

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 This is the accepted version of the following article: Gómez, C., Gómez, M. E. and
Sahuquillo, J. (2015), Bringing real processors to labs. Comput Appl Eng Educ, 23:
724–732. , which has been published in final form at http://dx.doi.org/10.1002/cae.21645

http://dx.doi.org/10.1002/cae.21645

http://hdl.handle.net/10251/75304

Wiley

Gómez Requena, C.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2015). Bringing Real
Processorsto Labs. Computer Applications in Engineering Education. 23(5):724-732.
doi:10.1002/cae.21645.

Bringing	Real	Processors	to	Labs	

C.	Gómez,	M.E.	Gómez,	and	J.	Sahuquillo	

Universitat	Politècnica	de	València,	Valencia,	Spain	

Abstract—The	architecture	of	current	processors	has	experienced	great	changes	in	the	last	years,	leading	to	sophisticated	

multithreaded	 multicore	 processors.	 The	 inherent	 complexity	 of	 such	 processors	 makes	 difficult	 to	 update	 processor	

teaching	to	include	current	commercial	products,	especially	at	lab	sessions	where	simplistic	simulators	are	usually	used.	

However,	 instructors	are	 forced	to	reduce	 this	gap	 if	 they	want	 to	properly	prepare	students	 in	 this	 topic.	Dealing	with	

these	 complex	 concepts	 at	 Labs	 does	 not	 only	 help	 reinforce	 theoretical	 concepts	 but	 also	 has	 a	 positive	 effect	 in	 the	

students’	motivation.	This	paper	presents	a	methodology	designed	for	the	study	of	current	microprocessor	mechanisms	in	

a	gradual	way	without	overwhelming	students.	The	methodology	is	based	on	the	use	of	a	detailed	simulation	framework,	

used	both	in	the	academia	and	in	the	industry,	which	accurately	models	features	from	current	processors.	Due	to	the	huge	

simulator	complexity,	 it	 is	 introduced	through	several	 learning	phases.	Qualitative	and	quantitative	results	demonstrate	

that	students	are	able	to	develop	skills	in	a	detailed	simulator	in	a	reasonable	time	period	and,	at	the	same	time	they	learn	

the	details	of	complex	architectural	mechanisms	of	commercial	microprocessors.	

Index	Terms—Lab	sessions,	Computer	architecture,	Processor	simulation,	Multicore	processors.	

	
I.	INTRODUCTION	

Nowadays,	 electronic	 devices	 are	 present	 in	 all	 the	 areas	 of	 our	 everyday	 life.	 This	 has	 been	 possible	

thanks	to	the	great	computational	power	reached	by	current	microprocessors	and	to	the	low	power	they	

consume.	 This	 huge	 computational	 power	 has	 come	 from	 an	 increase	 in	 hardware	 and	 functional	

complexities.	 Computer	 architecture	 has	 evolved	 from	monolithic	 processors	 to	 multicore	 processors	

with	complex	cache	hierarchies	and	efficient	on-chip	interconnects.	As	an	example,	Figure	1	presents	a	

recent	commercial	multicore	processor,	which	 incorporates	a	three-level	cache	hierarchy	and	supports	

the	execution	of	multiple	threads	on	several	cores.	Nevertheless,	 in	many	universities	students	are	not	

taught	 in	these	new	features,	or	at	 least	they	do	not	work	them	in	 laboratories.	This	means	that	these	

complex	 concepts	 or	mechanisms	 are	 not	 fixed	 in	 lab	 sessions,	mainly	 due	 to	 the	 high	 complexity	 of	

current	 microprocessor	 generations,	 which	 is	 not	 modeled	 in	 the	 simple	 simulators	 usually	 used	 in	

laboratories,	 as	 well	 as	 the	 constant	 evolution	 of	 commercial	 processors.	 This	 widely	 extended	

methodology	 is	 a	mistake	 because	 these	 concepts	 are	 precisely	 the	most	 difficult	 to	 understand	 and	

should	be	worked	out	in	laboratories	for	better	understanding.	In	addition,	students	feel	that	the	studied	

concepts	widely	differ	from	the	real	hardware,	which	discourage	them	to	the	study	of	these	topics.	Thus,	

it	 is	 important	 for	 instructors	 in	 this	area	 to	 spark	 students’	motivation.	 From	our	 view,	 this	emphasis	

should	be	persistent	and	linked	with	commercial	products	showing	how	real	and	recent	processors	work.	

