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Abstract

Scientific applications generally require large computational requirements, memory
and data management for their execution. Such applications have traditionally
used high-performance resources, such as shared memory supercomputers, clusters
of PCs with distributed memory, or resources from Grid infrastructures on which
the application needs to be adapted to run successfully. In recent years, the advent
of virtualization techniques, together with the emergence of Cloud Computing,
has caused a major shift in the way these applications are executed. However,
the execution management of scientific applications on high performance elastic
platforms is not a trivial task.

In this doctoral thesis, Elastic Cloud Computing Cluster (EC3) has been devel-
oped. EC3 is an open-source tool able to execute high performance scientific
applications by creating self-managed cost-efficient virtual hybrid elastic clusters
on top of Infrastructure as a Service (IaaS) Clouds. These self-managed clusters
have the capability to adapt the size of the cluster, i.e. the number of nodes,
to the workload, thus creating the illusion of a real cluster without requiring an
investment beyond the actual usage. They can be fully customized and migrated
from one provider to another, in an automatically and transparent process for the
users and jobs running in the cluster.

EC3 can also deploy hybrid clusters across on-premises and public Cloud resources,
where on-premises resources are supplemented with public Cloud resources to ac-
celerate the execution process. Different instance types and the use of spot in-
stances combined with on-demand resources are also cluster configurations sup-
ported by EC3. Moreover, using spot instances, together with checkpointing tech-
niques, the tool can significantly reduce the total cost of executions while intro-
ducing automatic fault tolerance. EC3 is conceived to facilitate the use of virtual
clusters to users, that might not have an extensive knowledge about these technolo-
gies, but they can benefit from them. Thus, the tool offers two different interfaces
for its users, a web interface where EC3 is exposed as a service for non-experienced
users and a powerful command line interface.
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Moreover, this thesis explores the field of light-weight virtualization using con-
tainers as an alternative to the traditional virtualization solution based on virtual
machines. This study analyzes the suitable scenario for the use of containers and
proposes an architecture for the deployment of elastic virtual clusters based on this
technology. Finally, to demonstrate the functionality and advantages of the tools
developed during this thesis, this document includes several use cases covering
different scenarios and fields of knowledge, such as structural analysis of buildings,
astrophysics or biodiversity.
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Resumen

Las aplicaciones cient́ıficas generalmente precisan grandes requisitos de cómputo,
memoria y gestión de datos para su ejecución. Este tipo de aplicaciones tradi-
cionalmente ha empleado recursos de altas prestaciones, como supercomputadores
de memoria compartida, clústers de PCs de memoria distribuida, o recursos prove-
nientes de infraestructuras Grid, sobre los que se adaptaba la aplicación para que
se ejecutara satisfactoriamente. El auge que han tenido las técnicas de virtual-
ización en los últimos años, propiciando la aparición de la computación en la nube
(Cloud Computing), ha provocado un importante cambio en la forma de ejecutar
este tipo de aplicaciones. Sin embargo, la gestión de la ejecución de aplicaciones
cient́ıficas sobre plataformas de computación elásticas de altas prestaciones no es
una tarea trivial.

En esta tesis doctoral se ha desarrollado Elastic Cloud Computing Cluster (EC3),
una herramienta de código abierto capaz de llevar a cabo la ejecución de aplica-
ciones cient́ıficas de altas prestaciones creando para ello clústers virtuales, h́ıbri-
dos y elásticos, autogestionados y eficientes en cuanto a costes, sobre plataformas
Cloud de tipo Infraestructura como Servicio (IaaS). Estos clústers autogestiona-
dos tienen la capacidad de adaptar su tamaño, es decir, el número de nodos, a la
carga de trabajo, creando aśı la ilusión de un clúster real sin requerir una inversión
por encima del uso actual. Además, son completamente configurables y pueden
ser migrados de un proveedor a otro de manera automática y transparente a los
usuarios y trabajos en ejecución en el cluster.

EC3 también permite desplegar clústers h́ıbridos sobre recursos Cloud públicos
y privados, donde los recursos privados son complementados con recursos Cloud
públicos para acelerar el proceso de ejecución. Otras configuraciones h́ıbridas,
como el empleo de diferentes tipos de instancias y el uso de instancias pun-
tuales combinado con instancias bajo demanda son también soportadas por EC3.
Además, el uso de instancias puntuales junto con técnicas de checkpointing permite
a EC3 reducir significantemente el coste total de las ejecuciones a la vez que pro-
porciona tolerancia a fallos. EC3 está concebido para facilitar el uso de clústers
virtuales a los usuarios, que, aunque no tengan un conocimiento extenso sobre
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este tipo de tecnoloǵıas, pueden beneficiarse fácilmente de ellas. Por ello, la her-
ramienta ofrece dos interfaces diferentes a sus usuarios, una interfaz web donde se
expone EC3 como servicio para usuarios no experimentados y una potente interfaz
de ĺınea de comandos.

Además, esta tesis doctoral se adentra en el campo de la virtualización ligera, me-
diante el uso de contenedores como alternativa a la solución tradicional de virtu-
alización basada en máquinas virtuales. Este estudio analiza el escenario propicio
para el uso de contenedores y propone una arquitectura para el despliegue de clus-
ters virtuales elásticos basados en esta tecnoloǵıa. Finalmente, para demostrar la
funcionalidad y ventajas de las herramientas desarrolladas durante esta tesis, esta
memoria recoge varios casos de uso que abarcan diferentes escenarios y campos de
conocimiento, como estudios estructurales de edificios, astrof́ısica o biodiversidad.
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Resum

Les aplicacions cient́ıfiques generalment precisen grans requisits de còmput, de
memòria i de gestió de dades per a la seua execució. Este tipus d’aplicacions
tradicionalment hi ha empleat recursos d’altes prestacions, com supercomputa-
dors de memòria compartida, clústers de PCs de memòria distribüıda, o recursos
provinents d’infraestructures Grid, sobre els quals s’adaptava l’aplicació perquè
s’executara satisfactòriament. L’auge que han tingut les tècniques de virtual-
itzaciò en els últims anys, propiciant l’aparició de la computació en el núvol (Cloud
Computing), ha provocat un important canvi en la forma d’executar este tipus
d’aplicacions. No obstant això, la gestió de l’execució d’aplicacions cient́ıfiques
sobre plataformes de computació elàstiques d’altes prestacions no és una tasca
trivial.

En esta tesi doctoral s’ha desenvolupat Elastic Cloud Computing Cluster (EC3),
una ferramenta de codi lliure capaç de dur a terme l’execució d’aplicacions cien-
t́ıfiques d’altes prestacions creant per a això clústers virtuals, h́ıbrids i elàstics,
autogestionats i eficients quant a costos, sobre plataformes Cloud de tipus In-
fraestructura com a Servici (IaaS). Estos clústers autogestionats tenen la capacitat
d’adaptar la seua grandària, es dir, el nombre de nodes, a la càrrega de treball, cre-
ant aix́ı la il·lusió d’un cluster real sense requerir una inversió per damunt de l’ús
actual. A més, són completament configurables i poden ser migrats d’un provëıdor
a un altre de forma automàtica i transparent als usuaris i treballs en execució en
el cluster.

EC3 també permet desplegar clústers h́ıbrids sobre recursos Cloud públics i pri-
vats, on els recursos privats són complementats amb recursos Cloud públics per
a accelerar el procés d’execució. Altres configuracions h́ıbrides, com l’us de difer-
ents tipus d’instàncies i l’ús d’instàncies puntuals combinat amb instàncies baix
demanda són també suportades per EC3. A més, l’ús d’instàncies puntuals junt
amb tècniques de checkpointing permet a EC3 reduir significantment el cost total
de les execucions al mateix temps que proporciona tolerància a fallades. EC3 està
concebut per a facilitar l’ús de clústers virtuals als usuaris, que, encara que no
tinguen un coneixement extensiu sobre este tipus de tecnologies, poden beneficiar-

ix



se fàcilment d’elles. Per això, la ferramenta oferix dos interf́ıcies diferents dels
seus usuaris, una interf́ıcie web on s’exposa EC3 com a servici per a usuaris no
experimentats i una potent interf́ıcie de ĺınia d’ordres.

A més, esta tesi doctoral s’endinsa en el camp de la virtualitzaciò lleugera, per
mitjà de l’ús de contenidors com a alternativa a la solució tradicional de virtu-
alitzaciò basada en màquines virtuals. Este estudi analitza l’escenari propici per
a l’ús de contenidors i proposa una arquitectura per al desplegament de clusters
virtuals elàstics basats en esta tecnologia. Finalment, per a demostrar la funcional-
itat i avantatges de les ferramentes desenrotllades durant esta tesi, esta memòria
arreplega diversos casos d’ús que comprenen diferents escenaris i camps de coneix-
ement, com a estudis estructurals d’edificis, astrof́ısica o biodiversitat.
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Chapter 1

Introduction

“You don’t generate your own electricity. Why generate your own computing?”
Jeff Bezos, CEO, Amazon (2008)

Scientific applications generally require large computational requirements, mem-
ory and data management for their execution. Such applications have traditionally
used high-performance resources, such as big supercomputers of shared memory
or clusters of PCs with distributed memory, on which the application needed to
be adapted to run successfully, by using parallel computing techniques. For that,
scientists use libraries and parallel computing specifications, like Message Parsing
Interface (MPI) [49] or OpenMP [180], to obtain the best performance possible in
multiprocessing. However, physical clusters suffer from several drawbacks. One
of the main disadvantages of these platforms is the relatively large upfront invest-
ment together with the maintenance cost. For small and medium-sized research
groups or organizations, the purchase of such an equipment might represent an
important cost [58]. In addition, physical clusters cannot be easily enlarged or
shrinked according to the dynamic requirements of the organization and they lack
the ability to provide a tailored execution environment customized for each ap-
plication to be executed, specially when incompatible libraries are required by
different applications running on the same infrastructure.

Over ten years ago, the concept of Grid computing emerged [76] as a computing
mechanism geographically distributed that brought together computing resources
and storage from various organizations, by creating Virtual Organizations (VOs).
International projects such as Enabling Grids for E-Science (EGEE) and Large
Hadron Collider Computing Grid (LCG), helped to establish large computing in-
frastructures provided by the major universities and international research centers.
However, the adaptation of scientific applications to this type of infrastructures
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is often a difficult, time consuming and complicated process, more remarkable for
scientific personnel without computer skills. Furthermore, the use of Grid infras-
tructures requires that the application meets the requirements imposed by the
providers of the computing resources. In this sense, if an application requires spe-
cific external libraries or a particular version of an operating system, it cannot be
executed on a Grid infrastructure if none of its resources meet the requirements of
the application.

In recent years, the advent in virtualization techniques, together with the major
improvements in hypervisor technologies such as Xen [23] and Kernel-based Vir-
tual Machine (KVM) [108], have paved the way for Cloud computing. According
to the National Institute of Standards and Technology (NIST) definition of Cloud
Computing, “Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.” [127]. Thus, this paradigm can solve the disadvantages of traditional
technologies with fully customizable Virtual Machines (VMs) that decouple the
application execution from the underlying hardware and are dynamically provi-
sioned and released on a pay-as-you-go basis (in the case of using public Cloud
providers).

Cloud computing opens a new range of possibilities to access computing, storage
and network resources. One of its main features is that it allows the dynamic size
adaptation of virtual infrastructures. A virtual cluster is a cluster of computational
nodes that have been provisioned from a virtualized infrastructure (e.g. a Cloud
infrastructure) and which support certain hardware, software and configuration
requirements for the execution of one or many applications. Therefore, virtual
clusters can automatically be enlarged and shrinked to cope with increases and
decreases in the workload, thus adapting the size of the cluster to the workload.
Moreover, this paradigm allows each individual Virtual Machine (VM) to adapt its
characteristics to the application requirements, especially in terms of Central Pro-
cessing Unit (CPU) and memory, through vertical elasticity. This ability allows a
more efficient use of computing infrastructures, avoiding overprovisioning. There-
fore, Cloud technology gives users the capability of creating virtual infrastructures
with the required resources and software, facilitating the efficient execution of their
applications. For the administrator point of view, it is also a way to consolidate
resources, allowing a more efficient management of the datacenter.

To meet the challenges posed by traditional clusters, this thesis aims to develop a
tool to automatically manage all the aspects involved in the execution of scientific
applications on virtual hybrid elastic clusters deployed over Cloud resources, ab-
stracting the details of cluster deployment, configuration and management. Specif-
ically, the tool will be in charge of the infrastructure management, including con-
tacting with the cloud providers to request the deployment of virtual resources,
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as well as the automatic configuration and the elastic management of the virtual
infrastructure deployed, data management for jobs that require working with big
datasets and the job execution itself, by terms of the Local Resource Management
System (LRMS) properly configured with a Network File System (NFS) that fa-
cilitates the user obtaining of the job output.

1.1 Motivation

Traditionally, virtualization was not considered a viable option for High Perfor-
mance Computing (HPC), mainly due to the overhead costs in I/O and network
devices. However, the major improvements in hypervisor technologies have paved
the way for Cloud computing to rise as a paradigm where resources (in the shape
of VMs, network, storage capacity, etc.) can be dynamically provisioned and re-
leased on a pay-as-you-go basis. This is the case of public IaaS Cloud providers
such as Amazon Web Services (AWS) [12] or on-premises Cloud infrastructures
deployed by Cloud Management Frameworks (CMFs) such as OpenNebula [175],
OpenStack [150], Apache CloudStack [17] or Eucalyptus [147].

In the last years, the adoption of on-premises Cloud solutions for datacenters has
increased [78], in part due to the maturity of the CMFs, which are becoming
reliable enough for production-ready workloads. Moreover, in recent years the
trend towards light-weight virtualization paved the way for container technology
to considerably evolve, emerging as a new technology that can be a light-weight
alternative to traditional VMs. Therefore, the current computational landscape
includes, among others, public Clouds and on-premises Clouds that can support
containers and VMs. This fact opens a new way of interaction with computing
resources for the scientific community that needs to be deeply investigated.

Indeed, there is a great challenge in providing cost-effective and flexible comput-
ing capabilities both for datacenters and end users. Therefore, this thesis tries
to address these issues with the introduction of virtual hybrid elastic clusters. A
virtual cluster deployed in a public Cloud is able to achieve a competitive price-
performance ratio, but also brings important benefits for an organization such as
reducing the administration costs (both personnel costs and maintenance of equip-
ments), avoiding hiring or buying the physical building to host the infrastructure
together with the upfront investments in hardware, cooling systems, etc. A virtual
cluster deployed in an on-premises Cloud enables to logically partition the physical
cluster on which the on-premises Cloud is deployed. This enables both to deploy
multiple virtual clusters fully customized to each application requirements and to
maintain data within the boundaries of the organization, when special privacy
measures are required. Another advantage is the ability to multiplex the hardware
resources by having a larger number of virtual nodes than actual physical nodes.
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The hybrid clusters combine the benefits of both approaches. A fully virtual cluster
can simultaneously and dynamically harness computational resources provisioned
from both the on-premises Cloud and the public Cloud, or from different public
Cloud providers, thus being able to shift High Throughput Computing (HTC)
based workload from on-premises to a public Cloud and vice-versa. This enables
seamless Cloud bursting, where workload peaks are automatically handled by de-
ploying new working nodes on the public Cloud. The hybrid clusters will be elas-
tic which means the ability to dynamically decrease (scale in) and increase (scale
out) the computational capacity of the cluster (in terms of working nodes) to the
workload without any downtime. The deployed hybrid clusters will be cost-aware.
This refers to the economic cost of the provisioned resources from the public Cloud
provider, on a pay-as-you-go basis. This cost will be minimized by integrating the
usage of spot instances together with checkpointing techniques to minimize the
cost while delivering the expected performance for those computational nodes.

Another important aim of this thesis is migration. The developed platform will
address migration at different levels. Firstly, it is considered migration as the
ability to move a running application from one virtual cluster to another. This
enables to decouple the application from the underlying physical infrastructure,
which introduces mobility for the application across different infrastructures (even
different Cloud providers). Secondly, the migration of virtual clusters across dif-
ferent infrastructures. This introduces the ability to move (part of) the cluster
considering the underlying state of the on-premises infrastructures. This will have
an impact to cope with the changing workload conditions in a datacenter.

Finally, in recent years, the container technology has emerged as a new solution
that can encapsulate the execution environment for applications from the under-
lying infrastructure in a more light-weight manner than traditional virtualization.
A container includes a complete filesystem that contains everything needed to run
an application: code, runtime, system tools and system libraries. Containers run-
ning on a host share the same operating system kernel and, thus, it allows running
multiple isolated processes in a host. The usage of container technologies in the
virtual clustering scenario would provide several advantages comparing with VMs,
such as better performance for the applications, due to the light-weight virtualiza-
tion, and low deploying times for new working nodes, since deploying a container
only takes a few seconds, like spawning a process. This alternative to traditional
virtualization deserves a deep study to better analyze its advantages and draw-
backs, and examine possible architecture configurations under virtual clustering
scenarios.

Considering that in the future the hybrid deployments will play a fundamental
role [78], this thesis will produce technology that will have an impact on the
communities that require cluster-based computing, like datacenters and scientific
communities, which will be able to easily outsource part of their computing power
to Cloud platforms and to take advantage of the light-weight virtualization tech-
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nologies to obtain isolation with near native performance. This implies the ability
to deploy and access on demand clusters, composed by VMs or containers, spe-
cially configured for the applications to be executed. In consequence, this thesis
focuses on harnessing resources from hybrid scenarios that include disparate re-
sources from the aforementioned infrastructures in order to create ready-to-use
customized virtual elastic clusters that satisfy the dynamic computing require-
ments of an individual or organization and which minimize the energy consump-
tion of the underlying infrastructure (in the case of on-premises resources) and
the economic cost (in the case of public Cloud resources). These virtual elastic
clusters will feature automatic elasticity and will be deployed and managed by a
tool exposed as a Software as a Service (SaaS) application, online accessible for
end users to access cluster computing on demand.

1.2 Summary of the state of art

The central chapters of this document are academic papers that have been pub-
lished or have been submitted to different conferences and journals. Each of them
include a subsection dedicated to revise the state of the art in the particular prob-
lem addressed by the paper. Nevertheless, the following paragraphs include a
summary of the state of the art in the field of the thesis for the sake of clarity.

Regarding the creation of clusters in the Cloud, some works such as [138], [187]
and [113] have analyzed architectures, algorithms and frameworks to deploy HTC
clusters over private, public and hybrid Cloud infrastructures. In [138] the authors
analyze the performance of virtual clusters deployed on top of hybrid Clouds ob-
taining good results that demonstrate the feasibility of these kind of deployments.
The work by Wei et al [187] is focused on algorithms to deploy VMs over a set of
physical resources in the most efficient way trying to obtain the best performance
on the virtual cluster. In [113], the authors try to obtain the best resource allo-
cation solution for a set of virtual clusters from different users with different job
features. However, none of the previous work deals with the elastic adaptation of
the cluster size to the workload submitted by their users.

Several tools have emerged in the literature in recent years, trying to facilitate
the deployment of virtual clusters in the Cloud. For example, in [120], [121],
the Nimbus toolkit is employed to implement and evaluate an elastic site man-
ager, which dynamically extends existing physical clusters based on Torque with
computational resources provisioned from Amazon Elastic Compute Cloud (EC2)
according to different policies. A similar approach is employed in [22], where the
benefits of using Cloud computing to augment the computing capacity of a local
infrastructure are investigated, but no details about the underlying technologies
are given. ViteraaS [62] allows creating virtual clusters to manage the execution
of user-defined jobs, but the user cannot remotely access the cluster. Another

5



Chapter 1. Introduction

example is StarCluster [134], a tool that enables the creation of a Sun Grid Engine
(SGE) based cluster in the Amazon EC2 service, following a predefined configu-
ration of applications (SGE, OpenMPI, NFS, etc.). It includes a plugin system
that enables the user to add new software packages to be installed on the cluster
nodes, but the VMs are based on a a set of pre-defined Amazon Machine Image
(AMI)s. Moreover, the elasticity in this tool is controlled by a plugin external to
the cluster deployed. Finally, Elasticluster [203] can be employed to launch vir-
tual cluster over several public and on-premises cloud platforms, but the elasticity
is managed by the user. Instead our proposal is focused on self-managed hybrid
clusters, where the elasticity rules are embedded in the cluster and no external
entity is required.

All of the above examples only consider the usage of one Cloud infrastructure,
where no hybrid scenarios are supported. Concerning the creation of clusters over
hybrid Cloud infrastructures, the authors of works such as [138], [139] and [140]
have analyzed architectures, algorithms and frameworks to deploy HTC clusters
over this type of infrastructures. They analyze the performance of virtual clusters
deployed on top of hybrid Clouds obtaining good results that demonstrate the
feasibility of these kind of deployments. In [120], [121], [66], the Nimbus toolkit is
employed to implement and evaluate an elastic site manager, which dynamically
extends existing physical clusters based on Torque with computational resources
provisioned from Amazon EC2 according to different policies. A similar approach
is employed in [22], where the benefits of using Cloud computing to augment the
computing capacity of a local infrastructure are investigated, but no details about
the underlying technologies are given. An important point in a hybrid environment
is the interconnection between nodes that are deployed in different Clouds. The
authors of [106] and [182] study the inter-Cloud communication problem across
independent Clouds in detail.

Concerning cost-efficiency of virtual clusters, we can find cost-effective mechanisms
to provision transient computing capacity (commonly known as Spot Instances in
AWS [13]). This type of instances cost a fraction of on-demand instances in ex-
change for reduced reliability, because these instances can be terminated abruptly
due to price and demand fluctuations. We need to benefit from cost-effective ad-
vantages offered by the cloud providers in order to reduce the total cost of the
executions, but trying to minimize the looses in execution progress. For that,
checkpointing enables to periodically save the job progress before the spot in-
stance is terminated by the provider, thus being able to resume from the latest
checkpoint. There are works in the literature that have elaborated this idea. For
example, the goal of Khatua et al. [107] is to reduce the total cost in virtual
resources using spot instances. They need to migrate the applications to other
spot instances before the actual instance is terminated. For that, they propose an
scheme based on the usage of Amazon Elastic Block Store (EBS) to save the tasks.
In [198] the authors propose a similar strategy based on checkpointing and migra-
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tion in order to save money and get good results of task completion time using
spot instances. But in this case, they use Amazon Simple Storage Service (S3) to
store the application state. Also, the migration strategy consists on changing the
instance type (if the bid of the user is high enough) in order to reduce the waiting
time until the spot price for the previously selected instance type is achieved.

Regarding migration, we can differentiate three levels that are applicable to a vir-
tual cluster. First, application migration, that usually involves checkpointing, a
mechanism by which an application stores its state periodically to the disk. By
checkpointing a program’s state at regular intervals, the amount of lost compu-
tation is limited to the interval from the last checkpoint to the time of crash.
There are several functional tools and libraries of checkpointing in the literature,
such as CryoPID [55], Distributed MultiThreaded CheckPointing (DMTCP) [16],
ComPiler for Portable Checkpointing (CPPC) [163] or OpenVZ [153]. Berkeley
Lab Checkpoint/Restart (BLCR) [65], a hybrid kernel/user implementation that
provides a robust, production quality implementation that checkpoints applica-
tions without requiring changes in the their code, is currently one of the most
used tools of checkpointing. Second, there is live migration of VMs [48], which
consists on moving a running VM from one physical host to another. Two models
can be found at this level, i) intra-cluster migration, exemplified by works such as
[185], [117], and [194], that assume shared storage for migration operations and
contemplate consolidation operations at both the OS level and application level
inside a single cluster; and ii) inter-cluster migration, where works like [181], [189]
and [162] discuss live migration of VMs across networks. Third, there is virtual
cluster migration, where works like the framework Virtual Cluster (VC)-Migration
[196] try to control the live migration of virtual clusters, applying well-known so-
lutions to migrate a single VM. The results of the experiments performed with
this framework show the main limitation of migrating a virtual cluster, i.e., the
large amount of data that needs to be transmitted together over a limited network
bandwidth.

The recent trend towards lightweight virtualization has paved the way for container
technology to considerably evolve. Containers are not a new idea, but their usage
is gaining prominence in the last years and it seems that they will change the way
applications are built, shipped, deployed, and instantiated [126]. Linux containers
enable to run multiple isolated processes in one host without the overhead caused
by the hypervisor layer introduced by VMs in CPU, memory and storage. Tools
such as Docker [60] introduce an approach based on containers to pack, ship and
run an application either on VMs, bare metal or Clouds. There are works in the
literature that experiment with containers. In [73], the authors explore the per-
formance of traditional VM deployments and contrast them with the use of Linux
containers (using Docker). Several benchmarks are used to demonstrate that con-
tainers result in equal or better performance than VMs in terms of CPU, memory
and storage. Other works in the literature have also analyzed the performance of
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containers to execute scientific applications and workflows, such as [27] and [202].
Skyport [80] utilizes Docker Linux containers to execute scientific workflows in-
stead of the usage of VMs, reducing the overhead caused by VM virtualization.
Also, analysis of the requirements of the applications to be executed in containers
have been performed [170]. However, authors of [192] point out that containers
are not good enough for isolation, the only resource that could be successfully
isolated in their experiments was CPU, promoting container-based virtualization
as a powerful technology for HPC environments.

In conclusion, as far as the author is concerned, there is no work in the literature
that describes a tool that integrates all the developments needed to deploy virtual
hybrid elastic clusters combined with the use of spot instances and checkpointing
techniques, and featuring migration capabilities, offered thought a user-friendly
interface. Moreover there are no tools that to deploy elastic clusters based on
containers. The development of such tools aggregates the main objectives of this
thesis, discussed in the next subsection.

1.3 Objectives of the thesis

The main hypothesis of the thesis is that the usage of virtual hybrid elastic clus-
ters, that can span and be migrated across infrastructures (on-premises Clouds
and public Clouds), introduces significant benefits for the cost-effective and flexi-
ble management of datacenters, and they are a solution for end users that require
customized clusters with dynamic computing requirements for the efficient execu-
tion of applications. Therefore, the main goal of the thesis is the execution man-
agement of scientific applications over self-managed virtual hybrid elastic clusters
on multi-cloud environments. To reach this objective, the general sub-objectives
of this thesis, represented in section 1.1, are the automatic elastic management
of virtual infrastructures, the management of resources provided by several Cloud
providers to deploy and configure virtual hybrid elastic clusters, the migration of
those virtual clusters and its workloads, achieving cost efficiency and, finally, the
definition and execution of application use cases to showcase the benefits of the
approach. In the next paragraphs, a deep description of each one of the objectives
is presented.

O1. Elastic management of virtual infrastructures. This objective aims at
creating elastic virtual clusters out of computational resources provisioned from
IaaS Clouds. These clusters will be self-managed entities that scale out to a larger
number of nodes on demand, up to a maximum size specified by the user. When-
ever idle resources are detected, the clusters dynamically and automatically scale
in, according to some simple policies, in order to cut down the costs in the case of
using a public Cloud provider. This creates the illusion of a real cluster without
requiring an investment beyond the actual usage. To cope with this objective, the
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O5. Cost efficency of virtual 
hybrid elastic clusters

O1. Elastic Management of 
virtual infrastructures

O2. Virtual hybrid elastic
clusters

O6. Cluster as a Service 
application

O4. Migration of virtual 
clusters and workloads

O7. Application use cases

O3. Container-based virtual 
elastic clusters

Figure 1.1: Goals of the thesis and their relation.

usage of CLUster Energy management System (CLUES) [9], an energy manage-
ment system for HPC Clusters and Cloud infrastructures, is proposed.

O2. Virtual hybrid elastic clusters. This objective aims at developing a
software platform to deploy and manage customized hybrid elastic virtual clusters,
with resources provisioned simultaneously from an on-premises Cloud and from
a public Cloud, thus introducing Cloud bursting capabilities. Notice that two
extreme cases are also considered, which are deploying a virtual cluster fully on
a public Cloud or fully on an on-premises Cloud, to include the requirements for
research communities that might require instant access to a cluster of PCs and
organizations that require that data or computation does not leave the boundaries
of the organization. The users will be offered a software tool approach in order
to specify the hardware, software and configuration requirements of the cluster as
well as the initial allocation of nodes for each different Cloud infrastructure.

O3. Container-based virtual elastic clusters. The third objective of this
thesis aims at developing software tools to deploy virtual elastic clusters based on
containers. Like the first objective, these clusters will be self-managed entities that
automatically scale out to a larger number of nodes on demand when the workload
of the cluster requires it, and scale in when resources are idle for a period of time.
However, in this objective, we will consider the usage of containers instead of
VMs as the key technology to support the deployment of clusters. As we mention
previously, containers are a light-weight solution to isolate the execution of tasks
inside a customised environment, where the underlying infrastructure is shared
by several tasks with different environment configurations. Their usage introduce
several advantages in contrast with traditional VMs, such as less overhead in CPU
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and Random Access Memory (RAM) memory and reduced deployment times.
These benefits will be evaluated in this thesis.

O4. Migration of virtual clusters and workloads. This objective aims at de-
veloping the methodology and software tools required to migrate (partly or fully)
virtual clusters and their workloads across different infrastructures. Migration
introduces an unprecedented degree of flexibility for a datacenter administrator,
with the ability to decouple the execution from the underlying hardware. For ex-
ample, this enables a system administrator to temporarily outsource cluster-based
workloads to a public Cloud (or to another datacenter running an on-premises
Cloud) to deal with a planned outage. As another example, a scheduled downtime
might affect a long-running scientific application. By migrating the application
or even the complete virtual cluster of VMs where the application is being exe-
cuted to another Cloud infrastructure, the application can resume its execution.
This objective includes assessing different migration approaches that range from i)
application migration, which requires application checkpointing techniques either
through third-party libraries, ii) VM migration, where (a set of) VMs are live mi-
grated to another hardware nodes (either inter-cluster or intra-cluster) with the
help of the underlying hypervisor; and iii) cluster migration, which involves trans-
ferring the computing nodes (and possibly the front-end) from one source Cloud
infrastructure to a destination Cloud infrastructure, even across different Cloud
providers.

O5. Cost efficiency of virtual hybrid elastic clusters. One of the objectives
of this thesis is to reduce the cost of deployment of such virtual hybrid elastic
clusters. For that purpose, we propose the usage of spot instances, a cloud pricing
scheme available in Amazon EC2, where the users decide the maximum price they
are willing to pay for the instance, thus offering up to 86% savings with respect to
on-demand instances [13]. The user bids on spare Amazon EC2 instances and run
them whenever the bid exceeds the current spot price, which varies in real-time
based on supply and demand. This variation causes the instance to terminate if
the spot price is higher than the user bid, thus causing the interruption of the
job executions. Therefore, this type of instances offers lower cost at the expense
of a reduced reliability. To cope with this problem, we have used checkpointing
techniques. Checkpointing enables to periodically save the job progress before the
spot instance is terminated by the provider, thus being able to resume from the
latest checkpoint. Creating a tool that combines the usage of both spot instances
together with checkpointing techniques will produce cost-efficient virtual clusters
that offer a fault-tolerant environment for the execution of scientific applications.

