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Abstract. Recently, the introduction of transformation thermodynamics has

provided a way to design thermal media that alter the flow of heat according

to any spatial deformation, enabling the construction of novel devices such as

thermal cloaks or concentrators. However, in its current version, this technique

only allows static deformations of space. Here, we develop a space-time theory of

transformation thermodynamics that incorporates the possibility of performing time-

varying deformations. This extra freedom greatly widens the range of achievable

effects, providing an additional degree of control for heat management applications. As

an example, we design a reconfigurable thermal cloak that can be opened and closed

dynamically, therefore being able to gradually adjust the temperature distribution of

a given region.

PACS numbers: 44.10.+i,44.27.+g,05.70.-a,81.05.Xj

Keywords: Transformation thermodynamics, cloaking, metamaterials
Submitted to: J. Opt.



2

1. Introduction

Transformation thermodynamics is a tool that

allows us to design devices able to mold

the flow of heat according to a coordinate

transformation [1]. Using this technique, it has

been possible to experimentally demonstrate,

for instance, a thermal cloak based on

artificial (meta)materials [2]. While the

current approach is limited to static spatial

transformations, the ability to modify the

transformation as a function of time would

allow for the construction of devices with

time-varying functionalities as in the optical

and acoustic cases [3, 4, 5, 6, 7, 8], greatly

widening the range of addressable effects

and applications. This possibility implies

the use of space-time mappings, which, in

general, involve more complex materials for

their implementation. For example, in the

case of optics, such materials are linked to

magneto-electric couplings, which can often

be related to moving media [9]. Likewise,

it has been recently demonstrated that this

kind of media are fundamental for the space-

time version of transformation acoustics [5,

6]. Therefore, moving media seem to

be a common key feature of space-time

transformation techniques, so it is natural

to conjecture that it will also be required

in the field of thermodynamics. In this

case, moving media are associated with

convective heat transfer. The behavior

of the convection-diffusion equation under

purely spatial transformations and for time-

independent parameters was studied in [10,

11]. However, no space-time analysis has

been performed so far and, therefore, the

possibility of building dynamically-tunable

transformational thermal devices has not been

considered yet. This is the goal of the present

work.

2. Space-time transformation

thermodynamics

According to the previous reasoning, our

starting point will be the equation that models

the evolution of temperature T as a result

of both heat diffusion and convection. As

we will see below, considering time-dependent

thermal parameters will be essential to build

the sought space-time transformation theory.

For this reason, it is important to look carefully

at the derivation of the convection-diffusion

equation, as the full version with space and

time parameter dependence might be different

from the usual version of the equation, in

which the parameters are taken to be time-

independent.

To derive the mentioned equation, we

start from the energy balance for a continuous

medium in the absence of work done by body

or surface forces [12]

ρ
Du

Dt
+∇ · q = 0, (1)

where u is the internal energy per unit mass,

q the heat flux, ρ the density, and D/Dt

the material derivative operator defined as

D/Dt = ∂/∂t+v·∇, v being the velocity of the

material point. A priori, there is no restriction

on the time or space dependence of ρ and v.

On the other hand, according to Fourier’s law,

q can be expressed as q = −K∇T , where

K is the thermal conductivity. In principle,

the spatio-temporal dependence of K is not

restricted either. Inserting Fourier’s law in

the energy equation and writing the internal

energy per unit mass as u = cT , with c the

specific heat capacity, we finally obtain

a
DT

Dt
−∇ · (K∇T ) = 0, (2)

where a = ρc. Note that we have assumed

that Dc/Dt = 0. This is the only restriction

regarding the coordinate dependence of the
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thermal parameters. Equation (2) will be

our basic equation, which we now rewrite for

convenience using Einstein’s notation and in a

specific system of coordinates adapted to the

problem at hand

a
(
∂tT + vi∂iT

)
− 1

√
γ
∂i
(√

γKγij∂jT
)
= 0,(3)