This	paper	proposes	a	methodology	aimed	at	bringing	 the	 industry	 to	 the	academia	 in	general,	and	 in	

particular,	to	laboratories,	by	training	students	to	work	with	real	mechanisms	at	laboratory	sessions.	For	

this	 purpose,	 the	 proposed	 approach	 relies	 on	 the	 use	 of	 a	 detailed	 simulation	 framework,	 able	 to	

accurately	model	current	microprocessors.	In	addition	to	this	issue,	it	is	highly	recommendable	that	the	

simulation	 tool	 fulfills	 the	 following	 features	 to	 increase	 the	 student	 motivation:	 i)	 it	 should	 model	

advanced	processor	features,	and	ii)	it	should	be	used	both	in	the	academia	and	the	industry.	The	second	

feature	is	important	not	only	to	encourage	students	in	their	work	but	also	to	help	them	when	looking	for	

a	job	in	the	future.	A	major	barrier	to	the	widespread	use	of	these	simulators	for	undergraduates	is	their	

intrinsic	difficulty	since	they	are	really	complex,	as	the	systems	they	model.	An	interesting	tentative	has	

been	 carried	 out	 in	 courses	 offered	 in	 top	 USA	 universities	 like	 Stanford	 [1]	 where	 Zsim	 [2]	 is	 used.	

However,	even	in	these	courses,	the	simulator	is	used	as	a	black	box	that	provides	performance	for	a	set	

of	machine	parameters.		

In	contrast,	the	approach	proposed	in	this	paper	goes	a	step	ahead,	looking	at	the	details	within	the	box.	

The	 methodology	 has	 been	 applied	 sing	 the	 Multi2Sim	 [7]	 simulator,	 a	 cycle-accurate	 simulator	 of	

multicore	 and	multithreaded	processors	widely	used	by	PhD	 students	 and	 researchers	 (both	 from	 the	

industry	and	academia).	To	tackle	the	simulator	complexity,	we	propose	the	use	of	the	same	simulator	in	

several	courses	jointly	with	a	carefully	designed	progressive	methodology.	The	methodology	introduces	

the	simulator	in	a	progressive	manner	in	such	a	way	that	students	at	the	end	of	the	offered	courses	are	

able	to	modify	small	pieces	of	the	simulator	code,	which	allow	them	to	experiment	with	new	processor	

features.	At	the	early	stages,	students	begin	with	a	very	guided	use	of	the	simulator	as	a	black	box	(i.e.	

without	modifying	 the	source	code).	After	 that,	 students	are	progressively	 introduced	 in	 the	simulator	

code,	ranging	from	minor	modifications	of	the	source	code	to	the	completion	of	their	Degree	Thesis1	and	

their	 participation	 as	 co-authors	 in	 research	 papers.	 The	 gradual	 project-based	 learning	 approach	 has	

been	 already	 followed	 by	 instructors	 ([3],[4])	 in	 other	 areas.	 However,	 unlike	 these	works,	 this	 paper	

proposes	 the	 combination	 of	 using	 both	 a	 detailed	 simulator	 that	models	 realistic	 processors	 and	 the	

gradual	project-based	methodology	with	the	aim	of	training	students	in	advanced	processor	architecture	

concepts.	 The	great	 advantage	of	using	both	 together	 is	 that	 students	 are	allowed	 to	experience	how	

real	processors	work	without	feeling	overwhelmed	by	the	simulator	complexity.	

