks with some linear regression models (ridge regression, 

Bayesian LASSO, G-BLUP), showed an equal or better predictive ability for the machine 

learning methods (Tusell et al., 2013). 

4) Support Vector Machines (SVMs) has been widely used in machine learning primarily 

for classification and it is also a particular case of RKHS (Moser et al., 2009; Pearce and 

Wand, 2006). Also, it performs robustified regression for quantitative responses by 

exploiting the relationships between observations by arraying predictors in observation 

space using a set of inner products (González-Recio et al., 2014). 

5) Boosting, this is an ensemble method, which means that several models are somehow 

combined to improve the predictive ability just as RF. However, Boosting combines 

different predictors in a sequential manner with some shrinkage effect on each (Friedman, 
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2001).  Thereby, it can handle interactions, automatically select variables, missing data 

and numerous correlated and irrelevant variables. It can construct variable importance in 

exactly the same way as RF (Ogutu et al., 2011), and is robust to outliers. The manner in 

which models are combined, labels the ensemble method and several criteria have been 

proposed (Friedman, 2001; Hastie et al., 2009; González-Recio et al., 2010). One of the 

most interesting modifications is the L2-Boosting algorithm for regression in high 

dimensional problems, which also has advantages when a non-null covariance structure 

between explanatory covariates exists, e.g. SNPs in high LD (González-Recio et al., 

2010). Boosting has shown similar or better predictive ability than Bayes A or G-BLUP 

when it has been applied to genome wide prediction in chicken, swine and dairy cattle 

(González-Recio et al., 2010; González-Recio and Forni, 2011; Jiménez-Montero et al., 

2013). Based on the experience from other studies, González-Recio et al., (2014) 

suggested the use of SVM and RF for classification problems, whereas RKHS and 

boosting may suit better regression problems.  

Single-Step Genomic BLUP (ssGBLUP) 

Obtaining genomic predictions via SNP arrays involves a multistep approach. A typical 

genomic evaluation requires a traditional evaluation with an animal model, extraction of 

pseudo-observations such as deregressed evaluations or daughter deviations, estimation 

of genomic effects for genotyped animals, and their combination with traditional parent 

averages and breeding values (Hayes et al., 2009; VanRaden et al., 2009). Because of its 

complexity, the multistep approach is prone to errors, which have been observed in many 

commercial releases in dairy cows. Considering that the genomic information can be 

included in a genomic relationship matrix, Misztal et al., (2009) proposed a single-step 

methodology where pedigree (matrix A) and genomic relationships (matrix G) are 

combined into matrix H, which is subsequently used in BLUP. Legarra et al., (2009) and 

Christensen and Lund, (2010) developed such a matrix, and Aguilar et al., (2010) 

demonstrated that a single-step methodology can be simple, fast, and accurate. This 

procedure is expected to improve the evaluation of not genotyped animals. Thus, the 

correct relationship matrix can be obtained by starting with the genotyped animals and 

then using the pedigree to calculate relationships involving ungenotyped descendants of 

these genotyped animals, i.e., going down the pedigree and accounting for the marker-

based relationships of the ancestors of the pedigree (Meuwissen et al., 2016). The idea is 
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to replace pedigree with genomic relationships where available and retain the pedigree 

relationships where we do not have genomic relationships. The same idea can also be 

used up the pedigree, i.e., when ancestors are non-genotyped although it is not optimal in 

this case (Meuwissen et al., 2011). 

The ssGBLUP has been used for several large-scale analyses including dairy (Tsuruta et 

al., 2011; Aguilar et al., 2011; VanRaden, 2012), pigs (Forni et al., 2011; Christensen et 

al., 2012), and chickens (Chen et al., 2011). In dairy cattle, ssGBLUP yields 0–2% more 

accuracy than multistep methods (Legarra et al., 2014), but for other species, which are 

less dominated by large sire families (i.e., where daughter averages are less able to 

summarize family information), the difference in accuracy between ssGBLUP and the 

multistep methods may be larger. Experiences indicate the following interesting 

properties for using ssGBLUP as it was quoted by Legarra et al., (2014): 

 Automatic accounting of all relatives of genotyped individuals and their 

performances. 

 Simultaneous fit of genomic information and estimates of other effects (e.g., 

contemporary groups). Therefore non loss of information. 

 Feedback: the extra accuracy in genotyped individuals is transmitted to all their 

relatives (e.g. Christensen et al., 2012). 

 Simple extensions. Because this is a linear BLUP-like estimator, the extension to 

more complicated models (multiple trait, threshold traits, and test day records) is 

immediate. Any model fit using relationship matrices can be fit using combined 

relationship matrices. 

 Analytical framework. The Single Step provides an analytical framework for 

further developments. This is notoriously difficult with pseudo-data. 

A more important feature of single-step models may be that they can account for pre-

selection of young genotyped bulls, which might otherwise cause bias in the GEBV 

(Vitezica et al., 2011). According to Meuwissen et al., (2016), there is a clear need for a 

single-step method for the future that uses a “nonlinear” statistical method on sequence 

level data. Until recently, the size of the dataset to which ssBLUP could be applied is 

limited by the requirement that the G matrix must be inverted directly.  
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The Ancestor, Proven, Young Bull algorithm (APY) uses recursion to build a large 

component of the G-1 matrix directly, overcoming this limitation and expanding the 

application of ssBLUP to millions of genotyped animals (Fragomeni et al., 2015) but at 

the expense of some approximation in G-1.  

The Reference population 

Genomic breeding values are estimated from a reference population (RP) that contains 

animals with phenotypes and genotypes. The “RP” is used to train a statistical model on 

phenotypes and estimate the effects of each SNP or genomic combinations thereof. 

Accuracy of GS directly depends on the relationship between the RP and selection 

candidates. Most RP consist of proven bulls in national or international dairy cattle 

genomic selection programs (VanRaden et al., 2009). 

The design of the RP is one of the key challenges for successful application of GS. It has 

a crucial impact on the accuracy of genomic prediction (Schöpke, 2014). Goddard and 

Hayes, (2009), Calus et al., (2013), Pszczola et al., (2012) and others, have emphasized 

the critical factors for assembling a RP which are the number and the composition of 

animals within this population and the phenotype accuracy. Usually, the size of the RP is 

limited by the number of genotyped animal or the availability of phenotypes if those are 

hard or expensive to record. The lower the heritability (h2), the larger the RP needs to be 

(Goddard, 2009). Moreover, the genomic structure of the population and the genetic trait 

architecture must be considered jointly at assembling a RP (Schöpke, 2014). 

