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Abstract  

Membrane-delimited ABA signal transduction plays a critical role for early ABA 

signaling but molecular mechanisms linking core signaling components to plasma 

membrane are unknown. We show that transient calcium-dependent interactions of 

PYR/PYL receptors with membranes can be mediated through a new 10-member family 

of C2-domain ABA-related (CAR) proteins. Specifically, we found that PYL4 

interacted in an ABA-independent manner with CAR1 both in plasma membrane and 

nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to 

CAR10 proteins, and bimolecular fluorescence complementation and co-

immunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR 

pairs interacted in plant cells. Crystal structure of CAR1? and CAR4 was solved and it 

revealed, in addition to a classical calcium-dependent lipid-binding C2-domain, a 

specific CAR signature likely responsible of the interaction with PYR/PYL receptors 

and their recruiting to phospholipid vesicles. This interaction is relevant for PYR/PYL 

function and ABA signaling since different car triple mutants affected in CAR1, CAR4, 

CAR5 and CAR9 genes showed reduced sensitivity to ABA in seed establishment and 

root growth assays. In summary, we have identified PYR/PYL-interacting partners that 

mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects 

PYR/PYL sub-cellular localization and positively regulates ABA signaling. 
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Introduction 

Abscisic acid (ABA) elicits plant responses through binding to soluble PYRABACTIN 

RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF 

ABA RECEPTORS (RCAR) receptors, which constitute a 14-member family. 

PYR/PYL/RCAR receptors perceive ABA intracellularly and as a result, form ternary 

complexes with clade A PP2Cs, thereby inactivating them (Ma et al., 2009; Park et al., 

2009; Santiago et al., 2009; Nishimura et al., 2010). This allows the activation of 

downstream targets of the PP2Cs, such as the sucrose non-fermenting 1-related protein 

kinases (SnRKs) subfamily 2, i.e. SnRK2.2/D, 2.3/I and 2.6/OST1/E, which are key 

players to regulate transcriptional response to ABA and stomatal aperture (Cutler et al., 

2010). Additional targets of clade A PP2Cs have been described, such as SnRK1, 

SnRK3s/calcineurin B-like (CBL)-interacting protein kinases (CIPKs), calcium-

dependent protein kinases (CDPKs/CPKs), ion transporters such as the K+ channel 

AKT1 and AKT2 or the slow anion channel 1 (SLAC1) and SLAC1 homolog 3 

(SLAH3), and transcriptional regulators such as bZIP transcription factors or chromatin-

remodeling complexes (Guo et al., 2002; Cherel et al., 2002; Lee et al., 2007; Saez et 

al., 2008; Lee et al., 2009; Geiger et al., 2009; Brandt et al., 2012; Antoni et al., 2012; 

Pizzio et al., 2013; Rodrigues et al., 2013). Some of these interactions have been shown 

to be modulated by PYR/PYL/RCAR receptors (Geiger et al., 2010 and 2011; Brandt et 

al., 2012; Pizzio et al., 2013; Rodrigues et al., 2013). Therefore clade A PP2Cs act as 

key negative regulators of ABA signaling and as a hub for regulation of different 

environmental responses.  

 Genetic evidence on PYR/PYL function indicates they play a major role in 

quantitative regulation of ABA response, affecting both seed and vegetative responses 

to ABA (Park et al., 2009; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012; 

Antoni et al., 2013). Analysis of their gene expression patterns together with their 

biochemical and genetic characterization have served to establish common and 

divergent properties of PYR/PYL ABA receptors (Dupeux et al., 2011a; Hao et al., 

2011; Gonzalez-Guzman et al., 2012). Analyses of combined pyr/pyl mutants indicate 

that PYR/PYL function is partially redundant; however, PYL8 plays a nonredundant 

role to regulate root sensitivity to ABA (Antoni et al., 2013). Structural and biochemical 

studies also reveal several divergences among PYR/PYLs, particularly with respect to 

oligomeric structure and perception of chemical agonists (Dupeux et al., 2011a; Hao et 
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al., 2011; Okamoto et al., 2013). Activation of dimeric receptors by the ABA agonist 

quinabactin, which also activates to some extent PYL5 and PYL7, is enough to elicit 

both seed and vegetative responses to ABA (Okamoto et al., 2013; Cao et al., 2013).   

 Regulation of cellular processes involves intermolecular interactions that alter 

the location and/or activity of signaling proteins and cellular membranes are a platform 

for intracellular communication involving lipid-protein and protein-protein complexes 

(Cho et al., 2005; Scott and Pawson, 2009). PYR/PYL proteins are intracellular ABA 

receptors localized both at the cytosol and nucleus; however, a detailed knowledge on 

their sub-cellular localization or putative transient interactions with membrane systems 

of the cell is currently lacking. Cytosolic proteins can reside partially in vesicles as 

peripheral proteins or transiently interact with membranes for trafficking or signaling 

purposes driven by protein modules that recognize specific features of proteins or 

membranes (Cho et al., 2005; Seet et al., 2006; Lemmon 2008). In addition to the 

plasma membrane, eukaryotic cells possess an elaborate membrane system with 

multiple intracellular membranes, e.g. at the nucleus, organelles, endocytic and 

secretory pathways (Mellman and Emr, 2013; Voeltz and Barr, 2013). Thus, lipid 

bilayers take part in a myriad of processes in the plant cell and cytosolic/nuclear 

proteins can interact transiently with membranes for signaling, transport or other 

purposes (Cho et al., 2005; Voeltz and Barr, 2013). PYR/PYL ABA receptors, together 

with clade A PP2Cs and ABA-activated SnRK2s, play a key role to control ion 

transporters and membrane-associated enzymes that generate second messengers 

involved in ABA signaling (Geiger et al., 2009; Lee et al., 2009; Sato et al., 2009; 

Sirichandra et al., 2009; Geiger et al., 2011; Cutler et al., 2010); however, it is not 

understood how PYR/PYL proteins (or PP2Cs/SnRK2s) can reach the proximity of 

cellular membranes beyond random diffusion. It is possible that auxiliary proteins might 

be involved in approaching transiently receptor, phosphatase or kinase complexes next 

to cellular membranes, where early ABA signaling events take place. Recently, it was 

shown that ABA signaling modulates through ABI1 and PYL9 the association of the 

signaling and transport complex CPK21/SLAH3 within plasma membrane domains 

reminiscent of animal lipid rafts (Demir et al., 2013). These results imply that PYL9 

must be able to inhibit ABI1 in the proximity of lipid nanodomains to allow the 

activation of SLAH3 by CPK21 (Demir et al., 2013).  
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 In order to identify putative regulatory proteins of PYR/PYL receptors, e.g. 

auxiliary proteins that might regulate their subcellular localization or activity, we 

performed a yeast two hybrid (Y2H) screening using PYL4 as bait. PYL4 is a 

representative member of the PYR/PYL family, it shows high expression levels in 

different tissues and its inactivation is required to generate strongly ABA-insensitive 

combined pyr/pyl mutants (Park et al., 2009; Gonzalez-Guzman et al., 2012). The 

search of new interacting partners of PYL4 resulted in the discovery of a novel family 

of small proteins containing a lipid-binding C2 domain, named CAR proteins for C2-

domain ABA-related protein, which interact with PYR/PYLs and positively regulate 

ABA sensitivity. The C2 domain comprises approximately 130 residues and was first 

identified in protein kinase C (PKC), located between the C1 domain and the PKC 

catalytic domain (Nishizuka, 1998). The C2 domains of classical PKCs bind to 

phospholipid membranes in a calcium-dependent manner and are involved in targeting 

PKC activity to cell membranes in response to extracellular signals (Guerrero-Valero et 

al., 2007). C2 domains share functional characteristics with annexins, which also bind 

phospholipids in a calcium-dependent manner, but they are structurally unrelated 

(Lemmon et al., 2008). C2 domains are usually found in a large variety of eukaryotic 

proteins, where the C2 module is combined with a wide range of other modules 

encoding different enzymatic activities involved in intracellular signal transduction and 

membrane trafficking (Zhang and Aravind, 2010). The C2 domain acts in these proteins 

as a Ca2+-activated module that promotes targeting to membranes of the catalytic 

activity encoded in another region of the polypeptide. However, small C2-domain 

proteins, as CAR proteins, that lack additional catalytic domains have also been 

identified in plants (Kim et al., 2003, Wang et al., 2009; Yokotani et al., 2009). Finally, 

the C2 domain and the EF-hand motif are the two most frequently occurring calcium 

sensors and at least 123 proteins contain C2 domains in Arabidopsis (http://smart.embl-

heidelberg.de/). However, not all C2 domains are able to bind calcium and some of 

them have diverged evolutionary into Ca2+-independent lipid-binding variants (Cho and 

Stahelin, 2006). 