Quantitative	 and	 qualitative	 results	 have	 been	 analyzed	 to	 assess	 the	 proposed	methodology.	 Results	

show	that	since	the	proposed	methodology	was	introduced,	students	have	obtained	better	marks	in	the	

related	courses	and	moreover,	 they	are	more	encouraged	 in	 the	 study	of	 computer	architecture.	As	a	

consequence,	the	number	of	students	that	enroll	the	courses	(they	are	elective	courses)	has	appreciably	

grown.	

The	paper	is	organized	as	follows.	Section	II	introduces	computer	architecture	courses	at	the	Universitat	

Politècnica	 de	 València.	 Section	 III	 describes	 the	 methodology.	 Section	 IV	 presents	 the	 simulation	

framework.	Section	V	shows	a	case	study.	Section	VI	analyzes	the	proposal	effectiveness.	Finally,	Section	

VII	presents	some	concluding	remarks.	

	
	
	
	
	
	

																																																													
1	A	Degree	Thesis	is	required	at	the	UPV	to	earn	the	Computer	Engineering	degree.	

II.	COMPUTER	ENGINEERING	TEACHING	

	
A.	Computer	Architecture	Courses	at	UPV	

After	 some	 compulsory	 computer	 architecture	 courses,	 two	 main	 elective	 courses	 are	 offered	 at	

Universitat	 Politècnica	 de	 València	 (UPV)	 that	 present	 a	 close	 approach	 to	 commercial	 products:	

“Advanced	processor	architectures”	offered	both	 in	 the	 last	 year	of	 the	Computer	Engineering	Degree	

and	 in	 the	 Master	 in	 Computer	 Engineering;	 and	 “Networks	 on-chip”	 offered	 in	 the	 Computer	

Engineering	Master.	 These	 courses	 are	 complementary	 and	 students	 are	 suggested	 to	 follow	 both	 of	

them.	

During	 the	 last	 two	 academic	 years	 we	 have	 developed	 and	 implemented	 a	 new	 methodological	

approach	that	 includes	 the	mentioned	courses	as	 if	 they	were	only	one.	The	methodology	 is	based	on	

the	 fact	 that	 students	 can	 be	 trained	 in	 laboratories	with	 complex	 features	 of	 commercial	 processors	

that	have	been	taught	in	theoretical	lectures,	without	being	overwhelmed.	For	doing	this,	both	courses	

use	 the	 same	 simulation	 framework	 that	 allows	 students	 to	 model	 realistic	 commercial	 processors	

mechanisms.	The	benefits	of	this	approach	are	twofold.	On	the	one	hand,	students	analyze	and	realize	

how	 the	 different	 system	 components	 interact	 with	 each	 other	 and	 affect	 the	 overall	 system	

performance.	On	the	other	hand,	students	only	need	to	learn	a	single	tool	in	an	incremental	way,	which	

helps	the	learning	process.	Both	benefits	provide	students	worthy	and	invaluable	skills	in	future	research	

or	professional	activities.	Another	key	element	in	this	approach	is	the	coordination	between	instructors	

of	both	courses,	which	again	 influences	on	the	student	motivation	since	students	really	appreciate	the	

interactions	among	topics	of	both	courses.	

	
B.	Traditional	Computer	Architecture	Teaching	

Commercial	 processors	 are	 continually	 evolving.	 This	 constant	 evolution	 has	 forced	 the	 continuous	

update	 of	 teaching	 contents,	 both	 theoretical	 ones	 in	 lectures	 and	 practical	 ones	 in	 laboratories.	

Concerning	laboratories,	several	simulators	are	often	used	depending	on	their	intended	use.	Simulation	

tools	 can	 be	 simple	 and	 easy	 to	 use	 or	 complex	 and	 harder	 to	 understand.	 As	 an	 example	 of	 simple	

simulators,	we	can	find	DLXV	that	is	typically	used	to	study	the	processor	pipeline.	DLXV	comes	in	handy	

for	understanding	simple	scalar	processors,	which	are	the	basics	of	superscalar	processors.	Nevertheless,	

for	more	 advanced	 concepts	 such	 as	 superscalar	 or	multithreaded	processors,	DLXV	does	 not	 provide	

any	teaching	support.	