There are several factors to consider: 

Size of the reference population 

The economic aspect is the main limiting factor for the RP of a large population; either 

the trait is difficult or expensive to measure and/or the genotyping costs are large, and 

thus restrictive. The larger the size of the RP, the more accurately breeding values can be 

predicted. For numerically small breeds, assembling such a large reference population is 

challenging. Therefore, different approaches have been proposed to overcome these 

obstacles and enlarge the RP: 
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i) Combining populations from different countries or from different breeds: Consortia 

such as EuroGenomics or the US-Canadian collaboration show the large benefit resulting 

from the affiliation of several closely related populations into a single RP (Lund et al., 

2011). Several studies have reported the accuracy of genomic prediction after combining 

phenotypes either difficult or expensive to measure using a multi-country RP (De Haas 

et al., 2012; Pryce et al., 2012a; b; Zhou et al., 2013), resulting in substantially increased 

reliabilities of GEBV. However, using one country for the RP and the other country for 

the validation set did not perform well (Pryce et al., 2014). 

 

Nevertheless, the use of multiple breeds to calculate prediction equations in GS can be an 

attractive way to increase the size of the RP. 

The prediction equation derived from one breed is only accurate for another breed when 

the marker-QTL LD persist across breeds. Therefore, a sufficient marker density is 

required. The more divergent the population is, the larger the density needs to be (De 

Roos et al., 2009). The extent of LD within a single populations and the consistency of 

LD between the populations are important factors and need to be considered when using 

combined RP. 

 ii) Adding genotyped cow to the RP: Thomasen et al., (2014) in their simulation study, 

showed that the inclusion of genotyped cows in the RP was an efficient way to increase 

the GEBV, and it would be a profitable investment for breeding schemes of small breeds. 

Wiggans et al., (2011) conducted the first empirical study of the inclusion of cows in the 

RP. They found an average gain in reliabilities of 3.5 and 0.9 percentage points 

respectively in Holstein and Jersey populations. Furthermore, Pryce et al., (2012b) 

demonstrated an improvement of 8 percentage points in the GEBV reliabilities by adding 

10,000 genotyped cows to an RP consisting of approximately 3,000 bulls. However, 

Dassonneville et al., (2012) showed that the involvement of cow records in genomic 

evaluations can provoke over-estimation due to preferential treatment. In contrast, 

Lourenco et al., (2014) showed that including genotypes of elite females in genomic 

prediction using a ssGBLUP approach has no negative effect on evaluation accuracy. 

Besides that, Jiménez-Montero et al., (2012) have evaluated several female-selective 

genotyping strategies to increase the accuracy of GEBV. Depending on the population 

size, these authors either recommended a two-tailed selection (small populations), 

including females that exhibit upper and lower extreme values within the yield deviation 
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distribution, or they proposed a random selection for larger populations. According to 

Gao et al., (2015), the inclusion of genotyped females in the RP improves the reliability 

of genomic prediction by 1.9 to 4.5 percentage points. The benefit was larger for 

production traits than for conformation traits. These authors also showed that the addition 

of unselected females into the RP tends to reduce the prediction bias compared to adding 

selectively genotyped females. 

iii) Imputing genotypes for related animals (complete un-genotyped animals): This 

strategy is particularly advantageous in cases where the phenotype of an animal has any 

added value but the genotype does not exist. Such imputations of un-genotyped 

individuals require a set of closely related genotyped animals. Bouwman and Veerkamp 

(2014) analyzed imputation accuracies for different scenarios of relatives with available 

genotypes and found it to be a helpful solution for including valuable phenotypes in 

genomic predictions, especially if genotyped offspring exists. Pimentel et al., (2013) have 

developed an algorithm to impute un-genotyped dams using known genotypes from the 

sire of each dam, one offspring, and the offspring's sire. The inclusion of these dams in 

the RP increased the accuracy of genomic predictions up to 37.14%. This approach was 

particularly beneficial for populations with lower levels of LD, for traits with low 

heritability, and for species with a limited RP. VanRaden et al., (2013), in their study of 

the accuracy of imputing HD from 500K and lower density genotypes reported that 

imputation to HD gave 99.3% correct genotypes from 50K, 96.1% from 6K, and 93.7% 

from 3K. Furthermore, a cost-effective strategy could be to sequence a small proportion 

of the population, and impute sequence data to the rest of the reference population. Druet 

et al., (2014) described strategies for selecting individuals for sequencing, based on either 

pedigree relationships or haplotype diversity. They demonstrated that the advantage of 

using imputed sequence data compared with dense SNP array genotypes was highly 

dependent on the allele frequency spectrum of the causative mutations affecting the trait. 

When this followed a neutral distribution, the advantage of the imputed sequence data 

was small. However, when all the causal mutations had low MAF, using the sequence 

data improved the accuracy of genomic prediction by up to 30%. 
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Genomic structure of population and genetic trait architecture 

The RP composition and its relationship with selection candidates is also important. 

Pszczola et al., (2012) showed that the maximum reliability when using a cow RP can be 

reached if the relationship between animals in the RP is minimized, and if at the same 

time the relationship between validation set and RP is maximized. In some analyses, a 

randomly composed reference set appeared to be beneficial. Furthermore, RP need to be 

continuously updated, otherwise the relationship between reference and validation 

population decays and the accuracy of estimated SNP effects and therefore also those of 

the GEBV erodes (Habier et al., 2007; Pryce et al., 2012a; b). In addition, the accuracy 

of prediction may be affected by the properties of the QTL that control a trait, i.e. number 

of QTL, joint distribution of QTL allele frequencies across breeds, and distribution of 

QTL effects (Daetwyler et al., 2008; Goddard, 2009; Wientjes et al., 2015). Besides that, 

the genomic structure of population and genetic trait architecture are inextricably linked 

with each other. This must be taken into account when assembling a RP, designing a chip, 

or choosing appropriate statistical methods for genomic prediction (Schöpke, 2014). 

Genomic prediction using sequence data 

Motivation 

Genomic predictions are now used routinely in selection of dairy cattle. The genetic gain 

that can be achieved is proportional to the accuracy of predictions. Thus, the challenge is 

to improve the accuracy of these predictions. The accuracy of genomic predictions based 

on SNP arrays depends on the proportion of the genetic variance captured by the array, 

determined by the LD between the SNP and the causative mutations affecting the trait 

(Druet et al., 2014). In contrast, GS from whole genome sequence data are expected to 

include the causal mutations responsible for trait variation (Meuwissen and Goddard, 

2010). So, predictions should no longer depend on LD between SNPs and QTL, as the 

causal mutations are expected to be in the data set. According to MacLeod et al. (2013), 

inclusion of the causal mutations allows the effect of the QTL on a given trait to be 

estimated directly, which should increase the reliability of genomic predictions compared 

to using SNP genotypes, as well as the persistency of the reliability of predictions across 

generations.  
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Furthermore, with whole genome sequencing, at least the causative mutations, which do 

segregate across breeds, could be captured and this information can be used in multi-

breed genomic predictions. According to Raven et al. (2014), a multi-breed reference 

would also benefit from the fact that LD across breeds is lower than that within breeds, 

so that causative mutations could be mapped more precisely.  