 

 

 

http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
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Results 

Identification of CAR proteins as interacting partners of PYR/PYLs 

We performed a Y2H screening in the absence of ABA using PYL4 as a bait. As a 

result, we found a novel PYL4-interacting protein, At5g37740, whose binding to PYL4 

was not ABA-dependent (Figure 1A). Analysis using Simple Modular Architecture 

Research Tool (SMART; http://smart.embl-heidelberg.de/) revealed that At5g37740 

belongs to a branch of the C2-domain superfamily represented by single-C2 domain 

proteins that lack additional catalytic domains (Supplemental Figure 1). Other PYL 

receptors, such as PYL1, PYL6 or PYL8 were also able to interact in Y2H assays with 

this small C2-domain protein (Figure 1A).  Deletion of the N-terminal region of PYL4, 

PYL6 and PYL8 severely impaired the interaction with At5g37740 (Figure 1B). A 

similar N-terminal deletion did not affect the binding of PYR/PYL receptors to PP2Cs 

since this region is not involved in the formation of the receptor-ABA-phosphatase 

complex (Santiago et al., 2009; Melcher et al., 2009; Miyazono et al., 2009; Dupeux et 

al., 2011b). We named At5g37740 as CAR1 and BLAST search at TAIR revealed a 

CAR gene family composed by 10 members (CAR1 to CAR10) in Arabidopsis 

(Supplemental Figure 2). The CAR family was also found in other plant species such as 

tomato and rice (Supplemental Figure 3). Arabidopsis CAR proteins range between 165 

to 185 amino acid residues and estimated molecular mass of 18-20 kDa (Supplemental 

Figure 2).  

 C2 domains are usually found as regulatory modules of different polypeptides 

that include also a catalytic domain, such as the typical PKC-C2, phosphatidylinositol 

3-kinase-C2 or phospholipase A2-C2 combinations found in mammals (Zhang and 

Aravind, 2010). Thus, C2 domains are able to translocate to membrane compartments 

the associated catalytic activity in response to Ca2+ peaks. In Arabidopsis, we found 

combinations with different catalytic domains, such as phospholipase D, lysine 

decarboxilase, phosphoribosylanthranilate transferase, endonucleases, inositol 1,4,5-

trisphosphate phosphatases or phospholipase C (Supplemental Figure 1). However, the 

Arabidopsis CAR family hereby identified represents a plant-specific C2 domain family 

of small proteins not associated to catalytic domains. Therefore, we suggest that CAR 

proteins as well as other short C2 proteins lacking additional domains might function 

through interaction with lipids or other proteins and display a dual function as a 

http://smart.embl-heidelberg.de/
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calcium-dependent phospholipid binding protein and as protein-protein interaction 

module. 

 Bimolecular fluorescence complementation (BiFC) assays were used to test the 

CAR1-PYL4 interaction in plant cells. To this end, 35S:CAR1-YFPN and 35S:YFPC-

PYL4 constructs were delivered into leaf cells of tobacco by Agrobacterium tumefaciens 

infiltration (Agroinfiltration) and, as a result, fluorescence was observed  into the 

nucleus or visualized as a thin layer that could reflect plasma membrane or cytosolic 

localization (Figure 1C). As a marker of plasma membrane localization, we used the red 

fluorescence emitted by orange/red fluorescent protein OFP-TM23, a modified version 

of OFP containing a transmembrane domain that results in plasma membrane targeting 

(Batistic et al., 2012). Therefore, we co-expressed CAR1-YFPN, YFPC-PYL4 and 

OFP-TM23 into leaf cells of tobacco by Agroinfiltration.  Next, we followed the 

protocol described by French et al., (2008) in order to perform statistical analysis of the 

putative co-localization of the fluorescent markers (fluorescence emission spectra in the 

yellow range for reconstituted YFP and orange-red range for OFP). We found that 

Pearson-Spearman correlation coefficients indicated co-localization of OFP-TM23 and 

reconstituted YFP proteins, therefore a significant amount of the CAR1-PYL4 

interaction was localized to plasma membrane (Figure 1D). In contrast, GFP did not 

show co-localization with OFP-TM23 when both proteins were co-expressed in tobacco 

cells. We also found that other PYR/PYLs, such as PYR1, PYL1, PYL6 and PYL8, also 

interacted with CAR1 in BiFC assays (Figure 1E); although we could not detect in Y2H 

assays the interaction of PYR1 with CAR1. We wondered whether other members of 

the CAR family were able to interact with PYR/PYLs. As a result, we found that CAR4 

was able to interact with PYR1, PYL1, PYL4, PYL6 and PYL8 using BiFC assays 

(Figure 1E). Although different expression levels of the YFP-tagged proteins were 

observed in the different Agroinfiltrations of tobacco plants, we could confirm by 

immunoblot analyses the expression of the receptors and CAR proteins in all the BiFC 

experiments (Figure 1E). 

 Finally, we co-expressed in tobacco epidermal cells HA-tagged PYR/PYLs and 

either CAR1-GFP or CAR4-GFP proteins through Agroinfiltration in order to conduct 

co-immunoprecipitation (coIP) experiments (Figure 1F). To avoid precipitation not 

mediated by antibody of the membrane fractions where CAR1-PYL4 interaction 

occurred, we used the soluble nuclear fractions where this interaction also occurs 
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(Figure 1C and 1E). To this end we precipitated nuclear CAR-GFP proteins using -

GFP and tested the simultaneous presence of PYR/PYLs using -HA. As a result we 

could detect coIP of either CAR1-GFP or CAR4-GFP and the five receptors assayed to 

different extent (Figure 1F). The recovery of co-immunoprecipitated CAR1-GFP and 

HA-PYL6 was apparently higher than other interactions; however we also recovered 

more CAR1-GFP in the -GFP precipitated.  We also found a consistently higher 

recovery of co-immunoprecipitated CAR4-GFP and HA-PYL1/PYL4/PYL6 compared 

to HA-PYR1. Expression of HA-PYL8 was lower than other HA-tagged PYLs so the 

initial input was not comparable to them. 

Subcellular localization of CAR and PYL4 proteins  

In order to further explore the subcellular localization of individual CAR and PYL4 

proteins, we expressed CAR1-GFP, CAR4-GFP, CAR5-GFP and GFP-PYL4 fusion 

proteins in tobacco epidermal cells by Agroinfiltration. In addition to their nuclear 

localization, CAR-GFP proteins decorated the perimeter of the cell, which could reflect 

plasma membrane or cytosolic localization (Figure 2A). As a marker of plasma 

membrane localization, we used the cyan fluorescence emitted by the reconstituted 

super cyan fluorescent protein (SCFP) of the SCFPC-CIPK24/CBL1-SCFPN interaction, 

which has been reported previously to be localized at the plasma membrane as a 

peripheral protein (Waadt et al., 2008). We co-expressed individual CAR-GFP proteins 

with this marker and performed statistical analysis of the putative co-localization of the 

fluorescent markers (fluorescence emission spectra in the green range for GFP and cyan 

range for SCFP). As a result, we found co-localization of both fluorescent markers 

(Pearson-Spearman correlation coefficients in the range 0.55-0.66; Figure 2B). 

Therefore a significant fraction of CAR-GFP proteins was localized to plasma 

membrane. In contrast, GFP alone did not show co-localization with reconstituted SCFP 

(Pearson-Spearman correlation coefficients below zero). GFP-PYL4 alone did not show 

a substantial localization in plasma membrane; however, when YFPC-PYL4 was co-

expressed with CAR1-YFPN it showed partial co-localization with the plasma 

membrane marker used in this experiment (reconstituted SCFP) (Figure 2A and 2B). 

Independent evidence for the localization in plasma membrane of CAR proteins came 

from data mining in the results published by Demir et al., (2013). In this work, proteins 

associated with detergent-resistant membranes from leaf plasma membrane preparations 
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were identified using mass spectrometry. Two CAR proteins, Arabidopsis CAR6 and 

tobacco CAR2 homolog, were identified in dataset S2 and S3, respectively, further 

confirming the presence of CAR proteins in plasma membrane.   

