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Abstract 17 

Incorporation of cellulose nanocrystals (CNCs) to pea starch-poly(vinyl alcohol) (PVA) 18 

(1:2 ratio) blend films was carried out in order to improve their mechanical and barrier 19 

properties and film stability throughout storage, thus overcoming some drawbacks of 20 

starch based films. Different ratios (1, 3 and 5 %) of CNC were used and structural, 21 

thermal and physical (barrier, mechanical and optical) properties were analysed in 22 

comparison to the control film without CNC. Incorporation of CNC enhanced phase 23 

separation of polymers in two layers. The upper PVA rich phase contained lumps of 24 

starch which emerged from the film surface, thus reducing the film gloss. CNC were 25 

dispersed in both polymeric phases as aggregates, whose size increased with the CNC 26 

ratio rise. CNC addition did not implied changes in water vapour barrier of the films, but 27 

they became slightly stiffer and more stretchable, while crystallization of PVA was 28 

partially inhibited.  29 

 30 

 31 

Keywords: microstructure, mechanical properties, nanocomposites, optical properties, 32 

phase transitions, water vapour permeability. 33 

34 



Introduction 35 

The growing interest in environmentally-friendly materials has promoted research into 36 

the development of biodegradable polymers as an alternative to non-biodegradable 37 

synthetic petroleum-derived polymers [1, 2]. In response to the consumer requirements 38 

for safer and environmentally friendly packaging materials, the combination of 39 

biodegradable polymers with bio-based additives has also been analysed to improve 40 

the properties of these materials [3]. In this sense, bio-resources obtained from 41 

agricultural-related industries have received special attention. Crops fibre components 42 

provide a wide range of opportunities for developing new applications in different 43 

industrial sectors such as packaging, building, automotive and aerospace industries, 44 

electronics, etc. [4]. 45 

In the development of packaging materials for food applications, polysaccharides, such 46 

as starch, cellulose and their derivatives have commonly been used as film-forming 47 

compounds [5]. Cellulose is the most abundant renewable natural polymer resource 48 

available in the biosphere [6-8]. It is well known that when cellulose fibres are 49 

subjected to acid hydrolysis, the fibres yield defect-free, rod-like crystalline residues [6]. 50 

The use of cellulose nanocrystals (CNCs) as fillers in packaging materials has been 51 

studied not only because of their interesting physical and chemical properties but also 52 

due to their inherent renewability, sustainability and abundance. The most common 53 

sources of these nanocrystals include cellulose fibres from cotton, hemp, flax, 54 

microcrystalline cellulose, bacterial cellulose [6, 7, 9, 10]. The production of cellulose 55 

nanocrystals consists of subjecting pure cellulose material to strong acid hydrolysis 56 

under controlled conditions such as temperature, agitation and time, which determine 57 

the structure and characteristics of the crystals. Cellulose nanocrystals are used as a 58 

reinforcement material due to their large specific surface area (150 m2g-1) [11], surface 59 

energy [12] and very high elastic modulus (about 150 GPa) [13]. Moreover, their low 60 

density, about 1.566 g cm-3 [10], biocompatibility, biodegradability, low energy 61 

consumption in manufacturing, and low cost represent remarkable advantages of 62 



cellulose nanocrystals [10, 12, 14, 15] in comparison to others nanomaterials such as 63 

nanoclays, SiO2 and Au nanoparticles for elaboration of low cost nanocomposites. All 64 

of this makes cellulose nanostructures to be advantageous bio-based edible additives, 65 

which are able to enhance the bio-polymer performance, in terms of the mechanical, 66 

thermal and barrier properties [2, 8]. However, cellulose nanocrystals have some 67 

drawbacks, such as the difficulty to disperse homogenously in the polymer matrix [14], 68 

as a result of their agglomeration into flakes during film formation. Due to the 69 

hydrophilic character of cellulose nanocrystals, the main technique employed to 70 

transfer them from an aqueous dispersion into an organic polymer has been the 71 

casting-evaporation process [6]. 72 

Biopolymer nanocomposites are the result of the combination of biopolymers and 73 

nanoparticles of inorganic/organic fillers [15]. Cellulose nanocrystals have been 74 

incorporated into a wide variety of biopolymer matrices including (poly)caprolactone 75 

[16], carboxymethyl cellulose [17], (poly)vinyl alcohol [7, 8, 10, 15], (poly)lactic acid [9, 76 

14], chitosan [18], starch [5, 19] and biopolymer blends, like poly(lactic acid)-77 

poly(hydroxybutyrate) [20, 21]. In general, the hydrophilic nature of both biopolymer 78 

and nanocrystals leads to excellent interfacial compatibility, resulting in enhanced 79 

mechanical and thermal properties of the composite material [5, 15]. 80 

The use of starch as a biopolymer matrix in combination with other polymers to reduce 81 

the starch film drawbacks (poor mechanical and water vapour barrier properties) has 82 

been explored by different authors [22, 23]. The incorporation of PVA into gelatinized 83 

pea starch matrices implied the formation of interpenetrated polymer networks. In fact, 84 

the blend films showed beneficial effects on the mechanical properties of the films, 85 

these becoming much more extensible and stable during storage, and on water barrier 86 

properties [24]. Different studies into starch-PVA blends have been carried out, 87 

focusing on their biodegradability [25, 26] and the effect of the incorporation of different 88 

additives to the blends. The effect of adding citric acid [26], glutaraldehyde [27], urea 89 