O6. Cluster as a Service application. To ease the adoption of these virtual
clusters deployed over Cloud Computing platforms, the results obtained in this
thesis will be exploited by building a SaaS application that provides Cluster as
a Service for a community of users. The developments will be encapsulated as a
web application available for users to deploy and manage hybrid clusters with a
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specific configuration and user requirements on top of public IaaS Cloud providers,
such as AWS, on-premises cloud providers such as OpenNebula or OpenStack and
community cloud platforms like European Grid Infrastructure (EGI) FedCloud.
For that, the clusters will be deployed on behalf of the users with their specified
credentials. The users will not be required to introduce payment information in our
platform. Instead, they can use their own credentials to access Cloud providers.
In case of using a public cloud provider, the cost of the running virtual clusters
will be assumed by the users, which will pay for the resources consumed by the
running virtual clusters. Users can also deploy their clusters over on-premises
cloud providers that can be available inside their organization. Our platform will
offer the services to automate and simplify the deployment, configuration and
management of the clusters.

O7. Application use cases. A key aim of the technological advances from the
previous objectives is to improve scientific research on disciplines that deal with
variable workloads of computing. Therefore, a main objective of the thesis is to
validate and demonstrate such technological advances on real scientific cases, to
evaluate the benefits and impact of the implemented solution. Three complemen-
tary use cases have been defined with different requirements, application areas and
computational loads. The first use case involves a parallel computationally inten-
sive gyro kinetic plasma turbulence scientific application. The second use case
is devoted to the dynamic analysis of building structures, which requires dealing
with a variable load of multiparametric executions. The third use case focuses on
biodiversity, where the Galaxy platform [81] will be configured in a virtual elastic
cluster to facilitate the execution of jobs in charge of investigate for patterns of
biodiversity, from molecular data sets of freshwater diatoms.

This PhD thesis focuses on providing advanced computational tools for the deploy-
ment and execution of scientific applications over hybrid Clouds. Moreover, these
tools will be open to the community as applications that will abstract away the
details of cluster deployment, configuration and management over hybrid Clouds.

1.4 Structure of the document

In order to cover all the objectives proposed, this document has been structured
as follows. The chapters 2, 3 and 4 correspond to a group of papers related to
the deployment of virtual hybrid elastic clusters, that have been already published
on different journals and conferences in the area. The chapters 5, 6 and 7 are
structured as papers, since they are in the process of submission or under review
in different journals in the area. Because of the structure of the above chapters,
all of them include introduction and state of art sections. Thus, the chapters can
be read independently, helping the readability of the document. Therefore, it is
to be expected some overlap in the related work sections. The remaining chapters
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correspond mostly with the dissemination of the results obtained during the thesis.
All these chapters collect the work made to address all the objectives proposed in
this thesis. The following paragraphs describe each chapter in detail.

Chapter 2,“Towards Migratable Elastic Virtual Clusters on Hybrid Clouds”, deeply
analyzes the context of the PhD thesis, aligned with the research project“Migrable
Elastic Virtual Clusters on Hybrid Cloud Infrastructures (CLUVIEM)”, financed
by the Spanish Ministry of Economy and Competitiveness. This chapter corre-
sponds to the paper [36], that has been published in the conference “IEEE 8th
International Conference on Cloud Computing”, which is classified into the CORE
B category of the CORE ranking [52].

Chapter 3, “Virtual Hybrid Elastic Clusters in the Cloud”, refers to the paper [37],
published in the “8th Iberian Grid Infrastructure Conference (IberGrid 2014)”.
This work introduces the early developments to produce virtual hybrid elastic
clusters. Those clusters can simultaneously harness on-premises and public Cloud
resources. They can be fully customized, dynamically and automatically enlarged
and shrinked (in terms of the number of nodes) and they offer migration capabilities
to outsource workload from one datacenter to another (or to a public Cloud) in
different situations. This is exemplified with case studies that involve a parallel
computationally intensive gyro kinetic plasma turbulence code running on such
hybrid clusters with resources provisioned from an on-premises OpenNebula Cloud
and the AWS public Cloud.

Chapter 4 refers to the paper “Self-managed Cost-efficient Virtual Elastic Clusters
on Hybrid Cloud Infrastructures”, published in the journal “Future Generation
Computer Systems”, which has an impact factor of 2.786 and it is classified in the
first quartile (Q1) of the Journal Citation Report (JCR) for the topic “Computer
Science, Theory & Methods” in 2016 (when the paper was published). This pa-
per describes the developments to produce EC3, a tool that creates self-managed
cost-efficient virtual hybrid elastic clusters on top of IaaS Clouds. It can be con-
sidered as an evolution of the ideas presented in the previous chapter, together
with new work in the area of cost-efficiency. Using spot instances, together with
checkpointing techniques, EC3 can significantly reduce the total cost of executions
while introducing automatic fault tolerance. A case study is presented to assess
the effectiveness of the tool featuring the structural dynamic analysis of buildings.
In addition, checkpointing algorithms are evaluated in a real Cloud environment
with existing workloads to study their effectiveness.

Chapter 5 presents a case study of the EC3 web interface. This chapter includes the
contents of the paper “eScience with a Galaxy web-service connected to an Elastic
Cluster in the Cloud for Computational Biodiversity” submitted to the “Journal of
Grid Computing”, which has an impact factor of 1.507 and it is classified in the first
quartile (Q1) of the JCR for the topic ”Computer Science, Theory & Methods”
and in the second quartile (Q2) for the topic “Computer Science, Information
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Systems” in 2016 (when the paper was submitted). In this paper, a case study of
the deployment of the Galaxy web-service inside a virtual elastic cluster launched
with EC3 is described.

Chapter 6 addresses migration, developing the methodology and software tools
required to fully migrate virtual clusters and their workloads across different Cloud
infrastructures. It presents a deep analysis of the state of art in this field, and
proposes an architecture to migrate virtual clusters, based on EC3. A proof-of-
concept is presented at the end of the chapter.

Chapter 7 introduces the concept of containers and presents EC4Docker, a tool
to deploy container-based virtual elastic clusters, based on the usage of CLUES
to manage the elasticity, and Docker Swarm as the resource scheduler. A case
study evaluates the performance of container-based virtual elastic clusters and
compare them to traditional virtual clusters deployed over Cloud platforms with
EC3. It is structured as a paper, “Container-based Virtual Elastic Clusters”, that
was submitted to the“Journal of Systems and Software”. This journal has a impact
factor of 1.424 and it is classified in the second quartile (Q2) of the JCR for the
topic “Computer Science, Theory & Methods” (when the paper was submitted).
The work is currently under review.

Chapter 8 presents EC3aaS, a SaaS application offered to the community to facil-
itate the usage of EC3 to non-experienced users. A brief tutorial of how to deploy
and then destroy a virtual elastic cluster by using the web service is shown. Also,
other available materials such as videotutorials or the source code, are pointed out
in this chapter.

Chapter 9 presents the discussion of the results to analyze the relevance of the
works presented in the previous chapters. It also includes dissemination and ex-
ploitation of the results, listing all the contributions that the work presented in
this document has produced. Moreover, research projects that are using the de-
velopment of this PhD thesis are cited.

Finally, chapter 10 exposes conclusions and future work of this PhD thesis. Also
the fundings that have permitted the development of this thesis are enumerated.
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Abstract

This paper describes the research work in the context of the CLUVIEM
project towards achieving migratable, self-managed virtual elastic clusters
on hybrid Cloud infrastructures. These virtual clusters can span across on-
premises and public Cloud infrastructures thus leveraging hybrid Cloud plat-
forms. They are elastic since working nodes are automatically provisioned
and relinquished to dynamically adapt the capacity of the virtual cluster
(in terms of number of nodes) according to the current workload. They
are self-managed since the elasticity rules are managed via the head node
without requiring any external software entity for monitoring and deciding
when to scale in and out. Finally, they are migratable since they consider
both application migration, via application checkpointing, and infrastructure
migration, by cloning infrastructures across multi-Clouds. These features in-
troduce unprecedented flexibility for cost-effective cluster-based computing
with minimal impact for cluster users. The paper summarises the current
state of developments and future roads to achieve this vision.
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Chapter 2. Towards Migratable Virtual Elastic Clusters on Hybrid Clouds

2.1 Introduction

Clusters are one of the most widely used computing facilities across the world.
They can be used for HPC, where tightly-coupled tasks require intensive commu-
nication, and for HTC, where loosely-coupled tasks are typically executed as a
Bag of Tasks (BoT) or a parameter sweep application. However, physical clusters
suffer from several drawbacks which include, but are not limited to, an initial large
capital investment, electricity costs for operation and refrigeration and the inabil-
ity to cost-effectively enlarge and decrease the number of nodes according to the
workload.

With the introduction of virtualization and the advent of Cloud Computing, the
idea of deploying virtual clusters on computational resources provisioned from
Cloud infrastructures took shape in the form of tools such as StarCluster [134]
or Elasticluster [203]. StarCluster enables to provision a virtual cluster on top of
AWS. It also supports to automatically scale out the cluster (and scale in) con-
sidering the number of jobs queued up at the LRMS. However, since this tool
can only provision clusters from AWS, no virtual clusters can be deployed on
on-premises Cloud platforms created with Cloud Management Platforms (CMPs)
such as OpenNebula or OpenStack. In addition, the scaling capabilities of the
virtual cluster require a client-side monitoring application that is always running
and periodically polls the cluster. Therefore, the cluster is not self-managed and
requires the StarCluster application running on the client side. In contrast, Elas-
ticluster can be employed to create virtual clusters on several Cloud providers
(Amazon EC2 and Google Compute Engine) as well as on-premises Cloud plat-
forms (OpenStack supported). The clusters support elasticity but, unfortunately,
the user decides when to scale the cluster by using the appropriate command.
Therefore no automated elasticity is supported.

Other tools to deploy virtual clusters can be found in the literature, such as Wran-
gler [104] or the work by Niu et al. [146]. The former does not support elasticity
while the latter, although it does include elasticity rules to scale the clusters, it
does not consider support for spot instances, which is a cost-effective mechanism
to provision computational resources for interruptible tasks, supported by Ama-
zon EC2. In addition, none of the aforementioned tools support hybrid virtual
clusters, where resources can span several Clouds (either on-premises or public).

In this paper we build on the state of the art and describe the goals, the road
map and the milestones achieved so far in the CLUVIEM project. The project,
funded by the Spanish government, aims at developing software (accessible via
SaaS and Command-Line Interface (CLI)) to create migratable self-managed cost-
effective virtual elastic clusters on hybrid Cloud infrastructures which, for the sake
of brevity, will be named enhanced virtual clusters. After the introduction, the
remainder of the paper is structured as follows. First, section 2.2 introduces the
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main architecture of the platform to be developed featuring capabilities such as
automated elasticity, hybrid scenarios and migration. Next, section 2.3 addresses
different scenarios in which these virtual clusters introduce significant benefits.
Finally, section 2.4 summarizes the paper and points to future work.

2.2 Enhanced Virtual Clusters

Virtual clusters on the Cloud are composed of virtual machines which are provi-
sioned from different Cloud providers. In the case of public Cloud providers such
as AWS, a pay-as-you-go cost model is employed with no upfront investments. In
the case of on-premises Clouds the cost of the provisioned resources is typically
measured in terms of energy consumption. The greatest advantage of these virtual
clusters is that they can naturally leverage the underlying elasticity of the Cloud
platforms. You can start with a single head node (a.k.a. front-end node) that
provides the users with the illusion of a fully active cluster and when they start
submitting jobs to the LRMS, these are transparently intercepted to provision
the required working nodes, using different customizable provisioning approaches,
and are configured and automatically integrated in the LRMS before releasing
the jobs to be executed. Therefore, users just notice a small delay until the jobs
actually start their execution. The worker nodes are automatically relinquished
whenever they are no longer used (or expected to be used according to a set of
policies). This introduces a cost-effective approach for cluster-based computing
where computational resources are provisioned and released as required.

Figure 2.1 shows the underlying software components1 employed to create the
platform to deploy these enhanced clusters: Virtual Machine image Repository &
Catalog (VMRC), a catalog of Virtual Machine Image (VMI)s available in different
Cloud platforms (e.g. AMIs in AWS and images in an OpenNebula repository),
supporting matchmaking capabilities according to metadata; CLUES, an elasticity
management system for clusters and Cloud infrastructures; Virtual Machine Con-
solidation Agent (VMCA), a tool to consolidate VMs featuring migration across
physical nodes; EC3, a platform to create elastic virtual clusters on multi-Clouds;
Infrastructure Manager (IM), a platform to provision and configure virtual in-
frastructure from different Cloud providers; and, finally, CloudVAMP, a memory
overcommitment manager for on-premises Clouds, used to control vertical elastic-
ity.

The following subsections outline the features of these enhanced virtual clusters
and provide some additional details regarding the technologies and tools employed
to achieve them.

1These open source components are available at https://github.com/grycap
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Figure 2.1: Open source software supporting the CLUVIEM project. See
www.grycap.upv.es/{im,ec3,vmca,vmrc,clues}.

2.2.1 Elasticity

Virtual clusters must feature elasticity in order to cope with the dynamic com-
putation requirements of the applications being executed. Figure 2.2 includes the
different elasticity schemes addressed by CLUVIEM. First of all, vertical elasticity
(Figure 2.2.a) enables to modify the capacities of the virtual machine at run-
time without any downtime. Depending on the hypervisor support, these features
include dynamic memory resizing, through memory ballooning, an dynamically
adding virtual CPUs. Vertical elasticity allows, for example, to adapt the memory
of the virtual machines that are executing a scientific application with dynamic
memory requirements during its execution. A demonstration of that can be found
in [137], in which it is monitored the memory consumption of an application within
a VM and dynamically adapted the memory size of the VM to fit that memory
consumption. In this way, the application does not incur in thrashing thus affecting
its performance.

On the one hand, downsizing the memory of the VM when no longer required
provides additional available free memory for other VMs that are currently be-
ing executed on the same physical host, a common situation on multi-tenant on-
premises Cloud platforms. On the other hand, increasing the amount of memory
of a VM might exceed the capacities of the underlying physical host. For that
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Figure 2.2: Elasticity schemes for virtual clusters: a) scaling up an already deployed
working node (wn); b) deploying a new working node on the on-premises Cloud; c)
deploying a new working node on another Cloud.

reason, live migration (without any downtime) of VMs to restore the Quality of
Service is imperative. This enables to rebalance the workload of VMs across the
datacenter (or across a physical cluster of nodes) so that the VMs have access
to the required computational resources. This situation requires an appropriate
migration plan that considers the whole state of the underlying physical infras-
tructure and decides which VMs should be migrated to which nodes. For that, we
plan to use VMCA, an add-on to CLUES that defragments the available resources
by migrating VMs among physical hosts. This results in an increased density of
VMs per real host.

Second, horizontal elasticity enables to shrink and grow the cluster size, in number
of nodes, according to the values of some metrics such as the number of jobs queued
up at the LRMS. Figure 2.2.b represents the scale out of a virtual cluster deployed
on an on-premises Cloud managed by OpenNebula (ONE). The ability to resize
a virtual cluster enables to cope with increased workloads at the expense of an
increased cost (either in terms of energy, when running on an on-premises Cloud,
or in terms of money, when running on a pay-as-you-go public Cloud). For that, we
leverage the already-existing policies of CLUES, but adapted to a Cloud scenario
(instead of powering on and off physical nodes through Wake-on-LAN (Local Area
Network (LAN)) or Intelligent Platform Management Interface (IPMI), VMs are
deployed or terminated in a Cloud).

The Elasticity Manager (EM) is actually the aforementioned CLUES software,
which runs in the head node (FE) of the cluster. Therefore, the cluster is self-
managed and can scale in and out according to the elasticity rules without any user
intervention. When the user deploys the cluster, the maximum number of nodes
(VMs) is specified so that a reasonable cost per hour is never exceeded (when
using a public Cloud). This means that these enhanced clusters automatically
enter a low-cost mode (either energy or money) when no job workload is pending
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or expected to be executed. Notice that for certain workloads (e.g. burst of
jobs) the cost of re-deploying a new cluster does not pay off when compared to
provisioning additional worker nodes, which typically involves less configuration
and time.

2.2.2 Hybrid Scenarios

When trying to leverage both on-premises and public Cloud resources, hybrid
scenarios arise (as depicted in Figure 2.2.c), in which VMs are deployed from
different Cloud providers. For example, a virtual cluster is initially deployed on
an on-premises Cloud and additional worker nodes are provisioned from another
on-premises Cloud or a public Cloud to supplement the single virtual cluster with
additional resources. Notice that the master node can either be deployed on the
on-premises Cloud or on the public Cloud.

There are different scenarios in which provisioning from multi-cloud environments
is beneficial. First, this approach can overcome a temporary shortage of compu-
tational resources within an on-premises Cloud. For example, when the require-
ments, in terms of number of nodes or their computational or memory capacities,
of a virtual cluster exceed the capacities of an on-premises Cloud platform. A
hybrid virtual cluster can span across an on-premises and a public Cloud to pro-
vide transparent Cloud bursting without affecting the users, which simply submit
their jobs to be executed in the cluster through the LRMS. This is the case of
our previous work [37], in which hybrid virtual clusters are employed to execute a
parallel computationally intensive gyrokinetic plasma turbulence code running on
such hybrid clusters with resources provisioned from an on-premises OpenNebula
Cloud and AWS.

To create a common network among the VMs in disparate Cloud providers we
provide support for Virtual Private Network (VPN)s with OpenVPN, where the
OpenVPN server is automatically deployed and configured on the head node of
the cluster. Alternatively, we also support automatic deployment of Secure Shell
(SSH) tunnels, customised with iptables rules to decide when to channel the traffic
through the tunnels.

2.2.3 Migration

Migrating virtual infrastructures is of interest both for datacenter administrators
and for the owners of the virtual infrastructures themselves. On the one hand,
datacenter administrators might require to decommission a physical node, per-
haps because the SMART disk monitoring system alerts of an imminent failure.
In this way, the ability to migrate virtual infrastructures enables to redistribute the
virtual machines among the other physical nodes in the datacenter. For that, one
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Figure 2.3: Migration schemes for virtual clusters.

can leverage the live migration capabilities available in hypervisors such as KVM
or Xen so that VMs are migrated without any downtime or service disruption.
Fortunately, CMPs such as OpenNebula leverage this ability to provide graphi-
cal tools to aid the sysadmin. However, migrating virtual infrastructures across
Cloud providers is not a trivial task, where disparate hypervisors and platforms
are employed. In the CLUVIEM project we address migration as shown in Figure
2.3.

First, the migration of virtual infrastructures can be achieved within the same
Cloud on-premises (see arrows labeled a in Figure 2.3) by using live migration. We
have assessed the capabilities of KVM to perform live migration across physical
nodes of the same OpenNebula deployment without any downtime. Migration can
also occur across different on-premises Clouds (as shown in 5a and across public
Clouds (shown in arrows labeled b). For that, we deploy a replica of the virtual
cluster into a different Cloud provider, coordinated by the Migration Manager
(MM). Since clusters are created out of a high level language called Resource
Application and Description Language (RADL); see [32] for details) it is possible to
replicate the infrastructure into another Cloud provider by using the multi-Cloud
capabilities of the IM. This involves deploying a new infrastructure with the same
characteristics in another Cloud back-end. Transitioning from a physical cluster
to a virtual one requires abstracting its hardware, software and data configuration
to be expressed in RADL, what we intend to provide in a semi-automatic way but
it is currently under research.

Second, the migration of running applications requires the introduction of application-
independent checkpointing techniques in order to be able to resume a running ap-
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plication on the target virtual machine instance. For that purpose we have been
using BLCR [65] for Linux, a tool that introduces checkpoint capabilities both
for sequential and parallel applications based on MPI. We use checkpointing both
for migration of applications and as an application survival mechanism when us-
ing spot instances in Amazon EC2. A spot instance can be terminated if its price
exceeds the bid of the user. For that, we developed a Checkpoint Manager that in-
teracts with the Simple Linux Utility for Resource Management (SLURM) LRMS
supporting BLCR in order to checkpoint the jobs both at periodic interval and
considering the evolution of the prices of the spot instances. This way, interrupted
jobs can be resumed in newly deployed instances, which may be on a different
Cloud (with the same virtual hardware).

Migrating workloads, such as independent jobs that arise from HTC, can be ef-
ficiently achieved by deploying hybrid virtual clusters that dynamically remove
and add nodes, from different Clouds, that are activated/deactivated from the
LRMS so that jobs can be balanced across the working nodes without any user
intervention, as performed in [37].

2.3 Discussion and Application Scenarios

These enhanced virtual clusters can be employed for many applications in which
cost-effective cluster-based computing is required. In particular, we are focusing
on the following scenarios. First, the non-linear and dynamic structural analysis
of buildings, where it is required to accurately simulate how a building is affected
by external dynamic loads, such as an earthquake. This involves a parallel MPI-
based applications. Second, the execution of Monte-Carlo simulations to describe
the trajectories of particles used in radiotherapy dosimetry and Positron Emis-
sion Tomography (PET) devices. Finally, the deployment of virtual clusters as
educational infrastructures for HPC-related subjects in Master’s Degree.

2.4 Conclusion

This paper has summarised the developments towards self-managed cost-effective
elastic virtual clusters on hybrid Cloud infrastructures. So far, the developments
of this vision are based on the open source EC32 tool, which enables to provision
virtual hybrid elastic clusters that span public Clouds (AWS and Google Compute
Engine) and on-premises CMPs (OpenNebula, OpenStack and any other Open
Cloud Computing Interface (OCCI) compliant software), featuring checkpointing
capabilities and spot instances support. Supporting OCCI enables the user to
provision resources from EGI FedCloud, one of the largest scientific computing

2EC3 - http://www.grycap.upv.es/ec3
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2.4 Conclusion

platforms. We have released an early version of this tool to the academic commu-
nity together with the main underlying software components.

We expect to continue our early developments on migration of infrastructures
and applications, which will introduce unprecedented flexibility for cluster-based
computing.
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Abstract

Clusters of PCs are one of the most widely used computing platforms in sci-
ence and engineering, supporting different programming models. However,
they suffer from lack of customizability, difficult extensibility and complex
workload-balancing. To this end, this work introduces virtual hybrid elas-
tic clusters that can simultaneously harness on-premises and public Cloud
resources. They can be fully customized, dynamically and automatically
enlarged and shrinked (in terms of the number of nodes) and they offer mi-
gration capabilities to outsource workload from one datacenter to another
(or to a public Cloud) in different situations. This is exemplified with case
studies that involve a parallel computationally intensive gyro kinetic plasma
turbulence code running on such hybrid clusters with resources provisioned
from an on-premises OpenNebula Cloud and the AWS public Cloud.
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3.1 Introduction

The usage of clusters of PCs as a computing facility is widespread in the scientific
community with high success for both HPC and HTC. Nevertheless, these comput-
ing platforms suffer several drawbacks. On the one hand, physical clusters cannot
be easily enlarged or shrinked, without downtime, according to the dynamic re-
quirements of the organization. On the other hand, they lack the ability to provide
a tailored execution environment customized for each application to be executed,
specially when incompatible libraries are required by different applications running
on the same cluster. Moreover, the ability to transparently migrate running jobs
to be executed on other physical resources is not a trivial task, which is an impor-
tant feature for effective workload balancing. Another important limitation is the
large upfront investment together with the maintenance cost of such computing
equipment for small and medium-sized research groups or organizations [58].

Traditionally, virtualization was not considered a viable option for HPC due to the
overhead costs in I/O and network devices, but the major improvements in hy-
pervisor technologies and virtualization have paved the way for Cloud computing.
This paradigm can solve those disadvantages with customizable VMs that decouple
the application execution from the underlying hardware and are dynamically pro-
visioned and released on a pay-as-you-go basis [127]. This is the case of public IaaS
Cloud providers such as AWS [12] or on-premises Cloud infrastructures deployed
by CMPs such as OpenNebula [175], OpenStack [150] or Eucalyptus [147].

In the last years, the adoption of on-premises Cloud solutions for datacenters has
increased [78], in part due to the maturity of the CMPs, which are becoming reli-
able enough for production-ready workloads. This enables to create virtual hybrid
elastic clusters that ease extensibility and customizability in contrast to physical
clusters. Virtualization also enables to partition a physical cluster into different
virtual clusters specifically customized for the applications. Moreover, decoupling
the application execution from the underlying hardware paves the way for migrat-
ing running applications from one hardware to another. Migration is convenient for
several reasons. First of all, it enables to move workload from an overloaded data-
center (source infrastructure) to another (where the former or the latter could be
a public Cloud infrastructure) to achieve workload balancing. Second, a planned
maintenance on the source infrastructure might affect an application that has been
running for a long time, so migration introduces the flexibility required in a modern
datacenter.

This work focuses on harnessing resources from hybrid scenarios that simultane-
ously include resources from on-premises and public Clouds in order to create
ready-to-use customized virtual elastic clusters that satisfy the dynamic comput-
ing requirements of an individual or organization. The remainder of this paper is
structured as follows. First, section 3.2 covers the related work in this area. Next,
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section 3.3 focuses on the main characteristics of the proposed cluster deployment
architecture pointing out the main scenarios where the use of this type of clusters
is beneficial. Then, the paper introduces the elasticity rules employed to automat-
ically enlarge and shrink the cluster. Afterwards, two case studies are presented
in section 3.4 that justify the benefits of the proposed approach. Finally, section
3.5 summarizes the main achievements and discusses the future work.

3.2 Background and Related Work

There are previous works in the literature that aim at deploying virtual clusters
on Cloud infrastructures. For example, StarCluster [134] enables the creation of
clusters in Amazon EC2 from a predefined configuration of applications (Open
Grid Scheduler, OpenMPI, NFS, etc.). Along with StarCluster a plugin called
Elastic Load Balancer has been developed that is able to enlarge and shrink the
cluster according to the length of the cluster’s job queue. This plugin typically
runs on the local computer from which the cluster was deployed and requires
permanent connection to the Cloud infrastructure, in order to create and destroy
the VMs. Therefore, any disconnection on the client computer means a loss of
control of the elasticity capabilities of the cluster. Instead, our proposal focuses
on self-managed hybrid clusters, where the elasticity rules are embedded in the
cluster and no external entity is required. ViteraaS [62] allows creating virtual
clusters to manage the execution of user-defined jobs, but the user cannot remotely
access the cluster. The standard distribution of Hadoop [28] includes a utility to
create a virtual cluster in the Amazon EC2 infrastructure, managed by the Hadoop
middleware. The utility powers on the master virtual machine, using a pre-defined
AMI and creates the computing nodes using another AMI, performing the required
network configuration.

There are commercial solutions, like IBM Platform Dynamic Cluster [94] that
aims at partitioning the owned resources to deliver each user a custom cluster
with specific features. It has features such as live job migration and automated
checkpoint restart. The drawback in this case is that this product is oriented to
manage on-premises infrastructures and cannot be connected to commercial Cloud
providers. CycleCloud [56] is a service provided by CycleComputing that deploys
virtual clusters, but it is restricted to Amazon EC2. This service provides the user
with a virtual cluster based on Torque [2] or Condor where a subset of popular
scientific applications, offered by CycleCloud, are installed. The user is able to
manage the virtual nodes using a web interface, and it is possible to configure the
cluster so that it is automatically sized based upon pending jobs.

All of the above examples only consider the usage of one Cloud infrastructure (no
hybrid scenarios supported). Concerning the creation of clusters over hybrid Cloud
infrastructures, the authors of works such as [138], [139] and [140] have analyzed
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architectures, algorithms and frameworks to deploy HTC clusters over this type of
infrastructures. They analyze the performance of virtual clusters deployed on top
of hybrid Clouds obtaining good results that demonstrate the feasibility of these
kind of deployments. The works use a fixed number of on-premises nodes, and
scale out the cluster using public nodes. However, workload migration from one
infrastructure to another is not considered. In [120], [121], [66], the Nimbus toolkit
is employed to implement and evaluate an elastic site manager, which dynamically
extends existing physical clusters based on Torque with computational resources
provisioned from Amazon EC2 according to different policies. A similar approach
is employed in [22], where the benefits of using Cloud computing to augment the
computing capacity of a local infrastructure are investigated, but no details about
the underlying technologies are given.

An important point in a hybrid environment is the interconnection between nodes
that are deployed in different Clouds. The authors of [106] introduced the concept
of Sky Computing, which enables the dynamic provisioning of distributed domains
over several Clouds. They pointed that one of the shortcomings of this approach
is the need of trusted networking environments. The same authors of the previ-
ous work [182] study the inter-Cloud communication problem across independent
Clouds in detail.

Our previous work in the field is EC3 [34], a tool that creates elastic virtual clus-
ters out of computational resources provisioned from IaaS Clouds, but no hybrid
scenarios are supported. These clusters are self-managed entities that scale out to
a larger number of nodes on demand, up to a maximum size specified by the user.
Whenever idle resources are detected, the clusters dynamically and automatically
scale in, according to some simple policies, in order to cut down the costs in the
case of using a public Cloud provider. This creates the illusion of a real cluster
without requiring an investment beyond the actual usage.

3.3 Virtual Hybrid Elastic Clusters

The objective of the proposed architecture is to ease the deployment and manage-
ment of customized virtual hybrid elastic clusters whose computational resources
are simultaneously provisioned from on-premises Clouds and from different public
IaaS Cloud providers. In order to have all the nodes that compose the cluster in
the same subnetwork, regardless of their physical location, it is convenient to use
VPN techniques. A VPN enables a computer on a public network, such as the
Internet, to exchange data as if it was connected to the private network.

Figure 3.1 shows the proposed architecture to deploy virtual hybrid elastic clus-
ters. The user (or the system administrator of the datacenter) requests a cluster
deployment to the IM) [7], a component that is in charge of contacting different
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Figure 3.1: Proposed cluster deployment architecture.

CMPs in order to deploy the VMs that compose the virtual cluster. As a summary,
the lifecycle of the virtual hybrid elastic cluster consist of three phases: (1) the
creation of the infrastructure, (2) configuring the computing nodes to behave as a
cluster and (3) managing the elastic cluster.

Firstly, the user provides the IM with the initial number of nodes of the cluster, and
their distribution among the on-premises and/or public Clouds accessible with his
credentials. The IM is in charge of phase (1). In the scenario shown in the Figure,
the front-end (head node) is deployed on the on-premises Cloud, but it could also
be deployed on a public Cloud. Two corner cases are also considered, which are
deploying a virtual cluster fully on a public Cloud or fully on an on-premises
Cloud. The latter complies with the requirements of research communities that
require instant access to cluster-based computing with data that does not leave
the boundaries of the organization.