 Finally, we examined the subcellular localization of CAR1-GFP, CAR4-GFP 

CAR5-GFP and GFP-PYL4 proteins by standard biochemical techniques (Figure 2C). 

First at all, we followed a fractionation technique to separate nuclei (pelleted at 1000g) 

from the soluble non-nuclear fraction (Figure 2D). Compared to GFP, the CAR-GFP 

proteins were enriched in the nuclear fraction. Additionally, we submitted the soluble 

fraction to a centrifugation of 100000g to separate the soluble cytosolic fraction from 

the pelleted microsomal fraction. We could find that in contrast to GFP, which was 

localized mostly to the cytosolic soluble fraction, the CAR proteins were localized 

mostly to the microsomal fraction (Figure 2E). GFP-PYL4 also showed a dual nuclear 

and non-nuclear localization, although a lower percentage of nuclear protein was found 

compared to CAR-GFP proteins. In contrast to CAR-GFP proteins, most of the soluble 

non-nuclear fraction of GFP-PYL4 was localized to cytosol, although a significant 

amount was localized to the microsomal fraction (Figure 2E).  

CAR proteins show a 1AB CAR-signature extra-domain inserted into a 

canonical C2 fold  

In order to obtain a molecular insight into CAR proteins, the X-ray structure of CAR4 

in complex with Ca2+ was solved by molecular replacement at 1.6 Å resolution (Figure 

3A, Table 1 and Methods section). We also solved the structure of CAR1, although in 

this case we could not obtain the complex with Ca2+ (Josan, no sé muy bien qué hacer 

con esto, ya lo hablamos, de poner algo irá a supplemental). The overall structure of 

CAR4 is almost identical to that found for other C2 domains. CAR4 folds as a compact 

beta sandwich that is composed by two 4-stranded beta-sheets with type II domain 

topology (Rizo and Sudhof, 1998). In addition, it contains an extra-domain insertion 

consisting of 43 amino acids that connect the two 4-stranded beta-sheets (3256 

with 4187) and folds as an alpha helix followed by a beta hairpin (1AB) 

(Figure 3A, see CAR4 topology). This insertion is conserved among the members of the 

CAR family (Supplemental Figure 2 and 3) and represents a unique CAR-signature 

when the fold is compared with other known families of C2 domains using the 

PDBeFold structure similarity service (http://www.ebi.ac.uk/msd-srv/ssm/; Krissinel and 

http://www.ebi.ac.uk/msd-srv/ssm/
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Henrick, 2004). The CAR-signature extra-domain is situated in the protein face opposite 

to loops L1 and L3, which bind Ca2+ ions that bridge C2 proteins to membranes (Figure 

3A; Verdaguer et al., 1999). The crystallographic analysis revealed two CAR4 

molecules in the asymmetric unit. The structures of these independent molecules are 

nearly identical (C backbone root-mean square deviation, RMSD 0.14 Å; Emsley et 

al., 2010).  

CAR proteins show Ca2+-dependent phospholipid binding activity and recruit 

PYR/PYLs to membrane 

C2 domains display a well defined calcium-dependent lipid-binding site that relies on 

the unspecific interaction of the phosphate moiety of phospholipids with the calcium 

ions coordinated in the conserved L1 and L3 loops, and the specific interaction of the 

phospholipid headgroup with amino acid residues from the loops that conform the cup-

shaped calcium-binding site (Verdaguer et al., 1999). The crystallographic analysis 

shows that CAR4 binds two calcium atoms at this site (Figure 3A). They are 

coordinated with conserved Asp residues in loops L1 (D34 and D39) and L3 (D85 and 

D87), which would make it possible that Ca2+ bridges the C2 domain to phospholipids 

(Perisic et al., 1998; Verdaguer et al., 1999; Guerrero-Valero et al., 2009). Since the 

Ca2+-dependent phospholipid binding is a hallmark of many C2 domains, we tested 

whether CAR proteins were able to bind negatively charged phospholipid vesicles (25% 

phosphatidyl serine/ 75% phosphatidyl choline) in a Ca2+-dependent manner. The 

vesicle pelleting assay is a standard method to detect lipid binding of peripheral proteins 

and it is summarized in Figure 3B (Cho et al., 2001). This assay was performed in the 

absence or presence of different Ca2+ concentrations using CAR1 and CAR4, as well as 

the CAR1D22A D27A and CAR4D85A D87A mutants, which contain double Asp to Ala 

mutations in the loops L1 and L3, respectively. As a result, we could observe that Ca2+ 

promoted binding of CAR1 and CAR4 to phospholipid vesicles (Figure 3C). We 

calculated a half-maximal calcium concentration of 1.5 and 7.7 M for in vitro 

phospholipid binding of CAR1 and CAR4, respectively, and a certain cooperative effect 

for Ca2+ binding (see inset showing Hill coefficient values, nH). Transient increases in 

Ca2+ to M levels have been described in different signaling pathways so the values 

found for CAR proteins are into the physiological range of Ca2+ signaling (Swanson et 

al., 2011). Additionally, the limited analysis of two members of the CAR family 
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suggests that different CAR proteins might sense and respond differentially to an 

increase of intracytosolic Ca2+ levels as it has been described in different C2 domains of 

classical PKCs type ,  and  (Guerrero-Valero et al., 2007). Finally, we confirmed 

that coordination of Ca2+ ions by L1 and L3 loops is crucial for phospholipid binding, 

since the CAR1D22A D27A and CAR4D85A D87A mutations abolished phospholipid binding 

(Figure 3C).  

 One of the receptors that interacted well with CAR proteins in BiFC and coIP 

assays was PYL6 (Figure 1). Only a residual presence of PYL6 in the pellet was 

detected upon co-incubation with CAR1 and phospholipid vesicles lacking calcium 

(Figure 3D, lane 6). In contrast, co-incubation of PYL6 with CAR1 and phospholipid 

vesicles in the presence of Ca2+ promoted the recruitment of PYL6 to membranes 

(Figure 3D, lane 3). Such effect could be reversed by treating the pelleted vesicles with 

increasing concentrations of EGTA, a chemical acting as Ca2+ chelating agent (Figure 

3D, lanes 4 and 5). These results indicate that binding of PYL6 to phospholipid vesicles 

was dependent both on Ca2+ and CAR1, and the Ca2+-dependent recruitment of PYL6 to 

membranes by CAR1 was reversible, excluding unspecific effects, such as protein 

aggregation or protein insolubility induced by the CAR1-PYL6 interaction.  

 We also tested whether other PYR/PYL receptors could be recruited to 

phospholipid vesicles by either CAR1 or CAR4 in a Ca2+-dependent manner. PYL1, 

PYL4, PYL6 and PYL8 were recruited to phospholipid vesicles by CAR1, whereas 

PYL1, PYL6 and PYL8 were recruited by CAR4 (Figure 3E). The starting 

receptor:CAR ratio was 1:1 in the in vitro assay and after performing the vesicle 

pelleting assay, we measured the ratio of receptor to CAR protein in the pelleted 

vesicles to estimate the affinity of each receptor to either CAR1 or CAR4. Clearly, 

PYL6 was efficiently recruited both by CAR1 and CAR4. The other receptors were less 

efficiently recruited, ranging between 0.2-0.3 molecules of receptor bound per molecule 

of CAR protein. Taken together these assays reveal that CAR1 and CAR4 proteins were 

able to selectively bridge the interaction of PYR/PYL proteins with phospholipid 

vesicles in a Ca2+-dependent manner. 

Triple mutants impaired in CAR genes show reduced sensitivity to both ABA-

mediated inhibition of seedling establishment and root growth    
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Both gain-of-function and loss-of function approaches were followed in order to 

investigate whether CAR genes affect ABA signaling. First at all, we analyzed ABA 

sensitivity of 35S:CAR1 lines with respect to ABA-mediated inhibition of seedling 

establishment and shoot growth (Figure 4). 35S:CAR1 lines showed enhanced 

sensitivity to ABA-mediated inhibition of seedling establishment and shoot growth 

compared to wt (Figure 4). Thus, establishment at 0.3-0.5 M ABA was impaired in 

35S:CAR1 lines compared to wt (Figure 4A and B). Those seedlings from 35S:CAR1 

lines that were able to establish in 0.5 uM ABA showed a clear impairment of shoot 

growth compared to wt after 21 d growth in medium supplemented with ABA (Figure 

4C). Likewise, seedlings from 35S:CAR1 lines transferred from MS plates to plates 

supplemented with 0.5 M ABA showed reduced fresh weight after 21 d growth 

compared to Col wt (Figure 4D).     