Most	universities	do	not	cover	this	gap	for	undergraduates	and	complex	simulators	like	SimpleScalar	[5],	

Sniper	 [6],	and	Multi2Sim	[7],	are	exclusively	used	by	PhD	students.	This	 is	a	clear	mistake	due	to	 two	

main	 reasons.	 First,	 students	 are	 not	 trained	 with	 those	 concepts	 at	 labs	 in	 order	 to	 get	 a	 sound	

understanding	of	them.	Second,	but	not	less	important,	the	chance	of	having	highly	motivated	students	

in	computer	architecture	is	missed.		

In	contrast	to	the	traditional	approach,	this	paper	proposes	the	use	of	a	detailed	simulator	jointly	with	a	

methodology	to	overcome	the	simulator	complexity	through	several	learning	stages.	

	
III.	PROPOSED	METHODOLOGY	

The	overall	 objective	 of	 the	 proposed	methodology	 is	 twofold,	 to	 provide	 students	 a	 solid	 knowledge	

about	 realistic	 processor	 architectures	 and	 to	 encourage	 them	 in	 the	 study	 of	 computer	 architecture	

topics.	 The	 methodology	 consists	 of	 four	 different	 phases	 with	 an	 increasing	 difficulty	 degree.	 The	

phases	 are:	 i)	modification	 of	 simulation	 parameters,	 ii)	modification	 of	 simple	 parts	 of	 the	 simulator	

code,	iii)	implementation	of	complete	functionalities,	and	iv)	full	autonomy.	

At	the	first	stage,	students	are	asked	to	only	modify	simulation	parameters	to	analyze	how	they	impact	

on	 performance.	 Students	 must	 first	 modify	 the	 values	 of	 some	 key	 system	 parameters	 previously	

studied	 at	 lectures	 (e.g.,	 the	 branch	 predictor	 or	 issue	 width),	 then	 they	 must	 launch	 simulations	 to	

obtain	the	performance	results,	and	finally,	they	must	analyze	the	performance.	This	first	step	is	done	in	

a	guided	way	at	laboratories.	Students	are	provided	with	a	detailed	instruction	booklet	that	explains	all	

the	steps	that	must	be	followed	and	instruct	them	in	the	analysis	of	the	obtained	results.	

The	second	stage	goes	one	step	further	and	students	are	asked	to	modify	simple	parts	of	the	code.	They	

modify	specific	and	limited	parts	of	the	code	like	prefetching	mechanisms	or	the	scheduling	policy	at	the	

memory	controller.	As	 in	the	previous	stage,	this	work	 is	done	with	a	careful	 instructors’	guidance;	 for	

instance,	instructors	provide	the	code	of	a	very	simple	prefetching	mechanism	to	the	students	and	they	

are	asked	to	implement	other	prefetching	mechanisms	from	it.	For	this	purpose,	instructors	provide	the	

students	with	 another	booklet	 describing	 the	 source	 code	of	 the	 simulator.	 From	our	 experience,	 this	

phase	is	best	performed	as	final	course	project.	We	consider	this	phase,	which	is	not	usually	considered,	

important	since	the	study	of	the	source	code	provides	a	complete	understanding	of	the	details	of	a	given	

processor	 feature	 to	 the	students.	 In	general,	 those	students	who	successfully	complete	 this	stage	are	

willing	to	face	greater	challenges	by	implementing	full	functionalities	in	different	processor	components,	

and	playing	around	with	the	simulator.	

At	the	third	phase,	we	try	to	provide	the	students	with	autonomy	and/or	self-confidence	to	implement	a	

full	basic	or	novel	mechanism	from	scratch.	This	step	can	best	fit	for	a	Degree	Thesis	or	Master	Thesis.	