Once the computing resources for the cluster have been provisioned, the Ansible
tool is employed in phase (2) for the configuration via a set of high-level recipes.
This requires to configure the VPN-based network. For that, we rely on Open-
VPN [152] to implement network tunnels between each individual Cloud resource
and the organization’s private network. By default, the front-end of the cluster
hosts a VPN server, to produce self-managed clusters that do not require external
VPN services to work. However, our solution could also rely on the VPN services
provided by the organization. The configuration process also installs and config-
ures the Torque LRMS that is in charge of scheduling the execution of the jobs.
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Moreover, the dependencies of the application that is going to be executed in the
virtual cluster are installed and configured in this step.

When the virtual cluster is running, the users can connect via SSH to the front-
end and execute their jobs. At this point starts phase (3). The workload of the
cluster is periodically evaluated by the elasticity module, a component that can
run inside the front-end (to produce self-managed clusters) or outside, and is in
charge of monitoring the state of the LRMS queue to enforce a set of elasticity
rules (described in section 3.3.1) to trigger actions in order to scale out (increase)
or scale in (decrease) the number of nodes of the cluster. The user can choose from
a set of elasticity rules as well as the maximum number of nodes of the cluster
(growth limit).

From the point of view of the user, the use of a virtual hybrid elastic cluster enables
proper customization of the execution environment, thus ensuring compatibility
with the applications to be executed. The automatic elasticity, together with the
workload balancing capability, enables to reduce the total execution time of the
jobs by dynamically adapting the size of the cluster to the workload.

In addition, the system administrator is able to manage the resources of the virtual
cluster with unprecedented flexibility due to the migration capabilities. For ex-
ample, this enables a system administrator to temporarily outsource cluster-based
workloads to a public Cloud (or to another datacenter running an on-premises
Cloud) to deal with a planned outage.

3.3.1 Elasticity Rules

The elasticity module included in the architecture dynamically adds and removes
worker nodes from the cluster by monitoring the front-end job queue. This module
uses various policies to determine when to deploy additional VMs (scale out) in
the Cloud or terminate them (scale in) based on the monitored information. The
behaviour of this module is described in Algorithm 1.

The elasticity rules or policies can be proactive or reactive. Proactive rules can be
employed if job execution patterns in the clusters are known, in order to deploy and
configure the nodes just in time for the execution of the jobs arriving at the LRMS.
However, proactive rules typically under-perform with stochastic job execution
patterns. Therefore, this paper focuses mainly on reactive elasticity policies that
deploy and relinquish resources based on the actual state of the cluster.

The scale out policies determine when it is necessary to increase the number of
worker nodes of the cluster. Two policies are included: i) On demand, where
for each job in the queue a worker node is deployed. Therefore, the jobs will
wait for the deployment and contextualization of the node before they start their
execution and ii) Bursts, this policy deploys a group of VMs for each job in the
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Algorithm 1 Elasticity management

Require: Growth limit, l > 0, scale out policy, scale in policy
while the front-end is running do

Obtain the number of jobs in queue, j , and the total number of nodes, n
if j > 0 and n < l then

Apply scale out policy
end if
if j == 0 then

Obtain state of the nodes
if some node state is free or offline then

Apply scale in policy
end if

end if
end while

queue, assuming that if a job arrives at the LRMS there is an increased chance
for other jobs to arrive shortly (thus including some proactivity). For HTC-based
applications, such as BoT or parameter sweeps, this policy is expected to reduce
the average waiting time of the jobs at the expense of an increased cost (economic,
in the case of public Clouds or due to idle resources in the case of on-premises
Clouds).

The scale in policies determine when it is necessary to decrease the number of
worker nodes. Two policies are considered: i) On demand, to terminate the idle
worker nodes when there are no pending jobs in the LRMS and ii) Delayed shut-
down, where idle worker nodes are terminated after a certain amount of config-
urable time. This is of interest when using public Clouds that bill by the hour,
where idle nodes are kept available for job executions before the hour expires, even
if no jobs are available to be executed at the moment.

Notice that when there are no jobs in the LRMS for a period of time, all the
worker nodes will be eventually terminated, regardless of the elasticity policies,
thus resulting in a cluster with only the front-end running.

3.4 Case Study

In order to evaluate the benefits and impact and to validate the developed system
on real scenarios, two case studies are proposed using a computationally intensive
parallel (hybrid MPI/OpenMP approach) scientific application. The GENE [57,
85] version 11 (release 1.7) provides a state-of-the-art nonlinear gyrokinetic solver
aimed to efficiently compute the microturbulence and the resulting transport coef-
ficients in magnetized fusion and astrophysical plasmas. The application requires

31



Chapter 3. Virtual Hybrid Elastic Clusters in the Cloud

an MPI-2 environment, Fortran and C compilers, and the BLAS and LAPACK
libraries.

The infrastructure used to deploy the on-premises Cloud is composed by an hetero-
geneous blade-based system that has 4 kind of nodes: 2 x (2 quad-core L5430@2.6
Ghz, 16 GB), 2 x (2 quad-core multithreaded E5520@2.26 GHz, 16 GB), 6 x (2
quad-core multithreaded E5620@2.4 GHz, 16 GB) and 3 x (4 quad-core multi-
threaded E7520@1.86 GHz, 64 GB), with a total amount of 128 cores and 352 GB
of RAM. The blade system is backed by a 16 TB Storage Area Network (SAN)
connected via a private gigabit ethernet network. This system is managed by
OpenNebula 4.4, using KVM as the underlying hypervisor. With respect to the
public Cloud, we relied on AWS. The instance type chosen is m1.medium, with one
(virtual) processor, 3.75 GB of RAM and 410 GB of HD. In this way, the VMs
deployed on the on-premises Cloud have the same characteristics. The VMI used
in the on-premises Cloud provides the same execution environment as the EC2
AMI employed (ami-e50e888c). Both images provide a pristine installation of
Ubuntu 12.04 Long Term Support (LTS).

The case studies consist of jobs composed by 4 MPI processes in each node, using
a maximum of 1000 MB per process. These processes communicate each other
inside the node, but they do not communicate with external processes. The case
studies have been downsized to get job executions in the order of minutes (instead
of hours) to better focus on the dynamic cluster topology and job scheduling. The
limit to the growth of the cluster has been fixed to 15 nodes.

3.4.1 Cloud bursting

Our first case study focuses on automatic Cloud bursting, where a cluster running
on an on-premises Cloud is automatically enlarged with computational resources
provisioned from a public Cloud, with no service disruption. This enables to cope
with an increased workload. For that, the user deploys the cluster and submits the
jobs for execution. The cluster eventually becomes overloaded and, therefore, the
elasticity module in the cluster that is monitoring the status of the queue decides
to deploy new worker nodes (scale out) to handle the execution of the pending
tasks. The new worker nodes can be on-premises resources, which are favoured,
or/and public resources if no more resources can be allocated on-premises. We
are going to assume that the user is restricted to 5 VMs simultaneously running
on the on-premises Cloud, and the front-end is going to be able to execute jobs
(but it cannot be shutdown unless the user terminates the cluster). The goal of
this case study is to analyze the behaviour of the scale in/out policies described
in section 3.3.1.

In the three cases, the workflow is as follows: the user requests an initial cluster of
5 nodes on the on-premises Cloud to the IM. When the initial cluster is deployed
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Figure 3.2: Evolution of cluster’s size and nodes distribution for different policies.

and configured (minute 16-18), the user submits 10 jobs to the cluster. Regardless
of the decision of the elasticity module, the user will submit two new jobs in
minute 50. This behavior will be repeated in minute 85, submitting two more jobs
to the cluster (14 jobs in total). It should be noticed that the average duration of
each job performed in the case study is 55 minutes, regardless of the underlying
infrastructure.

The bursts policy has been configured to deploy twice as much nodes as jobs
were in the queue. The behaviour of the delayed shutdown scale out policy works
as follows: the on-premises nodes are terminated 10 minutes after they finished
executing their jobs, if there are no more jobs waiting in the queue. Since Amazon
bills by the hour, the nodes deployed in Amazon EC2 are terminated minutes
before the paid hour goes by.

Figure 3.2 shows the behaviour of the three possible combinations of the elasticity
policies. Note that the combination of the bursts (scale out) policy with on demand
(scale in) policy is not possible because the extra nodes that are deployed for future
jobs would be shutdown immediately by the monitor system. The elasticity rules
periodically examine the job queue (every 10 seconds for these tests), executing a
policy and resizing the cluster if required.
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Figure 3.2 shows that in (a) there are no idle periods in the worker nodes. The
lifetime of the VMs is adapted to the workload of the cluster, but every time the
cluster has a job waiting in the queue, a period of deployment plus contextual-
ization is needed (4 periods in this case, minutes 4-17, 20-40, 51-69 and 85-92).
In contrast, (c) has only 2 periods of deployment and contextualization (minutes
3-15 and 20-45), but the use of the nodes is not optimized, having idle machines
the most part of the time. (b) is the intermediate solution, where the utilization of
computing resources is better than (c) and there are 3 periods of deployment plus
contextualization (minutes 3-17, 20-43 and 51-70). The contextualization process
is faster in the ONE nodes than in the EC2 nodes because of the network, since
the IM is deployed in the infrastructure as the on-premises Cloud deployment.

Notice that every time a node is terminated, the cluster needs another period
of contextualization in order to reconfigure and restart Torque, what requires an
average of 3 minutes. A new node form the public Cloud can be included in the
cluster in 15 to 20 minutes, and it does not affect to the execution time of jobs
because this process is done in parallel. Similarly, when a new node is added to the
deployed infrastructure, the contextualization process mainly affects to the new
nodes, that need to install all the software. The rest only need to reconfigure their
/etc/hosts file and restart Torque, but it does not affect the execution of the
jobs. The total execution time of the jobs is similar in the three combinations (142
minutes in (c), 144 in (b), and 148 minutes in (a). This is because the execution
of the last job burst (composed by 2 jobs) in minute 85, needs almost an hour to
be executed.

3.4.2 Maintenance period in a datacenter

Maintenance periods or planned outages are very common situations in a datacen-
ter, and they might cause several inconveniences for the users of the datacenter
resources that the system administrator must deal with. Therefore, the second
case study is focused on the migration capabilities of the cluster, a very useful
feature from the point of view of the system administrator.

First of all, when the user or system administrator requests a shutdown for some
worker nodes, two different approaches can be used: i) Aggressive shutdown, that
removes worker nodes without waiting for the completion of the jobs being exe-
cuted, and ii) Ordered shutdown, which waits for the jobs to finalize their executions
before shutting down the worker nodes.

An aggressive shutdown should not be used on tightly coupled parallel applications,
where the loss of a worker node ruins the execution of the job unless application
checkpointing is employed. However, for embarrassingly parallel independent jobs,
this approach can be combined with a job resubmission system that enables to
execute again the failed tasks. This, of course, affects the total execution time
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Figure 3.3: Ordered shutdown of nodes during a planned maintenance period.

of the jobs. In contrast, this total execution time is not affected by using the
ordered shutdown, because the system waits until the end of the jobs execution to
terminate the nodes. Therefore, we will use this latter approach to illustrate the
migration capabilities of our developed system.

Figure 3.3 shows the evolution of the distribution of nodes when the cluster is
asked to migrate part of its nodes. In this case study, the chosen policies where
on demand (scale out) and delayed shutdown (scale in). It started with an initial
cluster of 5 on-premises nodes, where the user is executing 5 jobs (minute 18).
In the minute 41, the sysadmin requests the migration of 4 worker nodes to the
IM client because of a maintenance period in the physical infrastructure. So, the
system disables these worker nodes, by setting their state to offline, so that they
are not assigned new tasks. This state change does not affect the execution of
the current jobs, which terminate in minute 67-68. One minute later, the monitor
terminates the nodes, reconfigures the cluster and deploys 4 new nodes in the
public Cloud. As a result, the migration process is completed in minute 73, where
the 4 worker nodes that originally composed the cluster are now allocated on
Amazon EC2 resources. When the user launches new jobs (minute 90), they are
going to be executed by the new nodes, so the migration process was completely
transparent for the user.

3.5 Conclusions and Future Work

This paper has introduced a software architecture that abstracts the details of
cluster deployment and configuration over hybrid Clouds. The system features
the provision of virtual hybrid elastic clusters, composed by on-premises resources
and public resources from public Cloud providers. Moreover, the system is able
to configure these resources to support the execution of the applications, and to
adapt the cluster’s size and topology to the dynamic characteristics of the appli-
cation and the needs of the datacenter. The benefits of the proposed architecture
have been exemplified by the execution of a computationally intensive gyro kinetic
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plasma turbulence application, that demonstrates the feasibility of this type of
architectures into de scientific community.

The future work involves improving the migration capabilities of the cluster. Dif-
ferent schemes are going to be considered, from the migration of the virtual clusters
to another physical infrastructure (involving the migration of the front-end), to live
virtual machine migration. This will introduce an unprecedented flexibility to de-
couple cluster-based computations from the physical infrastructure on which the
cluster was initially deployed. Moreover, this will enable datacenter migration,
or the ability to migrate running computational resources from one datacenter to
another. Also, we consider to develop new elastic policies that improve the per-
formance of our virtual hybrid elastic clusters. Spot instances from Amazon EC2
are going to be considered in order to reduce the total cost over public Clouds.
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Abstract

In this study, we describe the further development of EC3, a tool for creat-
ing self-managed cost-efficient virtual hybrid elastic clusters on top of IaaS
clouds. By using spot instances and checkpointing techniques, EC3 can
significantly reduce the total execution cost as well as facilitating automatic
fault tolerance. Moreover, EC3 can deploy and manage hybrid clusters across
on-premises and public cloud resources, thereby introducing cloud bursting
capabilities. We present the results of a case study that we conducted to
assess the effectiveness of the tool based on the structural dynamic analysis
of buildings. In addition, we evaluated the checkpointing algorithms in a
real cloud environment with existing workloads to study their effectiveness.
The results demonstrate the feasibility and benefits of this type of cluster
for computationally intensive applications.
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4.1 Introduction

The successful use of clusters of PCs as a computing facility is widespread in the
scientific community for both HPC and HTC. However, these computing platforms
have several drawbacks, such as the requirement for a large upfront investment and
maintenance costs, which have major economic effects in small and mediumsized
organizations. Moreover, the size of a physical cluster cannot be adapted easily
to the application workload and they cannot provide customized environments for
executing each separate application.

In recent years, the development of hypervisors and virtualization technologies
have paved the way for cloud computing. This paradigm can address those prob-
lems with customizable VMs, which decouple the execution of the application
from the underlying hardware, where they are dynamically provisioned and re-
leased [127]. Thus, depending on the resource usage and cost model, it might be
convenient to deploy a virtual cluster instead of a physical one, as suggested in a
previous study [58]. Virtual clusters in the cloud are highly beneficial for many
computational workloads, but particularly for highly parallel tasks. These bene-
fits include the ondemand provision of per-application customized clusters as well
as the ability to dynamically increase and decrease the number of working nodes
in the virtual cluster according to the current workload, as demonstrated in our
previous study [34]. Our previous study led to the development of EC31 [34] as
an open-source tool for the deployment of customized virtual elastic clusters on
different on-premises platforms, such as OpenNebula [175] and OpenStack [150],
and public cloud providers, such as AWS [12]. In the present study, we build on
our previous research by introducing two significant features: (i) automatic check-
pointing coupled with cost-effective mechanisms for providing transient computing
capacity (referred to as spot instances in AWS); and (ii) the ability to deploy hy-
brid virtual clusters across on-premises and public cloud platforms, according to
an elastic scheme that spans different cloud providers.

For the first feature, we exploit the cost-effective advantages provided by cloud
providers in order to reduce the total execution cost. This is the case for spot
instances, which is a cloud pricing scheme available in Amazon EC2, where the
users decide the maximum price that they are willing to pay for an instance, with
savings of up to 86% compared with on-demand instances [13]. The user bids on
spare Amazon EC2 instances and runs them whenever the bid exceeds the current
spot price, which varies in real-time based on supply and demand. This variation
causes the instance to terminate if the spot price is higher than the bid by the user,
thereby interrupting the execution of the job. This situation is referred to as an
“out-of-bid” situation. Recently, Amazon has included spot instance termination
notices [67], which provide a two-minute warning before the provider terminates
the spot instance. This improvement is useful for some applications, but two

1EC3: http://www.grycap.upv.es/ec3
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minutes may not be sufficient time to checkpoint big applications, such as scientific
applications, which might require additional time to save their content. Therefore,
this type of instance is available at a lower cost but at the expense of reduced
reliability. Thus, checkpointing allows the job progress to be saved periodically
before the spot instance is terminated by the provider, thereby facilitating job
resumption from the last checkpoint. In the present study, we review, propose,
and implement checkpointing algorithms for this purpose.

For the second feature, the coexistence of on-premises and public clouds has lever-
aged cloud bursting, where virtual clusters can be enlarged with resources outside
the organization, and thus hybrid clusters can harness on-premises and public
cloud resources simultaneously. This approach is highly advantageous because it
allows users to seamlessly access cluster-based computing resources in addition to
those available via their onpremises clouds. Other topologies can be considered
for hybrid clusters when using virtual resources, such as heterogeneous clusters,
where various nodes in the cluster have different hardware characteristics.

Therefore, in this study, we extend the capacities of EC3 to allow users to deploy
self-managed cost-efficient virtual hybrid elastic clusters on top of IaaS clouds. The
remainder of this paper is organized as follows. First, Section 4.2 reviews related
research as well as the main contributions of the present study to the state of the
art. Next, Section 4.3 focuses on the architecture and the new features included
in EC3. In Section 4.4, we present two case studies that we conducted to assess
the functionality and benefits of the new features incorporated in EC3. Finally,
we give our conclusions in Section 4.5 and we discuss future research.

4.2 Related work

Previous studies have aimed to deploy virtual clusters on cloud infrastructures,
e.g., StarCluster [134] is an open-source tool that provides clusters in Amazon
EC2 based on a predefined configuration for applications (Open Grid Scheduler,
OpenMPI, NFS, etc.). In addition, CycleCloud [56] is a commercial service pro-
vided by CycleComputing that deploys virtual clusters. However, both tools can
only provide resources from Amazon EC2 so virtual clusters cannot be deployed
through on-premises cloud platforms created with CMPs such as OpenNebula or
OpenStack.

Elasticluster [203] can be employed to create virtual clusters on two cloud providers
(Amazon EC2 and Google Compute Engine) as well as on-premises cloud platforms
(OpenStack supported). The clusters can be scaled by the user but automated
elasticity is not supported. Other tools for deploying virtual clusters have also
been reported such as ViteraaS [62], which allows the creation of virtual clusters
to manage the execution of user-defined jobs, but users are not provided with
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direct access to the cluster. There are also commercial solutions such as IBM
Platform Dynamic Cluster [94], which aims to partition on-premises resources to
deliver each user with a custom cluster that has specific features. The features of
this system include live job migration and automated checkpoint restart. However,
this product was designed for the management of on-premises infrastructures and
it cannot be connected to commercial cloud providers.

In terms of the creation of clusters over hybrid cloud infrastructures, previous
studies [138], [139] and [140] have analyzed architectures, algorithms, and frame-
works for deploying clusters over these infrastructures, where they analyzed the
performance of virtual clusters deployed on top of hybrid clouds and obtained
good results to demonstrate the feasibility of this type of deployment. These stud-
ies used a fixed number of on-premises nodes and they scaled up the cluster using
public nodes. However, the migration of workloads among infrastructures was not
considered. In [120], [121], [66], the Nimbus toolkit was employed to implement
and evaluate an elastic site manager, which dynamically extends existing physical
clusters based on Torque using computational resources provided by Amazon EC2
according to different policies. A similar approach was employed by [22], who
investigated the benefits of using cloud computing to augment the computing ca-
pacity of a local infrastructure, although no details of the underlying technologies
were given.

Regarding spot instances, many studies have attempted to develop predictive mod-
els of spot price variations, where some of the proposed solutions are based on
Gaussian distributions [99] or Markov chains, such as [178] and [174]. However,
other studies found that the spot price variation over time in Amazon EC2 did
not seem to follow any particular distribution [123]. It was also observed [5] that
Amazon might intervene with the prices artificially by setting a reserve price and
generating prices at random, thereby further complicating the prediction of spot
price variations.

Another field of research is the deployment of virtual clusters using spot instances.
In [122], the economics of purchasing resources on the spot market were consid-
ered when handling unexpected load peaks in a cluster, but they did not consider
checkpointing techniques. If the instance is terminated, the application is restarted
from the beginning. This was the case in [42] where high bids were made rather
than employing checkpointing strategies, but this solution can incur higher costs,
thereby opposing the main advantage of spot instances. Moreover, Amazon has
recently limited [11] the bids made by users to 10 times the on-demand price of the
instance. Other solutions have involved deploying a cluster that fully comprises
spot instances [184], but again it was assumed that the bid value was sufficiently
large to avoid the spot instance being killed by Amazon. Finally, SpotMPI was
presented in [177] as a toolkit to facilitate the execution of MPI applications on
volatile auctionbased cloud platforms. This toolkit can monitor spot instances
and bidding prices to automate checkpointing at the bidding price and automat-
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ically restart the application after out-of-bid failures. However, this tool has the
following limitations. First, it is based on StarCluster so it is restricted to AWS.
Second, elasticity management for the clusters is not self-managed inside the clus-
ter because StarCluster implements the elasticity using the Elastic Load Balancer
plugin [135], which runs on the local computer from which the cluster was de-
ployed, thereby requiring a permanent connection to the cloud infrastructure to
create and destroy the VMs. Instead, we propose self-managed virtual clusters
where no external entities are required for elasticity management.

In conclusion, to the best of our knowledge, no previous study has proposed a tool
that integrates hybrid virtual clusters with the use of spot instances and check-
pointing techniques, as well as featuring self-managed elasticity. EC3 provides a
full-featured open-source development and a web-based interface, which allow users
to deploy their own customized virtual clusters on AWS, OpenNebula, Openstack
and EGI FedCloud.

4.3 Elastic Cloud Computing Cluster (EC3)

EC3 was developed to create virtual elastic clusters on top of IaaS clouds. These
self-managed clusters have the ability to adapt the size of the cluster to the work-
load, thereby creating the illusion of a real cluster, but without requiring any
investment beyond their actual usage. Therefore, they can scale up to a larger
number of nodes (up to a maximum size specified by the user) depending on the
number of jobs that need to be queued in the LRMS. Whenever idle resources are
detected, the clusters scale up dynamically and automatically in order to reduce
the costs when using a public cloud provider. The elasticity management is con-
ducted by the front-end node of the cluster using CLUES [9]. More details of the
elasticity management process are available in [34].

EC3 supported different cloud providers but the cluster had to be fully deployed in
the same IaaS cloud. Therefore, EC3 did not provide support for hybrid clusters.
In the present study, we describe the development of support for virtual hybrid
elastic clusters in EC3, where on-premises resources are supplemented with public
cloud resources to accelerate the execution process by providing further resources.
Different instance types and the use of spot instances combined with on-demand
resources are further cluster configurations supported by EC3.

Moreover, we modify EC3 to allow users to improve the cost/performance ratio.
On-demand instances incur higher costs than spot instances, but the latter present
higher risks at the expense of a lower cost and an increased provisioning time (the
delay until the bid is accepted). In order to alleviate the risks of using spot
instances, such as out-of-bid situations, EC3 employs checkpointing techniques.
However, deciding when to perform a checkpoint to save the execution progress of
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the jobs running on spot instances is not a trivial task, particularly for applications
with large memory footprints, where the time required to perform a checkpoint
cannot be neglected.

It is important to note that the user experience should be maintained regardless of
the physical location of the cluster and the types of machines employed. Indeed,
the user should be unaware that the virtual cluster actually comprises resources
on top of one or more clouds where the infrastructure adapts its size dynamically
to the workload. The user is provided with the IP of the cluster and an SSH client
is employed to access the front-end node.

In the following subsections, we describe the overall architecture of the EC3 tool
and its components.

4.3.1 Previously developed EC3 components

In order to deploy and configure the virtual cluster, we employ previously devel-
oped components and open-source software that are available to the community,
as follows.

� Resource Application Description Language (RADL) [7]: A declara-
tive language that allows users to describe the computational infrastructure
required to run their applications.

� Virtual Machine image Repository and Catalog (VMRC) [46]: This
component indexes the VMIs stored in different cloud VMI repositories. It
also implements matchmaking algorithms to obtain a ranked list of VMIs
that satisfy the aforementioned set of requirements (as described in the
RADL document).

� CLUES [9]: This energy management system is used in our architecture
to manage the automatic elasticity of the virtual clusters. Initially, CLUES
was designed to work with physical clusters, but it can work with virtual
resources via a cloud connector. CLUES implements the policies used to
decide when to increase the capacity of the cluster and when to decrease the
number of nodes. More details of the elasticity policies can be found in [34].

� Ansible [190]: This DevOps tool is used to perform the unattended exe-
cution of commands specified in a Yet Another Markup Language (YAML)
document in order to automatically install the software dependencies. There-
fore, this tool installs the required software packages so the VMs behave as
a cluster and the execution environment of the applications is configured
successfully.
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� Infrastructure Manager (IM) [33]: The IM is in charge of contacting
different CMPs in order to deploy the VMs that comprise the virtual cluster,
the requirements of which are described in the RADL document. The IM also
manages the contextualization of the VMs using Ansible. The IM uses a set
of plugins to access a large number of cloud deployments and virtualization
platforms. The IM currently provides access to OpenNebula, OCCI, Amazon
EC2, Google Cloud, Microsoft Azure, Docker, OpenStack, and libvirt.

� Local Resource Management System (LRMS): Two different LRMSs
are currently supported by EC3: SLURM [100] and Torque + Maui. First,
SLURM is an open-source resource manager, which provides a framework
for starting, executing, and monitoring work on a set of allocated nodes.
Second, the Torque Resource Manager [2] allows the control of batch jobs
and distributed computing resources by using Maui as a job scheduler to
coordinate the execution of jobs over the cluster.

� Berkeley Lab Checkpoint/Restart (BLCR) [65]: This is a tool for
transparently checkpointing applications, including MPI applications, where
the checkpoints are performed at the hybrid user/kernel level. BLCR does
not require changes in the application code to perform a checkpoint. In EC3,
BLCR is used to checkpoint applications running on spot instances, thereby
saving the job state.

� Network File System (NFS): In a spot instance environment, NFS is
used to create a shared directory among the nodes of the cluster where
the checkpoint files are saved. Thus, when a spot node is destroyed, the
checkpoint file of the job under execution can be accessed to restart the job
on another node.

� OpenVPN [152] and SSH tunnels: These two technologies provide con-
nectivity between the front-end and the working nodes when some of the
hosts are in a private network or behind a firewall. This situation typically
arises in hybrid clusters.

4.3.2 Overall architecture

Figure 4.1 summarizes the main architecture of EC3. The deployment of the
virtual cluster comprises three phases: (1) start a VM in the cloud to act as
the cluster front-end, (2) configure the frontend, and (3) manage the cluster size
automatically and configure new nodes according to the workload.

First, the user provides the EC3 client (using the Graphic User Interface (GUI)
or CLI) with the following data to perform phase (1): a cluster name to facili-
tate the management of the cluster for the users (connecting via SSH, showing
information, reconfiguring, etc.), a file that contains credentials for accessing the
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and phase 3 (brown) are also indicated.

different cloud providers, and the endpoint of the IM for deploying the front-end
together with the RADL files (step 1 in Fig. 4.1). The user can employ the de-
fault RADLs provided by the tool (such as the instructions required to configure
a SLURM cluster or the hybrid features), but the user can also include additional
customized RADLs to configure the cluster for specific applications. Inside the
RADLs, the characteristics of the nodes are given in terms of hardware, software,
and configuration requirements.

Moreover, the user can specify the maximum number of nodes that comprise the
cluster. The specification of a maximum number of nodes is also supported for a
given type (e.g., the maximum number of nodes based on spot instances or the
maximum number of on-demand nodes). The user can change these values during
the lifecycle of the cluster via the reconfigure command in the EC3 client.

According to the data specified by the user, EC3 contacts the IM to deploy the
front-end. First, the IM selects the appropriate VMI for the front-end. A particular
user-specified VMI can be selected, or the VMRC can be contacted to choose the
most appropriate available VMI (step 2) by considering the requirements in the
RADL file. The IM then chooses the IaaS cloud provider and the type of instance
(spot or on-demand if necessary) according to the requirements specified by the
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user (step 3). In the RADL file, the user can specify whether spot instances will
be used or not. It should be noted that the IM will only use spot instances if the
actual spot price is lower than the on-demand price. Finally, phase 1 concludes by
deploying the instance that will be used as the front-end node of the cluster.

Phase 2 starts when the aforementioned instance is available by installing and
configuring all of the required software that is not already preinstalled in the VM
(step 4). In this phase, all of the required software is installed to configure the
instance as the front-end of the cluster, which involves deploying: (i) a new IM
in the front-end for deploying the worker nodes; (ii) Ansible to configure the new
nodes; (iii) CLUES to manage the elasticity of the cluster; (iv) the LRMS selected
by the user; and (v) (optionally) additional software packages specified by the
user. If the cluster needs to be configured as a hybrid, VPN or SSH tunnels must
be configured to interconnect all of the nodes (selected by the user). Moreover,
BLCR and NFS are configured if the user enables the use of spot instances.

Phase 3 starts after the front-end has been deployed and configured. At this
point, the virtual cluster (composed only by the front-end node) becomes totally
autonomous and users can submit jobs to the LRMS either from the cluster front-
end or from an external node with job submission capabilities (step 5). The user
will have the illusion of a cluster where the number of nodes is specified as the
maximum size. CLUES monitors the working nodes and intercepts the job sub-
missions as they arrive at the LRMS, thereby allowing the system to dynamically
manage the cluster size transparently to the LRMS and the user by scaling up and
down on demand. Similar to the deployment of the frontend, CLUES internally
employs the IM configured in the front-end during phase 2 to deploy additional
VMs for use as working nodes in the cluster (step 6). When these nodes are avail-
able, they are integrated automatically into the cluster as new available nodes for
the LRMS.

Finally, step 7 represents a hybrid situation where some nodes in the cluster are
deployed in another cloud provider to satisfy the requirements of the user. More
details of the hybrid cluster configurations are considered in Section 4.3.5.