[28], calcium chloride [29], or nanoparticles like nano-sized poly(methyl methacrylate-90 



co-acrylamide) particles [30] on PVA-starch blend properties has been analysed for 91 

different aims (compatibility enhancement or development of biomedical and packaging 92 

materials). Nevertheless, no studies have been found into the effect of cellulose 93 

nanocrystals on the properties of pea starch-PVA blend films.  94 

The aim of the present work was to study the effect of incorporating cellulose 95 

nanocrystals into pea starch-PVA blend films in terms of their nano- and micro-96 

structure, thermal behaviour and physical properties at different ageing times. 97 

 98 

2. Materials and Methods  99 

2.1 Materials 100 

Pea starch (S) was purchased from Roquette Laisa España S.A. (Benifaó, Valencia, 101 

Spain), poly(vinyl alcohol) (PVA) (Mw: 89.000-98.000, hydrolysed, +99%, viscosity: 102 

11.6-15.4 cP, 4% in H2O at 20 ºC), microcrystalline cellulose (MCC) (powder,15 - 20 103 

µm) were from Sigma Aldrich Química S.L. (Madrid, Spain).Glycerol and magnesium 104 

nitrate-6-hydrate (Mn(NO3)2) were supplied by Panreac Química S.A. (Castellar de 105 

Vallès, Barcelona, Spain). Sulphuric acid, ion resin (Dowex Marathon MR-3 hydrogen 106 

and hydroxide), Whatman 541 filter paper and NaOH were also purchased from Sigma 107 

Aldrich Química S.L. (Milan, Italy). 108 

 109 

2.2. Extraction of Cellulose nanocrystals (CNC). 110 

A suspension of cellulose nanocrystals (CNC) was prepared from microcrystalline 111 

cellulose (MCC) by hydrolysis using sulphuric acid, 64 % (wt/wt) at 45 ºC for 30 min, as 112 

previously reported by Cranston and Gray [31] and Fortunati [9]. Immediately following 113 

the acid hydrolysis, the suspension was diluted 20 fold with deionized water and 114 

maintained at rest overnight. Afterwards, the dispersion was centrifuged at 4,500 rpm 115 

for 20 min to separate the cellulose crystals. The precipitate was dialyzed against 116 

deionized water for 5 days and then neutralized with mixed bed ion resin for 48 h. 117 



Afterwards, the suspension was filtered through filter paper. The CNC filtrate was 118 

neutralized by adding 1.0 % (v/v) of 0.25 M NaOH. Finally, the CNC dispersion was 119 

homogenized by ultrasonic treatment, using a tip sonicator (Vibracell, 750 Sonics & 120 

Materials, Inc., Newton, USA) for 10 min in an ice bath. The dry matter content of the 121 

CNC dispersion was determined by the drying oven method [32], giving 11.1±0.2 %. 122 

This value was a little low compared with that reported by other authors [21]. CNC 123 

obtained nano-crystals showed dimensions ranging from 100 to 200 nm in length and 5 124 

to 10 nm in width, according to FSEM observations [10]. 125 

 126 

2.3. Preparation of films  127 

Films were obtained by casting from film forming dispersions (FFDs). Starch (1 %w/w) 128 

was dispersed in an aqueous solution at 90 ºC for 30 min with continuous stirring to 129 

induce starch gelatinization. Thereafter, the dispersion was homogenized using a rotor-130 

stator homogenizer (Ultraturrax D125, Janke and Kunkel, Germany) at 13,500 rpm for 131 

1 min and 20,500 rpm for 3 min. Immediately following the starch gelatinization, PVA 132 

was dispersed in the aqueous solution in a S-PVA ratio of 1:2 (w/w), and maintained at 133 

90 ºC for 30 min until complete dissolution. When the dispersion was cooled, 0.25 g of 134 

glycerol per g of starch was added on the basis of previous studies [33]. This FFD was 135 

used to obtain the control films. Cellulose nanocrystal dispersion was homogenized 136 

with the polymer FFDs by means of a tip sonicator for 4 min in ice bath. Different CNC 137 

mass ratios were considered: 0, 1, 3 and 5 g of CNC per 100 g of total polymers 138 

(sample codes: C, 1 %, 3 % and 5 %, respectively), considering the dry weight of CNC 139 

and polymers.  140 

To obtain the films, the FFDs were poured into Petri dishes, in a proper amount to 141 

provide a surface density of solids of 145 g m-2. Films were dried at 40 ºC in a 142 

convection oven for 48 h and afterwards, peeled off the casting surface and 143 

conditioned at 53 % RH, using magnesium nitrate-6-hydrate (Mn(NO3)2) saturated 144 

solution at room temperature (≈ 25 ºC) until further analysis. The film thickness was 145 



measured at six random positions with a calliper (MicrometerStarrett) to the nearest 146 

0.001 mm. 147 

 148 

2.4. Characterization of films 149 

2.4.1. Microstructure  150 

Microstructural analysis of films was carried out using both a field emission scanning 151 

electron microscope (FESEM) (SupraTM 25-Zeiss, Germany) and an atomic force 152 

microscope (AFM) (Multimode 8, Bruker AXS, Inc. Santa Barbara, California, USA), 153 

with a NanoScope® V controller electronics. To this end, two replicates per formulation 154 

were observed. FESEM observations were carried out on the film surface and on their 155 

cross section. To prepare the cross section samples, films were frozen in liquid 156 

nitrogen and cryofractured. Afterwards, samples were gold coated, and observed using 157 

an accelerating voltage of 2 and 5 kV, for the surface and cross-section observations, 158 

respectively.  159 

The surface morphology was also analysed using AFM. The resulting data were 160 

transformed into a 2D image. Measurements were taken from 50 x 50 m and 3 x 3 m 161 

areas of the film surface, using the phase imaging mode.  162 

AFM with the peak force QNM (Quantitative NanoMechanics) mode was also used to 163 

analyse the film surface nanostructure. Measurements were taken from 20 x 20 µm 164 

areas of the film surface and the resulting data were transformed into a 2D image 165 

