ESTUDIO ANALÍTICO Y POR ELEMENTOS FINITOS DE VIGA ARMADA BAJO TENSIÓN DIAGONAL

José Catalá Serralta

Dirigido por Prof. José L. Pérez Aparicio

Trabajo Fin de Grado
Grado en Ingeniería Aeroespacial

Julio - 2016
Índice

• **Introducción**
• Metodología
• Inicio de pandeo
• Post-pandeo en placas a compresión
• Post-pandeo en placas a cortante
• Viga armada
• Conclusiones
Viga armada

- Estudios NACA 1952
- Utilizados en industria actual

Larguero del ala
Post-pandeo

Pandeo: inestabilidad elástica

Capacidad a post-pandeo

Ahorro de peso en el diseño

Aeronáutica: espesores muy finos
Índice

• Introducción
• **Metodología**
• Inicio de pandeo
• Post-pandeo en placas a compresión
• Post-pandeo en placas a cortante
• Viga armada
• Conclusiones
Metodología general

Proceso de complejidad creciente

Métodos analíticos (*Mathematica, Matlab*)
Método Elementos Finitos MEF (*Abaqus*)

Materiales isótropos y compuestos

Placas
Viga armada

Inicio de pandeo
Post-pandeo

Validación de resultados
Metodología en Abaqus

- Elementos tipo *shell*
- 5 puntos de integración en el espesor

Linear Perturbation - Buckle

Inicio de pandeo

- Carga Crítica
- Modos de pandeo

Ponderación

Static - Riks

Post-pandeo

- Análisis estático no-lineal con imperfecciones iniciales

Julio - 2016
Índice

• Introducción
• Metodología
• **Inicio de pandeo**
• Post-pandeado en placas a compresión
• Post-pandeado en placas a cortante
• Viga armada
• Conclusiones
Método de -Ritz-

Energía interna de deformación

\[U = \frac{1}{2} \int_0^a \int_0^b \left[D_{11} \left(\frac{\partial^2 w}{\partial x^2} \right)^2 + 2 D_{12} \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + D_{22} \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 4 D_{66} \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right] \, dy \, dx \]

Trabajo de las fuerzas externas

\[W = \frac{1}{2} \int_0^a \int_0^b \left[N_x \left(\frac{\partial w}{\partial x} \right)^2 + N_y \left(\frac{\partial w}{\partial y} \right)^2 + 2 N_{xy} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right] \, dy \, dx \]

Deflexión \(w \)

Funciones de prueba que cumpla las CdC

\[w(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn} \cdot X_m(x) \cdot Y_n(y) \]

Minimización de energía potencial

\[\Pi = U - W \quad \frac{\partial \Pi}{\partial w_{ij}} = 0 \]

Problema de autovalores

Julio - 2016
Carga crítica – relación de aspecto

\[K = \frac{b^2 N_{cr}}{\pi^2 D} \]

Inicio de pandeo

Julio - 2016
Reproducción documento ESDU 71005

Engineering Sciences Data Unit

\[K' = \frac{N_{cr}/h}{E(h/b)^2} \]

![Graph showing the relationship between K' and r (a/b)](image-url)
Modos de pandeo

MEF

\[K = 9.36 \]

\[K = 11.62 \]

\[K = 25.18 \]

Ritz

\[K = 9.40 \]

\[K = 11.65 \]

\[K = 27.24 \]
Índice

- Introducción
- Metodología
- Inicio de pandeo
- **Post-pandeo en placas a compresión**
- Post-pandeo en placas a cortante
- Viga armada
- Conclusiones
Ecuaciones de von Karman

1) \[D_{11} \frac{\partial^4 w}{\partial x^4} + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22} \frac{\partial^4 w}{\partial y^4} = N_x \frac{\partial^2 w}{\partial x^2} + 2N_{xy} \frac{\partial^2 w}{\partial x \partial y} + N_y \frac{\partial^2 w}{\partial y^2} \]

2) \[\frac{1}{A_d} \left(A_{11} \frac{\partial^2 N_y}{\partial x^2} - A_{12} \frac{\partial^2 N_x}{\partial x^2} - A_{12} \frac{\partial^2 N_y}{\partial y^2} + A_{22} \frac{\partial^2 N_x}{\partial y^2} \right) - \frac{1}{A_{66}} \frac{\partial^2 N_{xy}}{\partial x \partial y} = \]

\[= \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \]

Función de tensiones de Airy

\[N_x = \frac{\partial^2 F}{\partial y^2} ; \quad N_y = \frac{\partial^2 F}{\partial x^2} ; \quad N_x = -\frac{\partial^2 F}{\partial x \partial y} \]
Funciones de prueba

\[w = w_1 \sin \left(\frac{\pi x}{a} \right) \sin \left(\frac{\pi y}{a} \right) \]