More details about the three phases of the deployment of the virtual cluster process
can be found in A. This appendix contains two additional sequence diagrams that
might help to understand the behaviour of EC3.
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4.3.3 Checkpointing Manager (ckptman)

Ckptman is a tool that was developed specifically for EC3, which automates check-
pointing of the jobs running on spot instances in order to save as much of the job
execution progress (and reduce the costs) as possible. Ckptman was designed to
work with Amazon spot instances and the BLCR checkpointing tool within the
EC3 cluster deployment tool. It also uses NFS to share the directory where the
checkpoint files are saved. Thus, when a spot instance is terminated by Amazon,
the checkpoint file is not lost and the job can be restarted in another node. It
should be noted that the frontend node of the cluster is never deployed as a spot
instance.

The structure of ckptman is illustrated in Fig. 4.2. The tool deployed in the
front-end comprises a daemon to check the states of the jobs running in the nodes
deployed using spot instances for every preset amount of time. The IM connector
determines the nodes deployed using spot instances from the IM. In addition,
it obtains the states of the jobs from the LRMS. Depending on the algorithm
selected from those described in Section 4.3.4, a decision is made about whether
it is necessary to perform a checkpoint or not. Checkpoints are made by invoking
BLCR commands using SSH connections to the node where the checkpoint must
be made. It should be noted that BLCR supports checkpointing MPI processes,
so parallel jobs can also be checkpointed by ckptman.
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When a node is destroyed by Amazon due to an out-of-bid situation, ckptman
records this fact and enqueues the affected job again, as well as recovering the
state of the job from its last checkpoint or from the beginning if no checkpoint
file is found for that job. This might cause the deployment of a new node if
no idle nodes are available in the cluster. In the next subsection, we described
the checkpointing algorithms employed in previous studies and we explain the
algorithms implemented in ckptman.

In Appendix B, two flowcharts about the behaviour of ckptman are included. These
flowcharts provide more details about the initial creation of the dictionary that
contains the relation about the spot nodes and the jobs that are in execution, and
the control of checkpointing operations and state of nodes performed by ckptman.

4.3.4 Checkpointing algorithms

Several checkpointing strategies have been developed in previous studies for saving
work immediately before an out-of-bid situation occurs, such as [199] and [103].
However, none of them were actually tested in a real environment so the the tech-
nologies used to produce the checkpoints were never described. In fact, the results
presented in these previous studies were based on simulations. Some of them even
considered infinite values for bids [107], which would make checkpointing unnec-
essary. Therefore, we describe the implementation of a solution and we propose
a new algorithm, as well as presenting their assessments where we evaluated their
performance in real scenarios. After analyzing the checkpointing strategies de-
scribed previously based on the performance obtained in simulations, we selected
two different checkpointing algorithms for implementation in our tool, as follows.

� Hourly Checkpointing (HOUR): Checkpoints are made just before the be-
ginning of the next instance hour based on a checkpoint margin time. Ama-
zon does not charge for any partial hours when it terminates the instances
due to an out-of-bid situation, so this algorithm, which was proposed by
Sangho et al. [199], will save a job process for which the user has already
paid. The margin time required to perform a checkpoint can be adapted to
the time required to perform the checkpoint for the user’s application, which
depends on the memory consumption by the application and other factors,
such as the MPI communications used.

� Threshold Checkpointing algorithm (THRESHOLD): Checkpoints are made
when there is an increase in the price of the spot instance within an interval.
The lower limit of the interval is a fraction of the price determined by the
user. This value is recalculated every 10 minutes or when a checkpoint is
performed. The upper limit is the bid made by the user. Checkpoints are
also made every hour.
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The lower limit of the interval is:

Threshold =
Px + Ubid

2

where Px is the average of the prices in the last period of 10 minutes, and
Ubid represents the bid of the spot price request.

However, it is necessary to avoid overloading the system due to massive
amounts of checkpointing operations when fluctuations over the upper limit
occur in some periods. Thus, when a checkpoint is made, the lower limit of
the threshold is recalculated by:

Thresholdckpt =
Pckpt + Ubid

2

where Pckpt represents the price that has caused the checkpointing operation.
This formula is also used to calculate the initial threshold when the VM
starts, where the value of Pckpt represents the price when the instance is
deployed.

This can be considered as an improvement on the algorithm proposed in [103],
for two main reasons. First, the hourly checkpoints can save the job under
processing when there is an unexpected peak if the variation in the price
is very high. Second, the new method for calculating the threshold better
adapts the value to avoid multiple checkpoints during a variable period close
to the user’s bid. Algorithm 2 represents the threshold algorithm in a more
programmatic manner.

Fig. 4.3 shows an example to illustrate the behavior of the algorithms implemented
in ckptman with the same variation in spot prices. When an out-of-bid situation
occurs, both algorithms can recover the job execution progress, but at different
points. The THRESHOLD algorithm loses less of the job execution progress than
the HOUR algorithm, but it also performs more checkpoint operations, although the
threshold is recalculated to adapt to the price variations. Additional checkpointing
algorithms can also be developed and easily introduced in ckptman2.

2The source-code of ckptman is available at: https://github.com/grycap/ckptman
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(a) Behavior of the HOUR checkpointing algorithm.
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Figure 4.3: Behaviour of the checkpoint algorithms implemented in ckptman in a sim-
ulated scenario.

4.3.5 Hybrid features

One of the objectives of the new processes added to EC3 is to simplify the de-
ployment and management of virtual hybrid clusters when their computational
resources are provided simultaneously by on-premises clouds and different public
IaaS cloud providers. This is particularly important for the introduction of cloud
bursting and it allows users to seamlessly access a larger amount of computing
power.

Provisioning nodes across multiple clouds with private IP addresses hinders the
connectivity among nodes in different clouds. Therefore, EC3 deploys a VPN
server on the front-end, with which the worker nodes connect automatically. If
the front-end is behind a firewall that prevents port forwarding, we also allow the
deployment of reverse SSH tunnels on the affected nodes.

49



Chapter 4. Self-managed Cost-efficient Virtual Elastic Clusters on Hybrid Cloud Infr.

Algorithm 2 Threshold algorithm

Require: launch time, launch time, of the node; user’s bid, u bid; checkpoint
time margin, m
checkpoint = false
Obtain actual time, actual time
life time = actual time - launch time
remaining hour time = 3600 - life time % 3600
{Checkpoint if time is close to the next instance hour}
if remaining hour time < m then
checkpoint = true

end if
Obtain historic prices in the last 10 minutes from Amazon EC2, p
threshold= (p̄ + u bid)/2
{Checkpoint if the most recent price is greater than threshold}
if p[0] > threshold then
checkpoint = true

end if
if checkpoint then
threshold= (pl + u bid)/2

end if
return checkpoint

According to the interconnection strategy selected, EC3 can create four different
types of hybrid cluster configurations, as follows:

� On-premises resources + public resources: This is the clearest example
of cloud bursting. The cluster comprises virtual nodes deployed inside the
on-premises cloud of the organization. When the cluster needs to grow and
no further resources are available inside the on-premises cloud (due to user
quotas or an overloaded infrastructure), the new nodes are deployed in a
public cloud. It should be noted that the nodes provided from the public
cloud can be on-demand or spot.

� On-demand resources + spot instances: The cluster is deployed in a
public cloud where nodes can be on-demand or spot. Spot nodes should have
checkpointing capabilities in order to save the job execution progress in an
out-of-bid situation.

� Different instance types: The cluster can comprise nodes with different
characteristics (typically CPU and RAM), thereby forming an heterogeneous
cluster. For example, in AWS, a cluster can comprise small (1 vCPU and
2 GB of RAM)3 and medium (2 vCPU and 4 GB of RAM) instances. This

3Each vCPU is a hyperthread of an Intel Xeon core.
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type of configuration is of special importance for heterogeneous parallel com-
puting. The software configuration can be the same for all of the nodes
comprising the cluster, but it is also possible to configure specific software
packages for a particular type of node.

� Different public or private Cloud providers: the cluster is deployed
across different cloud providers, thereby providing resources from multiple
clouds.

It should be noted that all possible combinations of the four types described above
are also supported by EC3. In particular, HPC applications should be considered
when they run in hybrid scenarios. If all of the nodes running a job are not in the
same cloud or data center, the performance can be compromised by high latency
or low bandwidth when accessing the shared file system and performing explicit
communications (e.g., as occurs in MPI applications). We prevent this by creating
a nodes partition per cloud in the LRMS. For example, SLURM will enforce the
assignment of all the nodes for a job from the same partition. However, we let the
LRMS deal with the possible fragmentation of resources, i.e., the case where idle
nodes cannot be assigned to a job because they are not in the same partition.

4.4 Case studies

In this section, we present two case studies. In the first presented in Section
4.4.1, we describe an assessment of the effectiveness of the tool based on a com-
putationally intensive scientific application for the structural dynamic analysis of
buildings. The results demonstrate the feasibility and benefits of this type of
cluster for computationally intensive applications. Second, in Section 4.4.3, we
present evaluations of the checkpointing algorithms in a real environment with
real workloads to study their effectiveness.

4.4.1 Structural Dynamic Analysis of Buildings using EC3

In order to assess the effectiveness of a self-managed cost-efficient virtual hybrid
elastic cluster on a cloud infrastructure, we present a case study based on the struc-
tural dynamic analysis of buildings. The structural dynamic analysis of buildings
is required to accurately simulate how a building will be affected by external dy-
namic loads, such as an earthquake. This is a computationally intensive task and
it can be tackled in an efficient manner by parallel computing on clusters of PCs.
The simulations were executed using the structural simulator component of the
Architrave software [160], which comprises an MPI-based HPC batch application
that benefits from on-demand clusters via the cloud in order to provide an online
service for structural analysis by a community of users. This structural simulator
has some library dependencies, such as PETSc and SLEPc.
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Figure 4.4: Scenario of the first case study: A hybrid virtual elastic cluster across an
on-premises platform (OpenNebula) and public Cloud (AWS).

This case study involved a virtual infrastructure designed specifically for the struc-
tural dynamic analysis of buildings, where multiple users could access and execute
their jobs. A simplified representation of the scenario is shown in Figure 4.4. We
performed two different executions with two distinct cluster configurations: sce-
nario (a) a hybrid infrastructure that comprised nodes from our on-premises cloud
and public nodes from AWS, where we only considered on-demand instances; and
scenario (b) a hybrid infrastructure that comprised nodes from our on-premises
cloud and public nodes from Amazon EC2 using spot instances.

The job pattern submission used in both cases is represented in Figure 4.5, which
we designed specifically to test the infrastructure elasticity and its ability to cre-
ate hybrid clusters. The jobs were sequential (HTC) or parallel (HPC), so they
could need more than one node, as well as having different duration, and thus
we considered the job heterogeneity that the physical clusters had to handle. In
particular, this case study comprised four types of jobs: (i) sequential jobs with
an approximate duration of one hour in a single node, (ii) parallel jobs with an
approximate duration of one hour in two nodes, (iii) sequential jobs with an ap-
proximate duration of two hours in a single node, and (iv) parallel jobs with an
approximate duration of two hours in two nodes. As mentioned earlier, jobs that
required more than one node were all performed by nodes in the same cloud using
SLURM partitions that represented each cloud, which ensured high performance
and low latency communication among these nodes. In total, 124 jobs were per-
formed during each execution, i.e., 83 sequential jobs and 41 parallel jobs. The
infrastructure used to deploy the on-premises cloud comprised eight dual proces-
sors with 14 core nodes (28 cores per node), with 64 GB of RAM and a shared
storage system of 10 TB, which was backed up by a storage area network where
the hard disks were stored as volumes. This system was managed by OpenNebula
4.8 using KVM as the underlying hypervisor. The public cloud was AWS. The
instance type selected was m1.medium, with one (virtual) processor, 3.75 GB of
RAM, and 410 GB of disk space. The VMI used in the on-premises cloud provided
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Figure 4.5: Job pattern submission during the case study. In total, 124 jobs were
executed.

the same execution environment as EC2 AMI, i.e., an Ubuntu 12.04 LTS precon-
figured with BLCR and SLURM. Thus, all of the VMs deployed on both clouds
had the same characteristics. We selected a preconfigured VMI to accelerate the
deployment time for the working nodes, as explained later, but it would also be
possible to configure all of this software on-demand. For both executions, we used
SSH tunnels to interconnect the nodes.

Moreover, we fixed a limit of 50 nodes (plus the front-end) as the size of the cluster.
A maximum of 35 of these nodes could come from the on-premises cloud and the
remainder (15 nodes) were from the public cloud.

4.4.2 Results and Discussion

First, we analyzed the time differences in the deployment and contextualization
processes for the types of VMs used in our case study. Table 4.1 shows the average
times obtained for each step with VMs deployed in our on-premises cloud (second
column), on-demand instances deployed in Amazon EC2 (third column), and spot
instances from EC2 (fourth column). The results show that the deployment time
using spot instances was considerably higher than that with on-demand instances
because of the time required by AWS to complete the spot request (335 seconds
in average). In addition, there were differences in the contextualization process
according to the use of preconfigured VMIs (with only BLCR and SLURM pre-
installed). Due to these differences, we decided to use a preconfigured VMI in the
subsequent executions. It was still necessary to configure the SLURM configuration
files, SSH tunnels, NFS system, and the application dependencies. However, the
time consumption during the contextualization process was reduced significantly
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OpenNebula
instance

EC2 On-
demand
instance

EC2 Spot
instance

Deployment 40 45 335

Non-preconfigured VMI:
Contextualization 661 698 702

Total average time 701 743 1037

Preconfigured VMI:
Contextualization 196 232 337

Total average time 236 277 672

Table 4.1: Average deployment and contextualization times (in seconds) for nodes
deployed in different clouds.

by starting from a VMI with BLCR and SLURM previously installed. Second, we
present the results obtained when executing scenario (a) and scenario (b) using
the job pattern submission in Fig. 4.5. For both executions, we used conservative
elasticity policies to ensure the minimum costs for the infrastructure in terms of
energy consumption (for the onpremises cloud) and budget consumption (for the
public cloud). Thus, the selected scale out policy only deployed a new node (or
two nodes if the job required them, such as parallel jobs in our case study) if there
were no idle nodes in the virtual cluster. EC3 deployed nodes in the on-premises
cloud until it reached the limit (35 nodes). If more nodes were required, they
were deployed in the public cloud. The scale in policy removed a node from the
infrastructure when it was idle for 60 seconds and no more jobs were queued in the
LRMS. It is possible to select different scale in and out policies other than those
provided in EC3, such as group-based starting of nodes or time blocks to destroy
them; however, in this case study, we focused on the hybrid features and the cost
savings obtained by using the spot instances and the checkpointing techniques.
Further details of the elasticity policies can be found in [34].

During the first execution, as shown in Fig. 4.6(a), a hybrid infrastructure com-
prising nodes from our on-premises cloud (OpenNebula) and on-demand public
nodes from AWS handled the execution of jobs. Three scale-out periods and three
scalein periods could be observed. An accurate analysis of the results identified
two overloaded periods in the on-premises cloud. The first occurred at 3 hours 20
minutes when the on-premises cloud had 35 nodes deployed and there was at least
one job pending in the queue. EC3 decided to deploy a new node in the public
cloud, but we can see from the graph that before the node deployed in EC2 was
ready, a node in our private cloud completed the execution of its jobs and the
pending job in the queue was automatically submitted to this node by the LRMS.
EC3 did not receive new jobs during this period, so it terminated the instance
provided from AWS.
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(a) Hybrid infrastructure using on-demand in-
stances.
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(b) Hybrid infrastructure using Spot in-
stances.

Figure 4.6: Behaviour of the Virtual Hybrid Elastic Cluster in both executions.

The second important feature in the graph started at 5 hours 30 minutes when the
frequency of job submissions was less than one minute, thereby causing saturation
of the infrastructure. All 35 of the nodes deployed in OpenNebula were executing
jobs, so EC3 started to provide new nodes in AWS to execute the new jobs. At
6 hours, the working nodes deployed in OpenNebula finalized their execution and
started to receive new jobs, thereby helping to overcome the saturation situation.
It should be noted that the deployment and contextualization of new working
nodes was conducted in parallel.

Figure 4.6(b) shows the results of the second execution, where EC3 configured a
hybrid infrastructure that comprised nodes from our on-premises cloud and nodes
from AWS using spot instances. The checkpoint algorithm selected for execution
was threshold. We considered a basic opportunistic approach by setting the maxi-
mum bid price for the spot requests to the on-demand price for the same type of
instance as 0.087$. Using this strategy, we ensured that a spot instance cost no
more than the price for an on-demand instance because AWS guarantees that you
will never pay more than your maximum bid price per hour. It was also possible
that we might pay less per hour than our maximum bid price due to periodical
adjustments in the price by AWS, where everyone pays the same spot price for a
period regardless of whether their maximum bid price was higher.

As shown on Table 4.1, working nodes deployed with spot instances require more
time before they are ready to execute jobs. This may explain the main differences
observed between Fig. 4.6(a) and 4.6(b). In total, 29 checkpoints with an average
duration of 160 seconds were completed during execution. This example shows
that the 2-minute warning added recently by Amazon to notify the impending
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Figure 4.7: Spot price history corresponding to 8th April 2015, when the case study
was executed, for m1.medium instance type.

termination of the spot instance is not sufficient. It should be noted that the IM
selects the cheapest available zone for the spot instances request, which was us-
east-1e in this case study. As shown in Fig. 4.7, this region was not affected by
price variations during execution, so the checkpoints occurred hourly.

On-demand execution Spot execution

Seq. jobs avg. waiting time 7min 14s (434s) 10min 9s (609s)
Par. jobs avg. waiting time 14min 43s (883s) 17min 56s (1076s)

Total time of execution 10h 47min 12s (38832s) 10h 56min 21s (39381s)
Total cost of execution 2.349$ 0.234$

Table 4.2: Details of time and price about the executions.

Table 4.2 shows the times and costs required for both executions, which indicate
that the total time for execution was similar in both examples, but the cost was
lower when we used spot instances, as expected. The actual on-demand price for
a m1.medium instance was 0.087$, whereas the spot price for the same instance
during our execution was 0.0081$. Thus, the total cost of execution using spot
instances was 10% of the execution cost with on-demand instances. In addition,
the differences in the job waiting time in the queue between sequential and parallel
jobs was caused by the scheduling policy selected. When a new job arrives in the
queue and requests two nodes (or more), CLUES automatically deploys the number
of nodes requested by the job via the IM (if there are no available nodes in the
cluster). If a second job arrives in the LRMS queue during the deployment process
and it requests less nodes than the first job, its execution will probably start earlier
than that of the first job. This is because the deployment and contextualization
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Figure 4.8: Spot price history corresponding to the period from 9th September 2015
to 15th September 2015, for m3.medium instance type in the availability zone us-east-1c.
The OS is Linux/UNIX (Amazon VPC).

processes for the new nodes are not finalized at the same time, and there is usually
a difference of a few seconds between nodes launched at the same time, but the
difference is sufficient to detect an active node before the others. Therefore, the
LRMS detects an active node and sends it the second job. CLUES can also be
configured to behave in a different way by waiting for the second node to become
active without starting a new job on the first node.

4.4.3 Analysis of the checkpointing algorithms

In this subsection, we provide a detailed analysis of the effectiveness of the two
checkpoint algorithms, which determine the best moment to make a checkpoint
for an application running on a spot instance. We based our analysis on real
workloads obtained from the Grid Workloads Archive [96], with the aim of testing
the proposed algorithms in a real environment, thereby differentiating our research
from most previous studies, which are typically based on simulations.

In order to rigorously compare the behavior and performance of the two check-
pointing algorithms proposed in the present study (HOUR and THRESHOLD), we per-
formed three different executions in a spot environment. The first did not use
checkpointing techniques (NONE). The second used the HOUR algorithm and the
third used the THRESHOLD algorithm. Thus, we had to use the same price varia-
tions for all of the executions in order to compare the results in an appropriate
manner. Therefore, we selected a specific fragment of the spot price history pro-
vided by Amazon EC2, as shown in Fig. 4.8. The period used in the case study was
September 9–14, 2015 for the m3.medium instance type in the availability zone
us-east-1c. The user bid was 0.067$ and the on-demand price for this instance
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 Figure 4.9: Workload of the case study, extracted from the GWA-T-3 NorduGrid
dataset.

type employed the same opportunistic approach as the first case study. Finally,
for comparative purposes, the fourth execution was an on-demand execution using
the same type of instance, i.e., m3.medium.

The objective of this case study was to analyze the efficiency of the checkpointing
algorithms under a spot scenario, so the configuration of the cluster had an on-
demand m3.large frontend with spot m3.medium nodes, all of which were deployed
in AWS. The maximum size of the cluster was fixed to 12 nodes according to the
workload used. This real workload was a fragment extracted from the GWA-T-3
NorduGrid dataset provided by the Grid Workloads Archive (lines 4–16 in the
.gwf file), as shown in Fig. 4.9 in terms of the size evolution of the cluster. In this
dataset, the jobs were executed in a sequential manner [19]. Further parameters
and values for this case study are presented in Table 4.3.

Task avg. time 191407s
Node deployment avg. time 672s

Checkpoint avg. time 160s
Recovery avg. time [74, 746]s

User bid 0.067e
ckptman revalue time 30s

Table 4.3: Parameters and values for the second case study.

The recovery time of jobs depends on whether there is an available node for execut-
ing the re-submission of the job or not. If a node exists, an average of 74 seconds
is required to recover a job from its checkpoint. However, if a node does not exist,
EC3 needs to deploy a new node to execute the job, where time is required to
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Figure 4.10: Threshold evolution of the THRESHOLD algorithm vs price history of
m3.medium instance type. Also the evolution of the cluster in terms of nodes is rep-
resented.

deploy and configure this new node in addition to the detection and re-submission
of the job (average of 746 seconds). This will occur when there is a large increase
in the spot price that exceeds the user’s bid because all of the nodes will be killed
by Amazon in this out-of-bid situation. The ckptman revalue time shown in Table
4.3 is a configurable parameter, which indicates how often the jobs and nodes are
reevaluated by ckptman to determine whether it is necessary to make a checkpoint.

4.4.4 Results and Discussion

In this subsection, we analyze and discuss the results obtained from the four ex-
ecutions described above. First, Fig. 4.10 represents the threshold evolution of
the THRESHOLD algorithm and the price history of the m3.medium instance type
during the THRESHOLD execution. The evolution of the size of the cluster in terms
of the nodes is also shown in this figure. Using this graph, we can obtain a gen-
eral view of the scenario in the case study, which is applicable to the three spot
executions performed. First, we can see that three important increases in the spot
price destroyed the working nodes in the cluster (between 57 and 63 hours) due
to an out-of-bid situation. Five jobs were affected and they had to be restarted.
Second, for the THRESHOLD execution, we can see that the value of the threshold
adapted continuously to the evolution of the price. Thus, a checkpoint was made
due to the price increase at 36 hours. However, the increases during hours 57
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and 63 were so high that the virtual machines were killed before the algorithm
could make checkpoints corresponding to the increases. However, the THRESHOLD

algorithm also performed checkpoints every hour to avoid losing the job execution
progress.
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(d) Percentage cost savings and time over-
heads with respect to an on-demand execu-
tion.

Figure 4.11: Performance evaluation for the three checkpointing strategies.

To better analyze the four executions performed, Fig. 4.11 shows several graphs
that compare the number of checkpoints, total time, and total costs. According to
Fig. 4.11(a), we can see the number of checkpoints performed by our algorithms
during execution. There was a difference of 7% between the HOUR and THRESHOLD

algorithms. Obviously, NONE and on-demand executions did not make checkpoints.
Fig. 4.11(b) shows the total execution time for the four executions. As expected,
on-demand execution was faster than spot execution. In addition, the differences
were very high with or without checkpoints during spot execution. Indeed, NONE
execution had 50% higher time overheads compared with ondemand execution.
By contrast, HOUR and THRESHOLD executions only had overheads of 1.3% and
0.63% with on-demand execution, respectively. The next graph shows the total
cost of the executions represented in Fig. 4.11(c). The highest costs were with on-
demand execution (48.17$), as expected. The second most expensive was NONE
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execution (13.02$), while the HOUR and THRESHOLD executions had similar costs
(10.16$ and 10.15$, respectively). Finally, Fig. 4.11(d) shows the performance
of the algorithms in terms of the cost and time for on-demand execution. The
time overheads represent the difference between the time required for on-demand
execution and spot execution. The best results were obtained by the THRESHOLD

algorithm, with savings of 78.94% and time overheads of 0.63% compared with
on-demand execution. However, the HOUR algorithm also obtained good results,
with savings of 78.92% and time overheads of 1.3%.

Based on this analysis of the execution data, we can make two important conclu-
sions. First, we demonstrated the importance of using checkpointing techniques
during spot execution. Spot execution can considerably reduce the costs but it
can also significantly increase the total time required for execution. This increase
can be reduced by using checkpointing techniques, as shown in other studies, such
as [199] and [107]. Second, after comparing both of the algorithms proposed in
this study (HOUR and THRESHOLD), we conclude that the THRESHOLD algorithm can
reduce the costs and time overheads better, but its performance is strongly related
to variations in the price history. Thus, if an increase that causes an out-of-bid
situation occurs without a predecessor value within the THRESHOLD interval leading
to an out-of-bid situation, then the algorithm cannot predict this increase. In this
case, saving the job execution progress relies on the checkpoint performed within
the last hour, and thus the differences between the two algorithms were not very
high in our case study. However, the THRESHOLD algorithm is expected to perform
better when the spot price history exhibits continual fluctuations before the out-
of-bid situation. In this type of scenario, the use of the THRESHOLD algorithm is
recommended. Furthermore, the HOUR algorithm is recommended for situations
where the spot price remains steady until a rapid increase occurs in the spot price,
thereby leading to an out-of-bid situation. In addition, given that partial hours
are not charged for terminated spot instances, then the use of the HOUR algorithm
is further recommended in this type of situation. This conclusion supports those
given in [199].

4.5 Conclusions and future work

In this study, we described the further development of EC3 as a tool that produces
self-managed cost-efficient virtual hybrid elastic clusters from the computational
resources provided by multiple IaaS clouds. In particular, we focused on two top-
ics: (i) hybrid clusters across on-premises and public clouds; and (ii) using the
spot instances provide by AWS to achieve reliable low cost cluster-based cloud
computing. We performed a case study based on a scientific application for the
nonlinear dynamic analysis of buildings, which we executed using a hybrid vir-
tual elastic cluster across an on-premises OpenNebula cloud and AWS. We also
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assessed the threshold algorithm and other previously proposed algorithms using
real workloads and real spot prices.

Our results demonstrated the ability of the clusters to adapt their size to the
workload, as well as automatic cloud bursting to a public cloud, and significant
savings due to the use of spot instances compared with on-demand instances, where
the increased resilience was attributable to performing periodic and automatic
checkpointing for the jobs. EC3 is open-source based on the Apache 2.0 License
and hosted on GitHub4, and a web application is also available for free (Elastic
Virtual Clusters as a Service) to the community5.

In future research, we aim to add migration capabilities to EC3. We plan to
enable the migration of virtual clusters across cloud platforms, thereby introducing
an unprecedented degree of flexibility for data centers, especially during planned
outages where computing power can be outsourced temporarily to a public cloud.
In addition, we may address the checkpointing of applications that also require
the restoration of the file system’s content at the time of checkpointing. We also
intend to adapt the algorithms to other public cloud providers with similar features,
which is the case for the preemptible VM instances provided by the Google Cloud
Platform.

4EC3 at GitHub: https://github.com/grycap/ec3
5EC3 web GUI, available at http://www.grycap.upv.es/ec3
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Abstract

As many other scientific challenges, the analysis of the impact of climate
change in biodiversity requires assembling big databases and integrating tools
for processing and modelling to analyse data and derived results. In this pa-
per, we address the development of an e-Science service that permits an
user to select the datasets he/she wishes to study, as well as a set of tools
for running the study, leveraging elastic cloud computing capabilities. In
our case, we provide a service that exposes a user-friendly Galaxy interface
that submits jobs on an elastic queue based on a virtualised cluster that
automatically deploys and undeploys resources as needed, improving current
cloud-computing capabilities of Galaxy. Moreover, the approach uses a set
of services for the automatic configuration and contextualisation of the re-
sources, which make the virtual infrastructure platform-agnostic, so it can
be deployed in different IaaS cloud providers (both public and on-premise
clouds). An experiment of a workflow on taxonomy for computing the dif-
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ferences or dissimilarities between molecular markers associated to specimen
has been successfully tested.

5.1 Introduction

The short-term and long-term impact of climate changes upon biodiversity is now
acknowledged [24]. It has significant consequences on environment quality, human
health, and global food supply. Describing biodiversity patterns and modelling the
processes shaping them is a key activity for mitigating these effects. This challenge
requires assembling big databases on biodiversity observations and environmental
measures, as well as the integration of a diversity of tools for data post-processing
and analysis, data mining, machine learning and modelling to analyse data and
derived results.

Cloud infrastructures can be used to address the computational needs in multiple
domains, including scientific applications. Cloud computing has proven to fit part
of the challenges posed by scientific research [197]. Public cloud infrastructures
have intensively focused on supporting science, through the availability of large
data sets ([15], etc.), the offering of customised VMIs for scientific computing ([79,
50] or the development of scientific support programmes ([130]). Research commu-
nity clouds (such as EGI Federated Cloud [70]) provide the scientific community
with both resources and customised Virtual Appliances (VAs) for biocomputing.
However, the use of public or on-premises IaaS clouds require non-trivial system
administration skills. If a single VM is needed, custom configurations available
in public clouds may be sufficient to meet users’ requirements. Scientific users
can easily deploy those single instances and use them in a pay-per-use on-demand
fashion. Despite more complex deployments are possible (virtual clusters of AWS,
Data analytics based on Hadoop) [165], customisation is cumbersome. When mul-
tiple VMs are needed, users have to configure shared directories, install batch
queue systems, manage user accounts and customise software.

The challenge we address in this study is to provide an e-Science service that
enables a user to select the datasets he/she wishes to study, as well as a set of
tools for running the study, leveraging elastic cloud computing capabilities without
caring about the underlying infrastructure. Currently, most of data sets related to
biodiversity are based on the output of next-generation sequencing, which delivers
huge datasets of several GB. In the last years, many organisations started offering
services to the community in similar Biocomputing disciplines, since these analysis
can no longer be performed in a reasonable time on researchers’ own computers
[128]. We aim in this paper to assist the long-tail of science users who have not
access to an intensive computational facility and who had a reduced budget for
computation.
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The work in this paper discuss the implementation of a service that exposes a
user-friendly Galaxy interface1 [81, 82] for uploading data, selecting analysis tool,
defining options and parameters and submitting the execution of jobs on an elastic
queue based. This elastic queue is based on a virtualised cluster that automatically
deploys and undeploys resources as needed, improving current cloud-computing
capabilities of Galaxy. In this multi-tenancy scenario, the capability of adjusting
the computing capacity to the actual workload will reduce costs (by switching off
unused resources accordingly) without a penalty on the quality of service. The
approach uses a set of services for the automatic configuration and contextualisa-
tion of the resources, which make the virtual infrastructure platform-agnostic, so
it can be deployed in multiple IaaS cloud providers (both public and on-premise
clouds).