The	results	obtained	by	our	students	during	this	phase	have	been	astonishing	and	they	have	been	even	

published	 in	 top-notch	 computer	 architecture	 conferences	 like	 IPDPS,	 PACT,	 and	 Euro-Par.	 This	 stage	

stimulates	the	interest	of	students	in	research	on	computer	architecture	topics.	

Those	students	who	successfully	complete	the	three	previous	stages	are	in	a	privileged	position	to	start	

their	 PhD	 studies,	 as	 they	 are	 at	 least	 one	 year	 or	 even	 several	 ones	 ahead	 of	 those	 who	 have	 not	

followed	the	proposed	methodology.	

	
IV.	SIMULATION	FRAMEWORK	FEATURES	

A	major	aim	of	the	proposal	is	to	provide	the	methodology	with	a	single	relatively	long-life	simulator	able	

to	 be	 used	 both	 in	 computer	 architecture	 related	 courses	 and,	 if	 students	 are	 interested,	 in	 the	

development	 of	 their	 future	 PhD	 Theses.	 To	 cover	 the	mentioned	 courses	 and	 the	wide	 spectrum	 of	

computer	 architecture	 topics	 where	 the	 research	 is	 currently	 focusing	 on,	 we	 have	 used	 Multi2Sim,	

which	 is	 capable	 to	 model	 multithreaded	 and	 multicore	 superscalar	 processors	 as	 well	 as	 graphics	

processing	 units	 (GPUs).	 In	 addition,	 recent	 extensions	 include	 a	 detailed	 modeling	 of	 the	 on-chip	

network	and	the	memory	controller.	The	simulation	framework	 is	being	used	by	major	microprocessor	

companies	 like	 AMD	 and	 Intel,	 and	 can	 be	 freely	 downloaded	 from	 [8].	 Multi2Sim	 provides	 both	

functional	and	detailed	simulation	of	the	major	system	structures:	core,	cache	hierarchy,	interconnection	

network,	and	memory	controller.	

• The	core	is	pipelined	in	six	stages	(fetch,	decode,	dispatch,	issue,	writeback,	and	commit),	and	it	

supports	speculative	execution.	The	number	of	cores	and	number	of	threads	sharing	a	core	are	

configurable.	The	framework	implements	the	three	main	multithreading	paradigms:	coarse	grain	

(CGMT),	fine	grain	(FGMT),	and	simultaneous	(SMT).	

• Cache	 hierarchy	 configuration	 is	 highly	 flexible.	 The	 user	 can	 define	 as	 many	 cache	 memory	

levels	 and	 number	 of	 caches	 in	 each	 level	 as	 desired,	 and	 the	 caches	 can	 have	 any	 size	 and	

geometry.	Cache	coherence	is	guaranteed	by	means	of	a	MOESI	protocol.	

• The	 interconnection	network	among	the	different	 levels	of	 the	memory	hierarchy	 is	also	freely	

configurable	with	a	simple	model	 that	allows	the	definition	of	end	nodes	 (memories	or	cores),	

switches,	links,	topology,	etc.	

• The	memory	controller	mimics	the	behavior	of	real	DDR	memory	controllers.	

• NVIDIA	Fermi-like	GPU	architectures	are	also	modeled.	

The	 simulator	 provides	 extensive	 performance,	 power,	 and	 area	 reports	 for	 the	 different	 processor	

components.		

Although	authors	have	applied	the	methodology	using	Multi2sim,	other	platforms	that	provide	detailed	

simulation	of	the	processor	like	Sniper	[6]	can	be	used.	The	learning	phase	of	these	sophisticated	tools,	

however,	 is	really	 long	and	 it	can	take	a	 long	time	to	understand	only	a	few	modules	of	the	simulator.	

Because	of	this	reason	it	is	important	for	instructors	to	have	a	deep	knowledge	of	the	selected	tool.	Since	

Multi2sim	[7]	was	originally	developed	at	UPV,	we	are	strongly	familiarized	with	this	framework	and	its	

internal	 details.	 In	 fact,	 the	 authors	 of	 this	work	 have	 advised	 several	 PhD	 theses,	which	 have	widely	

extended	multiple	parts	of	the	simulation	framework.	