(DMT modulus map).  166 

 167 

2.4.2. Fourier Transform Infrared (FTIR) spectroscopy  168 

FTIR spectra of the films were obtained by a Jasco FT-IR 615 spectrometer, (Easton 169 

MD, USA) in transmission mode, in the range of 400-4000 cm-1. A few drops of 170 

different film forming dispersions were cast on silicon plates, after which they were 171 

dried and measured. Each sample was characterized in duplicate.  172 

 173 



2.4.3. Thermogravimetric analysis 174 

Thermal weight loss (TG) and its derivate (DTG) of film samples vs. temperature were 175 

obtained using a thermogravimetric analyzer (Seiko Exstar 6300, Italy). In the test, 176 

samples were heated from 30 ºC to 600 ºC at 10 ºC min-1, using a nitrogen flow. Prior 177 

to the analyses, samples were conditioned for 1 week. Thermal degradation 178 

temperatures (the maximum of the DTG curves (Tmp) and secondary degradation 179 

temperature peak (Tp)) were obtained. Measurements were taken in triplicate. 180 

 181 

2.4.4. Differential scanning calorimetry  182 

Differential scanning calorimeter (DSC) (TA Instrument, Q200, USA) was used to 183 

analyse phase transitions in the films as a function of the temperature. Measurements 184 

were carried out in triplicate under nitrogen flow in the temperature range −25 to 230 185 

ºC, at 10 ºC min-1, by performing three scans: First, samples were heated from room 186 

temperature to 230 ºC and maintained for 5 min at 230 ºC. Then, samples were cooled 187 

down to – 25 ºC and heated again until 230 ºC. Data were recorded both during the 188 

cooling and second heating steps. From thermograms of the cooling step, the 189 

crystallization temperatures (Tc) and enthalpy (Hc) values were obtained. From the 190 

second heating step, glass transition temperature (Tg), melting temperature (Tm) and 191 

melting enthalpy (Hm) values were obtained. Prior to the analyses, samples were 192 

conditioned for 1 week.  193 

The crystallinity degree of PVA was calculated as shown in equation 1:  194 

   (1) 195 

Where , is the melting enthalpy of the sample (expressed in J g-1 PVA),  , the 196 

melting enthalpy of a 100% crystalline PVA sample (161.6 J.g-1 [34]) and XPVA, the 197 

mass fraction of PVA in the film.  198 

 199 



2.4.5. Moisture content 200 

Film moisture content (MC) was analysed by drying the film samples in a vacuum oven 201 

at 60 ºC for 24 h. Later on, the pre-dried samples were placed in desiccators containing 202 

P2O5 until reaching a constant weight. Five replicates per film formulation for one and 203 

five weeks were analysed. 204 

 205 

2.4.6. Water vapour permeability (WVP) 206 

Water vapour permeability (WVP) was evaluated in films equilibrated for 1 and 5 207 

weeks, following the gravimetric method ASTM E96-95 [35] by using Payne 208 

permeability cups (Payne, elcometer SPRL, Hermelle/sd Argenteau, Belgium) of 3.5 209 

cm diameter. Deionised water was used inside the testing cup to achieve 100 % RH on 210 

one side of the film, while an oversaturated magnesium nitrate solution was used to 211 

control the RH on the other side of the film. A fan placed on the top of the cup was 212 

used to reduce resistance to water vapour transport. Water vapour transmission rate 213 

measurements (WVTR) were performed at 25 ºC. To calculate WVTR, the slopes in 214 

the steady state period of the weight loss vs. time curves were determined by linear 215 

regression. WVP was calculated according to [36]. For each type of film, WVP 216 

measurements were taken in quadruplicate.  217 

 218 

2.4.7. Mechanical properties 219 

Mechanical properties were measured using a Universal Test Machine (Digital Lloyd 220 

instrument, West Sussex, UK), following the UNI ISO 527-1 [37], by using 5 mm min-1 221 

and a load cell of 1.5 N. Equilibrated film samples (1 x 5 cm) for 1 and 5 weeks were 222 

mounted in the film-extension grips (A/TG model), which were set 20 mm apart. Stress-223 

Hencky strain curves were obtained and the tensile strength at break (TS), percentage 224 

of elongation at break (Ɛ) and elastic modulus (EM) were calculated. Measurements 225 

were taken at room temperature with eight replicates per formulation. 226 

 227 



2.4.8. Ultraviolet-visible spectrophotometry  228 

Film samples equilibrated (1 x 1 cm) for 1 and 5 weeks were analysed by means of a 229 

UV–VIS spectrophotometer (Perkin Elmer Instruments, Lambda 35, Waltham, USA), by 230 

using a wavelength range between 250 and 1000 nm.  231 

 232 

2.4.9. Internal transmittance 233 

Internal transmittance (Ti) as a measure of the transparency of the films was 234 

determined through the surface reflectance spectra in a spectrocolorimeter CM-3600d 235 

(Minolta Co, Tokyo, Japan) with a 30 mm illuminated sample area by applying the 236 

Kubelka–Munk theory for multiple scattering to the reflection spectra, following the 237 

methodology described by Cano, et al. [36]. Measurements were taken in triplicate in 238 

films equilibrated for 1 and 5 weeks. 239 

 240 

2.4.10. Gloss 241 

Gloss was measured using a flat surface gloss meter (Multi- Gloss 268, Minolta, 242 