The article describes an experiment with a workflow with an input dataset of
10K reads of shorts sequences, from a data set of 300K sequences, where pairwise
distances are computed through an exact algorithm of sequences comparisons by
local alignment, where a nested aggregative clustering is built from the pairwise
distance matrix. This provides an insight on diversity structure of dataset. In-
tensive part of the computation is on computation of the distance matrix, and it
has been parallelised on the elastic cluster. As the feasibility of such a workflow is
demonstrated by this running example, we will pursue in both direction of diver-
sification of tools on one hand, and scaling up the size of data sets on the other.
The experiment defines an irregular job submission pattern of 75 jobs of different
sizes and analyses the behaviour of the virtual cluster.

The rest of the paper is structured as follows. First, section 5.2 discusses other
approaches for science gateways for computational biodiversity and tools to deploy
virtual clusters on Cloud infrastructures. Then, section 5.3 analyses the solution
proposed in this paper, describing the architecture to automatically deploy the
Galaxy software tool over a virtual elastic cluster. Later, section 5.4 focuses on
a use case for biological diversity, from a set of molecular markers, associating
genetic and inter-specific diversity over a Galaxy virtual elastic cluster deployed
with our proposed architecture. A discussion of the results is also presented in this
section. Finally, we present concluding remarks in section 5.5.

5.2 Related work

The main aim of the work has been to provide a way to deploy a well-stablished
scientific gateway such as Galaxy on an elastic cloud IaaS, covering the complete
configuration and customisation of the environment and including the installation
of new software and interface modules for Galaxy. Therefore, we will first analyse

1http://galaxyproject.org
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the tools available for Virtual Cluster Deployment and then the scientific gateways
on the field.

There are previous works in the literature that aim at deploying virtual clusters
on Cloud infrastructures. For example, StarCluster [134] with the Elastic Load
Balancer [135] plug-in enables the provision of clusters in Amazon EC2 from a
predefined configuration of applications (Open Grid Scheduler, OpenMPI, NFS,
etc.). The caveat of this plugin is that it requires the StarCluster User Interface
(UI) to be connected to the Cloud infrastructure, in order to create and destroy the
VMs. ViteraaS [62] allows the creation of virtual clusters to manage the execution
of user-defined jobs. The main problem is that ViteraaS does not allow the user
to remotely access the cluster. Instead, ViteraaS is only devoted to execute jobs
as done in classic Grid approaches without providing access to a cluster.

There are also commercial solutions, like IBM Platform Dynamic Cluster [94], that
aims at partitioning on-premises resources to deliver each user a custom cluster
with specific features. It supports live job migration and automated checkpoint
restart. The drawback in this case is that this product is oriented to manage on-
premises infrastructures and cannot be connected to commercial Cloud providers.
In this way, CycleCloud [56] is a commercial service provided by CycleComputing
that deploys virtual clusters. However, it only works on Amazon EC2 and, there-
fore, virtual clusters cannot be deployed on on-premises Cloud platforms created
with Cloud Management Platforms such as OpenNebula or OpenStack.

The summary of these generic tools is that there is no general framework that en-
ables the creation and management of elastic clusters in general IaaS deployments.
Most of them provide a virtual cluster that comprises a fixed number of nodes,
other solutions are oriented to a specific LRMS or they are oriented to Amazon
EC2 and do not consider other public IaaS deployments, or even on-premise Cloud
deployments (e.g. based on OpenNebula, OpenStack, etc.).

There are other solutions that provide web portals, initially created to launch grid
jobs that has evolved to access Cloud resources as Distributed Infrastructure with
Remote Agent Control (DIRAC) [75, 84], Catania Science Gateway Framework
(CSGF) [20] or the Italian Grid Infrastructure (IGI) Web portal [26]. In [26] the
authors present a portal to launch jobs to Grid and Cloud resources. The Cloud
port-let used in this work enables to access OpenNebula, OpenStack and any
OCCI compliant Cloud provider. DIRAC is a software framework for distributed
computing providing a complete solution to user communities requiring access
to distributed resources. It allows to aggregate computing resources of different
source and nature, such as computational grids, clouds or clusters, transparently
for the end users. Through the some extensions it supports any OCCI compliant
Cloud provider or Amazon EC2. The CSGF allows users to execute applications on
the EGI Federated Cloud [70] through web portals. All these works do not enable
the contextualisation the VMs so all the needed software must be pre-configured
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to execute a specific set of jobs. Furthermore they have a reduced list of supported
Cloud providers.

The TeraGrid Science Gateway program [188] offered solutions well suited for the
integration of research computing facilities with user-friendly interfaces. Several
solutions have been developed in the frame of biodiversity and evolutionary ge-
netics, such as CyberInfrastructure for Phylogenetic RESearch (CIPRES) [131].
However, those solutions directly connect to the infrastructures through the meta
scheduling services that enable them to submit jobs. This prevents users to deploy
legacy solutions as they were running on their own resources. IaaS clouds have
been used to provision and deploy such systems in those conditions. However,
multi-tenancy of the cloud IaaS (and therefore the fair sharing or effective costs)
depends on releasing resources when they become idle.

In this paper we focus on deploying an existing scientific gateway (Galaxy) on an
IaaS, enhancing this gateway with self-adaptive scaling of resources. There are
existing solutions for deploying Galaxy on the cloud ([77, 4]). In this approach,
AWS EC2 AMIs are available with a standard full configuration of the Galaxy
portal so they can be easily deployed on AWS cloud. Galaxy can deploy a clus-
ter of Galaxy instances on AWS EC2 using the user’s credentials and configure
them. A shared directory and a batch queue are created and configured by means
of CloudMan. It can be used also to deploy similar clusters on OpenNebula or
OpenStack. However, this approach lacks from two main capabilities. First, it
needs pre-configured VMIs, which should be properly maintained, and any extra
configuration (e.g. own Galaxy modules or data) should be copied in the images
or manually configured later. Elasticity is limited, enabling the user to manually
trigger the boot or shutdown of a Galaxy node. Other e-Infrastructures, such as
EGI Federated Cloud ([70]) expose an OCCI ([129]) standard interface, which is
not supported by CloudMan. The use of pre-configured VMIs carries the burden
of maintaining them, and the manual scalability cannot be applied in scenarios
where the workload is dynamic and variable.

Globus Genomics has also integrated Galaxy Workflows ([118]) with their authen-
tication, queue scaling and data transfer systems. The use of Globus Online offers
an efficient solution for geographically remote connections to filesystems. The lim-
itation of the use of NFS is then reduced. The scaling capabilities are bound to the
queue length and job waiting time, acting over the available queue resources. The
solution of Globus Genomic is pertinent for their use within Amazon AWS, but it
could not be applied to on-premise clouds or other federated clouds as contextual-
isation depends on the VM image and the scaling uses EC2-specific primitives. In
our case, the use of Ansible ([90]) and the capability of being platform-agnostic of
EC3 ([34, 41]) enables deploying the same infrastructure on different resources and
flavours. Moreover, the transition to container-based working nodes is straightfor-
ward as it is also supported by EC3.
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Therefore, we propose in this work to use EC3, a platform-agnostic, self-scalable
framework that eases the deployment of elastic virtual clusters in any computing
platform. This framework makes use of installation recipes, a description of the
virtual hardware, a service that monitors the length of the batch queue and a set
of plug-ins to deal with multiple cloud IaaS back-ends. Furthermore it provides
an easy-to-use web interface that enables non-advanced users to launch a virtual
cluster using a wizard following a set of simple guided steps.

5.3 Galaxy Virtual Elastic Cluster

In this paper we provide a distributed architecture that integrates an elastic cluster
providing virtual machines on-demand for computationally intensive methods. The
deployment of the virtual machines, as well as the execution of the processing is
triggered from a user-friendly interface on a Galaxy server.

The solution proposed is based on the EC3 tool. EC3 is a tool to create elastic
virtual clusters on top of IaaS clouds, both public or on-premise ones. EC3 inte-
grates with the IM [8, 33] (a tool that eases the access to IaaS clouds) and CLUES
[9] (an energy-aware cluster management system). It provides recipes to deploy
Torque (optionally with Maui), SLURM, SGE, HTCondor and Mesos clusters that
can be self-managed with CLUES. It also provides a set of recipes to install other
tools as NFS, Octave, etc. In the context of this paper, we developed two recipes
for Galaxy that enable launching a Galaxy elastic cluster with a set of user defined
tools integrated (Next Generation Sequencing (NGS) alignment and the biodiver-
sity analysis tools, as well as the reference data). It is important to outline that
the recipes include the customisation of the portal interface on the fly.

EC3 starts with a single front-end node, and working nodes will be dynamically
deployed and provisioned to fit increasing load (number of jobs at the LRMS).
Working nodes will be powered off when they are idle. This introduces a cost-
efficient approach for Cluster-based computing.

5.3.1 Architecture

The architecture is depicted in Figure 5.1. In the first step (1) the user requests a
cluster indicating the software dependencies needed for his application, that will be
automatically installed and integrated by the platform. The user can select either
the CLI tool2 or the Web interface3 offered by EC3 to request the cluster deploy-
ment. In the Web application (Figure 5.2), the user has a user-friendly wizard
application that guides the user through a set of steps to customise and launch the
virtual elastic cluster. First, it is necessary to choose the cloud provider in which

2https://github.com/grycap/ec3
3http://www.grycap.upv.es/ec3
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Figure 5.1: System Architecture.

the cluster will be deployed. Currently, the web interface supports deployments
in Amazon EC2, OpenNebula, OpenStack and EGI FedCloud, but more providers
are supported by the IM, which can be selected from the CLI interface. The wizard
application shows the specific fields for each Cloud provider, where the user can
specify the LRMS system to use (Torque, SGE, SLURM, HTCondor or Mesos)
and a set of tools that will automatically be installed in the cluster (in our case,
we have to select Galaxy). Finally, the user has to specify the maximum number
of nodes the cluster can reach and push the submit button to launch it. A RADL
document [8, 33] with all the details of the required virtual cluster (hardware, soft-
ware and configuration steps) is automatically generated by the web service and
it is sent to the IM service. It will be in charge of deploying the front-end VM and
configure it according to the RADL info (steps 2 and 3). This process can take be-
tween 10-20 min, depending on the complexity of the applications to install. The
CLI interface requires the RADL document that describes the cluster. For that,
a set of predefined RADL recipes is distributed together with the EC3 code, that
facilitates this task, but this option is only recommended for experienced users.

Once the front-end of the cluster is deployed and fully configured, the user has a
fully working instance of Galaxy with the previoulsy selected tools automatically
configured. As a result of this process, the user is provided with the front-end
IP of the cluster, where he/she can now connect via SSH or, in our case, via a
web client to the Galaxy portal port (8080). Now, the cluster is ready to compute
the tasks of the user (step 4). When any of the Galaxy tools are used, a job is
submitted to the underlying Torque LRMS subsystem. When a job arrives to the
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Figure 5.2: EC3 Web interface.

LRMS queue, the CLUES system automatically detects it. If no working nodes are
available, it will deploy and configure one. There are different policies that can be
fine-tuned, to deploy several nodes if more the one job arrives or to deploy nodes by
groups. The nodes will be automatically configured and integrated in the cluster
(step 5). Take into account that the initial deployment process only deploys and
configures the front-end of the cluster, all the working nodes are then managed
by CLUES, powering them on and off when required, thus saving energy/costs of
unused resources and providing an automated-elastic infrastructure.

Automatic Configuration of Virtual Appliances with Infrastructure
Manager

The IM is a tool that eases the access to IaaS clouds by automating the selection of
the rightmost VMI [45], and facilitates the deployment, configuration, monitoring
and maintaining of VAs. The IM provides an abstraction layer to be interoperable
with different IaaS cloud back-ends. This layer has been designed using a plug-
in scheme that currently supports libvirt, Docker containers, Kubernetes, OCCI,
OpenStack, OpenNebula, Amazon EC2, Google Cloud and Windows Azure. This
set of plug-ins enables the compatibility with a large number of cloud deployments
and virtualisation platforms. This approach prevents vendor lock-in and facilitates
the seamlessly migration from a simple virtualisation system to a large-scale cloud
deployment.
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It integrates Ansible as the contextualisation system to enable the installation and
configuration of any software dependency. Despite that multiple cloud providers
offer services for the deployment of software configurations (e.g. Heat from Open-
Stack or the Software Management and Catalog service of OpenNebula), IM
recipes are compatible with all the platforms supported via the previously de-
scribed plug-ins.

In our proposed architecture, the IM becomes a key tool that is in charge of contact-
ing the cloud provider selected by the user and deploying the VMs that compose
the virtual cluster. Moreover, all the virtual resources deployed are automatically
configured, transparently to the user, that receives a customised ready-to-use clus-
ter with Galaxy and Torque properly configured.

Elastic management with CLUES

CLUES is an energy management system for HPC Clusters and Cloud infrastruc-
tures. The main function of the system is to power off internal cluster nodes when
they are not being used, and conversely to power them on when they are needed.
CLUES is integrated with the cluster management middleware, such as a LRMS
(Torque, SLURM, Mesos, SGE or HTCondor) or a Cloud infrastructure manage-
ment system, by means of different connectors. CLUES is also integrated with the
physical infrastructure through different plugins, so that nodes can be powered
on/off using different techniques (Wake-on-Lan, IPMI, etc). In the case of Cloud
infrastructures it has a plugin to deploy and undeploy VMs, instead of powering
on/off physical nodes. This is the case in our proposed architecture, where CLUES
acts as a elasticity manager, deploying and terminating cloud instances by terms
of the IM.

CLUES implements different policies that aim at balancing the trade-off that arises
when trying to minimise the waiting time for the jobs (which involves a larger num-
ber of available nodes) and the minimisation of a Cloud infrastructure cost (which
involves a reduced number of nodes, which generate a cost). The implemented
policies for a Cloud environment are deeply described in [34].

5.4 Use case

With the advent of massive genomic sequencing, evolutionary genomics and biodi-
versity genomics have shaken the foundations of many traditional specimen clas-
sifications. Many different techniques are applied to cross-correlate the genetic
markers of specimens to identify relations and divergences among species. Those
techniques usually involve the cross-alignment of Deoxyribonucleic Acid (DNA)
regions and the use of clustering techniques to group similar species. Those tech-
niques are computationally expensive and combine both user-specific and common
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reference data. In the next subsections, we describe a use case centered in the area
of biological diversity.

5.4.1 Application domain

The connection built in this work between a user-friendly Galaxy interface and an
elastic cluster focuses on the study of biological diversity, from a set of molecular
markers, associating genetic and interspecific diversity. The goal of the experiment
is to build cloud points where one point is a molecular marker of a specimen.
Then, to recognise patterns in these clouds as geometric objects, and to induce
diversity patterns as shapes of these geometric objects. This links biodiversity
studies with computational geometry. The method used is to compute differences
(or dissimilarities) between markers attached to specimen, and study the patterns
in the set of pairwise distances. We provide a tool disseq – included in the pipeline
– to compute exactly pairwise distances between sequences, from exact score of
global or local alignment ([143, 171]; see as well [86]). These distances will be
starting point for different tools and methods:

� Multidimensional scaling, which will be presented here as an example

� Nested aggregative clustering,

� Graph based clustering.

These programs are installed, and automatically integrated with the Galaxy portal
by means of EC3.

5.4.2 Tools which are deployed

The most time consuming step is the computation of pairwise distances. Indeed,
computing a distance between two sequences of respective lengths p and q is in
O(p× q) complexity in time, hence O(n2pq) for the full matrix. There exists very
efficient algorithms for computing first eigenvalues and eigenvectors of a symmetric
matrix in Multidimensional Scalling (MDS). Nested aggregative clustering with
simple linkage can be executed in quadratic time with n [142], and graph-based
clustering can be executed in linear time. The first step in the service deployed
on the elastic cluster is computing the pairwise distance matrix. It is the most
intensive computation. All other post-treatments can be executed afterwards.
These tools are presented here with more detail:

� Multidimensional scaling, the objective of which is to build a point cloud
in a low-dimensional Euclidean space, where each point is a specimen, and
such that the geometric distances between points is as close as possible from
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the local alignment distance between specimen. Several extensions of MDS
exist, see e.g. [98] and [164] nonlinear mapping are available.

� Nested aggregative clustering, which is classically linked with designing Op-
erational Taxonomic Units (OTU), where simple linkage method if often
privileged [167]. Very efficient quadratic algorithms exist [142]. Let us de-
note that, if a tree produced by a nested aggregative clustering is cut at a
given level, then there is a bijection between disconnected subtrees, and con-
nected components of a graph induced by distances. An advantage of this
observation is that connected components can be computed in linear time,
and such an approach can be efficient for large numbers of specimen when
scaling up.

� Graph based clustering: a pairwise distance matrix between specimen be-
ing given, as well as a gap α, a graph can be defined where vertices are
the specimen, and there is an edge between vertices i and j if, and only if,
d(wi, wj) < α. Ideally, a taxon at a given level α should correspond to a
clique in the induced graph, and in practice, cliques are imperfect, but con-
nected components yield results in accordance with taxonomy in supervised
clustering (i.e. when taxonomy is known).

5.4.3 Dataset

The dataset used in this experiment has been produced by sequencing a sample
of a freshwater diatoms community in a Swedish river, in 2013. Sequencing oc-
curred in Plateforme Génome Transcriptome de Pierroton (PGTP), in 2014. The
dataset consist in 3.105 reads, approximatively 300 base pairs long each. It is not
unrealistic to produce a full pairwise distance matrix, as it contains ≈ 1011 floats,
i.e. ≈ 300Mo. However, as the objective of this work is to address the IM of an
EC3 framework from a user-friendly Galaxy server, we have selected a subsam-
ple only, large enough to require the deployment of several virtual machines, but
small enough for this number to be reasonable. Scaling up the dimension of this
calculation with EC3 and Galaxy is deferred to further work. Hence, a random
subsample of 104 reads has been selected, on which computations have been per-
formed. Such a figure has been selected as it is beyond the usual time and memory
resources usually mobilised by softwares running on laptops for molecular based
analysis (without heuristics for accelerating time), which run fluently up to a few
thousands reads. Dataset has been uploaded from users desktop by the upload
function of the Galaxy interface.
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5.4.4 Launch elastic Galaxy web-service with EC3

To launch the elastic Galaxy web-service with EC3 with the CLI tool the user
must execute a command line similar to that:

$ ec3 launch galaxy_cluster ubuntu-fc-cesnet torque nfs maui \

galaxy galaxy-inra-tools -a auth.dat

In this case the ubuntu-fc-cesnet template has been used to launch the cluster in
the CESNET site of the EGI FedCloud infrastructure. Previously the user has to
create the auth.dat file with his credentials to access the cloud provider, in this
case a proxy file to the EGI infrastructure.

In the Web application (Figure 5.2) the user has a wizard with a set of steps to
easily launch a virtual cluster. In the case of EGI FedCloud infrastructure the
user has to specify his/her credentials to access the cloud provider (a proxy file),
the cloud site endpoint, the identifier of the Virtual Machine Image (typically a
basic linux distribution image), the type of instance (flavour) for the font-end and
worker nodes. Furthermore the user has to select the all the required tools to make
the Galaxy web-service work: NFS, Maui and Galaxy. The Galaxy tools option
has been also selected as it will install and configure all the required components
to make the previously described tools available to the deployed Galaxy instance.

In some seconds the application will show the IP of the front-end node, the cre-
dentials to access with SSH and a cluster name, that can be used to delete the
cluster using the web interface. Then the user must wait for the contextualisation
processes to finish. This test took 12:29 to launch and fully configure the front-end
node.

As it has been described in previous sections, CLUES automatically detects when
a job is submitted to Galaxy and it eventually boots up new VMs and integrates
them with the LRMS front-end. This process introduces an overhead on the job
submission in case that there are no active nodes. As in the case of the front-end,
the configuration time depends on the complexity of the applications installed. In
this case it took 5:27. This time may vary depending on the number of simultane-
ous Working Node (WN) booted-up and the contextualisation restarts. If a new
WN is booted up before the configuration process of a previous one has finished,
the configuration for both WNs will be restarted, although the configuration time
in the previous machine will take shorter, as it has been partially performed. An-
sible guarantees that even if a configuration process is restarted, the final result
will be the same (idempotency). Different policies can be used with CLUES (the
elasticity manager) to minimise this overhead, as switch on a block of nodes, or
have a set of nodes always on, etc. In this case the Multi Dimensional Scaling
tool has been used. Initially, the job remains queued until the a virtual node is
deployed, then it is executed and finally it successfully finishes. Figure 5.3 shows
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Figure 5.3: Projection of points cloud on first two axis. There are 104 points with a
definite clustered pattern, in accordance with clustered structure of taxonomy.

the final results of the execution of the job. Dataset and algorithm for this cal-
culation are presented in next section for sake of completeness. When jobs finish
and the nodes become idle for some time they will automatically be undeployed
automatically from the cloud provider to avoid unnecessary costs.

A whole demonstration of the functionality of the EC3 tool has been recorded in
a set of video tutorials4.

5.4.5 Experimentation

In order to analyse the behaviour of the elastic cluster back-end, we performed
an experiment that involved the submission of 75 jobs related with the use case
that have a short execution time (from 2 to 8 minutes long), scattered along the
time. Jobs were submitted through an script so it can be reproduced. The initial
conditions were a galaxy cluster with up to 10 nodes with no worker node powered
on. The cluster was created directly using the EC3 Cluster as a Service web portal.
The idle time was fixed to 3 minutes, so a WN with no jobs for more than 3 minutes
is automatically powered off.

Figure 5.4 shows the behaviour of the experiment. The green line depicts the
accumulated number of jobs submitted. This line gives the information of the

4https://www.youtube.com/playlist?list=PLgPH186Qwh_1IOesmaTLjd35Q-QqdWf9k
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Figure 5.4: Evolution on time of number of jobs and VMs powered on.

submission pattern. It can be easily seen that submissions are concentrated in 5
blocks, with a variable idle time among them. The idle time was long enough to
guarantee that a reasonable fraction of the working nodes become empty and they
are powered off. The number of submissions is shown in the right axis.

The red line describes the number of powered on WN at a specific point in time.
The system starts with all the nodes powered off, and progressively they are pow-
ered on and off depending on the workload. The left axis shows the number of
powered on nodes. It can be seen that nodes are up and running few minutes
after the submission. Some instabilities appear due to self reconfiguration actions
of the cluster and external network traffic of the production platform. It can be
seen that the number of hosts powered on depends on the number of submission
job.In some cases, 5 nodes are simultaneously powered on. The usage time of the
whole cluster is 39%. This means that considering the 10 working nodes along the
time (nodes*time) 61% of the potential cost of the infrastructure has been saved
(assuming a pay a you go model with the granularity of minutes). The active time
includes idle time for the WNs before they are powered off.

Blue line shows the waiting time in minutes (units on the left axis). It can be
seen that the queueing time is longer at the beginning of each submission block,
decreasing as the resources are being powered on. Then, queuing time is reduced.
Note that the submission blocks have more jobs (15) as resource available (10),
and depending on the time required for setting up the clusters, the waiting time
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may change. The cluster is installed on a production infrastructure that is affected
by external network traffic.

5.5 Conclusion

In many application domains, e-Science is growing up as grid or cloud computing
for computationally intensive processes involving massive data sets. Technology
deployment behind requires high skills in computer sciences. However, one goal of
e-Science is to promote and foster collaborative works in application domains, by
sharing data sets, pipelines, and access to material generated by those processes.
This work is run in application domains, and lack of computing science skill may be
an obstacle. Therefore, we have implemented a service that enables the automatic
deployment on the cloud of an user-friendly Galaxy interface that submits jobs
on an elastic queue based on a virtualised cluster that automatically deploys and
undeploys resources as needed, improving current cloud-computing capabilities of
Galaxy. A working example has been implemented in the domain of computa-
tional biodiversity, more precisely investigations for patterns of biodiversity, from
molecular data sets of freshwater diatoms.
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Chapter 6

Towards Migration of Virtual
Clusters across Clouds

To be submitted as

A. Calatrava, G. Moltó, “Towards Migration of Virtual Clusters across Clouds” to
Concurrency and Computation: Practice and Experience, 2016

6.1 Introduction

Migration is the act of transferring, partly or fully, a running application together
with its progress from one infrastructure to another. Migration introduces an un-
precedented degree of flexibility for a datacenter administration, with the ability
to decouple the execution from the underlying hardware (see Figure 6.1). For ex-
ample, this enables a system administrator to temporarily outsource cluster-based
workloads to a public Cloud (or to another datacenter running an on-premises
Cloud) to deal with common situations in a datacenter, such as a planned outage,
experimented failures in the hardware or if an actualization is scheduled. A sched-
uled downtime might affect a long-running scientific application. By migrating the
application or even the complete virtual cluster of VMs where the application is
being executed to another virtual infrastructure, the application can resume its
execution. The migration mechanism can be used to provide fault tolerance in a
highly available system. This migration should be transparent to the guest op-
erating system, applications running on the operating system, and remote clients
of the virtual machine. It should appear, to all involved parties, that the virtual
machine did not change its location.
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Figure 6.1: Migration scenarios in a datacenter.

Migration can be applied at three different levels (Figure 6.2). The first level is
Application Migration. This schema consists on migrating the applications run-
ning inside of the VMs. This procedure typically requires checkpointing techniques
in order to save a snapshot of the running application to be resumed in another
location. Since we are able to reproduce the same precise software environment at
destination (via appropriate contextualization) the application can resume execu-
tion in a newly provisioned VM. Checkpointing operations write to disk checkpoint
files from which to resume execution. Then, these files have to be transferred to-
gether with the application in order to resume execution at destination. The major
advantages of this approach are lower communication overhead and the possibility
of migrating services between physically distributed locations and incompatible
hypervisors or physical nodes involved.

In the middle of the pyramid we found Virtual Machine Migration, where (a set
of) VMs are migrated to another hardware nodes (either inter-cluster or intra-
cluster) with the help of the underlying hypervisor. Migration can be performed
online or offline. Live migration of Virtual Machines consists on moving a running
VM from one physical host to another minimizing the downtime perceived by the
VM users. This concept was first introduced by Clarke et al. [48], as opposed to
offline VM migration, where a VM has to stop running before copying the complete
state to another machine. Intra-cluster live migration is supported by the major
hypervisors, while inter-cluster live migration is supported by Xen and to some
extent by KVM.

Finally, the last level of migration is Virtual Cluster Migration, which involves
transferring the computing nodes (and also the front-end) from one source Cloud
infrastructure to a destination Cloud infrastructure, even across different Cloud
providers. For that, we can deploy a cluster in the destination datacenter with the
same precise configuration as the original virtual cluster. This includes searching
the most similar VMI. Then, jobs can be migrated from the original virtual cluster
to the new one by using application migration techniques.
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Figure 6.2: Migration hierarchy represented in a pyramid.

This chapter aims at developing the methodology and software tools required to
migrate (partly or fully) virtual clusters and their workloads across different Cloud
infrastructures. In particular, we want to provide support for virtual cluster mi-
gration to EC3, a tool previously developed by the authors, to create and manage
virtual hybrid elastic clusters. After the introduction, the remainder of the chapter
is structured as follows. First, section 6.2 covers the state of the art in the context
of migration. Next, section 6.3 exposes and analyzes the proposed architecture
to provide migration capabilities to EC3. Then, section 6.4 addresses a proof of
concept of the developed migration capabilites. Finally, section 6.5 summarizes
the chapter and points to future work.

6.2 Background and Related Work

As stated in the introduction, there exists several levels of migration. Therefore,
it is necessary to analyze the related work in the field of migration making distinc-
tions in the different types of migration: application migration, virtual machine
migration and virtual cluster migration. The following subsections analyze and
discuss each one of them.
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6.2.1 Application migration

Application migration is the act of transferring a running application between two
machines. This type of operation involves saving, migration and recreation of
the process state as well as the reconstructing of any inter-process communication
channels to which the migrating process is connected. This is not a new concept,
as we can see in some works like [132] where the authors reviewed the field of
process migration by summarizing the key concepts and giving an overview of the
most important implementations at that time. Nowadays some works still con-
tinue focusing their attention on migration strategies, like [200] where the authors
attempt to provide a systematic reference for developers to leverage off among dif-
ferent migration strategies for seamless application mobility. They consider four
dimensions of design concerns in application migration in order to classify the dif-
ferent approaches: temporal, spatial, entity and other concerns. Other researchers
are doing efforts in improving migration algorithms. For instance, the work de-
scribed in [101] presents the Lightweight Live Migration (LLM) mechanism to
integrate the migration of the whole system but, applying input relay techniques
for service replication, in order to reduce the overheads caused by the migration
process.

Migration can be used in combination with checkpointing, a mechanism by which
an application stores its state periodically to the disk. The most common use of
checkpointing is in fault tolerant computing, where the goal is to minimize loss of
CPU cycles when a long-running application crashes before completion. By check-
pointing a program’s state at regular intervals, the amount of lost computation
is limited to the interval from the last checkpoint to the time of crash. Research
in this class of checkpoint algorithms and systems has been ongoing for at least
last 20 years. For example, in [186] the authors describe the implementation and
applications of the Unix checkpointing library libckp, one of the first libraries that
considered user files as part of the process state. In recent works, after some stud-
ies about the performance of checkpointing algorithms [149], the aim is to optimize
these algorithms in order to reduce the impact in the programs and improve the
total execution time of the scientific applications [21], [193].

The checkpointing technique can be used in grid environments too, as shown in
[125], where it is combined with job migration to recover from system failure over
the grid. Another area of work is parallelism, where high-performance applica-
tions must be able to tolerate inevitable faults [195]. For instance, in [92] the
authors present the design and implementation of an infrastructure to support
checkpoint/restart fault tolerance in the OpenMPI project.

With regard to functional tools and libraries of checkpointing, several of them have
been developed for the Linux/Unix family of operating systems. These checkpoint-
ing utilities may be divided into two classes, those which operate in user space, and
kernel-based checkpointing packages. User space checkpointing packages are highly
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portable and can typically be compiled and run on any modern Unix. Examples of
tools that implement this type of approach are CryoPID [55], that allows the user
to capture the state of a running process in Linux and save it to a file, DMTCP
[16], a tool to transparently checkpoint the state of multi-threaded and distributed
applications, or CPPC [163], a checkpointing tool focused on the insertion of fault
tolerance into long-running message-passing applications. HTCondor [91] offers
user-level checkpointing and other tools for batch job scheduling. In addition to
writing a checkpoint at vacate time, HTCondor can be configured to write check-
points periodically while the job is executing, for additional reliability. OpenVZ
[153] is a kernel-based checkpointing package that allows live migration of virtual
private server. There are hybrid kernel/user implementations, like BLCR [65],
whose goal is to provide a robust, production quality implementation that check-
points a wide range of applications, without requiring changes in the application
code.