	
V.	CASE	STUDY	

This	section	focuses	on	the	implementation	of	the	first	two	stages	of	the	methodology.	A	key	point	for	

the	success	of	any	methodology	is	that	the	work	to	be	done	by	students	motivates	them.	With	this	aim,	

we	 chose	 an	 8-tile	 multicore	 processor	 that	 implements	 a	 mesh	 NoC	 as	 baseline	 system.	 This	

architecture	 was	 chosen	 since	 it	 resembles	 to	 those	 that	 could	 be	 found	 in	 commercial	 multicore	

processors.	With	this	processor,	students	have	to	complete	several	learning	stages	in	a	progressive	way.	

At	each	learning	stage,	students	only	have	to	deal	with	the	simulator	part	that	is	required	for	that	stage,	

hiding	 the	 rest	of	 the	simulator.	Unlike	what	 is	 typically	done	with	PhD	students,	 it	 is	not	advisable	 to	

make	 a	 thorough	 tutorial	 about	 the	 simulator	 before	 starting	 the	 work,	 as	 this	 would	 likely	 strongly	

discourage	 most	 of	 the	 students.	 To	 overcome	 such	 a	 problem	 we	 opted	 for	 a	 “learn	 as	 you	 work”	

methodology.	Keeping	this	idea	in	mind,	the	following	four	main	stages	were	designed:	baseline	system	

modeling,	memory	hierarchy	modeling,	execution	of	parallel	benchmarks,	and	prefetching	mechanisms	

implementation.	

	
A.	Baseline	system	modeling	

As	 an	 initial	 step	 to	make	 the	 proposed	 approach	 feasible,	 instructors	 prepared	 a	 detailed	 simulator	

guide	 for	 those	 aspects	 that	 are	 required	 for	 this	 stage.	 This	 is	 not	 a	 typical	 simulator	 guide	 but	 it	

combines	 and	makes	 relations	between	 theoretical	 concepts	 studied	 in	 lectures	 and	practical	 aspects.	

This	 guide	 describes	 the	 three	 main	 subsystems	 that	 can	 be	 modeled	 in	 the	 simulator:	 cores,	 cache	

memories,	and	interconnection	network.	For	each	subsystem,	the	guide	explains	its	operation	and	role	in	

the	 system,	 and	 provides	 a	 brief	 description	 of	 the	main	 configuration	 parameters.	 For	 instance,	 the	

guide	shows	how	to	change	the	branch	predictor	in	the	core	subsystem;	in	the	case	of	cache	memories,	

the	 guide	 explains	 how	 to	 change	 the	 size	 of	 the	 cache	 line	 or	 the	 access	 latency;	 and	 for	 the	

interconnection	network	subsystem,	the	guide	presents	how	the	bandwidth	of	the	links	and	the	size	of	

the	buffers	at	the	switches	can	be	changed.	Moreover,	regarding	caches,	the	guide	shows	how	to	model	

the	entire	cache	hierarchy,	 interconnecting	 the	caches	of	 the	distinct	 levels	among	 them,	 to	 the	cores	

and	 to	 the	 main	 memory.	 In	 a	 similar	 way,	 the	 guide	 explains	 the	 correct	 way	 of	 defining	 an	

interconnection	on-chip	network	to	connect	all	the	different	cache	memories	or	network	nodes.	