 Next we identified loss-of-function knockout mutants for different members of 

the CAR family that were available at collections of T-DNA mutants. At the beginning 

of this work, we could identify T-DNA homozygous mutants for the loci At5g37740 

(car1), At3g17980 (car4), At1g48590 (car5) and At1g70790 (car9) (Supplemental 

Figure 4). Since some functional redundancy might be expected among CAR proteins as 

it was observed previously for PYR/PYL proteins, we generated different double and 

triple mutants impaired in CAR genes and analyzed their sensitivity to ABA (Figure 5). 

ABA-mediated inhibition of seedling establishment assays revealed both a reduced 

sensitivity to ABA in the combined mutants compared to wt and functional redundancy 

among CAR genes since generation of triple mutants was required to obtain robust 

phenotypes (Figure 5A and 5B). Inhibition of root growth in the single and double 

mutants was slightly lower than in wt, whereas triple mutants showed a significant ABA 

insensitivity compared to wt (Figure 5C and D).  

 Finally, we selected one of the car triple mutants that showed reduced sensitivity 

to ABA and compared it with a triple mutant impaired in three ABA receptors, i.e pyr1 

pyl4 pyl8, abbreviated as 148 (Figure 6).  Seedling establishment of car1car5car9 triple 

mutant was less sensitive to ABA-mediated inhibition than wt (Figure 6A and B). The 

percentage of seedlings that established at 0.5 M ABA was similar in car1car5car9 

and 148, however further development of the seedlings was less inhibited in 148 

compared to car1car5car9 (Figure 6B). Root length of the seedlings that established in 



13 
 

0.5 M ABA was larger in car1car5car9 compared to wt (Figure 6C). Interestingly, 0.5 

M ABA supplementation enhanced root length of car1car5car9 seedlings compared to 

medium lacking ABA, an effect previously described in some pyr/pyl ABA-insensitive 

mutants (Figure 6C and D; Gonzalez-Guzman et al., 2012). To further study the genetic 

interaction between C2 and PYR/PYL proteins, we performed a cross between the 

car1car5car9 and 148 triple mutants. We were able to recover a car5car9pyr1pyl4pyl8 

pentuple mutant (CAR1 and PYL8 show linkage in the lower arm of chromosome 5) and 

root growth assays in medium supplemented with 20 M ABA showed that the pentuple 

mutant was less sensitive to ABA-mediated inhibition of primary root growth than 148 

triple mutant (Figure 6E and F). Therefore, both CAR and PYR/PYL genes regulate 

additively root sensitivity to ABA. Lateral root growth is also depending on ABA since 

endodermal ABA signaling promotes lateral root quiescence during salt stress and 

accordingly, ABA-insensitive mutants show reduced inhibition of lateral root growth 

induced by NaCl (Duan et al., 2013). According to this notion, the 148 triple mutant 

was more resistant to salt-induced inhibition of lateral root growth than wt. Lateral roots 

of car1car5car9 also showed a lower sensitivity to NaCl compared to wt, which was 

additive with the 148 phenotype when the car5car9pyr1pyl4pyl8 pentuple mutant was 

assayed (Figure 6G). Therefore, taken together these results indicate that CAR proteins 

regulate ABA sensitivity both in primary and lateral roots. Reporter gene analysis of 

CAR1 promoter showed predominant expression of CAR1 in the vascular bundle of the 

primary root as well as in the cortex of the upper part of the root (Supplemental Figure 

5). In lateral roots, CAR1 expression was also detected in epidermis and root tip 

(Supplemental Figure 5).  

Discussion 

In this work we describe a family of calcium sensors harboring a C2 domain that 

interact with PYR/PYL ABA receptors and mediate their approaching to plasma 

membrane in a Ca2+-dependent manner. We suggest that the high local calcium 

concentration found at cellular membranes in response to different stimuli (ABA, 

abiotic stress, pathogen attack) might allow CAR proteins to translocate to cell 

membranes in response to calcium oscillations as we have demonstrated using in vitro 

assays. Therefore, CAR-interacting proteins, such as the PYR/PYL ABA receptors, 

could be membrane-recruited in a Ca2+-dependent manner (Figure 3). We have also 
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demonstrated that PYL4 and CAR1 interact in plasma membrane of plant cells; 

however, the precise membrane association between the full set of CAR and PYR/PYL 

proteins remains to be investigated. Depending on the membrane system targeted by 

CAR proteins, we suggest it might affect the activity, half-life, trafficking or targeting 

of the interacting PYR/PYLs by changing their sub-cellular localization, which would 

in turn affect receptor-mediated regulation of clade A PP2Cs. Currently, genetic 

evidence obtained with combined car mutants supports that CAR proteins regulate at 

least a subset of ABA responses, so one function of CAR proteins appears to be 

regulation of ABA signaling. Thus, triple mutants impaired in CAR proteins show a 

reduced sensitivity to ABA-mediated inhibition of seedling establishment and root 

growth, which suggests that CAR-dependent transient interactions of ABA receptors 

with membranes affect ABA signaling. 

 Different abiotic stresses induce Ca2+ fluctuations that serve as a second 

messenger to elicit plant responses to changing environment (McAinsh and Pittman, 

2009; Dodd et al., 2010). For instance, both osmotic stress and cold require Ca2+ 

signaling in order to regulate gene expression and to cope with cellular damage, such as 

repair of plasma membrane (Schapire et al., 2008; Yamazaki et al., 2008; Dodd et al., 

2010). Members of the CAR family are transcriptionally regulated by different abiotic 

stresses (Kilian et al., 2007; Supplemental Figure 6) and an orthologous rice gene of the 

CAR family, OsSMCP1, was previously identified by conferring tolerance to both 

abiotic and biotic stresses in transgenic Arabidopsis (Yokotani et al., 2009). Therefore, 

it is possible that CAR proteins, either through regulation of ABA signaling or 

additional downstream targets regulated by PP2Cs, are also involved in response to 

abiotic stress involving calcium fluctuations. ABA signaling involves increases of 

intracellular [Ca2+], which has been mostly studied in guard cells (Kim et al., 2010). 

However, it is likely that other plant tissues responsive to ABA, such as root, also 

involve Ca2+ as a second messenger of ABA signaling or some interplay occurs between 

Ca2+ signaling induced by abiotic stress and ABA. For instance, it is well known that 

root response to abiotic stress involves increases in cytoplasmic free calcium (Kiegle et 

al., 2000). Osmotic and salt stress cause Ca2+ increases in the endodermis and this tissue 

is the target cell layer for ABA-dependent regulation of lateral root growth in response 

to osmotic stress (Kiegle et al., 2000; Duan et al., 2013). Therefore, a Ca2+-mediated 

connection between osmotic/salt stress and ABA signaling is envisaged in root response 
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to environmental stress. CAR proteins might mediate such cross-talk since car mutants 

showed reduced sensitivity to ABA-mediated inhibition of primary root growth and 

they were also less sensitive to salt-mediated inhibition of lateral root growth (Figure 6). 

 It has been also reported that ABA can prime the sensitivity of Ca2+-dependent 

processes (Young et al., 2006). Although a molecular explanation for this priming 

mechanism has not been reported yet, it is possible that ABA affects function of several 

Ca2+ associated proteins such as CDPKs/CPKs, calmodulins (CaMs), calcineurin B-like 

(CBLs) and CBL-interacting protein kinases (CIPKs), which mediate plant response to 

environmental stress (Hubbard et al., 2010). Indeed, some of these components show 

interplay for signaling of abiotic stress and ABA (reviewed in Dodd et al., 2010). In this 

work we provide an additional point of crosstalk for Ca2+ and ABA signaling, since we 

describe a family of Ca2+-binding proteins that are able to modify the subcellular 

localization of ABA receptors, which presumably affects their ability to regulate 

downstream targets, i.e. PP2Cs and SnRK2s. A lipid nanodomain plasma membrane 

localization of core ABA signaling components, PYL9 and ABI1, has been reported to 

be required to regulate the activity of CPK21 and SLAH3 and ABA signaling (Demir et 

al., 2013) and other PYL-PP2C targets are localized to plasma membrane (Cherel et al., 

2002; Lee et al., 2007; Lee et al., 2009; Geiger et al., 2009; Brandt et al., 2012; Pizzio et 

al., 2013).  