Druet et al., (2014) showed that the accuracy of genomic breeding value may improve in 

the range of 2-30% (depending on trait). If the variation from rare alleles could be 

captured from the whole genome sequence data and exploited in genomic predictions. 

However, obtaining a higher persistency of reliabilities of genomic predictions over 

generations requires a large training set of thousands of sequenced individuals, QTL 

effects might be estimated with too much error and thus, there will be little advantage of 

using sequence data (Druet et al., 2014). 

Furthermore, sequencing many individuals is still too expensive. Therefore, imputation 

to sequence data using SNP genotypes is an attractive and cost-effective approach to 

obtain a large training set of sequenced individuals. In this case, the lower density 

genotypes of the remaining individuals will be imputed to whole genome sequence 

genotypes using the sequenced individuals as reference (Van Binsbergen et al., 2014). 

Challenges of sequence data in genomic prediction 

The main challenges at dealing with whole genome sequence data for genomic prediction 

are: the huge number of variants, imputation accuracy of sequence variant, and statistical 

methods (Hayes et al., 2014). We will briefly describe next these challenges: 

 The number of variants 

From the 1000 Bull Genomes Project, 31.8 million variants were detected in 2013. These 

variants were either SNP, short insertion deletions or copy number variation CNV. The 

use of these variants for genomic prediction presents a significant challenge. Hayes et al., 

(2014) recommended to use biological information to prioritise or filter variants.  

This biological information comes in two forms, sites in the genome where variants are 

more likely to have an effect on any trait, for example coding regions or regulatory 

regions, and gene sets in which mutations are more likely to affect specific traits. 
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 Imputation of sequence data 

Imputation can be used to deduce the missing genotypes and could be helpful at 

increasing the accuracy of genome-enhanced breeding value. Imputation also allows for 

the use of low-density chips that may be more cost-effective, facilitating the widespread 

implementation of whole-genome selection (Weigel et al., 2010; Zhang and Druet, 2010). 

Several imputation methods have been proposed and are implemented in programs like 

fastPHASE (Scheet and Stephens, 2006), Beagle (Browning and Browning, 2008), and 

findhap (Vanraden et al., 2010). These methods impute the missing genotypes based on 

reconstructed haplotypes informed by LD between SNPs.  

Imputation of missing marker genotypes is based on available marker data from a given 

population. The population structure and frequencies of marker genotypes in the given 

population have an influence on the imputation accuracy (Druet et al., 2010; 

Dassonneville et al., 2011; Hickey et al., 2012). Because of differences in algorithms and 

different uses of information sources, the superiority of various imputation methods may 

differ in different imputation scenarios. In fact, FastPHASE and Beagle run slower as 

Bayesian method are applied for haplotype reconstruction, which may limit their practical 

use in large data sets. Findhap runs faster and is comparable to fastPHASE and Beagle in 

accuracy (Weigel et al., 2010). 

Imputation accuracy in SNP chips was studied in cattle with 50,000 SNPs (Druet et al., 

2010) and 777,000 SNPs (VanRaden et al., 2013). The general tendency in those studies 

was that the accuracy of imputation increased with an increasing number of SNPs, a 

shorter distance between the imputed SNP and the nearest SNP on the lower density 

marker panel, a larger MAF of the SNPs, a larger level of LD, and a larger number of 

close relatives between imputed and reference individuals (Van Binsbergen et al., 2014).  

When using whole-genome sequence data, differences in extent of LD and population 

structure may affect imputation accuracies more in crop or livestock analyses than in 

human analyses (Van Binsbergen et al., 2014). A reliability of 0.83 was obtained at 

imputating from 777k SNP panels to sequence data with a reference set of 91 Holstein 

Friesian animals with whole-genome sequence data (Van Binsbergen et al., 2014).  
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Daetwyler et al., (2014) imputed genotypes for all sequence variants on chromosome 29 

on Holsteins. The accuracy of imputation was reasonably high and varied along 

chromosomes, especially in regions where there were few SNPs on the BovineHD array 

or errors existed in the genome assembly. These authors observed that the accuracy of 

imputation decreased rapidly when MAF was below 0.1, suggesting that more sequenced 

individuals are required to accurately impute rare variants. 

Sequence data in genomic prediction may not lead to higher accuracy if the accuracy of 

imputation to sequence data is too low. Hayes et al., (2014) used the 1000 bull genomes 

data to assess the accuracy of imputation to sequence in cattle using cross validation using 

Beagle4.0 (Browning and Browning, 2013). The accuracy was reasonable for variants 

with MAF greater than 5%. Accuracy of imputation rapidly declined for variants with 

MAF<5%. In their study, predictions were 2% more accurate than using 800k data set. 

In the other hand, van Binsbergen et al., (2014) reported that it is necessary to aim for a 

large training set with a small average relationship between the animals, and possibly to 

pre-select SNPs based on functional information. Also, adding individuals of other breeds 

in a relatively large reference set will further increase imputation accuracy. In particular, 

it was reported that low MAF variants that segregate in other breeds can benefit from 

combining different breeds together (Bouwman and Veerkamp, 2014; Brondum et al., 

2014).  

 Methods for genomic prediction with full sequence data 

Many methods are available for genomic prediction but the choice of the best statistical 

method to derive the genomic predictions is still a challenge. Best linear unbiased 

prediction methods (BLUP) as described by Meuwissen et al., (2001), or GBLUP, (Habier 

et al., 2007) does not take full advantage of sequence because the priors used in these 

methods assume that all variants have an effect. Another problem with BLUP 

methodologies was identified by Verbyla et al., (2009) which is the severe shrinkage 

imposed on the marker effects, which means that the effect of a causative mutation is 

rarely captured by a single variant, rather the effect is split across several or many SNP.  

van Binsbergen et al., (2015) reported GEBV reliabilities ranging from 0.37 to 0.52, with 

BSSVS performing better than GBLUP in all cases. Additionally, Meuwissen and 
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Goddard (2010) and MacLeod et al., (2013) showed the advantage of Bayesian methods 

over G-BLUP in simulation studies. 

However, Ober et al. (2012) concluded that predictions from Bayes B were not better than 

predictions from G-BLUP when using real sequence data on Drosophila melanogaster. 