Langenhagen, Germany) at an incidence angle of 60º, according to the ASTM standard 243 

D523 [38]. Prior to gloss measurements, films were conditioned for 1 and 5 weeks. 244 

Gloss measurements were performed in triplicate. Results were expressed as gloss 245 

units, relative to a highly polished surface of standard black glass with a value close to 246 

100. 247 

 248 

2.4.11. Overall migration 249 

Overall migration tests in films conditioned for 1 week were carried out by following 250 

current legislation [39, 40]. Rectangular film strips of 20 cm2 total area were immersed 251 

in a glass tube with 20 mL of food simulants (ethanol 10 % (v/v) -simulant A- (Sigma 252 

Aldrich Química S.L., Milan, Italy) and isooctane - simulant to D2- (Sigma Aldrich 253 

Química S.L., Milan, Italy)), keeping the established relation of 6 dm2 kg-1. Samples in 254 

simulant A were kept in a controlled chamber at 40 ºC for 10 days, while samples in 255 



isooctane were kept at 20 ºC for 2 days. After the incubation period, the films were 256 

removed and simulants were evaporated to dryness. Afterwards, the residue was 257 

weighed with ±0.001 mg precision in order to determine the overall migration value in 258 

mg kg-1 of simulant. For each sample, three determinations were carried out. 259 

 260 

2.5. Statistical analysis 261 

Results were analysed by analysis of variance (ANOVA), using the Statgraphics Plus 262 

5.1. Program (Manugistics Corp., Rockville, MD). To differentiate samples, Fisher’s 263 

least significant difference (LSD) was used at the 95 % confidence level. 264 

3. Results and discussion 265 

3.1. Nano- and micro-structure of the films 266 

Figures 1 and 2 show the FESEM micrographs of the surfaces and cross sections of 267 

the different films, respectively. Control films showed phase separation of starch and 268 

PVA due to the lack of polymer compatibility, according to what was previously 269 

observed by other authors [24, 41]. Surface of control films shows the formation of 270 

globular structures which can be attributed to domains of one of the polymeric phases 271 

dispersed in the continuous phase of the other. When CNC nanocrystals were 272 

incorporated into the film formulation, the surface concentration of dispersed domains 273 

increased, this being more marked for the highest CNC content (5 %). 274 

The cross section micrographs of control films (Figure 2) showed two interpenetrated 275 

networks of both polymers where the crystalline zones of PVA can also be appreciated. 276 

In films containing CNCs the formed two layers in the films are more clearly 277 

differentiated. The top phase corresponds to about one third of the film thickness, 278 

according to the ratio of starch to PVA, which suggest that starch rich phase mostly 279 

separated at the top of the films whereas PVA predominate in the down layer. The top 280 

layer generally shows a less smooth appearance, showing the coexistence of PVA 281 

dispersed domains in a more continuous starch matrix. Some of them emerged to the 282 



film surface, as shown in the surface micrographs (Figure 1). The PVA rich phase also 283 

shows lumps of starch phase. Distribution of nanoparticles in the different phase 284 

cannot be clearly appreciated at the magnification level of micrographs, although the 285 

PVA phase shows a more granular aspect which could indicate that nanoparticles 286 

could be present in this phase to a greater extent. Micrographs at higher magnification 287 

allow us to appreciate this effect. For the highest ratio of CNCs (5 %), these appear 288 

distributed in both phases, thus modifying their general appearance. The aggregation 289 

of CNC in some film areas could be observed, which is due to their strong hydrogen 290 

bonding capacity. Khoshkava and Kamal [12] also reported that at higher CNC 291 

concentration CNC aggregation occurs to a great extent.  292 

Figure 3 shows AFM images of control film and those containing CNC, obtained by 293 

using Phase Imaging mode derived from Tapping Mode. Raw data were converted into 294 

2D images and their scale is expressed as degrees. Phase Imaging allows to detect 295 

variations in composition, adhesion, friction, viscoelasticity and other properties in the 296 

material surface at nano-scale level, providing material property contrast. Surface of 50 297 

µm2 of control films shows two different phases in agreement with that observed in the 298 

surface FESEM images. The dispersed phase in the control film corresponds to 299 

emerging PVA lumps in the starch continuous phase of the upper layer of the films. 300 

Nevertheless, the dispersed phase concentration at the film surface increased when 301 

CNC ratio rose in the formulation. Observations a higher magnification (areas of 3 µm2) 302 

were carried out on the continuous and dispersed surface phases to observe possible 303 

location of CNC at the film surface. These images are shown in Figure 3. For 1 % of 304 

CNC, no evidences of the nanocrystals in any phase are detected, probably due to 305 

their low ratio in film formulation. Nevertheless, at 3 % and 5 %, CNCs were observed 306 

in both, dispersed and continuous polymer phases. At 3 % of CNC, great aggregates of 307 

particles are present in the continuous phase (mean size 200 nm) whereas particles 308 

are better dispersed in the PVA dispersed phase. At 5 % CNCs, particle aggregation is 309 

more accused appearing as enlarged formations whose perimeter is completely 310 



covered by flocculated nanocrystals. This formations appeared in both PVA and starch 311 

phases at the surface. As reported by Arrieta et al. [21] the greater the CNC 312 

concentration, the higher the aggregation level in the system. 313 

Differences in the surface mechanical resistance were observed by means of AFM in 314 