 CAR1 and CAR4 proteins also localize into the nucleus and interact there with 

PYR/PYL receptors, although it remains to be investigated the role of nuclear CAR-

PYR/PYL interactions as well as the putative role of Ca2+ for it. Interestingly, other 

small C2 domain proteins described in plants also show a dual localization at plasma 

membrane and nucleus (Wang et al., 2009) and several CBLs show both cytosolic and 

nuclear localization, further confirming that Ca2+ fluctuations induced by abiotic stress 

can be sensed in the nucleus (Batistic et al., 2010). Ca2+ signals are not exclusive from 

the cytosol, since also exist in noncytosolic locations, such as mitochondria, chloroplast 

and nucleus (McAinsh and Pittman, 2009; Dodd et al., 2010). In this latter case, Ca2+ 

may permeate from the cytosol into the nucleus or it can be released by different 

transporters from Ca2+ stores in the lumen of the nuclear envelope contiguous with the 

endoplasmic reticulum. Many mechanisms account for nuclear calcium signaling and 

calcium-regulated transcription in plants (Galon et al., 2010; Charpentier and Oldroyd, 

2013). Recently, a nuclear calcium-sensing pathway required for salt stress response has 
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been reported in Arabidopsis and it is well known the role of calcium/CaM binding 

transcription activators (CAMTAs) to mediate abiotic stress responses (Galon et al., 

2010; Guan et al., 2013). CAMTAs include a C-terminal CaM-binding domain and an 

N-terminal domain that mediates binding to DNA cis-elements, such as abscisic acid-

responsive elements (ABREs), and ABREs confer transcriptional regulation to stress-

dependent calcium-responsive genes, linking nuclear calcium signaling to transcription 

(Kaplan et al., 2006; Dodd et al., 2010). Calcium-mediated transcriptional regulation 

can be achieved through phosphorylation-dephosphorylation events. For instance, 

nuclear CDPKs can regulate ABRE binding factors by phosphorylation (Galon et al., 

2010). Nuclear CBLs and their interacting CIPKs also might regulate yet unidentified 

nuclear targets. It is tempting to speculate that PYR/PYLs either through regulation of 

PP2C activity or downstream kinase targets, might link calcium nuclear signals 

perceived through CAR proteins to transcriptional regulation. 

 The analyses of our structural data and the available structural information on 

the interaction of various C2 domains with membranes (Davletov et al., 1998; Medkova 

and Cho, 1998; Verdaguer et al., 1999; Frazier et al., 2003; Kohout et al., 2003) allowed 

us to simulate the CAR4 interaction with a phospholipid bilayer  (Figure 7). C2 domains 

use a combined mechanism for membrane binding based on phospholipid headgroup 

binding, electrostatic interaction and membrane insertion of hydrophobic residues 

(Lemmon et al., 2008). In this model the calcium atoms bridge CAR4 with the 

phosphate moiety of phospholipids, and the hydrophobic tip of loop L3 (Met88 Phe89) 

is inserted into the membrane as it has been described for other C2 domains (Cho and 

Stahelin, 2006; Ausili et al., 2011). In this situation, the characteristic 1AB CAR-

signature domain is fully solvent accessible as it is placed opposite to the calcium 

binding site. This suggests a role for the 1AB CAR-signature domain in the 

recruitment of the PYR/PYL receptor at membrane proximity. Interestingly, the protein 

face opposite to Ca2+-binding loops has been previously reported to be involved in C2-

mediated protein-protein interactions (Law et al., 2010). For instance, membrane 

binding by lymphocyte perforin relies on the Ca2+ binding loops of a C2-domain that in 

the opposite face is linked to a membrane attack complex perforin like (MACPF) fold 

(Law et al., 2010). We have also shown that the N-terminal helix of ABA receptors is 

involved in CAR binding by limited deletion analysis (Figure 1B). This receptor area is 

opposite to the ABA and PP2C phosphatase binding sites and is not involved in the 
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receptor-phosphatase interaction or receptor dimer formation (Figure 7). This suggests 

that CAR proteins might bind a functional ABA receptor or facilitate the formation of 

receptor-ABA-PP2C ternary complexes at cell membranes. Since early events of ABA 

signaling are linked to membrane proteins regulated by PP2Cs and SnRK2s, the 

reported interaction might facilitate the connection of ABA perception to downstream 

regulatory events. 

 

Material and methods 

Plant material and growth conditions 

Arabidopsis thaliana plants were routinely grown under greenhouse conditions (40-50% 

relative humidity) in pots containing a 1:3 vermiculite-soil mixture. For plants grown 

under growth chamber conditions, seeds were surface sterilized by treatment with 70% 

ethanol for 20 min, followed by commercial bleach (2.5 % sodium hypochlorite) 

containing 0.05 % Triton X-100 for 10 min, and finally, four washes with sterile 

distilled water. Stratification of the seeds was conducted in the dark at 4ºC for 3 days. 

Then, seeds were sowed on Murashige-Skoog (MS) plates composed of MS basal salts, 

0.1% 2-[N-morpholino]ethanesulfonic acid, 1% sucrose and 1% agar. The pH was 

adjusted to 5.7 with KOH before autoclaving. Plates were sealed and incubated in a 

controlled environment growth chamber at 22ºC under a 16 h light, 8 h dark 

photoperiod at 80-100 E m-2 sec-1.  

 CAR knock-out insertion lines car1 (SALK_080173.54.40.X), car4 (SM 3-

1727), car5 (SAIL_802_B08), and car9 (SALK_088115.56.00.X) were obtained from 

the Nottingham Arabidopsis Stock Centre (http://nasc.nott.ac.uk). To confirm and 

identify homozygous T-DNA individuals, seedlings of each insertion line were grown 

individually and DNA from each plant was extracted and submitted to PCR-mediated 

genotyping using the primers described in Supplemental Table1. In order to generate 

35S:3HA-CAR1 overexpressing lines, the CAR1 coding sequence was cloned into 

pCR8/GW/TOPO entry vector (Invitrogen) and recombined by LR reaction into the 

gateway compatible pALLIGATOR2 vector (Bensmihen et al., 2004). The 

pALLIGATOR2-CAR1 construct was transferred to Agrobacterium tumefaciens C58C1 

(pGV2260) (Deblaere et al., 1985) by electroporation and used to transform Columbia 
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wild type plants by the floral dip method. T1 transgenic seeds were selected based on 

GFP visualization and sowed in soil to obtain the T2 generation. Homozygous T3 

progeny was used for further studies and expression of HA-tagged protein was verified 

by immunoblot analysis using anti-HA-peroxidase (Roche). 

Y2H assays 

Protocols were similar to those described previously (Saez et al., 2008). Briefly, an 

oligo(dT) primed cDNA library prepared in plasmid pACT2 using mRNA from an 

Arabidopsis cell suspension was kindly provided by Dr. K. Salchert (Saez et al., 2008). 

The library was shuttled to yeast AH109 by co-transformation with pGBKT7-PYL4. 

Yeast transformants were pooled and clones able to grow in the absence of exogenous 

ABA in medium lacking histidine and adenine were selected. Yeast plasmids were 

extracted, sequenced and retransformed in yeast cells to recapitulate the phenotype. 

Arabidopsis ABA receptors were fused by Gateway recombination to the GAL4 DNA-

binding domain (GBD) in pGBKT7GW. N-terminal deletions of PYL4, PYL6 and 

PYL8 were generated using the primers described in Supplemental Table1. The CAR1 

prey was fused to the GAL4 activation domain (GAD) in pACT2 vector. 

Transient protein expression in Nicotiana benthamiana 

Agrobacterium infiltration of tobacco leaves was performed basically as described by 

Voinnet et al., (2003). Constructs to investigate the subcellular localization of CAR and 

PYL4 proteins were done in pMDC83 and pMDC43 vectors, respectively. The 

constructs encoding the plasma membrane markers OFP-TM23 and SCFPC-

CIPK24/CBL1-SCFPN were reported in Batistic et al., (2012) and Waadt et al., (2008), 

respectively. To investigate the interaction of CAR and PYR/PYL proteins in planta, we 

used the pSPYNE-35S and pYFPC43 vectors. The coding sequences of CAR1, CAR4 

and CAR5 were doubly digested BamHI-EcoRV and cloned into BamHI-SmaI 

pSPYNE-35S. The coding sequences of PYR1, PYL1, PYL4, PYL6 and PYL8 were 

recombined by LR reaction from pCR8 entry vector to pYFPC43 destination vector. The 

different binary vectors described above where introduced into Agrobacterium 

tumefaciens C58C1 (pGV2260) (Deblaere et al., 1985) by electroporation and 

transformed cells were selected in LB plates supplemented with kanamycin (50 mg/ml). 