Furthermore, the results reported by van Binsbergen et al., (2015) did not show an 

advantage of using imputed sequence data compared to BovineHD genotype data for 

genomic prediction. These authors suggested using a large set of animals with small 

average relationships, along with other properties of the training set. 

The 1000 bull genomes project 

The 1000 Bulls Genome Project is an international collaboration between scientists in 

Europe, USA, and Australia. The project began in 2010, when scientists were looking for 

a way to share the huge cost of sequencing many entire genomes. The result was the 1000 

Bulls Genome Project, which spreads the costs and shares the resources to help geneticists 

applying their knowledge collectively to improve genome-enhanced breeding value. 

This project aims to assemble whole genome sequences of cattle from different 

institutions world-wide, and provide an extended data base for imputation of genetic 

variants for genomic prediction and genome wide association studies (GWAS) in all cattle 

breeds. It allows project partners to impute full genome sequences in bulls and cows that 

have been genotyped with SNP arrays which can be used for GS and more efficient 

discovery of causal mutations. 

The project chose key ancestors animals for sequencing, because they are expected to 

have contributed substantially to nowadays population. Sequence data from these animals 

allows imputing the SNP chip genotypes of their descendants to whole sequence, 

allowing more accurate GWAS and genomic predictions. Spain, through INIA, joined 

into the 1000 bull genomes project consortium since 2015.  

It is known that animal breeding programs are being transformed by the use of genomic 

data, which are becoming widely and cost-effective available to predict genetic merit. 

Most of the benefits of GS arise from the possibility of obtaining accurate predictions 
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early in the breeding cycle. A large number of genomic prediction studies have been 

published using both simulated and real data. 

Recent developments in molecular and genotyping technology, combined with advances 

in statistical methodology in prediction of breeding values, have led to development and 

successful implementation of whole-genome selection methods in dairy cattle. The 

accuracy of GEBV prediction is important for a successful application of GS. 

Additionally, genomic prediction with whole genome sequence data is now possible for 

cattle. The 1000 Bull Genomes Project provides a database from key ancestor bulls that 

can be imputed into RP genotyped with SNP arrays. Besides that, the genomic prediction 

methods to deal with such large data sets are under development. 
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Main objective 

 

The objective of this investigation was to develop strategies that incorporate sequence 

information in genetic evaluations. For that, the sequences of the 1000 bull genomes 

project will be used. 

 

 

Specific Objectives 

1. Evaluate the performance of the Findhap software to construct haplotypes from 

sequence data; 

2. Detect sequence regions that are associated to traits of economic interest and can 

be incorporated in genomic evaluations in the Spanish dairy cattle;  

3. Evaluate the proportion of genetic variance that can be explained by these regions. 

 

 

 

 

 



50 
 

 

 

 

 

 

 

 

 

 

 

  

 



51 
 

 

 

 

 

Material and Methods 
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Data 

 

In this study, the population sample consisted of 450 Holsteins animals with full-sequence 

data from run 5 of the 1000 Bull Genome Project and their pedigree information. In total, 

38,319,258 SNPs (and indels) from NGS were included. However, a large percentage 

(50%) of these variants with low MAF are expected to be sequencing errors (Gonzalez-

Recio et al., 2015). Hence, variants with MAF< 0.025 were discarded. The number of 

SNPs remained on each chromosome is given in Table 1. 

Four economically important traits were used in this study: kg of protein (Prot), Global 

Type Index (IGT), Somatic Cell Score (SCS) and Days Open (DO). The phenotypic 

values were the MACE proofs provided by the Spanish Holstein Association CONAFE. 

Only animals with sequence and phenotype were kept for further analyses. In total, 361 

sires were used. 

    Table1: Total and filtered SNP (MAF< 0.025) on each chromosome 

Chromosome number # Total SNP # SNP remained 

BTA1 2415624 859904 

BTA 2 2062223 692662 

BTA 3 1747334 620585 

BTA4 1840583 672654 

BTA5 1790983 663521 

BTA6 1773469 679959 

BTA7 1610969 571225 

BTA8 1622084 573042 

BTA9 1555596 566141 

BTA10 1532614 575132 

BTA11 1546812 559737 

BTA12 1667137 711845 

BTA13 1236102 409838 

BTA14 1234979 428478 

BTA15 1415166 522191 

BTA16 1291009 427038 

BTA17 1157679 447303 

BTA18   964483 361249 

BTA19   929690 334276 

BTA20 1121685 394257 

BTA21 1088553 379736 

BTA22   892683 305698 

BTA23 1016377 387518 

BTA24   994429 346706 

BTA25   670204 240877 

BTA26   779371 286624 

BTA27   698131 286641 

BTA28   772863 276837 

BTA29   890426 330652 

 



54 
 

 

Estimation of haplotypes in the population 

Haplotype blocks may improve genomic predictions compared to individual SNPs, since 

haplotypes are in stronger LD with the QTL than individual SNPs are. It has also been 

hypothesized that an appropriate selection of a subset of haplotype blocks can result in 

similar or better predictive ability than using the whole set of haplotype blocks (Cuyabano 

et al., 2015). In this study, haplotypes were obtained from version 3 of Findfhap.f90 

software (VanRaden et al., 2011). This program was designed to extract haplotypes in the 

population for future imputation.  

Haplotyping algorithm in findhap 

The algorithm begins creating a list of haplotypes from the genotypes, and the process is 

iterated for a fine haplotype construction. The steps in the algorithm are as follows:  

1. Each chromosome is divided into segments with three progressively shorter lengths, 

long lengths to lock in identity by descent, and short lengths to fill in missing calls.  

2. The first genotype is entered into the haplotype list as if it was a haplotype.  

3. Any subsequent genotype that shared a haplotype is then used to fill the previous 

genotypes into haplotypes.  

4. As each genotype is compared to the list, a match is declared if no homozygous loci 

conflicted with the stored haplotype.  

5. Any remaining unknown alleles in that haplotype are imputed from homozygous 

alleles.  

6. The individual’s second haplotype is obtained by subtracting its first haplotype from 

its genotype, and the second haplotype is checked against remaining haplotypes in the 

list. If no match is found, the new genotype (or haplotype) is added to the end of the 

list. Unknown alleles in the genotype are stored as unknown alleles in the haplotype.  

7. The list of currently known haplotype is stored from most to least frequent as 

haplotypes are found for efficiency so that more haplotypes are preferred.  