with ∂i = ∂/∂xi. For example, in the problem

later to be presented these coordinates will be

cylindrical coordinates x1 = r, x2 = θ, and

x3 = z, and the γij the flat Euclidean metric

written in these coordinates; γ represents as

usual its determinant. It can be demonstrated

that, for a general space-time transformation,

the previous equation does not retain its

form. A similar situation is found in acoustics,

where an analogue transformation method

can solve the problem [5, 13]. However, as

we will show below, there is a fundamental

difference here; while in the acoustic case the

equations are form-variant under almost any

space-time mixing transformation [6], the heat

equation turns out to be form-invariant as

long as the new time variable does not depend

on the original space variables. Actually,

this will be enough to address the majority

of situations in which a dynamically-tunable

device is required, avoiding the need for an

analogue method. Such transformations can

be expressed as

x̄i = fi(x
1, x2, x3, t), (4)

t̄ = f0(t). (5)

The origin of the difference between the

acoustic and thermodynamic cases lies in the

distinct nature of their respective equations.

Specifically, sound propagation is modeled by

a hyperbolic differential equation containing

a second-order time derivative, while heat

transfer is governed by a parabolic differential

equation in which only a first-order time

derivative appears.

In order to prove the mentioned form

invariance, let us express equation (3) in terms

of the new variables x̄i and t̄. Defining

Λī
i ≡ ∂ix̄

ī, Λi
ī ≡ ∂īx

i (6)

V ī ≡ ∂tx̄
ī, ϕ ≡ ∂tt̄, (7)

where ∂ī = ∂/∂x̄ī, we obtain the following

identities

∂i = Λī
i∂ī, (8)

∂t = V ī∂ī + ϕ ∂t̄, (9)

vi∂iT = Λi
īv̄

īΛj̄
i∂j̄T = v̄ī∂īT, (10)

∂i
(√

γKγij∂jT
)
= Λī

i∂ī

(√
γKγijΛj̄

j∂j̄T
)

=

√
γ

√
γ̄
∂ī

(√
γ̄Kγ̄ īj̄∂j̄T

)
, (11)

where v̄ī are the components of the velocity

vector in the new coordinate system and γ̄ij is

the spatial metric in such a system. Therefore,

equation (3) becomes

a
√
γ̄ϕ ∂t̄T + a

√
γ̄
(
V ī + v̄ī

)
∂īT

− ∂ī

(
K
√
γ̄γ̄ īj̄∂j̄T

)
= 0 (12)

Clearly, equation (12) still has the form of

the original heat equation. Therefore, we can

follow the standard procedure and interpret

equation (12) as the heat equation for a new

medium in the original system. To this end, it

will be necessary to consider this new medium

to posses an anisotropic thermal conductivity

characterized by the tensor K̃ij, as well as

a specific heat capacity c̃, a density ρ̃ (with

ã = c̃ρ̃) and a velocity ṽ. This corresponds

to equation (3) with the replacements Kγij →
K̃ij, a → ã, and vi → ṽi. Such an equation will

be mathematically identical to the transformed

equation, equation (12), when the following

relations hold

ã =
a
√
γ

[√
γ̄ϕ

]
x̄i,t̄→xi,t

, (13)

ṽi =

[
V i + v̄i

ϕ

]
x̄i,t̄→xi,t

, (14)
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K̃ij =
K
√
γ

[√
γ̄γ̄ij

]
x̄i,t̄→xi,t

, (15)

Here x̄i, t̄ → xi, t means relabeling x̄i, t̄ to xi, t

(in the particular case below identify the new

coordinates again as cylindrical coordinates).

3. Dynamically-tunable heat cloak

To exemplify the theory developed above and

in analogy with the time cloaks studied in

optics and acoustics [3, 5], we consider a

transformation that gradually opens and closes

a hole in space, as depicted in figure 1.