Then, they were grown in liquid LB medium to late exponential phase and cells were 

harvested by centrifugation and resuspended in 10 mM morpholinoethanesulphonic 
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(MES) acid-KOH pH 5.6 containing 10 mM MgCl2 and 150 mM acetosyringone to an 

OD600 nm of 1. These cells were mixed with an equal volume of Agrobacterium 

C58C1 (pCH32 35S:p19) expressing the silencing suppressor p19 of tomato bushy stunt 

virus (Voinnet et al., 2003) so that the final density of Agrobacterium solution was 

about 1. Bacteria were incubated for 3 h at room temperature and then injected into 

young fully expanded leaves of 4-week-old Nicotiana benthamiana plants. Leaves were 

examined 48-72 h after infiltration using confocal laser scanning microscopy.  

Confocal Laser Scanning Microscopy 

Confocal imaging was performed using a Zeiss LSM 780 AxioObserver.Z1 laser 

scanning microscope with C-Apochromat 40x/1.20 W corrective water immersion 

objective. The following fluorophores, which were excited and fluorescence emission 

detected by frame switching in the single or multi-tracking mode at the indicated 

wavelengths, were used in tobacco leaf infiltration experiments: SCFP (405 nm/464-486 

nm), GFP (488 nm/500-530 nm), YFP (488 nm/529-550 nm) and OFP (561 nm/575-

600 nm). Pinholes were adjusted to 1 Air Unit for each wavelength. Post-acquisition 

image processing was performed using ZEN (ZEISS Efficient Navigation) Lite 2012 

imaging software and ImageJ (http://rsb.info.gov/ij/).  

 Epifluorescence confocal images of epidermal tobacco leaves co-infiltrated with 

the constructs described in the text were merged to quantitatively estimate co-

localization of fluorescent markers (French et al., 2008). Statistical analyses for 

fluorescence colocalization were performed through determination of the linear 

Pearson’s and nonlinear Spearman’s correlation coefficients between fluorescent 

signals. Nuclear fluorescent signals of GFP, reconstituted YFP, CAR-GFP and GFP-

PYL4 proteins were not taken into account for the co-localization analysis. Pearson’s 

and Spearman’s correlation coefficients can range from [+1] to [-1], depending on the 

percentage of co-localization observed for the fluorescent signals. Thus, +1 value 

indicates co-localization, values close to +1 indicate partial co-localization and negative 

values indicate lack of co-localization. 

 

Biochemical fractionation, protein extraction, analysis and immunoprecipitation 

Constructs to express GFP or HA-tagged proteins were done in pMDC43/83 or 

pALLIGATOR2 vectors, respectively. Generation of PYL4 and PYL8 constructs in 

pALLIGATOR2 has been described previously (Antoni et al., 2013; Pizzio et al., 2013) 

http://rsb.info.gov/ij/
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and similar constructs were done for PYR1, PYL1 and PYL6. The different binary 

vectors described above where introduced into Agrobacterium tumefaciens C58C1 

(pGV2260) and used for infiltration of tobacco leaves. Protein extracts for 

immunodetection experiments were prepared from tobacco leaves 48-72 h after 

infiltration. Plant material (~200 mg) for direct Western blot analysis was extracted in 

2X Laemmli buffer (125 mM Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 2% 

mercaptoethanol, 0.001% bromophenol blue), proteins were run in a 10% SDS-PAGE 

gel and analyzed by immunoblotting.  

 Cytosolic and microsomal fractionation of GFP or HA-tagged proteins was 

performed as described previously (Antoni et al., 2012). The microsomal fractionation 

procedure used a lysis buffer supplemented with 25 mM CaCl2 (Antoni et al., 2012). 

Nuclear fractionation was performed as described previously (Saez et al., 2008; Antoni 

et al., 2012) and the soluble nuclear fraction was used for immunoprecipitation 

experiments. Soluble proteins from the nuclear fraction were immunoprecipitated using 

super-paramagnetic micro MACS beads coupled to monoclonal anti-GFP antibody 

according to the manufacturer´s instructions (Miltenyi Biotec). Purified 

immunocomplexes were eluted in Laemmli buffer, boiled and run in a 10% SDS-PAGE 

gel. Proteins immunoprecipitated with anti-GFP antibody were transferred onto 

Immobilon-P membranes (Millipore) and probed with anti-HA-peroxidase to detect 

coIP of HA-tagged receptors. Immunodetection of green fluorescent protein (GFP) 

fusion proteins was performed with an anti-GFP monoclonal antibody (clone JL-8, 

Clontech) as primary antibody and ECL anti-mouse-peroxidase (GE Healthcare) as 

secondary antibody. Detection was performed using the ECL advance western blotting 

chemiluminiscent detection kit (GE Healthcare). Image capture was done using the 

image analyzer LAS3000 and quantification of the protein signal was done using Image 

Guache V4.0 software. 

Seed germination and seedling establishment assays.  

After surface sterilization of the seeds, stratification was conducted in the dark at 4ºC 

for 3 d. Approximately 100 seeds of each genotype were sowed on MS plates 

supplemented with different ABA concentrations per experiment. To score seed 

germination, radical emergence was analyzed at 72 h after sowing. Seedling 
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establishment was scored as the percentage of seeds that developed green expanded 

cotyledons and the first pair of true leaves at 5 or 7 d.  

 

Root and shoot growth assays.  

Seedlings were grown on vertically oriented MS plates for 4 to 5 days. Afterwards, 20 

plants were transferred to new MS plates lacking or supplemented with the indicated 

concentrations of ABA. The plates were scanned on a flatbed scanner after 10-d or 20-d 

to produce image files suitable for quantitative analysis of root growth using the NIH 

software ImageJ v1.37. As an indicator of shoot growth, fresh weight was measured 

after 21 d. Inhibition of lateral root growth by NaCl was assayed in MS plates lacking 

sucrose and supplemented or not with 100 mM NaCl. After 10 d, plates were scanned as 

described above and total lateral root growth per plant (n=30) was measured. 

Phospholipid binding assays 

Calcium-dependent protein binding to phospholipid vesicles was assessed as described 

in Schapire et al., (2008). A mixture of phosphatidyl serine / phosphatidyl choline 25/75 

w/w (Sigma Aldrich) was prepared in chloroform and dried under a stream of nitrogen 

to obtain a thin layer. The dried lipids were resuspended in buffer A (100 mM NaCl, 50 

mM HEPES pH 6,8 and 4 mM EGTA) and mixed by vortexing for 20 minutes. We 

pelleted the large multilamellar vesicles by 20 min centrifugation at 16000 g, next they 

were resuspended in 1 ml buffer A supplemented or not with the indicated calcium 

concentration. Free calcium concentrations were calculated using the WEBMAXC 

program (http://www.stanford.edu/~cpatton/maxc.html). The vesicles (circa 100 g 

phospholipids) were used immediately after preparation and mixed with the indicated 

His-tagged recombinant proteins (5 g). Next they were incubated with gentle shaking 

(250 rev/min) on a platform shaker. The vesicles and the bound proteins were pelleted 

by centrifugation for 10 min at 16000g at 4 ºC and pellets were washed twice with 0.5 

ml of buffer A. Proteins that were bound to the vesicles were revealed by immunoblot 

analysis using anti-His antibody and ECL anti-mouse-peroxidase (GE Healthcare) as 

secondary antibody. Detection was performed using the ECL advance western blotting 

detection kit (GE Healthcare). Quantification of the binding was determined using the 

Image-J software and mathematical analysis of calcium binding was performed based 

http://www.stanford.edu/~cpatton/maxc.html
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on non-linear least-squares fitting to the 3-parameter Hill´s equation using Sigma Plot 

12 software.   

 

Protein preparation and crystallization 

CAR4 was obtained from cultures of Escherichia coli, purified to homogeneity and 

crystallized as described (Diaz et al. 2011). Briefly, CAR4 coding sequence was cloned 

into the pETM11 vector and the overexpressed His-tagged protein was purified to 

homogeneity in a single chromatographic step. Prior crystallization CAR4 protein was 

dialyzed to a buffer containing 20 mM Tris-HCl pH 8.5, 200 mM NaCl, 0.1 mM CaCl2. 