 

In subsequent iterations, earlier created genotypes are matched again using haplotypes 

that occurred later. The first two iterations mainly focus on determination of haplotypes 

in the population. Only the highest-density genotypes are used in the first iteration, and 

then all genotypes are used in the second iteration.  
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After haplotyping, haplotypes are matched by using both pedigree and population in the 

following two iterations. Known haplotypes of genotyped parents were checked first, and 

either of the individual’s haplotypes was not found with this quick check, then checking 

restarted from the top of the sorted list.  

For example, the algorithm in Figure 1 could check haplotypes 5 and 8 first if parent 

genotypes are known to contain these haplotypes. The last two iterations did not search 

sequentially through the haplotype list and instead used only pedigrees to impute 

haplotypes of non-genotyped ancestors from their genotyped descendants, locate 

crossovers that created new haplotypes, and resolve conflicts between parent and progeny 

haplotypes.  

If parent and progeny haplotypes differed at just one marker, the difference was assumed 

to be genotyping error, and the more frequent haplotype was substituted for the less 

frequent. FORTRAN program findhap.f90 requires little time and is available at: 

http://aipl.arsusda.gov/software/index.cfm for download. 

 

Figure 1: Demonstration of algorithm to find first and second haplotypes (VanRaden et 

al., 2011) 

 

Implementing Findhap.f90 

Genotypes were coded numerically as 0 if homozygous for the first allele (AA), 2 if 

homozygous for the second allele (aa), and 1 if heterozygous (Aa). To execute the 

findhap.f90 program, four input files are necessary: 
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 Genotypes.txt which contains: animal number, chip number and SNPs genotypes 

sorted by animal number. 

 Chromosome.data which contains the SNP map with the list of all SNPs in the 

chromosome. Sorted by position within chromosome. 

 Pedigree.file which contains the sex of animal, animal number, sire number, dam 

number, birthdate, animal ID and animal name sorted in ascending birth date 

order. 

 Findhap.options which is a parameter file with user-defined options. These 

options include: 

a) Error rate parameter 

The error rate parameter is defined as the expected percentage of variants that are 

incorrectly called at sequencing. Indeed, with very large numbers of variants sequenced, 

the number of sequencing errors are likely to be considerable. Findhap program suggest 

0.002 as error rate but in a recent study for distinguishing rare variants from sequencing 

errors, the authors observed that at MAF<0.01 up to 50% of variants are sequencing errors 

(Gonzalez-Reció et al., 2015). This creates haplotypes that appear only in one animal 

(singletons) and thus are not informative. These authors also estimate the sequencing 

error of 1% in variant calling. Hence, we have performed the findhap.f90 program for the 

29 autosomes with an error rate = 0.01. 

b) Haplotypes length 

The haplotype length is defined as the number of SNP contained in the block 

(haploblock), and is provided by the user. This is one of the main parameters that are to 

be determined at implementing the algorithm. A previous study on haplotyping in 

German Holstein cattle (Qanbari et al., 2010), reported a mean block length of 164 kb. A 

proper definition of the haplotype length will minimize the probability of recombination 

within the block, and maximize the probability of transmitting the whole block to the 

progeny. Hence, the number of haplotype blocks and the haplotype length per 

chromosome were defined as follows: 

                             Number of blocks = 
Chromosome length (kb)

Block length (kb)
 

Number of SNP per block = 
Number of SNP remained

Number of Blocks
 

 



57 
 

where the average block length was considered 164 kb as proposed by (Qanbari et al., 

2010). Haplotype blocks were built separately for each chromosome. According to the 

results obtained from the formulas, the options in Findhap were set to a minimum length 

of 800 SNPs, a maximum length of 100,000 SNPs and processing with 5 iterations per 

step. Singletons and low frequency haplotype alleles were ignored by excluding those 

with frequency <1%. After this filtering, 153,428 haplotypes were kept for subsequent 

analyses. 

Haplotypes coding  

Each haplotype was identified by the chromosome and segment where it is located as well 

as the ordered number of the haplotype within the segment. A program was developed in 

R software to define the number of alleles for each haplotypes that the animal carries (0, 

1 or 2). Then, the phenotypic data were merged with the haplotype file for the subsequent 

analyses. 

Incorporating sequence haplotypes in the whole sequence prediction model 

The following linear equation represents the relationship between the phenotype of 

interest and the genetic effects (NGS variants and polygenic effect): 

y = 1'µ+ Wh + Zg + e 

where y is a vector with the phenotypic observations, µ is a population mean, 1' is a vector 

of ones, h is the vector of haplotype effects assumed to be distributed as a double 

exponential (Laplace distribution) h  ̴  DE(µh,λ), g is the vector of polygenic effects 

distributed as g  ̴  N(0,Gσg
2),  W and Z are the corresponding incidence matrices, and e is 

the vector of random residual terms of the model, weighted by the MACE proof accuracy 

as proposed by De Los Campos et al., (2013), as e  ̴  N(0,Dσe
2).  

The λ parameter is a smoothing parameter controlling the shrinkage of the double 

exponential distribution; λ2 is distributed a priori as a gamma distribution with a shape 

and scale hyperparameters. G is the genomic relationship matrix built from Illumina 

Bovine 50K genotypes. Pairs of individuals sharing the same genotype for a large number 

of markers will be more similar genomically, and will have higher values in the 

corresponding off diagonal cells of the matrix, as is the case for pairs of related animals 

in a pedigree based relationship matrix. The genomic relationship matrix was computed 

as:  
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G = 
𝑍𝑍′

2 ∑ 𝑝𝑖(1−𝑝𝑖)
 

 

where pi is the frequency of the minor allele at locus i, Z = (M - P) is a matrix that results 

from the subtraction of P from M, being P = 2(pi− 0.5), and M the matrix of genotypes 

codified as –1, 0, and 1 for the homozygote, heterozygote, and other homozygote, 

respectively, following VanRaden (2008), where a more detailed description of this 

model is provided. 

Then, D is a diagonal matrix with elements {
1−𝑟𝑖

𝑟𝑖
}, where 𝑟𝑖 is the reliability of individual 

i. Finally, σg
2 and σe

2 are the additive polygenic and residual variances, respectively. The 

Bayesian model was solved for each chromosome separately using Gibbs Sampling, with 

a chain length of 10,000 and a burn-in period of 1000. 

It should be noted that the total GEBV obtained from the prediction models consisted of 

the sum of the estimated haplotype effects and the polygenic effect estimate as: 

 

GEBV = ∑ haplotype effects + polygenic effects 

Haplotype Selection  

 

Selection of a limited number of haplotypes, i.e. those with the largest prediction ability, 

is expected to be useful in routine genomic evaluations. Hence, haplotypes whose effect 

was larger / lower than the mean plus /minus 3 times the standard deviation and one 

standard deviation above the mean (µℎ) of the haplotypes effect distribution, were 

selected for each trait. 