Peak Force QNM mode (Figure 4). The maps of Log DMT modulus for control films 315 

revealed the two phases previously mentioned at surface level, but no great differences 316 

in mechanical resistance between both could be detected. In 1 % CNC film formulation, 317 

similar values of log DMT modulus to those of control films were observed, probably 318 

due to low concentration of CNC in the observed area, as deduced in phase imaging. 319 

The incorporation of 3 % and 5 % of CNC gave rise to much higher differences in the 320 

values of DMT modulus of a given surface, especially for 3 %. In this case, the hardest 321 

areas are particulate in shape, which agrees with the greater hardness of crystalline 322 

structure of dispersed CNC. At 5 %, a high proportion of very soft small areas can be 323 

observed, which can be attributed to voids left by the aggregates of CNC which 324 

probably are separated from the surface by the cantilever during the test, in part due to 325 

their big size, despite the images reveals good interfacial adhesion of CNC to the pea 326 

starch-PVA matrix. 327 

Figure 5 shows FTIR spectra for control and nanocomposite films, showing the 328 

wavenumber values corresponding to the main peaks in each sample. The spectrum of 329 

the control film showed several characteristic peaks of stretching and bending 330 

vibrations of groups of starch and PVA chains. The broad band located between 3200-331 

3600 cm-1 corresponds to the stretching vibration mode of hydroxyl groups from the 332 

absorbed water and from the polymers themselves, [10, 42, 43]. The relative intensity 333 

of this band decreased when the ratio of CNC increased in the films. The peak at 334 

around 2940 cm-1 is related with alkyl groups, C-H stretching [10, 43, 44] and it 335 

increased in intensity as the CNC ratio increased, which can be explained by the 336 

contribution of C-H vibration in the crystalline structures. The peak at 1645 cm-1 337 

corresponds to the H-O-H group deformation [10] and it appears better resolved in 338 



films with CNC. The peaks associated with the bending vibration mode of hydroxyl 339 

group appear at around 1420 cm-1 and they show a slight displacement of 20 units with 340 

respect to the control film when CNC are present in the matrix, while an increase in 341 

intensity and resolution of this peak was observed when CNC ratio increased up to 3 342 

%. The stretching vibration of C-O in the C-C-O group and in the starch glucose ring 343 

corresponds to the peaks at 1032 and 854 cm-1, respectively [10]. These bands also 344 

suffered changes due to the presence of CNC in the films. 345 

The addition of CNC, especially at 3 and 5 %, resulted in a slight reduction of the 346 

intensity of the -OH stretching band, a widening of band at 2940 cm-1 due to C-H 347 

stretching, the appearance of an additional peak at 1733 cm-1, assigned to the C-C-O 348 

stretching, and changes in the peaks resolved between 850 and 1670 cm-1. In this 349 

sense, it is remarkable that the C-OH bending vibrations of alcohol groups present in 350 

cellulose appear at 1100 cm-1 [10]. The slight changes introduced by CNC in the FTIR 351 

spectra of PVA-starch films suggest the interactions between hydroxyl groups (-OH) on 352 

the CNC surface and the –OH of the polymer blend chains, as proposed by other 353 

authors [50]. 354 

 355 

3.2. Thermal properties of the films 356 

DSC and TGA measurements were used to study the thermal behaviour of the films, in 357 

order to know phase transitions and the thermal stability of the materials [45] as 358 

affected by the addition of CNC at different contents. 359 

Table 1 shows the results obtained from the DSC analysis. The PVA crystallization 360 

pattern showed one secondary peak at about 144 °C and a main peak located around 361 

201 ºC. Secondary peak appears at lower temperatures (supercooling) due to kinetic 362 

hindrances attributable to the low mobility of the polymer chain segments at the end of 363 

the crystallization process. The melting temperature (Tm) of control films was 227 ºC, 364 



without the split observed in crystallization. No significant effect of the CNC 365 

incorporation was observed in the Tm values, as previously found by Habbi et al. [6].  366 

Crystallization enthalpy (Table 1), expressed as J g-1 of PVA, showed a certain degree 367 

of variability and there were no significant differences among samples. The average 368 

value was 70 J g-1 of PVA, slightly lower than the melting enthalpy value, which 369 

indicates that supercooling occurred during the cooling step. Values of melting 370 

enthalpy, expressed in J g-1 of PVA, reveal that PVA crystallization was partially 371 

inhibited by the presence of CNC, since the Hm value decreased as the CNC ratio in 372 

the films rose. In fact, the degree in crystallinity of PVA (X in Table 1) was reduced by 373 

about 50 %, with respect to the control film, when 5 % of CNC was added. However, 374 

Rescignano et al. [15] observed that the crystallinity increases slightly with the addition 375 

of cellulose nanocrystals in PVA films, although their reported values are much smaller 376 

(15 %) as compared with the obtained values in this study (close to 70 % in control 377 

film). The CNC inhibition effect in PVA crystallization is also deduced from the greater 378 

supercooling observed in the cooling scan for samples containing CNC. 379 

Glass transition observed in the films must be assigned to the PVA phase bearing in 380 

mind the temperature range where it occurs, while this transition was not detected for 381 

the starch phase, due to its lower ratio in the film. Our previous studies [24] on PVA-382 

starch blend films found the Tg values at 124±2 ºC and at 76±4 ºC, respectively for the 383 

starch and PVA phases. Tg values were taken from the heating step when 384 

crystallization of PVA is completed and the amorphous phase contains the non-385 

crystallized fraction. In all cases, the values obtained in the cooling step were slightly 386 

lower, which indicates that the mean molecular weight of the amorphous fraction is 387 

lower when crystallization was not completed. Therefore, this would point to the fact 388 

that the longer chains crystallize prior to the shorter ones. The obtained Tg value of 389 