Nevertheless, instead of transforming only one

spatial dimension as in the previous works

on time cloaking, we consider here a time-

dependent transformation of two-dimensional

space. For that purpose, we assume that

the problem is z-invariant, which implies that

the components of the metric with i = 3 or

j = 3 are not relevant. In fact, this effectively

reduces the number of spatial dimensions to

two, allowing us to work in the xy plane.

Specifically, we propose the following time-

dependent transformation of the disk with

radius rB, expressed in cylindrical coordinates,

to achieve a dynamically-adjustable cloaking

effect:

r̄ = rA(t) +
rB − rA(t)

rB
r, (16)

θ̄ = θ, (17)

t̄ = t. (18)

That is, a hole of variable radius rA(t) is

opened in the xy plane. Note that the

transformation is continuous at r = rB.

According to equations 13-15, the parameters

required to implement this transformation are

(assuming a non-moving initial medium):

K̃ij = diag

(
r − rA(t)

r
,

r

r − rA(t)

)
, (19)

ã =
r − rA(t)

r

r2B
(rB − rA(t))

2a, (20)

x
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Figure 1. (a) Time cloaking in two spatial dimensions.

The disk of radius rB is compressed to the annulus

given by rA ≤ r ≤ rB. The value of rA varies with time,

starting from zero and eventually returning to zero

again. In three-dimensional space-time (two spatial

dimensions plus time), this transformation creates a

hole within the cylinder r ≤ rB whose axis lies along

the t axis. Half of such cylinder and hole are shown

in the figure. (b) Function rA(t) employed in the

simulations.

ṽ = ∂trA(t)
rB − r

rB − rA(t)
r̂, (21)

where r̂ is the unit vector along the r direc-

tion. To verify the previous relations, we nu-

merically analyze (via COMSOLMultiphysics)

the particular example shown in figure 2(a).

It consists of a rectangular region thermally

insulated at the upper and lower ends and

whose left (right) boundary is assumed to be

at a constant temperature of TL (TR), with

TL > TR (see figure 2). We take the initial

temperature value to be TR in the whole do-

main and the background material to be cop-

per [K = 394 W/(Km), a = 3.49 MJ/(Km3)].

This configuration results in a similar prob-

lem to that studied in [2]. For a homogeneous

copper background, a time-dependent temper-

ature gradient in the x direction is obtained

[figure 2(a)]. If we now change the system pa-

rameters according to equations 19-21, a disk

of variable radius rA and homogeneous tem-

perature is created. In particular, the value of
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Figure 2. Simulated temperature distribution at

t = 10 s for two different scenarios. (a) Homogeneous

copper sheet. (b) Time-varying thermal cloak (copper

background). In all simulations, TL = 330 K, TR = 273

K, and rB = 3 cm. An animation showing the temporal

evolution of the cloak is provided as Media 1.

temperature within the disk is that of the point

(x, y) = (0, 0) in the untransformed problem.

In the simulations, rA is given by the function

in figure 1(b). The temperature distribution

at a time at which the radius is maximum is

depicted in figure 2(b). The proposed device

could be used to dynamically adjust the tem-

perature of a given region by taking a point

with the desired value as the origin of the

cloak, which will be expanded to the cloaked

area. Afterwards, if a different temperature is

required, we can close the hole and open a sec-

ond one starting from a different point, or even

open several holes simultaneously.

4. Practical implementation

From the implementation point of view,

synthesizing the required flow is probably

the most technologically-challenging aspect.

Fortunately, in some cases, the contribution

of the flow term in equation (12) might not

be determinant, provided that it is sufficiently

low in comparison with the other ones. In

fact, taking ṽ = 0 in the previous example

does not entail a serious degradation of the

cloaking performance. To see this, in figure 3

(a) (d)

(b) (e)

(c) (f)

r   = 1.2 cm , t = 9.3 sA

r   = 2 cm , t = 10 sA

r   = 0 cm , t = 11.2 sA

Figure 3. Simulated isotherms at different instants.