Focusing on improving resource utilization in clouds, CMPs could suspend/migrate
some running jobs/virtual machines to reserve resources for other resources. One
possibility is to migrate the whole VM, but the cost of this operation can be very
high due to the large footprint of VMs. That is the reason why application level
migration appears as a possible solution. Moreover if the application is running
directly in one of the physical nodes, the application migration is the best solu-
tion. In [144] and [145] the authors propose the Event-Based Checkpointing tool
(EBC), in which users can easily checkpoint and restart running programs in cloud
systems. EBC is based on event-driven architecture and supports both sequential
and parallel programs like MPI programs.

6.2.2 Virtual Machine migration

Another approach of migration is live migration of VMs, which consists on moving
a running VM from one physical host to another. This concept was first introduced
by [48], as opposed to offline VM migration, where VMs have to stop running
before copying the complete state to another machine. The authors propose a
model, known as pre-copy live migration, in which the memory state of the VM
is sent between two machines while the VM is running. Memory pages are sent,
keeping track of the ones that get modified and must be resent later. After all
the state has been transferred and only a small quantity of modified pages needs
to be resent, the VM is stopped for a small fraction of time in order to finish the
migration operation. This model assumes that the disk state is either shared in a
SAN or mirrored in a Redundant Array of Independent Disks (RAID).

A number of improvements have been proposed on the original algorithm. Svärd
et al. [176] evaluate techniques for compressing the changes in memory that must
be sent between nodes in order to minimize the overhead. In [102] the authors
argue that a VM with high load that make many changes to memory may be
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very inefficient or unable to perform live migration. In order to alleviate this
problem, the authors propose to reduce the CPU frequency of a migrating VM in
order to lower the rate of memory changes, without disrupting the service. Lui et
al. [114] propose an alternative memory-to-memory VM migration algorithm that
uses trace and replay of operations, claiming a much lower migration overhead.
The work in [97] proposes another alternative VM migration algorithm that uses
remote direct memory access, bypassing Transmission Control Protocol (TCP) in
network operations and reducing the data transmission overhead. Besides these
works, another technique appeared in the literature to perform live migration of
VMs, known as post-copy [89]. Post-copy migration defers the transfer of a VM’s
memory contents after its processor state has been sent to the target host while
CPU and device state are transferred immediately to the destination host. This
migration scheme reduces the downtime and total migration time but incurs service
degradation due to page faults which must be resolved over the network by the
source host.

Other works have focused on studying the applications and implications of VM live
migration. The authors in [185] perform an experimental evaluation of the impact
of live migration in the performance of applications running inside. In [117], the
authors propose using live migration to move a running VM out of a physical
node, performing software maintenance on it and then move the VM back on the
node. The work presented in [169] studies the techniques that can be applied
to both pre-copy live migration and post-copy live migration to better support
migration of memory intensive applications. Finally, the study described in [194]
proposes a scheme to reduce power consumption in clusters using live migration.
The schema involves consolidating the cluster load in fewer machines and putting
to sleep inactive machines.

The concept of reducing energy consumption by consolidating VMs in a cluster
using live migration is one of the most prominent applications of live migration in
current datacenters. Liao et al. [110] introduce a framework for mapping VM to
physical machines under resource constraint in order to minimize energy consump-
tion and cost, using migration to consolidate VMs. The work in [74] proposes a
methodology for controlling consolidation of VM in datacenters, minimizing mi-
gration of VM with steady load to avoid migrating machines back and forth. The
study in [25] proposes heuristics with historical usage data to drive the consoli-
dation of VM in order to optimize the process. Graubner et al. [72] propose a
novel energy-efficient VM migration and consolidation method, and evaluates a
implementation in Eucalyptus. Finally, the work presented in [115] introduces a
model of the performance and energy consumption of the migration process itself,
in order to account for this operation in the calculations of the energy efficiency
of a consolidation process.

The migration schemes, algorithms and applications discussed so far apply to
intra-cluster migration. They assume shared storage for migration operations and
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contemplate consolidation operations inside a single cluster. Although VM live
migration across physically distributed datacenters (inter-cluster migration) incurs
in a much higher overhead than intra-cluster migration, it has also been discussed
in the literature. The study of Travostino et al. [181] was the first work to propose
live migration of VM across Wide Area Network (WAN) network shortly after
VM live migration was introduced. The authors motivate the live migration of
VM between physically distributed datacenters, and argue that the performance
obtained is competitive. Wood et al. [189] introduce CloudNet, a framework
for the pooling of Cloud resources from different datacenters in a unique virtual
infrastructure. Disparate resources are configured in a unique VPN and VM can
be allocated and migrated between machines at different locations as if they were
in the same network.

Another approach that can be applicable to this problem is the mechanism to
provide fault tolerance to VMs. In this field, the COarse-Grained LOck-Stepping
(COLO) [63] solution arises. COLO is a high availability solution for providing
application-agnostic fault tolerance for non-stop services. Both primary VM and
secondary VM run in parallel. They receive the same request from the client, and
generate a response in parallel too. If the response packets from both machines
are identical, they are released immediately. Otherwise, a VM checkpoint (on
demand) is conducted. Currently, projects like ORBIT [154] are working on this
approach, trying to integrate it with OpenStack to offer high performance fault
tolerant VMs.

6.2.3 Virtual cluster migration

The last approach of migration covered in this chapter refers to virtual cluster
migration. This action involves transferring the computing nodes, together with
their running applications and state, from one Cloud infrastructure to another.
This process can imply different Cloud providers in the source and destination.
Moreover, the front-end machine can also be involved in the migration operation.

Some works in the literature have discussed virtual cluster migration under a Cloud
scenario. For example, the work presented in [29] allows transparent migration
of VMs across the datacenter, based on the coordinated use of Network Address
Translation (NAT) rules and Address Resolution Protocol (ARP) proxying, for the
problem of transparently migrating VMs across multiple IP subnets within a single
datacenter. In other study, the framework VC-Migration [196] was developed to
control the live migration of virtual clusters, applying different migration strategies
based on the well-known solutions to migrate a single VM [124]. The results of the
experiments performed with this framework show the main limitation of migrating
a virtual cluster, i.e., the large amount of data that needs to be transmitted over
a limited network bandwidth.
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Tools like VNsnap [105] have appeared in the literature to present a solution to take
snapshots of infrastructures composed by VMs connected by a virtual network.
This tool is implemented on top of the Xen hypervisor and has the ability to
take snapshots of this type of infrastructures, which include images of the VMs
with their execution, communication, and storage states, to later restore them
without requiring any modifications to the applications, libraries or guest OSs.
The work described in [162] introduces Shrinker, a system to live migrate virtual
clusters across networks. Shrinker is based in the principle that VMs with similar
configuration have much of their state (disk and memory) in common, and hence
this common information can be migrated only once. Performance evaluations for
a KVM implementation are included in the study.

Migration capabilities also allowed hybrid schemes in which computing nodes run-
ning in an on-premises infrastructure are switched-off while working nodes are
deployed in a public Cloud to replace them, as shown in our previous work [37].
In this scenario, the front-end is not migrated, only the working nodes are marked
as migratable nodes that can be immediately powered off and deployed in the new
infrastructure, loosing the progress of the applications running inside of them, or
the system can wait until the application running inside the node finishes and then
terminate the nodes, without loosing the job progress.

The following sections of this chapter describe the proposed architecture to per-
form virtual cluster migration, that implies also checkpointing operations at the
application level to migrate jobs running inside the virtual cluster without loosing
its work progress, and VM migration.

6.3 Proposed solution for virtual cluster migration

In this subsection we propose virtual cluster migration achieved by using check-
pointing technologies to migrate applications running on the cluster and the repli-
cation of the original virtual infrastructure in the cloud destination, transferring
only the checkpointed data of the running applications, instead of transferring the
complete cluster. This approach aims at reducing the overheads in the network
caused by migrating virtual machines across different Clouds, as we discussed in
the related work section above, improving the performance of this type of opera-
tions. This will give a powerful degree of flexibility to move stateful long-running
jobs due to opportunistic or maintenance issues across infrastructures, being able
to take advantage of a price reduction in the case of public Clouds (e.g. spot
instances in Amazon EC2) or to cope with common problems presented in a dat-
acenter, like an outage, experimented failures in a physical cluster or scheduled
updates by e.g., temporarily moving the workloads to a public Cloud without
restarting the applications from the beginning.
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Figure 6.3: Architecture to deploy a migratable cluster supporting the SLURM LRMS.

The proposed solution is based on the usage of EC3 to clone the original infrastruc-
ture and the usage of the BLCR tool [65] to checkpoint the applications running
on the cluster and restore them in the new cluster destination. For that, four
main steps need to be covered: i) checkpoint the running applications, ii) clone
the original cluster with the primary configuration in the same or another cloud
provider platform, iii) copy those checkpoint files to an external storage system,
like Amazon S3 and iv) download checkpointing files in the cloned cluster and
restore the jobs at the destination.

Figure 6.3 represents the architecture of a migratable cluster deployed by EC3.
The deployment of the migratable virtual cluster starts when the user requests
it to EC3. Immediately after, EC3 contacts with the IM to start a VM in the
cloud provider to act as the cluster front-end. Once the VM has been successfully
deployed, the configuration phase starts by means of Ansible, that is in charge of
configuring the machine to behave as the front-end of a cluster. For a migratable
cluster, it will install and configure SLURM [100] to act as the LRMS of the clus-
ter, together with BLCR and configure them properly to facilitate checkpointing
operations, as required by SLURM. Finally, EC3 always installs CLUES and the
IM to perform the automated elasticity of the cluster. Once the configuration
process finishes, the front-end is ready to receive the user’s jobs. CLUES is able
to detect when the jobs reach the LRMS and no available nodes of the cluster
exist to satisfy the job requirements, thanks to the plugin specifically developed
for SLURM. When this situation occurs, CLUES contacts with the IM installed
in the front-end node and requests the deployment and configuration of a new
working node to execute the job. Thus, the cluster is able to manage the cluster
size automatically and configure new nodes according to the workload.
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Figure 6.4: Workflow of a virtual cluster migration across Clouds.

6.3.1 The migration process

Figure 6.4 represents the steps carried out in order to migrate the virtual cluster
from one Cloud infrastructure to another. In the figure, for the sake of complete-
ness, the deployment and usage of the cluster is represented in blue (explained in
more detail in the section above), while the process of migration of the cluster is
represented in orange.

In the migration scenario, an interaction begins when the administrator/user re-
quests the migration of the cluster to the EC3 client (1b). Then, EC3 starts the
process to clone the original infrastructure to the destination Cloud infrastructure
specified by the user (2b). This process includes recovering the primary configura-
tion of the cluster (i.e. the RADL originally employed) to deploy another cluster
with identical features (hardware, software and configuration requirements). With
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this data, EC3 contacts with the external IM and requests the deployment of a
new cluster front-end, identical to the original front-end (3b). Immediately after
requesting the new deployment, EC3 checkpoints the running applications terms
of BLCR (4b). This operation produces several checkpoint files that need to be
saved before the old infrastructure is destroyed. For that, all the checkpointed data
is copied into a bucket in Amazon S3 (5b), specifically created for this operation.
The usage of S3 provides fault tolerance to the solution, due to the replication
algorithms that S3 internally employs. Once the cloned cluster is ready, EC3 can
copy those checkpoint files from S3 to the new cluster (6b) and restore them at the
destination (7b) calling the scontrol SLURM operation, configured with BLCR.
Thus, the process of migration is completed, and the applications running on the
original cluster are now restored in the cloned cluster, restarting their execution
from the checkpoint without loosing their progress.

Notice that this process must be transparent for the applications, that need to
find the same execution environment in both clusters. The IM needs to find an
appropriate VMI in the destination infrastructure to be configured to produce
exactly the same VM configuration in both clusters. For that, we use the VMRC
service [45], a cloud agnostic catalog of VMIs. This system offers matchmaking
capabilities that allows the IM to obtain the VMIs that best fit the application
requirements.

6.4 Case study

In this section, we present a proof of concept of the migration process. The objec-
tive is to analyze the performance of the migration operation with EC3. For that,
we are going to migrate a virtual cluster running inside an OpenNebula on-premises
cloud to the AWS public provider. We will execute MrBayes [141] to perform a
Bayesian phylogenetic analysis of combined data that will be checkpointed and
migrated to another platform to continue with its execution. This application is
also used in chapter 7, where more details about it are given. The virtual cluster
will be configured with SLURM acting as LRMS and BLCR, correctly configured
to work together. Moreover, an NFS system is configured in the cluster to access
to the checkpoint files from the front-end and all the working nodes. Finally, the
AWS CLI 1 client is installed to work with Amazon S3.

The infrastructure used to deploy the initial on-premises cluster is a Cloud platform
that comprises eight dual processors with 14 core nodes (28 cores per node), with
64 GB of RAM and a shared storage system of 10 TB, which was backed up by
a storage area network where the hard disks were stored as volumes. This system
was managed by OpenNebula 4.8 using KVM as the underlying hypervisor. With
respect to the destination infrastructure, we rely on Amazon Web Services as the

1AWS CLI: https://aws.amazon.com/cli/?nc1=h_ls
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public Cloud provider for the migration. The instance type chosen is m1.small,
with one (virtual) processor, 1.7 GiB of RAM and 160 GiB of disk. Finally, the
VMI used in the on-premises cloud must provide the same execution environment
as the EC2 AMI. Thus, we will rely on Ubuntu 14.04 LTS images previously
indexed, not stored, in the VMRC.

Deployment avg. time 1142s
WN deployment avg. time (ONE) 520s
WN deployment avg. time (EC2) 1460s

Clone avg. time 3510s
Checkpoint avg. time 1s

Data upload to S3 3s
Data download of S3 3s

Recovery avg. time 6s

Total migration time 4975s

Table 6.1: Times involved in the process of migration.

Table 6.1 shows an itemization of the main times involved in the process of migra-
tion. First, the deployment of the initial front-end of the original cluster takes an
average of 1142 seconds. This time includes from the request to the cloud provider
for a VM to the creation of the VM and the contextualization of the VM to behave
as a front-end of a SLURM cluster configured with BLCR. The time required for
deploying a new working node to the cluster when jobs arrive to the LRMS is 520
seconds (on average).

Once the cluster is running and several jobs are in execution, a request to migrate
the cluster arrives to EC3. Immediately, the process to clone the original cluster
starts. This process includes searching an equivalent VMI for the deployment of the
new cluster in the destination Cloud infrastructure, recover the original configura-
tion recipes and, finally, deploy and contextualize the new front-end of the cloned
cluster. This process takes in Amazon EC2, with a m1.small instance, an average
time of 3510 seconds. This time can be reduced by using preconfigured VMIs, but
in the case of migration, it is very difficult to find the same preconfigured VMI
in different Cloud providers, unless the user has already created the preconfigured
VMI in both Cloud infrastructures. Instead, our approach can use vanilla VMIs
where only the basic Operating System is available and all the applications are
dynamically installed, together with the configuration applied. Another solution
might be to increase the features of the VM by selecting, for example, a m1.medium

instance, that can reduce the times compiling and installing SLURM and BLCR
tools. which is a very time-consuming process.

At the same time, the system is creating checkpointing files for all the tasks run-
ning inside the cluster, to subsequently upload them to Amazon S3 (the times
shown in Table 6.1 are referring for only one job, thus, in our case, it takes only
4 seconds per task). This way, the long process of cloning the original infras-
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tructure is partly alleviated by performing these tasks in parallel. The size of
the checkpointing files for this case were of 4.22 MB. Notice that the times to
checkpoint and recover a job, together with the upload and download actions done
with S3, depend directly on the application that is running. The more complex
the application is (more memory consuming, processes, connections, etc), further
time is needed to perform all these operations. For example, for the Architrave
application presented in chapter 4, an average time of 160 seconds was required
to checkpoint the application, and a recovery time of approximately 70 seconds.
However, in our case, the MrBayes application is exhaustive in CPU (98%) but
not in memory (with a 7% consuming percentage).

Finally, once the front-end of the cloned cluster is ready, the migration process
recovers the checkpoint files of the jobs running in the original cluster from Amazon
S3 (an average of 6 seconds per job), and restore the jobs from their checkpoint.
This action will cause the automatic detection of new job requests arriving to the
LRMS queue, thus starting the process of launching new working nodes to attend
the petitions (that in Amazon EC2, it takes an average of 1460 seconds per node,
but they can be deployed in parallel). Thereby, the migration process of the whole
virtual cluster is completed in approximately 5000 seconds, without affecting the
job execution, i.e. transparently for the jobs and without loosing the job progress.

6.5 Conclusions and Future Work

Migration introduces an unprecedented degree of flexibility for a datacenter admin-
istration, with the ability to decouple the execution from the underlying hardware.
Thus, this chapter has introduced an approach to migrate virtual clusters deployed
over Cloud infrastructures. The early developments presented in this chapter have
been integrated in EC3. The clone operation for EC3 is already developed, docu-
mented and integrated in the master branch of EC3 in GitHub. Also, the plugin
for SLURM is successfully developed and tested, and also forms part of the latest
release of CLUES. A brief test has been presented also in this chapter, that proves
the ability of EC3 to migrate virtual clusters together with their workloads.

However, we can progress in the proposed solution. As future work, we want to
improve the migration capabilities of EC3 by using containers. Containers are
a light-weight solution to encapsulate applications. These applications running
in containers can be migrated across infrastructures by using checkpointing tech-
niques applied to containers, by means of existing tools like OpenVZ [133] or
Checkpoint/Restore In Userspace (CRIU) CRIU [54]. Our idea is to use an LRMS
that supports the execution of the applications inside containers, such as Apache
Mesos [88] together with Docker [60], and checkpoint the containers rather than the
applications. This solution eliminates the problems caused by most of currently
available checkpointing tools, that need to compile the application against their
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checkpointing libraries, what might cause incompatibility problems. However, the
support of checkpointing in containers is still a work in progress. The official
Docker GitHub account has several open issues to officially support checkpointing
operations, but they are still in progress [148]. Our proposed solution will provide
container-based cluster migration once the current developments in Docker will
be available. This process will be of special interest for the scientific community,
since no other tools currently exists that support virtual cluster migration.
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Abstract

eScience demands large-scale computing clusters to support the efficient ex-
ecution of resource-intensive scientific applications. VMs have introduced
the ability to provide customizable execution environments, at the expense
of performance loss for applications. However, in recent years, containers
have emerged as a light-weight virtualization technology compared to VMs.
Indeed, the usage of containers for virtual clusters allows better performance
for the applications and fast deployment of additional working nodes, for
enhanced elasticity. This paper focuses on the deployment, configuration
and management of Virtual Elastic computer Clusters (VEC) whose nodes
are hosted in containers running on bare-metal machines. The open-source
tool Elastic Cluster for Docker (EC4Docker) is introduced, integrated with
Docker Swarm to create auto-scaled virtual computer clusters of containers
across distributed deployments. We also discuss the benefits and limitations
of this solution and analyse the performance of the developed tools under a
real scenario by means of a scientific use case that demonstrates the feasibil-
ity of the proposed approach.
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7.1 Introduction

eScience involves the execution of complex HTC, HPC applications and long-
running workflows. This requires a significant amount of computing power and
memory capacity that can be only obtained via distributed computing. Indeed,
large-scale Distributed Computing Infrastructures (DCIs), such as the EGI1 have
been tremendously successful in supporting the computational requirements of
many scientific communities across Europe [183, 43]. However, one of the main
limitations of Grid infrastructures is that applications have to be ported to the
execution environments provided by the machines involved, what results in a rigid
structure composed by several VOs that support a set of applications. This inabil-
ity to provide customized execution environments for applications is addressed by
Cloud Computing by means of VMs that encapsulate the Operating System (OS))
together with the user application and its dependences in a VMI that can be run
on a physical machine by means of a hypervisor.

Indeed, the ability to provide ubiquitous, on-demand network access to a set of
configurable computing resources, according to the NIST definition [127] of Cloud
Computing, has paved the way for the rise of many public Cloud providers (such
as AWS2, Microsoft Azure3 or Google Cloud Platform4), different CMPs (such
as OpenNebula or OpenStack) and even initiatives to create large-scale commu-
nity Clouds (e.g. EGI Federated Cloud5). Cloud computing has provided re-
searchers with access to unprecedented customizable computing resources, either
on-premises or on public Clouds. However, these computing resources still re-
quire a coordinated use for applications to efficiently use them. For that, LRMS
such as Torque [2], SLURM [100] or HTCondor [179] are job schedulers that are
commonly used to dispatch jobs across nodes [6]. Indeed, computing clusters are
still widely-used computing facilities to support the execution of many types of
applications.

VEC deployed on Cloud infrastructures have introduced many benefits when com-
pared to physical clusters, as we addressed in our previous work [34], avoiding
upfront investments and the ability to adapt the execution environment to the
applications (and not viceversa). This work was later extended to create EC36

[41] an open-source tool to create self-managed cost-efficient virtual hybrid elastic
clusters across Clouds that is currently offered as a free online service, being used
for scientists to provision their own clusters on public, on-premises and federated
Clouds.

1European Grid Infrastructure: http://www.egi.eu
2Amazon Web Services: https://aws.amazon.com
3Microsoft Azure: https://azure.microsoft.com
4Google Cloud Platform: https://cloud.google.com
5EGI Federated Cloud: https://www.egi.eu/federation/egi-federated-cloud/
6EC3 (Elastic Cloud Computing Cluster): http://www.grycap.upv.es/ec3
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Figure 7.1: Virtual Machines and Containers possible architectural configurations.

In the quest for increased performance with respect to virtualisation techniques,
Linux containers appeared as a lightweight alternative to VMs. Linux containers
enable to run multiple isolated processes in a host without the overhead caused by
the hypervisor layer introduced by VMs. While hypervisors provide hardware ab-
straction, container-based virtualization is characterised by multiple isolated user
spaces running at the operating system level (see Figure 7.1). This provides process
isolation at a fraction of the overhead introduced by the hypervisor. Container-
based virtualization proved to be an alternative to traditional hypervisor-based
systems, as it reduces the overhead caused by VMs in CPU, memory and storage,
as described in [73] and [166]. Linux containers can be run on top of VMs to
achieve multi-tenant isolation using the VM as the boundary of security and con-
tainers as the boundary of resource allocation to applications. However, the main
benefits of containers arise when used on bare metal, in order to obtain increased
performance compared to VMs. Among the different existing container platforms,
Docker7 stands out as a software containerization platform that can encapsulate
an application in a complete filesystem that contains all the dependences required
to be executed (code, runtime, system tools and libraries, etc.). This guarantees
portability across multiple platforms, regardless of the execution environment.

Our hypothesis is that container-based technology can be effectively integrated
with cluster-based computing to create virtual computer clusters of Docker con-
tainers with the very same functionality as virtual clusters of VMs, and physical

7Docker: https://www.docker.com
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clusters of PCs, but with enhanced capabilities that include: i) improving the per-
formance of resource-intensive applications that will run isolated on bare metal; ii)
improving the elasticity of the cluster, by reducing the time required to spawn and
terminate additional containers; iii) supporting customised execution environments
via low-footprint images and iv) the ability to access specific hardware devices such
as General-Purpose Computing on Graphic Processing Units (GPGPUs).

Therefore, this paper introduces an architecture to deploy container-based vir-
tual computer clusters that feature automated elasticity and the ability to provide
customised virtual execution environments across a bare-metal backend on which
containers managed by a Container Orchestration Platform (COP) are executed.
Several computer clusters customised for the execution of different scientific appli-
cations can be provisioned to share the same physical computing backend. This
provides increased resource utilisation and performance while maintaining isolation
across workloads coming from different clusters.

To this aim, this paper describes EC4Docker8, an open-source tool to deploy,
configure and manage container-based virtual computer clusters that can be run
on bare-metal nodes (as well as on VMs). These virtual computer clusters expose
the very same user interfaces expected by users (accessed via SSH, supporting
a LRMS, etc.) but they are completely backed by Docker containers that are
dynamically deployed, depending on the workload, across a distributed Docker
Swarm [116] backend that can be deployed either on bare metal or on public and
on-premises Clouds.

After the introduction, the remainder of the paper is structured as follows. First,
section 7.2 introduces background information and covers the state of the art
related to containers, revising existing tools, performance studies and clustering
solutions of containers. Next, section 7.3 exposes and analyses the proposed archi-
tecture to deploy these container-based virtual computer clusters. Then, section
7.4 addresses different scenarios in which the proposed solution is evaluated and
analyses the significant benefits of these approach. Finally, section 7.5 summarises
the paper and points to future work.

7.2 Background and Related Work

According to Buyya [31], a computer cluster is a type of parallel or distributed
processing system, which consists of a collection of interconnected stand-alone
computers working together as a single integrated computing resource. The key
components of a cluster include:

8EC4Docker is available in https://github.com/grycap/ec4docker
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1. Multiple Computers. Typically one of them (named the “front-end node”)
acts as an entry point to the computer cluster and the others execute the
jobs (named the “working nodes”).

2. Operating Systems OS. In scientific computing, the most common operating
systems are Linux or Unix-based.

3. Interconnection network. The computers interact among them through a
local network. There may exist different networks specialised for different
tasks (e.g. data, parallel processing, etc.) based on different technologies for
computers to communicate (e.g. Myrinet, GbE, 10GbE, etc.).

4. Cluster middleware. The cluster middleware, also known as LRMS, is a set
of tools to use the cluster as a single computing entity. These tools carry
out the whole lifecycle of executing a job in the cluster (e.g. staging the files
in the working nodes, starting the applications, retrieving the resulting files,
etc.). Some examples of well known LRMS are Torque, SLURM, or LSF.

5. Parallel programming environments. Applications typically use well-known
libraries to communicate processes. Some examples are OpenMPI, LAM/MPI
or MPICH, which support the MPI standard. These libraries are usually op-
timised for the specific network interfaces (e.g. SCI, Myrinet, etc.).

6. Applications. These are the user applications executed in the computer
cluster.

The main interface employed by the users of the cluster is an interactive session
to the front-end node in order to submit jobs to be executed on the working nodes
[159]. Indeed, computer clusters used to be huge physical infrastructures, but
advances in virtualization technologies and Cloud computing paved the way for
VCs to appear. A VC is comprised of VMs and a virtual networking environment.
The other components in a VC are the very same that those used in the physical
cluster. These VCs can be deployed in on-premises infrastructures or in commercial
public Clouds.

A VC relies on VMs even if they are not used (i.e. they are idle). These idle
virtual working nodes are a problem in a Cloud environment because (a) in case
the cluster is deployed in an on-premises infrastructure, other users cannot take
advantage from the unused resources allocated to the VC, or (b) in case the cluster
is deployed in a public Cloud, the unused resources result in an economic cost for
the user. An Elastic Virtual Cluster (EVC) avoids wasting either resources or
money, by destroying the idle working nodes and deploying them again when they
are needed. In order to implement an EVC, an elasticity manager is required to
take care of creating or destroying the working nodes, depending on the workload.
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Figure 7.2: Generic architecture to deliver container-based virtual elastic computer
clusters deployed on a computing infrastructure managed by a Container Orchestration
Platform.

The work described in this paper is a step forward on computer cluster virtual-
ization, that builds on container-based virtualization to reduce the performance
penalty introduced by VMs. The goal for a container-based EVC is to provide
the users with computer clusters to be used as if they were physical computing
clusters, with the added value of using containers instead of VMs. Therefore, the
requirements for the container-based EVC is to preserve the very same environ-
ment and usage patters that are commonly used in this computing platforms, i.e.
the software stack: the OS, the cluster middleware, the parallel environments and
the applications, as shown in Figure 7.2.

The next section includes a review of related works about the different technologies
that lie within the scope of this work.

7.2.1 Related work

Containers

Container technologies have gained significant momentum in the last years, in-
troducing changes in the way applications are built, shipped, deployed, and in-
stantiated [126], [155]. There exists different software available to create Linux
containers, as is the case of LinuX Containers (LXC) [112] and LXD [44], rkt [53],
OpenVZ [153], Linux-VServer [173] and Docker [60]. In particular, Docker turned
containers into a mainstream technology, contributing: i) Docker Hub, a global
shared repository of Docker containers; ii) a procedure to create Docker images out
of Dockerfiles and iii) the usage of a layered file system that reduces the footprint
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of Docker images. Docker containers use cgroups, a feature in the Linux kernel
that allows to constrain the resources (e.g. CPU, memory and network) consumed
by a process together with namespaces to provide processes with their own view
of the system. In our case, the containers will correspond to the working nodes
that compose the VC.

Container Orchestration Platforms

The ecosystem of applications around Docker has exploded in the last years [157],
with contributions in many areas such as Continuous Integration/Continuous De-
livery (CI/CD), application packaging and COPs. Indeed, there are many appli-
cations to manage the execution of containers across multiple hosts. For exam-
ple, Kubernetes [109] is an open source orchestration system for Docker contain-
ers. It handles scheduling onto nodes in a compute cluster and actively manages
workloads to ensure that their state matches the user’s declared intentions. The
scheduling in Kubernetes is based in Pods. These are groups of containers that
are deployed and scheduled together. Pods form the atomic unit of scheduling in
Kubernetes, as opposed to single containers in other systems. Containers within
a pod share an IP address, and labels can be used to identify each group of con-
tainers. Apache Mesos [88] can be used to deploy and manage applications inside
containers in large-scale clustered environments. The architecture of Mesos is de-
signed to be high-available and for that uses ZooKeeper. Mesos, in combination
with a job system like Marathon [119] or Chronos [47], takes care of scheduling
and running jobs and tasks, that can be run in containers or directly in the nodes
of the cluster. Finally, Docker Swarm [116] represents the native clustering ap-
proach proposed by Docker, which “provides native clustering capabilities to turn
a group of Docker engines into a single, virtual Docker Engine”. This way, a
container-based VC can be easily created on top of virtual or physical resources.
The architecture of Docker Swarm consists on each host running a Swarm agent
and one host running a Swarm manager. The manager is responsible for the or-
chestration and scheduling of containers on the hosts. Moreover, Docker Swarm
can be run in a high-availability mode where either etcd, Consul or ZooKeeper is
used to handle fail-over to a back-up manager. We opted for Docker Swarm due
to its easy integration with the Docker CLI.

Notice that COPs are used to manage the execution of containers in a cluster.
The user describes the container, and the COP selects which of the physical host
is going to perform the execution of the container. Therefore, these tools represent
for containers a similar concept than a LRMS (e.g. Torque, SLURM, etc.) is for
jobs in a computer cluster.