The stock protein was concentrated to 8.0 mg/ml. CAR4 prismatic crystals were grown 

in 0.01 M LiCl2, 0.1 M MES pH 6, 20% (w/v) PEG 6K. The crystals were mounted in a 

fibre loop and soaked in cryoprotectant consisting of mother liquor containing 20% 

(w/v) PEG 400 and flash cooled in liquid nitrogen. CAR1 coding sequence was cloned 

into pCOLADuet-1 (Novagen) through BamHI digestion and the overexpressed His-

tagged protein was purified to homogeneity in a single chromatographic step. CAR1D22A 

D27A and CAR4D85A D87A mutants were generated using the PCR-overlap extension 

procedure and cloned into pETM11. PYR/PYL proteins were prepared as described 

previously (Santiago et al., 2009). 

Data Collection and Structure determination and refinement 

CAR4 X-ray diffraction data was collected in a ADSC detector using the European 

Synchrotron Radiation Facility (Grenoble, France) radiation source at 0.94 Å 

wavelengths at the ID14.4 beamline. Diffraction data was processed with XDS (Kabsch, 

2010) and scaled with SCALA from the CCP4 package (Collaborative Computational 

Project, Number 4) (Winn et al., 2011). A summary of the data-collection statistics is 

given in Table 1. The X-ray structure of CAR4 was solved by molecular replacement 

using the coordinates of the X-ray structure of the C2 domain of Munc13-C2b (Protein 

Data Bank code 3KWT) as the search model (Shin et al., 2010; Vagin and Isupov, 

2001).  The electron density map calculated using these phases was good enough to 

manually build and refine the residues of CAR4. Several cycles of restrained refinement 

with REFMAC5 (Murshudov et al., 2011) and PHENIX (Adams et al., 2010) and 

iterative model building with COOT (Emsley et al., 2010) were carried out. The 
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stereochemistry of the model was verified with PROCHECK (Laskowski et al., 1996). 

Ribbon figures were produced using PyMOL (http://www.pymol.org). The refinement 

statistics are summarized in Table 1. 

 

Accession numbers  

The coordinates and structure factor amplitudes of CAR4 in complex with calcium been 

deposited in the Protein Data Bank (PDB ID ****). Arabidopsis Genome Initiative 

(AGI) locus identifiers for CAR1, CAR2, CAR3, CAR4, CAR5, CAR6, CAR7, CAR8, 

CAR9 and CAR10 are At5g337740, At1g66360, At1g73580, At3g17980, At1g48590, 

At1g70800, At1g70810, At1g23140, At1g70790 and At2g01540, respectively. AGI 

identifiers for PYR/PYL genes have been published previously (Gonzalez-Guzman et 

al., 2012).  

Supplemental data 

The following materials are available in the online version of this article 

Supplemental Table 1. List of oligonucleotides used in this work. 

Supplemental Figure 1. Scheme of some representative proteins harboring C2 domains 

in Arabidopsis. 

Supplemental Figure 2. Amino acid sequence and secondary structure alignment of 

Arabidopsis CAR proteins. 

Supplemental Figure 3. Amino acid sequence alignment of representative members of 

the CAR family in Arabidopsis, tomato (Solanum lycopersicum) and rice (Oryza sativa)  

Supplemental Figure 4. Scheme of CAR1, CAR4, CAR5 and CAR9 genes and location 

of the corresponding T-DNA insertion in car mutants.  

Supplemental Figure 5. Photographs showing GUS expression driven by 

ProCAR1:GUS gene in different tissues and developmental stages. 

Supplemental Figure 6. Induction of CAR genes by cold, osmotic- and salt-stress in 

shoot or root tissues. 
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Figure legends 

 

Figure 1. PYL4 and other PYR/PYL receptors interact with CAR1 in Y2H assays. 

BiFC and coimmunoprecipitation (coIP) assays show interaction of CAR1/CAR4 and 

PYR/PYLs in tobacco epidermal cells. (A) ABA-independent interaction of CAR1 and 

different PYR/PYLs. Interaction was determined by growth assay on media lacking His 

and Adenine (-H, -A), which were supplemented or not with 10 mM ABA (+ABA). 

Dilutions (10-1, 10-2 and 10-3) of saturated cultures were spotted onto the plates. GAL4 

DNA-binding domain (GBD) and GAL4 activation domain (GAD). (B) Deletion of the 

N-terminal region of PYL4, PYL6 and PYL8 impairs the interaction with CAR1. (C) 

CAR1 and PYL4 interact in the plasma membrane and nucleus of tobacco cells. 

Confocal images of transiently transformed tobacco epidermal cells co-expressing 

CAR1-YFPN/YFPC-PYL4 interacting proteins and the plasma membrane marker OFP-

TM23 (upper panels) or GFP and OFP-TM23 (lower panels). BiFC interaction of 

CAR1-YFPN and YFPC-PYL4 was observed and this interaction co-localizes with the 

plasma membrane marker OFP-TM23 (see merge panel).  (D) Statistical analysis of 

colocalization of CAR1-YFPN/YFPC-PYL4 interacting proteins and OFP-TM23 using 

Pearson´s and Spearman´s correlation factors. Epifluorescence confocal images of 

epidermal tobacco leaves infiltrated with the indicated constructs were merged to 

quantitatively estimate co-localization of YFP/GFP and OFP fluorescence (French et 

al., 2008). The degree of colocalization between the two fluorescent signals was 

analyzed using Zeiss software. (E) BiFC assays show both nuclear and non-nuclear 

interactions of CAR1/CAR4 and PYR/PYLs in tobacco epidermal cells co-infiltrated 

with Agrobacterium suspensions containing the indicated constructs and the silencing 

suppressor p19. Immunoblot analyses (right panels) confirm the expression of myc-

tagged CAR and YFPC-tagged PYR/PYL proteins in tobacco epidermal cells. (F) 

Coimmunoprecipitation assays demonstrate the interaction of CAR1-GFP or CAR4-

GFP and PYR/PYLs. Nuclear protein extracts obtained from tobacco leaves infiltrated 

with Agrobacterium suspensions harbouring the indicated constructs were analyzed 

using anti-HA or anti-GFP antibodies. Input levels of epitope-tagged proteins in crude 

protein extracts (20 g of total protein) were analyzed by immunoblotting. 

Immunoprecipitated (IP) CAR1-GFP or CAR4-GFP proteins were probed with anti-HA 

antibodies to detect coIP of HA-tagged PYR/PYLs. Ponceau staining from the large 

subunit of Rubisco  (Rbc L) is shown as loading control. 
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Figure 2. CAR-GFP fusion proteins localize to nucleus, plasma membrane and cytosol 

upon transient expression in Nicotiana benthamiana. (A) Confocal images of transiently 

transformed tobacco epidermal cells co-expressing GFP, GFP-tagged CAR/PYL4 

proteins or the CAR1-YFPN/YFPC-PYL4 interacting proteins, and the plasma 

membrane marker resulting of the SCFPN-CIPK24/CBL1-SCFPC interaction. The 

degree of colocalization between the two fluorescent signals was analyzed using merged 

images and Zeiss software (Zen lite 2012). The magenta color of the reconstituted SCFP 

is a pseudocolor generated from the original cyan fluorescence. (B) Pearson-Spearman 

correlation coefficients indicate co-localization of CAR-GFP proteins or the CAR1-

YFPN/YFPC-PYL4 interaction and the plasma membrane marker. Epifluorescence 

confocal images of epidermal leaves co-infiltrated with the indicated constructs were 

merged to quantitatively estimate co-localization of GFP/YFP and SCFP fluorescence 

(French et al., 2008). At least 10 single-scanned cell images per experiment were 

collected and analyzed using the same conditions of laser intensity, pinhole size and 

gain levels. (C) Biochemical fractionation and immunoblot analyses of protein extracts 

prepared from tobacco leaves infiltrated with Agrobacterium harboring the indicated 

constructs. Protein extracts from the different fractions were analyzed by 

immunoblotting using anti-GFP, anti-Histone3 (H3) and anti-plasma membrane (PM) 

H+-ATPase antibodies. Position of the molecular mass standards (kDa) is indicated. (D) 

Scheme of the fractionation protocol. A description of the abbreviations used for 

nuclear fraction (N), non-nuclear soluble fraction (S), cytosolic fraction (C) and total 

microsomal fraction (M) is indicated. (E) Quantification of the subcellular localization 

of GFP and GFP-tagged proteins transiently expressed in tobacco epidermal cells. 