The value of rA at each instant is also shown. (a-c)

Cloaking with flow. The arrows indicate the velocity

field at t = 9.3 s (no flow is required at the other shown

instants). (d-f) Cloaking without flow.

we have depicted the isotherms for the cases

with and without flow at different instants.

Clearly, a perfect cloaking effect is achieved via

the full-parameter device, with no temperature

modification outside the cloak. On the other

hand, the simplified no-flow cloak alters the

outer temperature distribution, even when

the cloak is already closed, and introduces a

slight deviation from the desired temperature

transformation. Nevertheless, an approximate

cloaking effect is still attained, which might be

acceptable in many situations.

Another issue is the synthesis of an

anisotropic time-varying thermal conductivity.
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Composites made up of the proper combina-

tion of isotropic materials offer a feasible so-

lution. Moreover, the homogenization theory

developed for time-independent spatially peri-

odic media can be extended straightforwardly

to time-dependent thermal properties. For

example, following a standard two-scale ap-

proach [14], it can be shown that, in the no-

flow case, the effective time-dependent param-

eters are obtained just by including the time

dependence in the usual expressions for the

homogenized static parameters (e.g., those ob-

tained in [1]). For instance, the effective pa-

rameters of a periodic 2D cylindrical multilayer

structure made up of two different homoge-

neous isotropic materials characterized by pa-

rameters aA(t), KA(t) and aB(t), KB(t) are

Kr
eff =

dA + dB

dAK
−1
A (t) + dBK

−1
B (t)

, (22)

Kθ
eff =

dAKA(t) + dBKB(t)

dA + dB
, (23)

aeff =
dAaA(t) + dBaB(t)

dA + dB
. (24)

where dA (dB) is the thickness of the layers

of material A (B), which may depend on time

as well. This kind of composite could be

used to implement the approximate version

of the time-varying cloak described above

[that is, to synthesize the medium given

by equations (19)-(20)], as well as other

dynamical devices with cylindrical symmetry,

such as reconfigurable concentrators. In

addition, note that a diffusion equation

for photons with the same structure as

equation (2) (with v = 0) has been recently

used to demonstrate a cloak for diffusive

light [15]. Therefore, the theory developed

here could also be applied in that case, at least

the simplified version with no flow, to create

dynamically-tunable optical cloaks.

Finally, it is worth mentioning that, to ob-

tain a full space-time thermodynamics trans-

formation theory (i.e., including transforma-

tions in which the new time variable also de-

pends on the old spatial variables), a com-

pletely relativistic (form-invariant) equation

should be employed. In the literature one can

find the so-called hyperbolic heat equation [16]

and its associated second sound effects [17], as

well as the relativistic heat equation [18]. How-

ever, these equations present some controver-

sial aspects and their experimental validity is

still under study [19]. Furthermore, consider-

ing a moving medium gives rise to additional

complications in this case [20].

5. Conclusion

In conclusion, building on the heat convection-

diffusion equation, we have developed a space-

time transformation thermodynamics theory

that provides an additional degree of control

for heat management applications. As an

example, we have designed a reconfigurable

thermal cloak that can be dynamically opened

and closed by using an inhomogeneous moving

medium. In addition, we have shown that

a simplified no-flow version of this device

provides an approximate cloaking effect. The

recent advances in the dynamic tuning of

the thermal properties of different materials,

for instance, through electrochemical [21] or

voltage [22] modulation, could provide a

suitable platform for the implementation of the

proposed thermal space-time transformation

media.

Acknowledgments

C. G.-M. acknowledges support from General-

itat Valenciana through the VALi+d postdoc-

toral program (exp. APOSTD/2014/044).



7

References

[1] Guenneau S, Amra C and Veynante D 2012 Opt.

Express 20 8207–8218

[2] Schittny R, Kadic M, Guenneau S and Wegener

M 2013 Phys. Rev. Lett. 110 195901

[3] McCall M W, Favaro A, Kinsler P and Boardman

A 2011 J. Opt. 13 024003

[4] Cummer S A and Thompson R T 2011 J. Opt. 13

024007
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