Notice that one could use the interfaces provided by a COP to directly deploy
containers that run their jobs on a set of computing resources. However, this
approach would be disruptive for traditional users of computer clusters since their
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usage patterns would significantly change. They would have to use client-side
tools to interact with such COPs and deal with data staging in the COP, instead
of performing an interactive session via SSH to the cluster. Instead, the clusters
deployed via EC4Docker maintain the very same user experience and interfaces
exposed by traditional computer clusters (e.g. SSH-based access to the front-end
node).

Reducing overhead of VMs using Containers

There are studies in the literature that analyse the overhead of containers for the
execution of applications. In [73], the authors explore the performance of tradi-
tional VM deployments and contrast them with the use of Linux containers (using
Docker). Several benchmarks are used to demonstrate that containers result in
equal or better performance than VMs in terms of CPU, memory and storage.
The study covered in [161], analyzed the performance of three well known open-
source tools (KVM, OpenVZ, and Xen) in the context of HPC. The results showed
that the solution that offers near native CPU and I/O performance was OpenVZ.
Other works in the literature have also analyzed the performance of containers to
execute scientific applications and workflows, such as [27] and [202]. Skyport [80]
utilizes Docker containers to execute scientific workflows instead of VMs, reducing
the overhead caused by VM virtualization. Also, analysis of the requirements of
the applications to be executed in containers have been performed [170]. Because
container-based virtualization works at the operating system level, all instances
(containers) share the same operational system kernel. That is why container-
based virtualization has a weaker isolation when compared to hypervisor-based
virtualization [192]. In order to guarantee the resource isolation between the host
system and the containers running on, such a system implements kernel names-
paces. However, using containers for security isolation might not be a good idea
[158]. The only way to have real isolation with Docker is to either run one container
per host, or one container per VM, at the expense of a performance overhead. Nev-
ertheless, for security reasons, it might be worth sacrificing the performance of a
pure-container deployment by introducing a VM to obtain true isolation.

Containers can run on VMs too, although such double virtualization imposes per-
formance overheads. In [3] authors investigate container-based technology as an
efficient virtualization technology for running high performance scientific applica-
tions. They used Docker containers and VMs created using OpenStack to execute
a molecular modeling simulation software. Results show that container-based sys-
tems are more efficient in reducing the overall execution times for HPC applica-
tions, because they can be deployed in a remarkable minor time and have better
memory management for multiple containers running in parallel.
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Virtual computer Clusters

Concerning the use of VC, several well-known tools already exist in the literature
to deploy them, such as StarCluster [134], Elasticluster [203] and EC3 [41], but
all of them are based on the deployment of VMs. Concerning the creation of VCs
based on containers, studies like [191] analyzed and compared some of the container
technologies available to the community (Linux-VServer, OpenVZ and LXC) from
the point of view of MapReduce workloads, executing several benchmarks to test
their performance and manageability. The results show that container-based sys-
tems reached near-native performance though LXC offers the best relationship of
performance and isolation. The study covered in [87] present the results of de-
ploying Docker containers in a cluster environment when compared to the KVM
hypervisor and an evaluation of its suitability as a runtime for high performance
parallel execution. The results showed that containers can be used to tailor the
runtime environment for an MPI application without compromising performance,
and provide better Quality of Service for users of scientific computing. The devel-
opers of a Linux-VServer address in [156] a container-based cluster management
platform in which Docker and HTCondor work together to execute scientific work-
flows. The results obtained from executions of a Monte-Carlo simulation showed
that Docker had a near native performance comparing with a hypervisor-based
virtualization solution.

To our knowledge, there are no works in the literature that feature the adoption
of Docker containers to create VCs that provide users with the very same exe-
cution environment (e.g. LRMS, client tools) typically available in both physical
clusters and virtual clusters of VMs. This pioneer approach allows users to access
well-known computing facilities, i.e. clusters of PCs, on top of the lightweight
virtualisation provided by containers in order to take profit from enhanced perfor-
mance and fast elasticity.

7.3 Elastic Cluster for Docker (EC4Docker)

EC4Docker is an open-source tool that deploys Docker Container-based Virtual
Elastic computer Clusters (CVEC). The cluster delivered by EC4Docker consists
of a Docker container that acts as the front-end node of the cluster, and a set of
containers that act as the working nodes. The front-end container behaves as a
regular front-end in a cluster: it is accesible by SSH, has installed a LRMS such as
Torque or SLURM, and it shares its file system to the working nodes using NFS.
The working nodes of the EC4Docker cluster are also containers that behave like
regular working nodes in a cluster: they are accesible from the front-end using
password-less SSH, they are integrated in the LRMS, and they mount the shared
file system.
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The novelty of EC4Docker is that the front-end of the cluster is able to create and
to destroy the internal nodes depending on the workload. This ability is possible
due to: i) the integration of the CLUES9 [9] elasticity manager that decides when
to power on or off the internal nodes and ii) a plugin for CLUES that has been
developed for EC4Docker, that makes it possible to translate the commands to
power on and off of the internal nodes into the proper Docker instructions that
create and destroy Docker containers. This plugin takes advantage from the ability
of Docker to be used remotely by exposing its Application Programming Interface
(API) through a standard TCP/IP socket.

The concept of a container-based cluster as-is may be useful for prototyping, as
the containers are conceived to be ran in a specific host. However, in the case of
EC4Docker, it is integrated with Docker Swarm, which behaves as a scheduler that
manages a set of Docker hosts as a single entity. It works together with a discovery
service, such as Consul10, that provides high availability to the underlying Docker
Swarm cluster. Using Docker Swarm, when a Docker container is created, it is
deployed in any of the Docker hosts managed by the Swarm. Using this combina-
tion of EC4Docker and Docker Swarm, it is possible to deploy the containers that
build the CVEC across multiple hosts which, by the way, can be either physical
or VMs. It is important to point that other COPs could be employed instead of
Docker Swarm, such as Kubernetes or Apache Mesos as well as managed services
for the deployment of containers such as Amazon EC2 Container Service11.

7.3.1 Features of the Container-based Virtual Elastic Cluster

As stated earlier, using EC4Docker, the users are delivered a computer cluster
with the tools that they typically use, and they do not need to change the way of
interacting with the cluster. They access the cluster using SSH, where they find
the LRMS to which jobs can be submitted as usual. The LRMS is not aware of
any container and the applications require no modifications.

However, even experienced users in traditional computing clusters can benefit from
the CVEC, because these are useful to create the specific execution environment
for their applications. Docker containers are commonly employed to ease the distri-
bution of applications: using Dockerfiles in Docker, users can create the container
images that include their application along with the required libraries, the most
appropriate OS distribution, etc. Starting from that Docker image, the admin-
istrator will include the EC4Docker Dockerfiles that will create the EC4Docker
CVEC that will be delivered to the user.

9CLUES: https://github.com/grycap/clues
10Consul: https://www.consul.io
11Amazon EC2 Container Service: https://aws.amazon.com/es/ecs/
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Using this approach, although the underlying infrastructure is shared by all the
CVEC, different configurations can be employed. For example, a cluster based on
Ubuntu 16.04 and the Torque LRMS can coexist and share the same underlying
computational resources with a Scientific Linux cluster whose jobs are scheduled
by SLURM. It is important to point out that this feature can be very beneficial
for the execution of software applications that are incompatible with each other,
without needing to physically isolate the resources. Therefore, the bare-metal
physical nodes are shared by all the clusters deployed in the infrastructure, where
the container-based working nodes will be deployed to execute the jobs of each
cluster.

EC4Docker is not only useful for CPU-oriented applications. In case the applica-
tions require access to specific devices, such as GPGPUs, it is possible to instruct
EC4Docker to allow the Docker containers to access these devices. On the one
hand, in the case of homogeneous configurations where all the physical nodes have
a GPGPUs, EC4Docker can be instructed to automatically mount that device in-
side the container to expose it to applications. In this case, EC4Docker will use
the Docker mechanisms to enable the applications to use the GPGPUs available in
the physical hosts. For this, the container has to support the specific libraries and
drivers required to use the GPGPUs. On the other hand, in the case where only
a subset of the physical nodes have a GPGPUs, remote Compute Unified Device
Architecture (rCUDA) [64] can be used in order to turn those nodes into servers
that provide Graphic Processing Unit (GPU) services to the container nodes that
actually execute the applications. The applications do not require source code
modification since the rCUDA runtime takes care of the details of routing requests
to the specific hardware device.

7.3.2 Behaviour of a container-based virtual elastic cluster

Figure 7.3 describes the designed architecture employed to deploy CVECs on top
of a physical infrastructure, as an instantiation of the general architecture shown
in 7.2. Therefore, the workflow to create the CVEC follows the next steps:

1. Preparation of the Docker images. The preparation of a CVEC starts with
the creation of the Docker images that will be used to create the front-
end and the working nodes, and its instrumentation using the EC4Docker
Dockerfile fragments.

2. Creation of a network for the container. The CVEC needs a network for con-
tainers to communicate. In case of using Docker Swarm, an overlay network
that spans across the different sites is required. This overlay network enables
different hosts to become part of a swarm and assign non-overlapping IP ad-
dresses to their containers to enable communication among them. There is
the option of using a single overlay network shared among all the containers
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Figure 7.3: Architecture of a container-based virtual elastic cluster deployed on top of
a physical infrastructure and managed with Docker Swarm and EC4Docker.

from all the CVECs, or to create per-cluster networks in order to isolate the
different CVEC. The overlay network is used to virtualize the interconnection
network for the creation of the CVEC.

3. Creation of the CVEC. The creation of the cluster consists of deploying the
container that will act as the front-end of the CVEC. Since we want the
computer clusters to span across multiple hosts, the request to create the
container will be submitted to the Docker swarm front-end. A container
will be instantiated out of a Docker image created from the EC4Docker
Dockerfiles, which include an installation of CLUES and the LRMS chosen
by the end-user (SLURM or Torque). The containers are used to virtualize
the working nodes for the creation of the CVEC.

4. Enable external access to the cluster. In order to access the cluster using
SSH, the IP address of the front-end node of the CVEC is required. However,
the IP addresses in the Docker swarm cluster will be private to the overlay
network for the cluster and, therefore, they are not accesible from outside
networks. To solve this problem, we use IPFloater12, a tool able to redirect
the traffic from a public IP to a private IP inside a LAN, thus, simulating
the floating IPs offered by OpenStack [151].

Once the workflow has finished, the user is provided with the IP address of the
front-end node of the CVEC.

Then, the end users can connect to the cluster via SSH or by means of a web
browser (in case of accessing a web application like the Galaxy Portal [82]) and
submit their jobs to the selected LRMS as they would do with a physical cluster.

12IPFloater is available at https://github.com/grycap/ipfloater
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7.3 Elastic Cluster for Docker (EC4Docker)

The CVEC deployed using EC4Docker dynamically manages the size of the clus-
ter, with the novelty of running the jobs that are going to be executed in the
container-based working nodes, instead of using the traditional VM-based work-
ing nodes. This way, jobs will enjoy the advantages of light-weight virtualization
with a reduced overhead in CPU and memory.

The self-managed elasticity is carried out by CLUES (step 5 in Figure 7.3), that
forms part of the container image used by EC4Docker to deploy the front-end of the
cluster. CLUES running inside the EC4Docker container detects job submissions
to the LRMS in the container-based cluster. Then, if there are no available nodes
to satisfy the requirements of the job, it requests an EC4Docker node container
to the Docker Swarm Manager. This container will be deployed by Docker Swarm
in one of the bare-metal nodes that compose the infrastructure, and will act as a
container-based working node of the computer cluster, automatically integrated in
the LRMS. The EC4Docker node container will be also connected to the overlay
network specifically created for the CVEC, interconnecting the new container with
the rest of the CVEC.

As we have mentioned, the scheduling of the location of the containers that rep-
resent the cluster is carried out by Docker Swarm. Docker Swarm works with
rankings to decide where to execute the container. The node with the highest
ranking is the one that is chosen to run the new container. The policies offered
by Docker Swarm are: spread (default), binpack and random. The first two poli-
cies care about the number of containers deployed in the node and the CPU and
RAM free for each node, while the latter policy (random) simply returns a random
value for each node. Through the spread policy, the node chosen to host the new
container depends on the number of containers running on the node, regardless of
their status. With the same resources (CPU and RAM), the node that has fewer
containers will run the new container. The binpack policy, on the other hand, tries
to pack the containers in a node, trying to leave free enough space in other nodes
to hold containers with higher requirements. Thus, it avoids fragmentation. It is
noteworthy that, for all the policies, if all nodes get the same ranking, the election
is performed randomly.

7.3.3 Elasticity Rules

As stated earlier, elasticity in EC4Docker is managed by CLUES. This software
implements different policies that aim at balancing the trade-off that arises when
trying to minimize the waiting time for the jobs (which involves a larger num-
ber of available nodes) and the minimization of the infrastructure cost, which
involves a reduced number of nodes, which generate a cost in electricity (for phys-
ical infrastructures) or in resources (for public cloud providers). In the context
of containers, the creation of a container results in less available resources for the
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subsequent containers deployed on the same host. Therefore, it is important to
submit the containers only when they are really necessary.

The policies implemented by CLUES can be divided in two groups: the policies
used to decide when to increase the capacity of the cluster (scale-out) and those
used to decide when to decrease the size of the cluster (scale-in). Regarding the
scale-out policies, CLUES can interact with the LRMS at two levels. On the one
hand, it intercepts the submitted jobs before they reach the LRMS. On the other
hand, CLUES also monitors the queued jobs at the LRMS to check if these jobs
require additional nodes to be added to the cluster. The policies available are:

� 1:1 start. For each job launched, if no working nodes are available for its
execution, then a new node is deployed. Therefore, the jobs will wait for the
deployment of the node before they start their execution.

� Group-based start. Every time a new node is required, a group of them
are started. This policy assumes a workload model in which as soon as a
job reaches the LRMS, there is a high probability that other subsequent jobs
will be submitted in a short period of time. By over-provisioning a larger
number of nodes, the waiting time of the subsequent jobs will be reduced.

In order to decide when to shutdown a node (scale-in policies), the strategy is
to remove a node from the computer cluster when it has been idle for a speci-
fied amount of time. The selection of this time depends on the workload of the
computer cluster and it is important to achieve a good trade-off between the used
resources and the waiting time of the jobs. These are the available strategies:

� Queued jobs. Idle working nodes are terminated when there are no pending
jobs in the LRMS.

� Delayed shutdown. Idle working nodes are terminated after a certain
amount of configurable time. This is of interest when using public Clouds
that bill by the hour, where idle nodes are kept available for job executions
before the hour expires, even if no jobs are available to be executed at the
moment.

� Keeping some nodes always active. The computer cluster will have a
set of nodes deployed waiting for jobs. This way, the computer cluster tries
to prevent incoming jobs from waiting while nodes are started.
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7.4 Case study

In order to assess the effectiveness of the self-managed CVECs deployed with
EC4Docker, we present a case study based on a bioinformatics community of
users that need to execute several scientific tasks for their research. In particular,
the application used is MrBayes [141] (Bayesian Inference of Phylogeny). Mr-
Bayes is a program for Bayesian inference and model choice across a wide range of
phylogenetic and evolutionary models. MrBayes uses Markov Chain Monte Carlo
(MCMC) methods to estimate the posterior distribution of model parameters.
MrBayes has several dependencies in order to work properly, like an MPI imple-
mentation or the Beagle library. For this, we installed, among others, OpenMPI
together with the gcc compiler. The case study also analyzes the performance
of containers comparing to VMs, trying to prove the advantages of light-weight
virtualization in contrast with traditional virtualization based on VMs.

The overall scenario consists of three different executions of the same job pattern
submission (represented in Figure 7.4 (a)) on two different computing scenarios,
but on top of the very same physical resources. On the one hand, scenario a)
involves a container-based virtual computer cluster managed by EC4Docker. All
the containers submitted during this execution were limited to 1 CPU and 1 GiB
of RAM. On the other hand, scenarios b) and c) involve a VM-based virtual
computer cluster deployed on an OpenNebula on-premises Cloud by means of
EC3. Each one is configured with different idle times to trigger the scale-in policy:
scenario b) is configured with a maximum value for idle nodes of 1800 seconds
(30 min.), and scenario c) will power off nodes that were idle for more than 600
seconds (10 min.). Each VM deployed has 1 CPU and 1 GiB of RAM. The VMI
employed is based on Ubuntu 14.04 LTS. In this case, two different executions
for each configuration were carried out, one in which the software is dynamically
deployed on vanilla VMs and the other in which the software (SLURM, OpenMPI,
NFS, MrBayes and its dependencies) is pre-installed in the VMI, thus reducing
the time for contextualization, i.e., installation and configuration of the software
applications. This last option was the one chosen to compare with the execution
of the container-based cluster, since Docker containers are created out of pre-
configured Docker images.

The physical infrastructure used to deploy the case study is the same for both
scenarios for the sake of a fair comparison. It comprised eight physical nodes with
a total of 224 cores (28 cores per node), 512 GB of RAM (64 GB of RAM per node)
and a shared storage system of 16 TB. For the scenario a) we deployed Docker
Swarm and the main node includes the IPFloater tool in order to associate a public
IP to each container-based front-end. In scenarios b) and c), an OpenNebula 4.8.0
on-premises Cloud deployment is used.
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The limit size of the cluster was fixed to 6 nodes in all scenarios. A total of
15 Bayesian tasks with an average duration of 17.5 minutes is executed for each
test. The dataset employed is cynmix.nex [172], a partitioned dataset consisting
of data from four genes and morphology for 30 taxa of gall wasps and outgroups.
The number of generations has been fixed to 170.000. The following subsections
describe and analyze the obtained results for this case study.
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(b) Execution on VMs (EC3 with idle time
for scale-in set to 30 min).
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(c) Execution on containers (EC4Docker).
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(d) Execution on VMs (EC3 with idle time
for scale-in set to 10 min).

Figure 7.4: Execution results for both container-based cluster (a) and VM-based cluster
(b) where light blue represents the number of virtual nodes deployed, dark blue depicts
used nodes executing jobs and the red dashed line indicates the job pattern submission.
The upper grey dotted line represents the limit size of the cluster, fixed to six nodes.
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7.4.1 Results and discussion

First, we analyzed the time differences in the deployment and contextualization
processes for both containers and VMs used in our case study. Table 7.1 shows
the average times for the deployment, configuration and execution times for the
three scenarios. As we expected, the total average times for both the front-end
(FE) and working nodes (WN) were considerably higher with VMs, even if we
use a preconfigured VMI with SLURM, NFS, OpenMPI and MrBayes dependen-
cies previously installed. In the last case, it was still necessary to configure the
SLURM configuration files, NFS system, and the application MrBayes, that takes
an average time of [335-340] seconds in the case of the front-end and [284-285]
seconds for the working nodes. Even so, the time consumption during the con-
textualization process was reduced significantly by starting from a preconfigured
VMI (about 65%). However, preparing a customized VMI is not a trivial task so
non-experienced users would refrain from using EC3 if they are required to prepare
their own VMIs.

In contrast, creating a Docker container image from a Dockerfile is a much easier
process than building a VMI. It is necessary to take into account that the container
times shown in the table do not consider the time required to generate the container
image from the Dockerfile, since this task only needs to be performed once by the
administrator or the user. It is worth to point out that the time needed to create
the container image is equivalent to the contextualization time employed by a
non-preconfigured VM. Moreover, the time to pull the container images if they are
stored in Docker Hub has not been included in the table, as this is performed only
once, but it took an average of 150 s. in our tests.

Scen. a) Scen. b) Scen. c)
Prec. Non prec. Prec. Non prec.

Deployment avg. time 2 35 35 35 35
Active SSH avg. time 1 30 30 30 30

Total avg. time machine ready 3 65 65 65 65

FE contextualization avg. time 0 340 830 335 853
Total avg. time FE ready 3 405 895 400 918

WN contextualization avg. time 0 219 702 220 684
Total avg. time WN ready in LRMS 16 284 767 285 749

Job avg. waiting time 15.25 101 305 209 449
Job avg. execution time 994 1076 1083 1064 1128

Table 7.1: Time analysis, in seconds, for the different phases of the scenarios. Scenario
a) refers to the container-based execution, scenario b) refers to the VM-based execution
with an idle time configuration of 30 minutes and scenario c) refers to the VM-based
execution with an idle time configuration of 10 minutes. In b) and c) the tests are carried
out with preconfigured VMIs (Prec.) and without preconfigured VMIs (Non prec.).
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Second, we present in Figure 7.4 the results obtained from the execution of the
job pattern submission show in Figure 7.4(a). Scenario a) is represented in Figure
7.4(c), scenario b) is shown in Figure 7.4(b)) and scenario c) is addressed in Figure
7.4(d). For the three executions, we have used conservative elasticity policies to
ensure the minimum costs for the infrastructure in terms of energy and resources
consumption. Thus, CLUES has been configured to power on nodes according
to the 1:1 start strategy, i.e. when a job arrives to the LRMS and there is no
available node to execute it, a virtual node is deployed. On the other hand, the
power off policy selected was delayed shutdown, destroying nodes when they are
idle for 2 minutes, for the scenario a) execution, 30 minutes for the scenario b)
execution and 10 minutes for the scenario c). The differences in time for powering
off a node are based on the time that a new virtual node needs to be ready for task
execution (16 seconds in case of a container node and 285 seconds in average for
a VM node). Scenarios b) and c) involve the same execution but the variations in
the idle time to trigger the scale-in policy introduced differences in the behaviour
of the cluster, as it can be appreciated in the figures.

Based on the results represented in Figure 7.4 we can highlight that the container-
based cluster deployed in scenario a) fits almost perfectly to the workload of the
computing cluster. Indeed, containers only take a few seconds to be ready to
execute the jobs of the cluster since the contextualization process is not required,
and starting a container is faster than booting a VM. Therefore, the average time
that a job is queued up at the LRMS, i.e. in PENDING state, does not exceed 15
seconds.

In contrast, in scenarios b) and c) we can easily denote the differences deploying
a node, that takes an average of 285 seconds to be ready and detected by the
LRMS as an eligible node to execute jobs. This situation is represented in Figure
7.4(b),(d) in light blue, and covers the time needed to deploy a new VM, obtain
SSH access to it and contextualize the job execution environment. For example, in
Figure 7.4(b), for the first job this requires the initial 280 seconds of the execution.
This situation is repeated for the subsequent jobs that arrive to the LRMS, when
no available nodes are in the cluster. However, once the cluster is fully deployed,
new jobs do not need to wait for additional nodes to be deployed. Instead, they
just wait for other tasks to finish. This fact helps reducing the total average time
of jobs waiting in the LRMS queue, which is 101 seconds. However, the resources
are not properly exploited, because most of the nodes were idle a long period of
time.

This situation can be better addressed by reducing the idle time allowed for nodes
as it is done in scenario c). In this case, the available resources are better used, but
the total time of execution increases (6989 seconds) like the job average waiting
time (209 seconds) in contrast with the other two scenarios a) and b). However,
despite the differences in the time required to provision new nodes in all scenarios,
the total execution time in scenarios a) and b) is very similar. Container-based
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execution (scenario a)), requires 6579 seconds to complete all the submitted jobs
while VM-based execution (scenario b)) takes 6661 seconds. Note that, on the one
hand, scenario b) is significantly impacted by requiring to deploy additional nodes
(VMs) at the beginning but the deployment and configuration of the nodes is pro-
duced concurrently. However, once the new nodes are up and running, jobs can be
processed on a first-come-first-served basis. On the other hand, scenario c) is also
impacted by the initial deployment of new VMs. However, the infrastructure does
not maintain the nodes active and more time dedicated to deploy nodes os needed
during the execution. These facts reveal that in a VM-based execution, increasing
the time that nodes are idle, reduces the total execution time (no extra time is
dedicated to deploy nodes to scale out) at the expense of wasting computational
resources. Also, if the idle time to trigger a scale in operation is reduced, the total
time of execution increases (due to the extra time required to provision additional
nodes, which increases the job waiting time) but the computational resources are
better used.

It is of special relevance the differences in the average time for a single job exe-
cution, that is an 8.2% faster in the containers deployed in the scenario (a) (994
seconds), than in VMs ([1064-1128] seconds). This fact confirms the higher over-
heads in CPU and memory that VMs suffer, comparing with the light-weight
virtualization introduced by Docker containers.

Figure 7.4 does not represent the time required to deploy and configure the front-
end of the cluster. This data is presented in Table 7.1, where for a container-
based cluster this task only requires deploying a container in Docker Swarm and
requesting a redirection to IPFloater (3 seconds). Meanwhile, for a VM-based
cluster, this task involves the creation of a new VM in OpenNebula, wait until
the SSH of the VM is active and complete the contextualization process ([895-
918] seconds in average for a non-preconfigured VMI and [335-340] seconds for a
preconfigured VMI).

All the analyzed results suggest that containers are a proper solution to execute
groups of short HTC tasks, like BoT early outweighs the execution time of the
tasks. HPC tasks can also benefit from the reduced overheads that arise when
using containers. In contrast, for longer tasks, contextualization time may become
negligible with respect to the total execution time and, therefore, these tasks can
take advantage of the unlimited resources offered by Cloud Computing platforms
in the shape of VMs.
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7.5 Conclusions and Future Work

This paper has analyzed the feasibility of using Docker containers to support the
creation of virtual elastic computer clusters for the execution of scientific applica-
tions. These clusters maintain the very same interfaces for end users but benefit
from the reduced overheads introduced by containers. For this, we introduced
the open-source EC4Docker tool to support the deployment of such clusters on a
Container Orchestration Platform managed by Docker Swarm.

We have demonstrated the feasibility of adopting containers to execute scientific
applications, introducing two main advantages when compared to traditional VMs:
i) the low deploying times for new working nodes, and ii) potential reductions in
the overhead caused by VMs in CPU, memory and storage, offering near-native
performance. Moreover, from the discussed case study, we can conclude that
container-based virtual clusters are an appropriate solution for the execution of
short HTC tasks.

Future work involves the automatization of the generation of the container im-
ages that EC4Docker uses to deploy the cluster. Currently, the administrator
or the users need to generate their own images including the Dockerfile provided
with EC4Docker in order to deploy their own applications in the container cluster
environment. A service will be implemented to facilitate this process for non-
experienced users.
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EC3aaS: EC3 as a Service

“I have always wished for my computer to be as easy to use as my telephone; my
wish has come true because I can no longer figure out how to use my telephone.”

Bjarne Stroustrup, C++ creator (1990).

EC3 as a Service (EC3aaS), is a web service offered to the community to facilitate
the usage of EC3 to non-experienced users. Anyone can access the website [39] and
try the tool by using the user-friendly wizard to easily configure and deploy Virtual
Elastic Clusters on multiple Clouds. The service does not require any account to
use it. The user only needs to choose the Cloud provider and provide its credentials
to allow EC3 to provision VMs from the underlying Clouds on behalf of the user.
The website features the documentation of EC3. Therefore, this service facilitates
the usage of EC3 to non-experienced users.

EC3aaS has been developed with Bootstrap [30], a free and open-source framework
for creating websites and web applications. This way, the underlying technologies
used are HyperText Markup Language (HTML) 5.0, Cascading Style Sheets (CSS)
and JavaScript.

8.1 Configuration and Deployment of a Cluster

In order to configure and deploy a Virtual Elastic Cluster using EC3aaS, a user
accesses the homepage and selects ”Deploy your cluster!” (Figure 8.1). With this
action, the web page will show different Cloud providers supported by the web
interface version of EC3. Notice that not all the Cloud providers supported by EC3
appear in the website, only the most important providers in the field of research are
currently supported by the web version. Users that want to use another supported
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Figure 8.1: Homepage of EC3aaS.

Cloud provider, such as Microsoft Azure or Google Cloud Engine, are encouraged
to use the CLI interface.

The first step, then, is to choose the Cloud provider where the cluster will be
deployed (Figure 8.2). When the user chooses one of the offered providers (Amazon
EC2, OpenNebula, OpenStack or EGI FedCloud), a wizard pops up (Figure 8.3).
This wizard will guide the user during the configuration process of the cluster,
allowing to configure details like the operating system, the characteristics of the
nodes, the maximum number of nodes of the cluster or the pre-installed software
packages. Specifically, the general wizard steps are:

1. Provider account: Valid user credentials are required to access to the
resources of the Cloud provider chosen. Additionally, in the OpenNebula,
OpenStack and EGI FedCloud wizards, the endpoint of the server is also
required. The use of temporary credentials is recommended.

2. Operating System: the user can choose the OS of the cluster, by using a
select box where the most common OS are available or by indicating a valid
AMI/VMI identifier for the Cloud selected.

3. Instance details: the user must indicate the instance details, like the num-
ber of CPUs or the RAM memory, for the front-end and also the working
nodes of the cluster. In case of using Amazon EC2, a select box is pro-
vided with the instance types offered by this provider. In case of using EGI
FedCloud, the user must indicate the instance type desired from the ones
available in the endpoint selected.

4. LRMS Selection: the user can choose the Local Resource Management
System preferred to be automatically installed and configured by EC3. Cur-
rently, SLURM, Torque, Grid Engine and Mesos are supported.
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Figure 8.2: List of Cloud providers supported by EC3aaS.

5. Software Packages: a set of common software packages is available to be
installed in the cluster, such as Docker Engine, Spark, Galaxy, OpenVPN,
BLCR, GNUPlot, Tomcat or Octave. EC3 can install and configure them
automatically in the contextualization process. If the user needs another
software to be installed in his cluster, a new Ansible recipe can be developed
and added to EC3 by using the CLI interface.

6. Cluster’s size: the user can introduce the maximum number of nodes of
the cluster, without including the front-end node. This value indicates the
maximum number of working nodes that the cluster can scale.

7. Resume and Launch: a summary of the chosen configuration of the cluster
is showed to the user at the last step of the wizard, and the deployment
process can start by clicking the Submit button.

Notice that not all the Cloud providers need or allow to configure the same data.
Because of that, the wizards are customized for each Cloud provider. For example,
in the EGI FedCloud, a new wizard step appears, in order to collect the data
about the MyProxy account of the user, a particularity of this Cloud provider. At
the same time, the credentials needed to contact with the Cloud providers have
different formats, depending on the provider selected. This is another reason why
the wizards are customized for each one. Moreover, the instance options (CPU,
RAM and disk) are presented different for each provider. Since Amazon EC2 and
EGI FedCloud offer a predefined list of instance types, OpenNebula and OpenStack
let the user indicate the values of CPU and RAM for the instance.

Finally, when all the steps of the wizard are filled correctly, the submit button
starts the deployment process of the cluster. Only the front-end will be deployed,
because the working nodes will be automatically provisioned by EC3 when the
workload of the cluster requires them. When the virtual machine of the front-end
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Figure 8.3: Wizard to configure and deploy a virtual cluster in Amazon EC2.