 

|ℎ|̂>µℎ + 3sdh 

|ℎ|̂>µℎ + sdh 

 

We attempted to estimate the effects of haplotype that exceeded these threshold with the 

goal to identify the most influential haploblocks for each trait. The analysis was repeated 

incorporating only haplotypes that exceeded each threshold using the model described 

above. Genetic variance explained by sequence data was calculated for each trait by 

analysing all chromosomes simultaneously. 
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Results and Discussion 
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Haplotype construction 

In this study haplotype segments on each chromosome were extracted. The length and the 

number of these segments varied depending on the extent of LD present and on the 

chromosome length. Table 2 shows a descriptive summary of chromosomes and the 

number of haplotype blocks that were found on the 29 Bos taurus autosomal 

chromosomes (BTA) using Findhap algorithm.  The total autosomal genome length was 

2512.06 Mb with the shortest BTA 25 being 42.90 Mb and the longest BTA 1 being 

158.33 Mb. The number of SNPs in the haploblock ranged from 799 in BTA 13 to 1285 

in BTA 12, with a mean of 924 SNP (166,552 pb). The BTA 1 showed the highest number 

of haplotype blocks (961) and remaining haplotypes (9363) while the BTA 25 presented 

the smallest number of blocks (261) blocks and haplotypes (2788). Unique haplotypes 

were around 90% and haplotypes with a frequency below 1% were around 97% in all 

chromosomes. These haplotypes were not used in this analysis due to the difficulty of 

finding statistical effects when the haplotype is present in only a couple of individuals in 

our sample. Then, low frequency haplotype alleles (<1%) were ignored leaving 153,428 

haplotypes for the other analysis. 

 

 

Figure 2: Distribution of haplotype block per chromosome 

 

The number of genome-wide haplotype blocks is shown in Figure 2 against the number 

of haplotypes remaining after filtering. The distribution of haplotype block is proportional 

to the number of haplotypes. The larger the number of blocks the larger the number of 
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haplotypes. This suggests that the genetic variability within chromosome was 

proportional to the chromosome length, and we could not detect any chromosome with 

larger or lower variability than expected. The large haplotypes verified the existence of 

high LD in the BovineHD chip and validated the merits of haplotype analysis. LD in 

Holstein is very high due to the low effective size associated with the high intensity of 

selection and the bottleneck history of this breed that occurred around the middle 20th 

century.  

Table 2: Genome-wide summary of haplotype blocks in the Holstein cattle of this study 

Autosome 

 

Autosome 

length (pb) 

Haplotype 

Number 

Blocks 

Number 

Blocks 

length(SNP) 

Unique 

haplotypes (%) 

Haplotype 

freq<1% (%) 

Haplotype 

remained 

BTA1 158334731 397685 961 895 90.26 97.65 9363 

BTA2 137060366 335343 830 835 89.69 97.64 7930 

BTA3 121430266 302697 735 844 90.27 97.63 7179 

BTA4 120825133 303697 736 914 89.78 97.39 7914 

BTA5 121190985 314912 738 899 90.68 97.71 7224 

BTA6 119458581 300751 724 939 90.15 97.59 7237 

BTA7 112638649 285068 685 834 90.84 97.78 6328 

BTA8 113383722 285048 687 834 90.31 97.62 6772 

BTA9 105708161 272927 644 879 90.40 97.64 6446 

BTA10 104304932 259351 633 909 89.25 97.58 6277 

BTA11 107310498 272252 651 860 90.11 97.50 6807 

BTA12 91163122 252401 554 1285 86.26 97.78 5597 

BTA13 84240314 212863 513 799 90.48 97.79 4707 

BTA14 84648338 206927 514 834 89.48 97.55 5060 

BTA15 85295694 218218 518 1008 90.13 97.45 5565 

BTA16 81724537 205580 497 859 90.40 97.74 4655 

BTA17 75158596 197683 457 979 90.54 97.72 4507 

BTA18 66003508 175914 402 899 90.66 97.50 4399 

BTA19 64057258 166221 389 859 90.56 97.65 3910 

BTA20 72041471 180605 439 898 89.87 97.69 4164 

BTA21 71599084 183741 434 875 90.66 97.61 4398 

BTA22 61435160 152167 373 820 89.49 97.45 3879 

BTA23 52529233 137483 319 1215 89.30 97.45 3507 

BTA24 62714571 155380 381 910 89.52 97.46 3953 

BTA25 42904110 108716 261 923 89.26 97.44 2788 

BTA26 51680365 128747 314 913 89.17 97.53 3182 

BTA27 45407501 116888 276 1039 89.02 97.27 3195 

BTA28 46312540 118038 282 982 89.37 97.33 3157 

BTA29 51505224 134472 312 1060 90.57 97.53 3328 

        

 

Alternative block lengths were also analyzed, considering the values recommended by 

VanRaden et al., (2011). These values were 100,000 and 2,000 SNP for the max and the 
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min length respectively. After filtering the singletons, 76,512 haplotypes were retained 

for the other analysis. The percentage of the variance of the GEBV that was explained by 

the haplotypes for each character was very low because of the reduced number of 

haplotypes included in the analysis. Given these non-satisfactory results, it was decided 

to increase the number of haplotypes by reducing their lengths based on the results of a 

recent study of Qanbari et al., (2010) as described in the part of Materials and Methods. 

Haplotypes have been extensively explored in human genetics research (Curtis et al., 

2001; Gabriel et al., 2002; Chapman et al., 2003; Curtis, 2007). More recent studies in 

animal breeding explore the use of haplotypes for genomic prediction of breeding values, 

but using low to medium density marker data (Calus et al., 2008; Villumsen et al., 2009; 

Boichard et al., 2012; Calus et al., 2009; Schrooten et al., 2013). 

It is expected that there was an optimal haplotype length, which depends on the distance 

between the markers and extend of LD in the population. Reliabilities for GEBV were 

investigated by simulation to test the hypothesis that there is an optimal haplotype size 

for genomic predictions. Studies based on real data in dairy cattle are limited. Villumsen 

et al., (2009) in their study with 30K SNP chip, to test the hypothesis that there is an 

optimal haplotype size for genomic predictions and that genomic predictions are accurate 

for moderate and low heritability traits in a dairy cattle setting, showed a clear relationship 

between the size of haplotypes used in the prediction model and the reliabilities obtained. 

For their tested haplotype lengths, the optimal size of haplotypes was 10 SNP for 

heritabilities of 0.3 and 0.02. They observed a relationship between heritability and 

reliabilities; as heritability decreased so did the reliability. 