After	explaining	 the	modeling	of	 the	system	components,	 instructors	define	 the	baseline	system	to	be	

modeled	mentioned	above,	which	is	a	typical	configuration	of	commercial	processors	as	shown	in	Figure	

2.	We	 start	 with	 a	 single	 cache	 level	 to	 help	 students	 to	 observe	 the	 effects	 of	 caches	 in	 the	 global	

system	performance.	In	this	case,	each	tile	in	Figure	2	is	composed	of	one	processing	core	and	one	32KB	

L1	cache	memory.	After	that,	an	additional	cache	level	 is	 introduced	in	two	flavors:	private	and	shared	

cache	memories.	We	provide	the	students	with	the	baseline	model	and	j	the	required	configuration	files	

(core,	 memory	 hierarchy,	 and	 interconnection	 network).	 As	 an	 example,	 two	 small	 fragments	 of	 two	

configuration	 files	 are	 shown.	 Example	 1	 shows	 the	 configuration	 file	 for	 the	 on-chip	 network	 called	

mesh.	 This	 file	 configures	 the	 global	 network	 parameters	 like	 link	 bandwidth	 and	 buffer	 size,	 the	

topology,	and	the	routing	algorithm.	The	example	illustrates	the	connection	of	node	0	and	switch	1,	and	

part	of	the	routing	table	associated	to	switch	zero.	On	the	other	hand,	Example	2	presents	part	of	the	

configuration	file	for	the	memory	hierarchy.	It	shows	the	L1	cache	geometry	(number	of	sets,	number	of	

ways,	 block	 size,	 and	 cache	 latency),	 the	 definition	 of	 the	 caches	 of	 node	 0	 and	 their	 location	 in	 the	

memory	hierarchy,	and	the	connection	of	L1	caches	to	the	main	memory	through	the	mesh	defined	 in	

Example	1.	

	
B.	Memory	hierarchy	modeling	

Once	 students	 become	 familiar	with	 the	 configuration	 files,	 they	 are	 asked	 to	 upgrade	 the	 system	by	

adding	 512KB	 L2	 private	 caches.	 In	 this	 way,	 each	 L1	 cache	 connects	 to	 a	 L2	 cache,	 and	 all	 these	 L2	

caches	connect	to	the	main	memory	via	the	interconnection	network.	Thus,	each	tile	in	Figure	2	consists	

of	a	core	with	its	L1	and	L2	caches.	It	has	to	be	remarked	that	in	order	to	perform	this	study	the	student	

only	has	to	modify	the	memory	hierarchy	configuration	file	since	both	the	interconnection	network	and	

the	processing	cores	 remain	 the	same.	With	 this	extension	we	aim	to	provide	 the	students	with	more	

self-confidence	with	the	simulator.	

The	next	 step	 in	 the	proposed	 simulator	 learning	process	 is	 to	 replace	 L2	private	 caches	by	 shared	 L2	

caches.	 In	this	model,	each	L2	cache	memory	 is	shared	by	a	pair	of	cores.	That	 is,	core	#0	and	core	#1	

share	the	L2	cache,	core	#2	and	#3	also	do	that,	and	so	on.	As	the	number	of	L2	caches	is	halved,	their	

size	is	doubled	to	keep	the	L2	storage	capacity	constant,	and	their	latency	is	accordingly	increased	from	6	

to	 8	 cycles.	 To	 deal	 with	 this	 extension,	 students	 must	 modify	 both	 the	 memory	 hierarchy	 and	 the	

interconnection	configuration	files	since	the	number	of	L2	caches	has	changed.	

	
C.	Execution	of	multiprogrammed	and	parallel	workloads	

Students	 experience	 with	 standard	 benchmarks,	 used	 to	 evaluate	 actual	 processors	 and	 extensively	

accepted	by	the	scientific	community.	In	particular,	we	choose	the	SPLASH2	parallel	benchmark	suite	[9].	

To	relax	the	amount	of	work,	we	provide	the	students	with	the	scripts	to	launch	the	benchmarks	of	the	

suite	 and	 they	 are	 asked	 to	 evaluate	 the	 system	 performance	 by	measuring	 three	main	 performance	

metrics:	execution	time,	network	latency,	and	number	of	on-chip	network	packets.	In	this	way,	students	

can	relate	the	execution	time	with	the	network	traffic	and	the	required	time	to	send	packets.	