Factor de carga de post-pandeo

\[F = -\frac{P_x y^2}{2a} - \frac{P_y x^2}{2a} + C_1 \cos \left(\frac{2\pi x}{a} \right) + C_2 \cos \left(\frac{2\pi y}{a} \right) \]

Solución:

\[w_1 = \sqrt{\frac{16 A_{11} A_{22} \left[D_{11} + 2(D_{12} + 2D_{66}) + D_{22} \right]}{(A_{11} + 3 A_{22}) A_d} (\mathcal{P} - 1)} \]
Grandes deflexiones

Post-pandeo en placas a compresión

Julio - 2016
Redistribución de tensiones

- Centro: pérdida capacidad carga
- Valores máximos en bordes
Pérdida de rigidez (pendiente) compresiva

Tensión máxima σ_{max}

vs

Tensión media σ_{av}
Índice

• Introducción
• Metodología
• Inicio de pandeo
• Post-pandeo en placas a compresión
• Post-pandeo en placas a cortante
• Viga armada
• Conclusiones
Funciones de prueba

\[w = w_1 \left[\sin \left(\frac{\pi x}{a} \right) \sin \left(\frac{\pi y}{a} \right) + \frac{1}{4} \sin \left(\frac{2\pi x}{a} \right) \sin \left(\frac{2\pi y}{a} \right) \right] \]

\[F = -\frac{P_{xy} x y}{a} + C_1 \cos \left(\frac{2\pi x}{a} \right) + C_2 \cos \left(\frac{4\pi x}{a} \right) + C_3 \cos \left(\frac{3\pi x}{a} \right) \cos \left(\frac{\pi y}{a} \right) + \]

\[+ C_4 \cos \left(\frac{\pi x}{a} \right) \cos \left(\frac{3\pi y}{a} \right) + C_5 \cos \left(\frac{2\pi y}{a} \right) + C_6 \cos \left(\frac{4\pi y}{a} \right) \]

Solución:

\[w_1 = h \sqrt{\frac{6400}{1659 (1 - \nu^2)}} (P - 1) \]
Estudio de la deflexión

Errores mayores que en compresión
Post-pandeo en placas a cortante

Tensiones diagonales

Comportamiento PDT
Índice

• Introducción
• Metodología
• Inicio de pandeo
• Post-pandeo en placas a compresión
• Post-pandeo en placas a cortante
• **Viga armada**
• Conclusiones
Modos de pandeo en *Abaqus*

3760 elementos tipo *shell*

#1

#2

#3

#4
Deflexión

- Ondas diagonales en dirección de pandeo
- Tensión diagonal
Tensión Diagonal Incompleta

Pure Shear
PDT

Modelos ideales

NACA TN2661: Método semi-empírico para viga completa

\[\sigma_c = -\tau \]

\[\sigma_t = \tau \quad k = 0 \]

\[\sigma_c = -(1 - k)\tau \]

\[\sigma_t = (1 - k)\tau \quad 0 < k < 1 \]

\[\sigma_c = -\tau_{cr} \]

\[\sigma_t = \frac{2k\tau}{\sin 2\alpha} \]

\[k = 1 \]
Tensiones diagonales en el alma

\[\sigma_t \]

\[\sigma_c \]

\[\sigma_t \]

\[\sigma_c \]

\[+4.85e+06 \]

\[+2.12e+06 \]

\[-6.17e+05 \]

\[P = 3 \]
Tensiones en los refuerzos

\[\sigma_x \]

\[+1.76 \times 10^5 \quad +4.40 \times 10^5 \]

\[-8.83 \times 10^5 \]

\[\mathcal{P} = 3 \]

\[\sigma_y \]

\[+1.91 \times 10^6 \quad +4.38 \times 10^5 \]

\[-1.04 \times 10^6 \]

\[\mathcal{P} = 3 \]

\[\sigma_U / \tau_{cr} \]

\[\sigma_F / \tau_{cr} \]

Julio - 2016
Índice

• Introducción
• Metodología
• Inicio de pandeo
• Post-pandeo en placas a compresión
• Post-pandeo en placas a cortante
• Viga armada
• Conclusiones
Conclusiones

• Bases teóricas: fundamentales para interpretación de resultados MEF

• Post-pandeo: régimen no lineal y complejo

• Capacidad a post-pandeo: reducción de peso en diseño

• Validación satisfactoria de resultados MEF-analíticos
Gracias por su atención

¿Preguntas?