The optimal haplotype size is very dependent on marker spacing and marker frequencies. 

If marker distance is low the nearest marker may not be the best predictor of the QTL 

effect, and a better predictor may be found at a larger distance (Zondervan and Cardon, 

2004). On the other side, a recent study showed that better predictions in dairy cattle can 

be obtained by using a set of haploblocks with a fixed size (number of SNPs) (Boichard 

et al., 2012).  

There are many published studies on haplotype block properties for cattle, which vary in 

many aspects (breed of interest, marker types, marker density, and chromosome regions), 

yielding average haplotype block sizes from a few kb in length: 5.7 kb considering 2 or 
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more SNPs (Villa-Angulo et al., 2009), 26.2 kb considering 4 or more SNPs (Kim and 

Kirkpatrick, 2009) to hundreds of kb in length: 700 kb (Gautier et al., 2007). However, 

these studies used smaller marker densities, with an average distance of 62 kb between 

adjacent markers (Qanbari et al., 2010). 

Several methods have been used to construct haplotypes for genomic evaluation (Calus 

et al., 2008, 2009; Boichard et al., 2012; Cuyabano et al., 2014). Allele effect 

predictability can be defined as the expected prediction accuracy of the effect of haplotype 

alleles, and it is expected to have a significant effect on the performance of genomic 

prediction. However, none of the previously mentioned methods take into account any 

information on this predictability. The construction of haplotypes at a particular SNP 

position by merging this SNP with the flanking markers is straightforward. However, 

because of the short distance between the markers, the resulting haplotypes most 

frequently include a small number of over-represented alleles together with a large 

number of alleles with low frequencies within the population (Jónás et al., 2016).  

The choice of using haplotypes to perform genomic prediction is a reasonable approach, 

under the hypothesis that haplotypes are expected to be in stronger LD to the causative 

mutations (or QTLs) than any single marker. Furthermore, when it comes to sequence 

data, haplotypes offer the possibility to reduce the number of explanatory variables in 

genomic prediction models compared with the individual SNP approach, depending on 

the chosen techniques to build haplotype blocks (haploblocks). 

Haplotype effect estimates 

Manhattan plots with estimated haplotypes effects were adopted to show the results from 

Prot, IGT, SCS and DO, respectively (Figs 3, 4, 5 and 6). Chromosomes 1–29 are shown 

separated by colors, and haplotypes effects are plotted as dots. In each plot, the genome 

wide threshold of 3 standard deviation is shown as a horizontal reference line. The figures 

show that it is possible to detect some regions on the genome that explain relevant effects 

for the studied traits. Many regions with large effects were detected. A total of 1264 

haplotype exceeded the genome wide threshold for Prot, 1909 for IGT, 851 for SCS and 

1450 for DO distributed along the genome. 
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Figure 3: Manhattan plot with estimated haplotypes effects for kg of protein Prot 

 

Figure 4: Manhattan plot with estimated haplotypes effects for IGT 

 

 

Figure 5: Manhattan plot with estimated haplotypes effects for SCS 
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Figure 6: Manhattan plot with estimated haplotypes effects for DO 

 

Our hypothesis is that the use of sequence data in genomic prediction would result in a 

larger predictive accuracy in genomic evaluations. Some studies showed increased 

predictive accuracy with sequence data using simulations (Meuwissen and Goddard, 

2010; MacLeod et al., 2013). According to Wimmer et al., (2013), increasing the number 

of individuals in the training dataset or pre-selecting SNPs based on other sources of 

information might be necessary to increase prediction reliability based on sequence data, 

also reported in Hayes et al., (2014). These authors obtained a very small increase of 2 % 

in prediction reliability using imputed sequence data compared to BovineHD. However, 

they applied strict a-priori filtering steps for the SNPs and ended up with around 1.7 

million variants. They claimed that advantage of sequence data compared to SNP Chip 

genotypes might be larger with large training set, and pre-selection of SNPs based on 

functional information. An efficient haplotype selection procedure from the haplotypes 

that exceed the threshold is required to identify the haplotypes most suitable for genomic 

evaluation purposes to achieve a high predictive accuracy. 

 

Distribution of the allele frequency of haplotypes 

Figure 7 shows the distribution of haplotypes allelic frequencies that have exceeded the 

threshold for each character. Most of the haplotypes for Prot, IGT and DO had low-

intermediate frequencies while haplotypes found for SCS are at low frequencies, which 

may be of interest. Therefore, we expect that these haplotypes will give us additional 

information to SNP genotypes on those less common variants. It is necessary to explore 

their contribution to genetic variation.  
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Figure 7. Allele frequencies distribution of haplotypes that have exceeded the threshold 

for each character 

 

One motivation for using whole genome sequence data in genomic prediction and GWAS 

is that whole genome sequence data will include rare variants which may explain some 

extra variation in the targeted complex traits. SNP arrays have limited power to capture 

this variation, as the SNP on these arrays are selected to have high MAF, and are therefore 

unlikely to be in high LD with the rare variants (Hayes et al., 2015). Although, it is 

necessary to differentiate them from sequencing errors (Gonzalez-Recio et al., 2015). 

 

An important advantage of haplotypes over single SNP markers is their higher ability to 

identify mutations. In animal breeding studies, SNPs are commonly bi-allelic and even 

when mutations have occurred it is possible that the allele frequencies remain (almost) 

unaltered. However, when haplotypes were analyzed, mutations in different loci tended 

to cause major changes in the haplotype frequencies (Curtis et al., 2001). Thus, a QTL 

SCS DO 

Prot IGT 
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that is not in complete LD with any individual bi-allelic SNP marker may be in complete 

LD with a multi-marker haplotype. 

 

Genetic variance explained by sequence data 

 

The GEBV were estimated as the sum of the haplotypes effects plus the polygenic effect. 

Muir (2007) suggested that a polygenic component should be included in the GEBV, to 

capture any genetic variance not associated with the markers, for instance low-frequency 

QTL that may not be captured by the markers. This strategy has already been adopted by 

Australia, US, and New Zealand in their official genomic evaluations (Hayes et al., 2009). 

 

The following Table 3 shows the proportion of GEBV variance that corresponds to the 

haplotype effects. The haplotypic genetic variance was estimated as the ratio of variance 

explained by haplotype over the total GEBV variance. Haplotypes estimated using the 

Bayesian LASSO model had a large contribution to the total variance of GEBV (between 

32 and 99.9%). Haplotypes for SCS contributed with larger percentage (99.9%) compared 

to the other traits, although this seems likely to be an artifact caused by data structure, 

and the large p small n problem, and the lower heritability of the trait.  