Immunoblot signals obtained in section C were captured using the image analyzer 

LAS3000 and quantification of the protein signal was done using Image Guache V4.0 

software.  

 

Figure 3. Calcium-dependent phospholipid-binding of CAR proteins. Ca2+ and CAR-

dependent recruitment of PYR/PYLs to phospholipid vesicles. (A) Crystal structure, 

Ca2+ coordination and topology of CAR4. A ribbon representation of the CAR4 crystal 

structure showing overall fold together with a scheme of the topology and a detailed 

representation of the calcium binding sites. The a1bAbB extradomain is highlighted in 

orange. (B) Scheme of the biochemical assay to detect Ca2+-dependent protein-

phospholipid interaction through pelleting of phospholipid vesicles and immunoblot 

analysis. Phospholipid vesicles were composed by 25% phosphatidylserine (PS) and 

75% phosphatidylcholine (PC). The vesicles were precipitated by centrifugation and 

bound proteins were revealed by SDS-PAGE and immunoblot analysis using a-His 

antibody. (C) CAR1, CAR4, CAR1D22A D27A and CAR4D85A D87A proteins were incubated 

with phospholipid vesicles in the presence of increasing concentrations of Ca2+ to 

determine the half-maximal binding for the ion. Introduction of two Asp to Ala 

mutations into the amino acid residues 22 and 27 of CAR1 or 85 and 87 of CAR4 

abolished phospholipid-binding. Hill coefficient (nH) and calcium concentration leading 

to half-maximal binding [S]0.5 are indicated in the inset of the graphic. (D) Ca2+ and 

CAR1-dependent recruitment of PYL6 to phospholipid vesicles. Ca2+ and CAR1-

dependent vesicle pelleting of PYL6 can be reversed by EGTA-treatment.  Pelleted 

vesicles bound to PYL6 and CAR1 were EGTA-treated, precipitated again by 

centrifugation and analysed by SDS-PAGE and immunoblot. (E) Ca2+-dependent 

vesicle pelleting assay of CAR1 and CAR4 using different PYR/PYLs. The Ca2+ 

concentration was either 4 M or 20 M for CAR1 or CAR4, respectively. The 
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quantification of the assays shows the relative ratio of receptor bound (minus 

background in the absence of calcium) per molecule of CAR1 or CAR4.  

 

 

Figure 4. Overexpression of CAR1 leads to enhanced ABA-mediated inhibition of 

seedling establishment and shoot growth. (A) Photographs of Col wt, hab1-1abi1-2 

ABA-hypersensitive mutant (Saez et al., 2006) and two CAR1-overexpressing (OE) 

lines (#11 and 16)  grown for 4 d on MS medium either lacking or supplemented with 

0.3 M ABA. (B) Quantification of ABA-mediated inhibition of seedling establishment 

of Col wt compared with hab1-1abi1-2 double mutant and two CAR1 OE lines. 

Approximately 100 seeds of each genotype were sown on MS plates lacking or 

supplemented with 0.5 M ABA and scored for the presence of green expanded 

cotyledons 7 d later. The photographs show representative seedlings removed at 7 d 

from MS plates lacking or supplemented with 0.5 M ABA and rearranged on agar 

plates. (C) 35S:CAR1 lines show enhanced sensitivity to ABA-mediated inhibition of 

vegetative growth. Photographs were taken of Col wt, hab1-1abi1-2 double mutant and 

two CAR1 OE lines grown for 12 d on MS medium lacking ABA or 21 d in medium 

supplemented with 0.5 M ABA. (D) Quantification of fresh weight after 21 d growth 

in medium lacking or supplemented with 0.5 M ABA. * indicates p<0.05 (Student´s t 

test) when comparing data of 35S:CAR1 lines and hab1-1abi1-2 mutant to Col wt plants 

in the same assay conditions. 

 

Figure 5. Triple car mutants show reduced sensitivity to ABA-mediated inhibition of 

seedling establishment and root growth. (A) Quantification of ABA-mediated inhibition 

of seedling establishment of Col wt compared with single, double and triple car 

mutants. Approximately 100 seeds of each genotype were sown on each plate and 

scored for the presence of green expanded cotyledons 5 d later. The letters denote 

significant differences among the different genetic backgrounds (p<0.05, Fisher´s least 

significant difference test). (B) Photographs were taken of Col wt and triple car mutants 

grown for 7 d on MS medium either lacking or supplemented with 1 M ABA. (C) 

Quantification of ABA-mediated root growth inhibition of Col wt compared with 

single, double and triple car mutants. * indicates p<0.05 (Student´s t test) when 

comparing data of car mutants to Col wt plants in the same assay conditions. (D) 

Photographs of representative seedlings 10 d after the transfer of 4 d old seedlings from 

triple car mutants from MS medium to plates lacking or supplemented with 10 M 

ABA.  

 

Figure 6. ABA sensitivity of the car1car5car9 triple mutant compared to pyr1pyl4pyl8 

triple mutant. Additive effect of the car5car9pyr1pyl4pyl8 pentuple mutant.   (A) 

Quantification of ABA-mediated inhibition of seedling establishment of Col wt 

compared with car and pyr/pyl triple mutants. Approximately 100 seeds of each 

genotype were sown on MS plates lacking or supplemented with 0.5 M ABA and 

scored for the presence of green expanded cotyledons 5 d later. * indicates p<0.05 

(Student´s t test) when comparing data of car and pyr/pyl triple mutants to Col wt plants 

in the same assay conditions. (B) Photographs of Col wt, car1car5car9 and 

pyr1pyl4pyl8 triple mutants grown for 7 d on MS medium either lacking or 

supplemented with 0.5 or 1 M ABA. (C) ABA supplementation improves root growth 

of car1car5car9 triple mutant. Quantification of root length in 10-d-old seedlings of 

experiment described in (A). * indicates p<0.05 (Student´s t test) when comparing data 

obtained in medium lacking or supplemented with 0.5 M ABA. (D) The photographs 
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show representative seedlings removed at 10 d from MS plates lacking or supplemented 

with 0.5 M ABA and rearranged on agar plates. (E) Reduced sensitivity to ABA-

mediated inhibition of root growth in car5car9pyr1pyl4pyl8 pentuple mutant compared 

to other genetic backgrounds. Seedlings were grown on vertically oriented MS plates 

for 4 d. Next, 20 plants were transferred to new MS plates lacking or supplemented with 

20 mM ABA. Quantification of ABA-mediated root growth inhibition was performed 

after 20 d. * indicates p<0.05 (Student´s t test) when comparing data of mutants to Col 

wt plants in the same assay conditions. (F) The photographs show representative 

seedlings removed at 20 d from MS plates lacking or supplemented with 20 M ABA 

and rearranged on agar plates. (G) Reduced inhibition of lateral root (LR) growth by 

NaCl in car5car9pyr1pyl4pyl8 pentuple mutant compared to other genetic backgrounds. 

Inhibition of lateral root growth by NaCl was assayed in MS plates lacking sucrose and 

supplemented or not with 100 mM NaCl. * indicates p<0.05 (Student´s t test) when 

comparing data of mutants to Col wt plants in the same assay conditions or 

car1car5pyr1pyl4pyl8 pentuple to pyr1pyl4pyl8 triple mutant. Representative seedlings 

were removed at 10 d and rearranged on agar plates.  

 

Figure 7. A working model is presented for the calcium-dependent CAR membrane 

binding and its interaction with the PYR/PYL ABA receptors.  CAR4, represented as a 

semitransparent surface, has been docked into a phosphatidyl choline model membrane. 

The dimeric structures of the apo PYL1 receptor (PDB code 3KAY) and its complex 

with ABA and ABI1 phosphatase (PDB code 3JRQ) are displayed as wheat and pale 

cyan ribbons respectively. The CAR4 112 extra-domain and the N-terminal 

receptor interacting areas are highlighted in orange and red respectively. The inset 

represents a close up of the modeled CAR4 calcium-phospholipid complex. Membrane 

insertion of CAR4 exposes the CAR-signature extra-domain to the cytosol.  
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Table1. Crystallographic data collection and refinement statistics 
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