PVA in the control films was 79 ºC, which was similar to that reported by other authors 390 

for PVA films [10, 15]. The incorporation of CNC to the films provoked a decrease of 391 

about 2 ºC, which can be related with the partial inhibition of the PVA crystallization 392 



(especially the shorter chains, as commented on above) and the subsequent decrease 393 

of the mean molecular weight of the amorphous PVA fraction. Other authors [6, 9, 15] 394 

did not found changes in the glass transition temperature of the polymer (PLA and 395 

PVA) when cellulose nanocrystals were incorporated to the matrix.  396 

DSC analysis reveals that PVA crystallization was partially inhibited when CNC are 397 

present as filler in the blend films, this effect being more marked when they contain 5 % 398 

of nanocrystals. The lack of crystallization gave rise to a decrease in the Tg of the 399 

amorphous phase which suggests that the shorter PVA chains remain in the 400 

amorphous phase.  401 

Figure 6 shows the weight loss (TG curve) and its derivate (DTG curve) as a function of 402 

the temperature for control films and formulations containing cellulose nanocrystals. 403 

The temperatures for the main degradation steps of the films are summarized in Table 404 

1. For control films, three weight loss steps were observed. Similar multi-step weight 405 

loss behaviour was described for PVA films [7, 15] and for corn starch-PVA blend films 406 

obtained by casting [40]. The initial weight loss, up to about 90 ºC, can be attributed to 407 

the loss of bonded water in the film [7, 8, 27] with total weight loss in this range of 408 

about 10 %. The second step, between 150-380 ºC, is related to the main degradation 409 

process (peak temperature 347 ºC), in which dehydration reactions, followed by 410 

polymer scission and decomposition, take place. Total weight loss in this range is 411 

about 70 %. Moreover, in this step the acetyl groups of PVA were transformed into 412 

acetic acid molecules and successive catalytic degradation of the main chain by in situ 413 

stripping at higher temperatures occurs [15, 46]. The third step takes place at between 414 

380 – 500 ºC and it can be attributed to the degradation of the by-products generated 415 

by PVA during the thermal process [7, 23]. In previous studies, it was observed that in 416 

pea starch films only two weight loss steps occur: the loss of bonded water up to 100 417 

ºC and the main degradation at 315 ºC. 418 

The addition of cellulose nanocrystals into the films led to a similar weight loss pattern 419 

to the control films, showing the three weight loss steps commented on above (Figure 420 



6). There were no notable changes in the pattern of thermal degradation of 421 

nanocomposites or in the temperature of the main peaks (Table 1), except for films with 422 

5 % CNC, where a slight decrease in Tmp was observed. Likewise, the temperature of 423 

the secondary peak was slightly higher due to the influence of cellulose thermal 424 

behaviour [15]. 425 

 426 

3.3. Physical properties of the films 427 

The analysis of the physical properties of studied films was carried out to know their 428 

barrier, optical and mechanical behaviour. Film thickness was 98±8 m for all 429 

formulations. Table 2 shows the water vapour permeability values (WVP) of the films at 430 

25 ºC and at a 53-100 % RH gradient, together with their equilibrium moisture content 431 

and optical properties after 1 and 5 storage weeks. After 1 week, the moisture content 432 

was slightly lower for samples containing 3 % and 5 % CNC, but their value increased 433 

throughout 5 storage weeks, reaching a similar value in all cases in the range 6-7 %. 434 

This suggests that CNC limit the moisturising rate till sample equilibration, despite the 435 

hydrophilic character of these nanoparticles [6, 10], probably due to the structural 436 

changes induced in the films and the increase in the tortuosity factor in the matrix 437 

associated with the presence of the dispersed nanoparticles.  438 

The WVP values of the films must be as low as possible to efficiently limit the water 439 

vapour transfer when it is in contact with food systems [19]. Mean values of studied 440 

films ranged between 3.1-3.6 g.mm.kPa-1.h-1.m-2 and no notable differences are found 441 

among formulations or due to the storage time. Nevertheless, as deduced from the 442 

moisture equilibration time, CNC seem to slightly reduce WVP values (increase in the 443 

tortuosity factor for mass transfer), but to a very limited extent, probably due to their 444 

high water affinity which contributes to the hydrophilic character of the matrix and to 445 

solubility of water molecules, thus enhancing water transport. 446 



Optical properties, UV-VIS spectra, transparency (Ti) and gloss of the films are directly 447 

related with their nano- and micro-structure. The UV-VIS spectra of control and 448 

cellulose nanocrystals based films in the UV range are shown in Figure 7, where the 449 

greatest differences were observed. The films exhibit higher values of transmittance (T) 450 

in the visible light range (400-800 nm) than in the UV range (200-400 nm), according to 451 