 

Table 3:  Percentage of the genomic estimated values variance that was explained by the 

haplotypes for each character 
 Kg Prot (%) IGT (%) DO (%) SCS (%) 

All  32.75 71.93 73.76 99.90 

>1sd BL 10.92 N.C.1 53.93 33.30 

>3sd BL   1.06   5.24  11.64 15.29 

 
 

1No convergence obtained. 

 

In order to reduce the number of haploblocks needed to perform genomic prediction, a 

subsets of haploblocks which contain haplotypes with large effects was selected. Two 

selection criteria were tested. The first one was 3sd (in absolute value above mean) which 

led to a total of 1264 haplotype for Prot, 1909 for IGT, 851 for SCS and 1450 for DO. 

The second criterion (1 sd in absolute value above mean) led to a total of 44,319 

haplotypes for Prot, 39,975 for IGT, 46,132 for SCS and 42,878 for DO, distributed along 

the genome. Then, haplotypes that exceeded each threshold were subjected to a new 

analysis with Bayesian LASSO.  
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In this study, the larger number of haplotypes, the larger genetic variance that was 

captured for all traits under study. In this sense, using haplotypes that exceed the threshold 

of 1 sd captured larger proportion of variance than those exceeding the threshold of 3 sd. 

   

Filtering for 3sd decreased the proportion of the genetic variance explained by the 

sequence data (haplotypes) for all the traits compared to filtering by 1 sd. This decline 

was 90% for kg Prot, 78% for DO and 54% for SCS. The model did not converge at the 

threshold of 1sd for IGT. This is probably due to a larger proportion of missing data for 

this trait, which accentuates the large p small n problem, as there was 39,965 haplotypes 

and only 348 phenotypes. We observed that the decline was more pronounced for kg of 

protein. This can be explained by a too strict criterion when filtering by 3sd. In this case 

selected haplotypes might be pointing to few genomic regions strongly associated to the 

traits, and with a large number of haplotypes each, but not representative of the whole 

genetic architecture (failing to identify/select other regions). 

 

One limitation of this study is the reduced number of individuals (361) with phenotypic 

data were used to estimate the effects of over 46,000 haplotypes when filtering on the 3sd 

criterion. Thus, the number of haplotypes (p) was much larger than the number of 

observation (n). In this scenario, the QTL effect might be estimated with large error, 

which reduces the advantage of using sequence data compared to SNP genotypes for 

genomic prediction (Druet et al., 2014). 

 

In addition, the choice of the prior distribution for λ2 could potentially influence the 

results. Consistent results and convergence were observed when using scale 

hyperparameters of 0.0001 for 1sd and 0.00001 for 3sd. These hyperparameters affected 

the convergence of the Monte Carlo Markov Chain and should be chosen carefully, for 

example with a grid search, as done in this study: the hyperparameters for the lambda2 

prior distribution were set by a grid search with values ranging from 0.0000001 to 1. 

 

Haplotypes provide valuable information on genetic variance and may lead to the 

development of more efficient strategies to identify genetic variants associated with traits 

of economic interest. 
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Genomic predictions using a set of appropriately selected haploblocks are expected to 

achieve higher prediction accuracy while reducing the amount of predictor variables in 

prediction models. Using preselected haploblocks for genomic prediction is an important 

area of research. Reliability of genomic prediction for a trait as well as persistency across 

generations are expected to improve by identifying the most influential haploblocks and 

include them in the prediction model. In addition, genomic predictive models including a 

selected group of haploblocks will reduce computing time considerably, compared to 

models using all haploblocks, and is more important when using whole-genome sequence 

data.  

This study allowed us to observe the possibilities that exist at incorporating sequenced 

data from the 1000 bull genomes project in routine genomic evaluations. 
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This study utilized sequence data on 31.8 millions variants from 450 sires. We constructed 

haplotypes throughout the genome that were subsequently used as explanatory variables 

of progeny MACE proofs for Prot, IGT, DO and SCS. We concluded that: 

 

The algorithm implemented in Findhap can extract haplotypes in the population studied, 

although it is highly dependent on the parameters set by the user for its implementation, 

and it is necessary to apply biological knowledge a priori to approximate an appropriate 

length of haplotypes based on data LD. In this study, the number of SNPs in the 

haploblock ranged from 799 in BTA 13 to 1285 in BTA 12, with a mean of 924 SNP 

(166.552 pb). The chromosomes 1 and 25 had the highest and lowest number of blocks 

and haplotypes respectively. The haplotype blocks were expected to be large because of 

the high LD in Holstein and confirmed the existence of high LD in the BovineHD chip. 

 

Unique haplotypes and low frequency haplotype alleles appeared in a large proportion 

(97%) in all chromosomes, and must be utilized carefully or filtered out. Nonetheless, a 

large number of haplotypes (153,428) were still useful for genomic prediction. 

 

Sequenced regions that are associated to traits of economic interest were detected and 

could be used in a Bayesian regression model incorporating a polygenic effect for 

genomic evaluations in the Spanish dairy cattle. The haplotypes with larger effect on the 

traits were those at low frequency, mainly for SCS. This reveals that NGS data will 

provide additional information to SNP genotyping on the less common variants and their 

contribution to genetic variation.  

 

Haplotypes contributed highly to the variance of GEBV (ranging between 32 and 99.9%). 

It has been hypothesized that an appropriate selection of a subset of haplotype blocks can 

result in satisfactory or better predictive ability than SNP genotypes. The proportion of 

variance captured by sequence data is related not only to the nature of trait, but also to the 

number of haplotypes incorporated in the analysis model, and the available phenotypes, 

facing difficulties due to dimensionality problems (large p small n problem). Given the 

availability of data from the 1000 bull genome project, filtering by 3 sd would not be 

enough to capture a large proportion of genetic variance, whereas filtering by 1sd could 

be useful but caution must be taken in terms of model convergence and the choice of 

hyperparameters in the prior distribution of haplotype effects.  
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Genomic predictions using only a set of appropriately selected haploblocks can provide 

additional information to GEBV prediction, but increase in predictive accuracy must be 

checked in future studies. There is a need for statistical models that better capture genetic 

variance when under high dimensionality problems. 

 

 

For future studies we recommend: 

 

 The increase of the number of individuals with phenotypes and genotypes in the 

analysis model to capture a large proportion of genetic variance explained by 

sequence data; 

 The use of less stringent thresholds to filter relevant haplotypes; 

 Imputation of these haplotypes in the population and make cross-validation to 

determine the increase on predictive ability of these variants over SNP genotypes;  

 Also, further research is needed to improve strategies to select optimal haplotype 

lengths. 
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