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Information received by the user when a deployment succeeds.

is running, EC3aaS provides the user with the necessary data to connect to the
cluster (Figure 8.4) which is composed by the username and password to connect
to the cluster, the front-end IP and the name of the cluster. The user must keep
this data during the lifetime of the cluster, since it is used also to terminate it.
The cluster may not be configured when the IP of the front-end is returned by the
web page, because the process of configuring the cluster is a batch process that
takes several minutes, depending on the chosen configuration. However, the user
is allowed to log in the front-end machine of the cluster since the moment it is
deployed. To know if the cluster is configured, the command is cluster ready can
be used. It will check if the configuration process of cluster has finished.
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Figure 8.5: Wizard to delete a cluster.

Notice that EC3aaS does not offer all the capabilities of EC3, like hybrid clusters
or the usage of spot instances. Those capabilities are considered advanced aspects
of the tool and are only available via the CLI.

8.2 Termination of a cluster

To delete a cluster the user only needs to access the EC3aaS webpage, and click on
the trash icon (situated underneath the provider buttons in the deployment section
of the website) and indicate in the wizard (Figure 8.5) the cluster name provided
to the user in the deployment phase. The cluster name is a string composed by
the word cluster followed by a random string of five characters (including numbers
and letters). This cluster name is unique and allows EC3 to identify the cluster of
the user without using an user account. Moreover, in case the user has developed
the cluster in the EGI FedCloud, a valid proxy will be required in order to destroy
the cluster.

When the process finishes successfully, the front-end of the cluster and all the
working nodes had been destroyed and a message is shown to the user informing
the success of the operation. If an error occurs during the deleting process (for
example, the indicated cluster name does not exist), an error message is returned
to the user.
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8.3 Other available materials

In addition to the webpage together with the EC3aaS service, where its features,
architecture, etc. are explained in depth, EC3 also has several public materials
available on the Internet (Figure 8.6). The source code of EC3 is available to the
community in its GitHub page [40], under an Apache 2 license. That repository
includes both the current developments of EC3, and the documentation about it.
Anyone can easily clone the repository and use the EC3 CLI interface.

Figure 8.6: EC3 webpages in ReadTheDocs, GitHub and Youtube.

Moreover, a Docker image that includes the installation of EC3 is available in the
Docker Hub repository [51]. This image enables a user to easily deploy a container
to use EC3 commands to deploy and configure virtual clusters. The documentation
of EC3 can be also found in ReadTheDocs [38], a well-known repository that
publicly hosts software packages’s documentation.

Finally, EC3 offers several video-tutorials avaliable in the Youtube Channel of the
Grupo de Grid y Computación de Altas Prestaciones (GRyCAP) research group
[10]. The video-tutorials cover examples using the EC3 CLI interface and also the
web interface offered by the EC3aaS version. All the links to those materials are
available in the Learn more section of the EC3’s webpage.
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8.4 Use Cases

The usage of EC3aaS has facilitated the access to cloud computational resources
for researchers of fields devoid of expert computer science skills. For example, in
the Bijvoet Center for Biomolecular Research (the Netherlands)1, the researchers
that have developed software tools for the modelling of biomolecular complexes, are
using EC3 to expose them as virtualized services in the EGI FedCloud platform,
inside the INDIGO-DataCloud project [201].

In particular, the tool High Ambiguity Driven protein-protein DOCKing (HAD-
DOCK)2, an integrative, information-driven approach for modelling biomolecular
complexes, is offered nowadays through a user-friendly web interface deployed both
on local sources and distributed grid resources. The case study for HADDOCK
Portal involves the virtualization of the HADDOCK web portal and the required
computational infrastructure underneath it using EC3. The aim is to be less de-
pendent on local hardware and to facilitate the deployment of the software at other
sites.

Moreover, the tools PowerFit3 and DisVis4 are two other softwares recently de-
veloped by this research group, for automatic rigid body fitting of biomolecular
structures in Cryo-EM densities and for visualization and quantification of the
accessible interaction space of distance restrained binary biomolecular complexes,
respectively. PowerFit and DisVis case studies involve the deployment of these
softwares into VMs with all their dependencies, so that the end user will not deal
with the installation procedure, and EC3 seems to be a proper solution to achieve
it.

As we have presented, chapter 5 reflects another use case of the EC3aaS service,
where researchers from the National Institute for Agricultural Research (INRA)5,
in France, whose research is centered in the field of biodiversity, use EC3 to deploy
a Galaxy cluster to perform their studies.

These are examples of the usage of EC3 in areas of knowledge different from com-
puter science. The next chapter lists the projects where EC3 has been integrated
and also its usage in the academia.

1Bijvoet Center for Biomolecular Research: http://bijvoet-center.eu/
2HADDOCK software: http://haddock.science.uu.nl/services/HADDOCK2.2/
3PowerFit software: https://github.com/haddocking/powerfit
4DisVis software: https://github.com/haddocking/disvis
5INRA: http://www.inra.fr/
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Chapter 9

Discussion and Results

“Afronta tu camino con coraje, no tengas miedo de las cŕıticas de los demás. Y,
sobre todo, no te dejes paralizar por tus propias cŕıticas.” Paulo Coelho, Maktub

(1994)

Throughout this thesis, different tools have been produced that contribute sig-
nificantly to the state of the art of HPC on Cloud platforms. This thesis has
produced technology that is having an impact on the communities that require
cluster-based computing, like datacenters and scientific communities, which are
now able to easily outsource part of their computing power to Cloud platforms
and to take advantage of the virtual hybrid elastic clusters capabilities in order to
reduce the costs of the computing. Moreover, the ability to present these capabil-
ities in a friendly way to the users, has facilitated the usage of Cloud computing
to researchers from other areas of knowledge, that are not experts in computing
science.

Therefore, the author has been pleased with the collaboration with different projects
and tools, enriching both parties. On the one hand, contributions to relevant tools
of the research group where the PhD student was integrated have been carried out.
These contributions have helped to improve existing tools and also have provided
experience and knowledge to the researchers involved. On the other hand, the
main tool developed in this thesis has been integrated into several national and
international projects as part of the solution to larger problems. This outlines the
quality of the solution developed in this thesis.

The most significant results of the research carried out in this project have been
published in several conferences and journals of remarkable relevance inside the
area of knowledge. These publications denote the quality of work performed,
and contribute to the dissemination of its results inside the community. Next
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Figure 9.1: Flyers of EC3 used for dissemination purposes.

subsections summarize the tools developed during the project and the principal
contributions to the area. Also, research projects involved in the works developed
in this project are presented. Finally, publications and contributions in national
and international conferences are listed, as well as published papers in journals of
relevance in the area.

9.1 Software and tools developed

� Elastic Cloud Computing Cluster (EC3): this tool is the main devel-
opment of the project. EC3 allows its users to deploy virtual hybrid elastic
clusters on top of IaaS Clouds. These clusters are self-managed since they
have the ability to auto-scale its size (in terms of number of nodes) according
to their workload. Also, they are automatically configured, according to the
requirements of the user application. Moreover, as we have discussed in this
document, these clusters are cost-efficient, since they can be deployed us-
ing spot instances that significantly reduce the total cost of executions [13].
Currently, EC3 supports the deployment of virtual clusters in OpenNebula
[175], Amazon EC2 [12], OpenStack [150], OCCI [129], EGI FedCloud [70],
LibCloud [18], Docker [60], Microsoft Azure [130], Google Cloud Engine [83]
and LibVirt [111], thanks to the IM, that is used in EC3 to deploy resources
in the Cloud. EC3 supports the following LRMS: SLURM [100], Torque [2],
SGE [168], Mesos [88], and HTCondor [91], covering several of the most used
resource management tools. Recipes for several software packages are offered
together with the EC3 source code, like Galaxy, Docker, OpenVPN, Octave
or BLCR, among others.
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Figure 9.2: EC3 logo: sketch (left) and final version (right).

Branding activities have been performed with EC3 to publicise and promote
it inside the research community. Therefore, EC3 has its own logo (see
Figure 9.2) and even some merchandising products, like T-shirts (see Figure
9.3) and flyers (Figure 9.1), that have been used in the conferences where
the author has participated.

� EC3 as a Service (EC3aaS): this is a web-based interface for EC3 for
users to easily deploy virtual elastic clusters without any installation and
by using just a web browser. For researchers that are not specialized in
computing science, but they need to use virtual resources to perform their
research, this web-interface is the best choice. It was deeply described in
chapter 8.

� Checkpointing Manager (ckptman): this is a tool to automate the
checkpointing in spot instances. It works together with the BLCR [65]
checkpointing tool, which is used by ckptman to perform the checkpoint-
ing operations, and with the IM [33], which is used to know the current state
of the cluster. ckptman also implements two checkpointing algoritms (HOUR
and THRESHOLD) to determine the best moment to perform a checkpoint of
an application without saturating the system. It has been integrated with
EC3 by developing an Ansible recipe that installs and configures the tool in
a cluster. An example of use of this tool has been presented in chapter 4.
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Figure 9.3: Design of the t-shirt of EC3 used in the EGI Community Forurm 2015.

9.2 Publications and contributions

As a result of the work carried out in this PhD project, the author has participated
in several international and national conferences in the area. Contributions to the
state of the art through publications in journals have also been performed. All of
the contributions obtained so far from this thesis are detailed below.

National conferences:

� 1º Encuentro de estudiantes de doctorado de la Universitat Politècnica de
València (June 12 2014, Valencia, Spain): in this event we participated with a
poster titled as the doctoral thesis “Computación Cient́ıfica de Altas Presta-
ciones sobre Plataformas Cloud Hı́bridas” [93]. The poster was chosen by
the jury among more than 120 posters as one of the top ten posters of the
conference. This gave to the author the chance of an oral exhibition of the
work.

International conferences:

� 3rd IEEE International Conference on Cloud Computing Technology and
Science, November 29-December 1, 2011, Athens, Greece): In this confer-
ence, we presented a paper called “Combining Grid and Cloud Resources for
Hybrid Scientific Computing Executions” that formed part of the master’s
project of the PhD candidate. This conference is ranked as C in the CORE
ranking [52]. The complete reference of the publication can be found in [35].
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� Conference “8th Iberian Grid Infrastructure Conference”, IBERGRID 2014
(September 8-10, 2014, Aveiro, Portugal): in this conference we participated
with an article that described the early versions of the main tool being devel-
oped in the thesis, EC3. The paper, entitled“Virtual Hybrid Elastic Clusters
in the Cloud” [37] described the main characteristics of the architecture de-
veloped for the deployment and management of virtual hybrid elastic clusters
(consisting of resources from different Cloud providers). It also presented the
results obtained for the execution of a use case in which a parallel computa-
tionally intensive gyro kinetic plasma turbulence application was involved.

� Conference “10th IEEE International Conference on e-Science” (October 20-
22, 2014, Guarujá, Brazil): in this indexed conference with a CORE A rank-
ing [52], a poster summary of the thesis, entitled ”High Performance Scientific
Computing over Hybrid Cloud Platforms” was presented. The author also
participated in the lightning session, with a two-minute short talk about
the work done. This congress was attended thanks to a grant obtained in
competitive tendering.

� Conference “8th IEEE International Conference on Cloud Computing” (June
27 - July 2, 2015, New York, USA): to this congress we participated with
a short paper, entitled “Towards Migrable Elastic Virtual Clusters on Hy-
brid Clouds” [36] describing the research work carried out in the CLUVIEM
project, a project in which the PhD candidate was actively involved, because
it is perfectly aligned with the contents of the thesis. The work presented
during the conference, where we also will come with a poster summary of
the work performed. This is an indexed conference with a CORE B ranking
[52].

Demonstrations:

� Conference ”EGI Community Forum 2015” (November 10-13, 2015, Bari,
Italy): in this conference we participated with a demo of the tool developed in
the thesis, EC3 , which was named ”Deploying Cost-Efficient Virtual Elastic
Clusters across Multi-Clouds” [59]. The demo was honored by the conference
organizers with the ”Best Demo Award”.

Journal articles:

� Lecture Notes in Computer Science (LNCS): in the volume 7851 of the se-
ries Lecture Notes in Computer Science, the author, together with other
researchers, published a paper called ”A Service-Oriented Architecture for
Scientific Computing on Cloud Infrastructures” [136], that was selected from
the conference 10th International Meeting on High-Performance Computing
for Computational Science (VECPAR 2012). The congress is an indexed
conference with a CORE B ranking [52] (when the work was published).
This work formed part of the master’s project of the PhD candidate.
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� Future Generation Computer Systems: the main developments of this PhD
project were published in this journal, under the title “Self-managed Cost-
efficient Virtual Elastic Clusters on Hybrid Cloud Infrastructures” [41]. This
journal has a impact factor of 2.786 and it is classified in the first quartile
(Q1) of the JCR for the topic ”Computer Science, Theory & Methods” in
2016 (when the paper was published).

� Journal of Grid Computing: together with researchers from INRA, UMR
BioGeCo and INRIA, a paper entitled “eScience with a galaxy web-service
connected to an elastic cluster in the cloud for computational biodiversity”
was sent to the Special Issue on Science Gateways of this journal. It is now
under its second review. The Journal of Grid Computing has a impact factor
of 1.507 and it is classified in the first quartile (Q1) of the JCR for the topic
“Computer Science, Theory & Methods” and in the second quartile (Q2) for
the topic “Computer Science, Information Systems” in 2016 (when the paper
was submitted).

� Journal of Systems and Software: the motivation to work with containers
together with the developments to produce EC4Docker are covered in the
paper“Container-based Virtual Elastic Clusters”that was sent to the Journal
of Systems and Software. It is now under its second review. The Journal of
Systems and Software has a impact factor of 1.424 and it is classified in the
second quartile (Q2) of the JCR for the topic “Computer Science, Theory &
Methods” (when the paper was submitted).

9.3 Projects where EC3 is integrated

EC3 has been integrated in the developments of several international and national
projects. Those projects are:

� INDIGO-DataCloud [95]: INtegrating Distributed data Infrastructures
for Global ExplOitation is a project funded under the Horizon2020 frame-
work program of the European Union, which has received a budget of 11M
¿ and integrates the collaboration of 26 partners. It aims at developing
a data and computing platform targeting scientific communities, deploy-
able on multiple hardware and provisioned over hybrid (private or public)
e-infrastructures. By filling existing gaps in PaaS and SaaS levels, INDIGO-
DataCloud will help developers, resources providers, e-infrastructures and
scientific communities to overcome current challenges in the Cloud comput-
ing, storage and network areas. EC3 is being currently integrated in the
INDIGO-DataCloud european project, together with the developed CLUES
plugins for Mesos and HTCondor.
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� EGI-Engage: The EGI ENGAGE [68] project (Engaging the Research
Community towards an Open Science Commons) started in March 2015,
co-funded by the European Commission for 30 months, as a collaborative
effort involving more than 70 institutions in over 30 countries. EGI-Engage
aims to accelerate the implementation of the Open Science Commons by
expanding the capabilities of a European backbone of federated services for
compute, storage, data, communication, knowledge and expertise, comple-
menting community-specific capabilities.

In January 2016, the EGI Inspire Newsletter (Issue 22) published an arti-
cle about EC3 [1]. Moreover, EC3 is being integrated with the EGI Long
Tail of Science (EGI LToS) [69], an easy-to-use platform for researchers
to access compute, storage and applications services in order to carry out
data/compute intensive science and innovation.

� EUBra-BIGSEA: The project EUrope-BRAzil Collaboration on BIG Data
Scientific REsearch through Cloud-Centric Applications aims at providing
services in the Cloud for the processing of massive data coming from highly
connected societies, which impose multiple challenges on resource provision,
performance, Quality of Service and privacy. The EC3 tool is being used in
this project as the main solution to deploy the virtual infrastructure used
to perform massive data analysis. EUBra-BIGSEA is funded in the third
coordinated call Europe–Brazil, by the European Commission under the Co-
operation Programme, Horizon 2020 grant agreement No 690116, together
with the Ministry of Science, Technology and Innovation (MCTI) of Brazil.

� CLUVIEM: The project Migrable Elastic Virtual Clusters on Hybrid Cloud
Infrastructures, with reference TIN2013-44390-R aims at the usage of virtual
hybrid elastic clusters. The general objectives of this project are the elastic
management of hardware infrastructures, the management of hybrid elastic
virtual clusters, the migration of virtual clusters and workloads, the energy
efficiency and the application use cases to showcase the benefits of the ap-
proach. The main objectives of this national project are perfectly aligned
with the contents of this thesis project, so all the developments explained in
this document are part of the solution of CLUVIEM. This project is financed
by the Spanish Ministry of Economy and Competitiveness.
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9.4 EC3 in the academia

EC3 has also been integrated in academia. Specifically, in the Master’s Degree
in Parallel and Distributed Computing (MUCPD)1, the Master’s Degree in Com-
puter Engineering (MUIINF)2, the Master’s Degree in Information Management
(MUGI)3, and the Master’s Degree in Big Data Analytics (MUBDA)4, all of them
imparted at the “Universitat Politècnica de València” in the academic course 2015-
2016. Those subjects are specially related to distributed computing and cloud
computing, such as Servicios en la Nube. This subject introduces students to
Cloud Computing with a wide panoply of services and tools that enable to lever-
age this technology in many scenarios. One of the tools addressed is EC3 for its
ability to provide multi-purpose cluster-based computing on top of Cloud infras-
tructures. Students learn the intricacies of computing in the Cloud and find out
an easy-to-use interface to provision their own clusters on AWS.

Moreover, the developments in this thesis project have derived some final degree
projects and final master projects, briefly summarised as follows:

� Development of a Representational State Transfer (REST) API for EC3 to
ease the integration for other developers.

� Development of an elasticity plugin for CLUES integrated in Docker Swarm,
to achieve an elastic back-end for container management.

9.5 Contributions to other projects and tools

During the development of this PhD thesis, the author has collaborated with
software projects carried out by the research group where she was integrated, the
GRyCAP. Those projects and the contributions are detailed below.

� CLUES: CLUster Energy Saving CLUES [9] is an energy management sys-
tem for HPC Clusters and Cloud infrastructures. The main function of
the system is to power internal cluster nodes off when they are not being
used, and conversely, to power them on when they are needed. CLUES
is integrated with the physical/virtual infrastructure by means of different
plug-ins. Those plug-ins connect with the underlying resource management
system in order to obtain the info about the infrastructure so that nodes
can be powered on/off using green techniques. The PhD candidate has been
collaborating with the developments of CLUES2 by the implementation and

1MUCPD: http://www.upv.es/titulaciones/MUCPD/
2MUIINF: http://muiinf.webs.upv.es/
3MUGI: http://mugi.webs.upv.es/
4MUBDA: http://bigdata.inf.upv.es/
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testing of two new plug-ins for the SLURM and Mesos (including Chronos
and Marathon schedulers support) resource management tools. The use of
these LRMSs is currently widespread in the community, so the development
of such plug-ins expand the range of action of CLUES2.

� Infrastructure Manager (IM): IM [33] is a tool that deploys complex
and customized virtual infrastructures on IaaS Cloud deployments (such as
AWS, OpenStack, etc.). It eases the access and the usability of IaaS clouds
by automating the VMI selection, deployment, configuration, software in-
stallation, monitoring and update of the virtual infrastructure. It supports
APIs from a large number of virtual platforms, making user applications
cloud-agnostic. In addition it integrates a contextualization system to en-
able the installation and configuration of all the user required applications
providing the user with a fully functional infrastructure. The author of this
thesis has been actively involved in this software tool, testing its functional-
ity and also adding new features to it, like the support for spot instances in
AWS. Also, she has been involved in the developments needed to support the
definition of different types of working nodes inside an RADL, thus allowing
the creation of hybrid clusters.

� Elastic Cluster for Docker (EC4Docker): this tool [71] provides a sim-
ple elastic cluster whose nodes are containers. There exists a front-end that
can be accessed by ssh, and the internal working nodes are powered on or
off according to the needs (if the nodes are not used for a while, they are
powered off, and they are powered on if they are needed). However, it was
primarily conceived to work in a single machine. The author of this PhD has
been working on this tool, adapting it to use Docker Swarm, a simple tool
which controls a cluster of Docker hosts and exposes it as a single virtual
host. The tool now can take advantage of a pool of resources, creating a
container-based virtual cluster on top of a physical cluster, not in the same
machine.
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Chapter 10

Conclusions

“Incluso un camino sinuoso, dif́ıcil, nos puede conducir a la meta si no lo
abandonamos hasta el final.”

Paulo Coelho, Maktub (1994)

In this chapter, to conclude the Thesis, a reflection of the work carried out is
presented. Also, the main ideas for the future work are pointed out. Finally, the
fundings that have made possible the development of this project are enumerated.

10.1 Conclusions

Nowadays, in many areas of knowledge, eScience depends on grid and cloud com-
puting solutions for computationally intensive processes involving large data sets.
Technology deployments behind these applications requires high skills in computer
science. However, one goal of eScience is to promote and encourage collaborative
works in application domains, by sharing data sets, pipelines, and access to ma-
terial generated by those processes. This thesis has focused on facilitating high
performance scientific application execution over hybrid cloud platforms.

This thesis has presented the developments towards migratable self-managed cost-
effective virtual elastic clusters on hybrid Cloud infrastructures. So far, the de-
velopments of this vision are represented on the open source EC3 [39] tool, which
abstracts the details of cluster deployment and configuration over hybrid Clouds
and enables to provision virtual hybrid elastic clusters that span across public
Clouds (AWS, Microsoft Azure and Google Compute Engine) and on-premises
CMPs (OpenNebula, OpenStack and any other OCCI-compliant software), featur-
ing checkpointing capabilities and spot instances support. Moreover, the system is
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able to self-configure these resources to support the execution of the applications,
and to adapt the cluster’s size and topology to the dynamic characteristics of the
application and the needs of the datacenter. It also supports OCCI, that enables
the user to provision resources from EGI FedCloud [70], one of the largest scientific
computing platforms. Finally, migration features have been presented to perform
(partly or fully) virtual cluster migration, integrated with EC3, that provide an
unprecedented degree of flexibility to virtual elastic clusters.

Another point addressed by this thesis was a detailed analysis of the advantages
of containers compared to VMs as a viable alternative to deploy virtual clusters.
Important Cloud providers, such as AWS, are beginning to offer containers [14] as
a solution for deploying applications in the Cloud. Thus, this issue was of special
interest. EC4Docker was presented as a tool to facilitate the execution of user
applications inside a container-based virtual cluster deployed on top of physical
resources, trying to facilitate the user experience.

Moreover, the author has implemented a service [39] that enables the automatic
deployment of virtual elastic clusters on the cloud through an user-friendly web
interface. This service facilitates the usage of EC3 to non-experienced users. EC3
also supports a designed branding as a product. In addition to the web application,
EC3 has its own logo, a repository in Github [40], where its source code is available
under an Apache 2.0 license, and video-tutorials of the CLI and web GUI interfaces
are available in the Youtube channel [10] of the GRyCAP research group.

The benefits of the proposed solutions have been exemplified by the execution
of several case studies that involve high performance scientific applications. For
example, a computationally intensive gyro kinetic plasma turbulence application
has been executed in a virtual hybrid elastic cluster, that demonstrates the fea-
sibility of this type of architectures into the scientific community. Another case
study was executed that involved a scientific application to perform the nonlinear
dynamic analysis of buildings executed in a hybrid virtual elastic cluster across
an on-premises OpenNebula Cloud and AWS. The results show the ability of the
clusters to adapt their size to the workload and the automatic Cloud bursting
to a public Cloud. Also, the checkpointing algorithms implemented by ckptman
have been tested under a real scenario using real workloads and real spot prices.
The results of this study show the significant savings that suppose the use of spot
instances in contrast to on-demand instances, with the increased resilience that
arises from periodic and automatic checkpointing of the jobs.

A working example of a Galaxy interface, that submits jobs to an elastic queue
based on a virtualized cluster that automatically deploys and undeploys resources
as needed, has been implemented in the domain of computational biodiversity,
allowing the research for patterns of biodiversity, from molecular data sets of
freshwater diatoms. Researchers in the area of biodiversity did not need a deep
knowledge of the underlying technologies to benefit from it, because EC3 hides
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the technical aspects of the underlying infrastructure. Finally, a comparative case
study of both solutions presented in this thesis to deploy virtual clusters, contain-
ers and VMs, was performed by using a bioinformatics application for Bayesian
inference and model choice across a wide range of phylogenetic and evolutionary
models (MrBayes). The study allowed to determine which type of jobs fits better
for a container solution an which of them for a VM-based solution.

We can conclude affirming that all the objectives proposed at the beginning of
this thesis have been successfully covered. Moreover, the results obtained during
the thesis have been timely published in relevant journals and conferences of the
area. The thesis has produced the technology required to turn a datacenter into a
hybrid infrastructure that can dynamically provision from public Cloud providers,
transparently to their users, which can take advantage from its benefits without a
deep knowledge.

10.2 Future work

Future work involves the maintenance of the current software and services offered
to the community as well as attracting new users to EC3. To achieve that, differ-
ent new developments are proposed. Regarding spot instances, we plan to adapt
the current algorithms of ckptman to other public Cloud providers with similar
features. This is the case of the preemptible VM instances provided by the Google
Cloud Platform.

It is also of our interest to improve the migration capabilities of EC3. On the
one hand, the advent experimented by light-weight virtualization in recent years
has accelerated the developments regarding container technology. Furthermore,
applications running in containers can be migrated across infrastructures by using
checkpointing techniques applied to containers. Recent works in the literature
aims at performing checkpoint and restore operations with containers, based on
previous developments in tools like OpenVZ [133] and most recently CRIU [54].
This early works open the possibility for introducing migration of container-based
workloads across multiple Clouds. On the other hand, EC3 supports the usage of
containers to deploy applications by using Docker and Mesos. Moreover, CLUES is
able to detect when the jobs reach the LRMS and no available nodes of the cluster
exist to attend the job requirements, thanks to the plugin specifically developed
during this thesis for Apache Mesos. This plugin is able to detect jobs submitted
directly to Mesos, in addition to jobs submitted to Chronos and/or Marathon.
Thus, this plugin provides CLUES with the ability to detect jobs at three levels at
the same time, completely controlling the infrastructure and providing an elastic
Mesos platform. The proposed solution is based on the usage of EC3 to clone
the original infrastructure and the usage of CRIU and Docker to checkpoint the
containers on where the application is running and restore them in the new cluster
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destination. The first developments to support Docker checkpointing operations
are available online [61], but still have not been merged upstream in the official
Docker repository.

Also, the integration of a REST API for EC3 will be considered. REST, REp-
resentational State Transfer, is a type of architecture for web development that
relies entirely on the HTTP standard. REST allows us to create services and ap-
plications that can be used by any device or client who understands Hypertext
Transfer Protocol (HTTP). This new feature will provide a new way to use EC3,
approaching it to the current most used software technologies that usually offer
this type of API to interact with the software (like Mesos or Marathon currently
do).

Moreover, we want to increase the list of offered Cloud providers in EC3aaS. Since
EC3 currently supports the deployment of virtual clusters in more Cloud providers
than the ones offered by EC3aaS (such as Google Cloud Platform or Microsoft
Azure), the idea is to offer the opportunity to deploy these virtual elastic clusters
in those platforms also through the website. This involves the development of new
wizards customized for those new providers. This proposal will help attracting
new users to EC3. Another measure that can be performed is preparing more
video-tutorials of EC3 to be offered in the Youtube channel of the research group.
This type of material is always a highly valued support for the users. Thus, new
video-tutorials will cover examples using the EC3 CLI interface to deploy hybrid
clusters and also examples with other providers using EC3aaS.

Finally, after the good results obtained with EC3aaS, we plan to develop a web
interface for EC4Docker, to facilitate its usage for non-experienced users. This
service will offer the automatization of the generation of the container images
that EC4Docker uses to deploy the cluster. Currently, the administrator or the
users need to generate their own images including the dockerfiles provided with
EC4Docker in order to deploy their own applications in the container cluster en-
vironment. A web portal will be implemented to facilitate this process, together
with the facilitation to deploy, configure and manage virtual elastic clusters based
on containers.

10.3 Fundings of this project

This work has been developed under the support of the program “Ayudas para la
contratación de personal investigador en formación de carácter predoctoral, pro-
grama VALi+d”, grant number ACIF/2013/003, from the Conselleria d’Educació
of the Generalitat Valenciana.

Also, the author wishes to thank the financial support received form The Spanish
Ministry of Economy and Competitiveness to develop the project “CLUVIEM”
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(Migrable Elastic Virtual Clusters on Hybrid Cloud Infrastructures), with refer-
ence TIN2013-44390-R.
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Appendix A

Sequence diagrams of EC3

This appendix includes two sequence diagrams that represent the three phases
explained in the ”Overall architecture” section 4.3.2 of the chapter 4. On the one
hand, Figure A.1 of this annex represents the sequence diagram of the deployment
and configuration of the frontend (phases 1 and 2). As in Figure 4.1 of the chapter
4, the diagram represents the interaction of the main components and actors that
perform the deployment of the cluster: EC3 client, the RADL file, the Infrastruc-
ture Manager (IM), the VMRC catalog of images, Ansible (in charge of configure
and install in the frontend the LRMS, CLUES to automate the elasticity, and
other packages if needed, like BLCR if spot instances are going to be used) and
the Cloud provider.

On the other hand, Figure A.2 of this annex represents the sequence diagram when
a new job arrives to the cluster and no nodes are available. This is related to phase
3 and represents the elasticity management of the cluster, where the interaction
between the LRMS, CLUES and the IM is showed.

These two diagrams are included in the documentation of our tool, available in
[38].
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Appendix A. Sequence diagrams of EC3
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Appendix B

Flowcharts of ckptman behaviour

This appendix includes two flowcharts that represent the behaviour of ckptman
in its two principal processes. On the one hand, Figure B.1 represents the logic
of ckptman applied each time the dictionary of spot nodes and its relation with
the jobs in execution is updated. If a new node has appeared and it is not in the
dictionary, ckptman saves its reference. In the same way, if a new job in execution
has been appeared to the LRMS, ckptman checks if it is running inside a spot
node. If the answer is positive, ckptman checks in which spot node the application
is being executed and saves this data in its dictionary. This schema is also applied
the first time ckptman is executed.

On the other hand, Figure B.2 points out the process followed by ckptman to
control the checkpointing operations and the state of the nodes that compose the
cluster. With the spot nodes dictionary updated (applying the process showed
in figure B.1), ckptman checks if for each spot node, it has a running application
associated. If the answer is positive, ckptman checks if the spot node is still
alive. In case the spot node is dead, ckptman restarts the application from its
last checkpoint (if exists). If not, ckptman will use the checkpointing algorithms
presented in 4.3.4 in order to know if a checkpoint operation must be performed,
and perform it in case the answer is positive.
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Appendix B. Flowcharts of ckptman behaviour
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Figure B.1: Creation and update of the spot nodes dictionary in ckptman.
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Figure B.2: Control of checkpointing and state of nodes in ckptman.
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