Chen et al., [42] for PVA films. The control films exhibited values of transmittance 452 

above 90 % in the visible light range, whereas the values were much lower in the UV 453 

range. The addition of cellulose nanocrystals provoked a decrease in film transmittance 454 

over the whole UV-VIS range, but this is more marked in the UV range, where T values 455 

decreased by about 60 % for the films with the highest ratio of nanocrystals. These 456 

results confirm the greater opacity to UV radiation of nanocomposites observed by 457 

other authors [10, 20], which represents an advantage in terms of the food protection 458 

against oxidative processes or other UV induced reactions. In terms of transparency to 459 

visible light, the internal transmittance (Ti) at 450 nm (Table 2) reveals a small 460 

progressive increase in opacity as the CNC ratio rose in the films, regardless of the 461 

storage time, in agreement with the rise in the concentration of the nanocrystal 462 

dispersed phase. As concerns the film’ gloss, they showed very low values at 60º 463 

incidence angle, as compared with the gloss values of pure pea starch or PVA films (27 464 

and 150 units, respectively, data not reported). This can be attributed to the surface 465 

roughness of the films where lumps of the starch-rich phase are dispersed in the 466 

continuous PVA-rich phase, as discussed above. This provoked irregularities at the film 467 

surface which contributes to light dispersion, giving a matt appearance. The 468 

incorporation of CNC did not significantly affect the gloss of the films. 469 

The mechanical behaviour of the films is shown in Figure 8 where the typical stress-470 

strain curves of control blend (C) and CNC composite films 1 %, 3 % and 5 % , after 5 471 

weeks of storage time are shown. The different tensile behaviour of control films and 472 

composites can be clearly observed. The presence of CNC affected the film 473 

extensibility; the higher the CNC ratio, the more stretchable the material. Similar 474 



behaviour has been reported by several authors [8, 20] for other films containing CNC. 475 

It is highlighted that the extensible response of films is closely related to the different 476 

concentrations of nanocrystals in the matrix, determining the volume fraction of the 477 

reinforcement, the dispersion degree in the matrix, and the interactions between the 478 

nanocrystals and the polymers [15]. 479 

Elastic modulus (EM), tensile strength at break (TS) and percentage of elongation at 480 

break (Ɛ %) are used to describe the mechanical behaviour of films. Table 3 shows the 481 

mean values of these parameters for control films and composites. The obtained 482 

values are coherent with those reported by other authors for pea or corn starch-PVA 483 

films [24, 28, 30]. Cellulose nanocrystals improved the mechanical behaviour of films in 484 

terms of their stretchability, without decreasing their resistance to break (p<0.05), while 485 

the elastic modulus tends to increase slightly. After 5 weeks’ storage time, a similar 486 

behaviour was observed for both blend and composite films: the resistance to break is 487 

reduced, as well as the elastic modulus, which can be attributed to the moisture gain of 488 

the films during storage, which makes the network cohesion forces weaker. 489 

Nevertheless, at this time, the reinforcement effect of CNC was more evident since the 490 

elastic modulus of composites containing 3 or 5 % CNC was higher. 491 

The mechanical impact of CNCs on blend films can be, in part, explained by the 492 

limitation of crystallization of PVA, but also by the formation of a percolating network 493 

within the polymer matrix, as reported by other authors [6]. In this network, the stress is 494 

assumed to be transferred through crystal-crystal interactions and crystal-polymer 495 

matrix interactions [10]. According to Favier et al. [47], the critical percolation volume 496 

fraction (percolation threshold: Xc) can estimated from statistical percolation theory for 497 

cylindrically shaped particles taking into account their aspect ratio (A) by the relation: 498 

(Xc=0.7/A). For composite films with CNCs, A can be estimated as 20 and Xc is 0.035. 499 

So, percolation threshold was reached for all composites and percolation network 500 

formation can explain the enhancement of mechanical behaviour of the films.  501 



PVA-starch films containing cellulose nanocrystals were more stretchable and stiffer 502 

with comparable resistance to break than pea starch-PVA films and so, they can be 503 

considered more adequate for food packaging applications.  504 

Overall migration tests with simulants were carried out to determine the total amount of 505 

non-volatile substances that might migrate into foodstuffs from film matrices [48] for the 506 

purposes of checking whether they meet the migration limit (60 mg kg-1 simulant) 507 

established by current legislation [39]. Table 4 shows the obtained values of overall 508 

migration for control and nanocomposite films in both food simulants. After 20 days in 509 

ethanol 10 % (v/v) simulant, no significant differences in overall migration (p ≤ 0.05) 510 

between control and composite films were found, except for films with 5 % of CNC 511 

which showed higher values, although well below the established limit. However, after 512 

2 days at 20 ºC in isooctane, the maximum migration level was reached for the control 513 

films, although migrated amounts are in the order of 1000 times lower than that 514 

obtained in the polar simulants. The different migration behaviour of control and 515 

nanocomposites in the two food simulants reveals the greater hydrophilic nature of 516 

films containing CNC, as reported by Fortunati, et al. [49]. The CNC addition 517 

significantly decreased (p<0.05) the amount of material that migrates to non-polar food 518 

simulants, while increasing the migrated amounts in polar simulants. Therefore, CNC 519 

make the films more adequate for applications in high fat content foods.  520 

 521 

Conclusions 522 

The pea starch-PVA blend films showed phase separation and CNC are distributed in 523 

both, starch rich phase and PVA rich phase. They are present as aggregates of 524 

different sizes depending on their ratio in the film; the higher the ratio, the greater the 525 

aggregates, as deduced from the AFM analysis at surface level. No changes in water 526 

vapor permeability occurred due to the presence of CNC, despite the increase in the 527 

hydrophilic nature of the films revealed by the overall migration values in polar and 528 

non-polar food simulants. Films with CNC became slightly stiffer and more stretchable 529 



than control films, while crystallization of PVA was partially inhibited by CNC addition. 530 

The improvements conferred by CNC in mechanical properties of pea starch-PVA 531 

blend films make them more adequate for food applications, especially for high fat 532 

foods, where overall migration values were very low. 533 
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Table 1: Thermal properties of control blend films and those containing 1, 3 and 5 %wt of CNC obtained by DSC and TGA analysis. Mean 

values ± standard deviation. 

FILMS 

Cooling Heating TGA analysis 

Tc1 (ºC) Tc2 (ºC) ΔHc (J.g-1
pva) Tg (ºC) Tm (ºC) ΔHm (J.g-1

pva) X (%) Tmp (ºC) Tp(ºC) 

C 143.8±0.9a 200.7±0.1a 65±6a 78.6±0.2a 227.04±1.12a 108±6a 67±4a 347.3±0.4a 419±2a 

1 % 135±4a 201.1±1.2a 74±8a 76.4±0.2ab 226.8±0.9a 85±2b 53±1b 356±6a 429±3b 

3 % 141±3b 201.2±1.2a 71±6a 73.9±1.4b 225.8±1.8a 85±3b 53±2b 355±2a 431.9±1.3b 

5 % 145.9±0.1ab 202.3±0.2a 60.7±0.2a 76.3±1.8ab 225.6±0.7a 61±6c 38±4c 323±5b 427±2b 

Tc: crystallization temperature; Tm: melting temperature; Tg: glass transition temperature; ∆Hc: enthalpies of crystallization; ∆Hm: enthalpies of melting, X: percentage of 

crystallinity; Tmp: main peak temperature and Tp: temperature of second degradation peak. 

a,b different letters in the same column indicate significant differences among formulations (p<0.05). 

 



Table 2: Moisture content (MC), water vapour permeability (WVP), internal transmittance (Ti) at 450 nm and gloss values at 60º of control films 

and those containing 1 %, 3 % and 5 % of CNC, after 1 (1W) and 5 (5W) storage weeks. Mean values ± standard deviation. 

FILMS 

MC (%d.b.) WVP (g.mm.kPa-1h-1m-2)  Ti (450nm) Gloss 60º 

1W 5W 1W 5W 1W 5W 1W 5W 

C 6.6±0.8ª1 6.7±0.3ab1 3.5±0.3ª1 3.41±0.15ª1 18±3ab1 20±3ª1 3.5±0.3ª1 3.41±0.15ª1 

1 % 6.4±0.5b1 6.9±0.2ª1 3.4±0.3ª1 3.6±0.3ª1 21±3ª1 24±3b1 3.4±0.3ª1 3.6±0.3ª1 

3 % 4.73±0.07c1 6.5±0.3b2 3.43±0.15ª1 3.25±0.14ª1 15±4bc1 21±3ª2 3.43±0.15ª1 3.25±0.14ª1 

5 % 4.5±0.2c1 5.8±0.2c2 3.2±0.3ª1 3.07±0.66ª1 13±4c1 16±3c1 3.2±0.3ª1 3.1±0.6ª1 

a,b,c different letter in the same column indicate significant differences among formulations (p<0.05). 

1,2 different number in the same file indicate significant differences among storage time (p<0.05). 



Table 3: Values of elastic modulus (EM), tensile strength at break (TS) and percentage of elongation at break (Ɛ, %) of control blend films and 

those containing 1 %, 3 % and 5 % of CNC, after 1 (1W) and 5 (5W) storage weeks. Mean values ± standard deviation. 

FILMS 

EM (MPa) TS (MPa) Ɛ(%) 

1W 5W 1W 5W 1W 5W 

C 420±90ª1 330±130ª1 19±5ª1 13±5ª2 90±30ab1 120±90ab1 

1 % 590±110b1 380±90ab2 23±4ª1 13±3ª2 60±30ª1 90±50ª1 

3 % 400±100ª1 450±100bc1 19±6ª1 13±3ª2 130±70b1 160±80b1 

5 % 440±170ª1 460±70c1 19±5ª1 12±3ª2 140±60b1 170±40b1 

a,b,c different letter in the same column indicate significant differences among formulations (p<0.05). 

1,2 different number in the same file indicate significant differences among storage time (p<0.05). 

 



Table 4: The overall migration of control blend films and those containing 1 %, 3 % and 5 % of CNC, in 10% (v/v) ethanol and isooctane food 

simulants. Mean values ± standard deviation. 

FILMS 

Ethanol 10% (v/v) 

(mg/kg simulant) 

Isoctane  
(µg/kg simulant) 

C 4.6±0.7a 34±3a 

1% 4.5±0.2ab 22±2b 

3% 4.8±0.2ab 12±3c 

5% 5.8±1.5b 15±2c 

a,b different letter in the same column indicate significant differences among formulations (p<0.05). 

 



FIGURE CAPTIONS 

Figure 1: FESEM micrographs of the surface of control blend and composite films with 

different contents of CNC (samples 1 %, 3 % and 5 %). 

Figure 2: FESEM micrographs of the cross section of control blend and composite 

films with CNC contents (samples 1 %, 3 % and 5 %). Higher magnification images 

from top and bottom of the films are included to observe the different separated 

phases. 

Figure 3: Phase imaging AFM maps of surface of control blend and composite films 

with different CNC contents (1 %, 3 % and 5 %). Higher magnification for continous 

(CP) and dispersed (DP) phases at the film surface. 

Figure 4: Maps of Log DTM modulus obtained from AFM in surface of control blend 

and composite films with different contents of CNC. 

Figure 5: FTIR spectra of control blend and composite films with different amounts of 

CNC (1 %, 3 % and 5 %). 

Figure 6: TG (a) and DTG (b) curves obtained from TGA of control blend and 

composite films with CNCs (1 %, 3 % and 5 %). 

Figure 7: Spectral distribution in the UV range of the UV-VIS spectra of control blend 

(C) and composite films with CNC (1 %, 3 % and 5 %). 

Figure 8: Typical strain-stress curves of control blend (C) and compsosite films with 

CNCs (1 %, 3 % and 5 %) after 5 weeks of storage. 
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