Students	can	observe	that	the	system	performance	depends	on	the	memory	hierarchy	and	the	parallel	

application.	 To	 analyze	 the	 obtained	 performance	 metrics,	 students	 are	 suggested	 to	 arrange	 their	

results	in	a	graphical	manner	similar	as	the	depicted	in	Figure	3.	The	three	aforementioned	performance	

metrics	are	normalized	to	the	values	obtained	with	private	L2	caches	for	three	(Cholesky,	FFT	and	Radix)	

benchmarks.	 This	 kind	 of	 plot	 permits	 students	 to	 clearly	 see	 that	 adding	 an	 L2	 cache	 speeds	 up	 the	

execution	time	since	it	significantly	reduces	the	number	of	accesses	to	main	memory.	For	instance,	the	

execution	of	Radix	without	L2	takes	23x	longer.	

The	study	also	allows	students	to	realize	about	the	benefits	of	having	a	shared	cache	memory,	such	as	

the	modeled	in	the	last	configuration,	for	parallel	workloads.	This	effect	comes	from	the	fact	that	parallel	

applications	 share	 code	 and	 data	 among	 the	 processor	 cores,	 so	 by	 implementing	 shared	 caches,	

coherency	 traffic	 can	 be	 significantly	 reduced.	 Moreover,	 if	 two	 cores	 sharing	 the	 L2	 cache	 access	 a	

shared	block,	 this	cache	will	hold	a	single	copy	of	 the	block	 for	both	cores,	whereas	 two	copies	of	 the	

shared	block	are	necessary	 in	L2	private	caches.	Thus,	shared	caches	make	a	more	efficient	use	of	 the	

available	storage	capacity.	Looking	at	the	results,	students	are	able	to	observe	that	the	execution	time	of	

some	 applications	 is	 reduced	with	 shared	 caches	 in	 spite	 of	 the	 average	 cache	 access	 time	 increases,	

thanks	to	the	fact	that	the	number	of	packets	in	the	network	is	strongly	reduced.	This	is	the	case	of	FFT	

in	Figure	3.	

D.	Final	project	

Finally,	instructors	have	prepared	a	list	of	Final	Projects	for	these	courses	aimed	at	encouraging	students	

that	are	further	interested	in	computer	architecture	topics.	The	work	done	in	these	projects	will	improve	

the	already	accomplished	simulator	skills.	As	mentioned	above,	in	this	final	phase	students	are	asked	to	

implement	 a	 complete	 basic	 processor	mechanism.	 The	 student	 can	 select	 either	 any	 of	 the	 available	

projects	 or	 alternatively	 suggest	 her	 own	 proposal	 and	 submit	 it	 to	 the	 instructor	who	will	 check	 the	

properness.	Below	we	present	some	examples	of	final	projects:	

• Hardware	prefetchers.	This	project	consists	 in	 implementing	L2	hardware	prefetchers.	Students	

are	 asked	 to	 implement	 different	 prefetchers:	 a	 n-block	 sequential	 prefetcher	 and	 a	 stride	

prefetcher	that	detects	constant	strides	from	the	cache	accesses.		

• Memory	 controller	 scheduling	 policies.	 In	 this	 project	 students	 must	 implement	 distinct	

scheduling	policies	 in	 the	memory	controller.	For	 instance	 the	 first-ready	 fist-come	first-served	

(FR-FCFS)	policy.	

• Thread	to	core	allocation.	When	running	multiprogrammed	workloads,	the	system	performance	

depends	on	the	core	in	which	each	benchmark	is	allocated.	This	project	evaluates	the	impact	of	

several	thread-to-core	allocation	policies	in	SMT	processors	with	shared	L2	caches.	

• NoC	 virtual	 channels.	 In	 this	 project	 the	 implementation	 of	 virtual	 channels	 in	 the	 NoC	 is	

evaluated	analyzing	how	they	affect	the	system	performance	and	the	area	of	the	switches.		

• NoC	 topology.	 This	 project	 consists	 in	 the	 implementation	 and	 evaluation	 of	 different	 NoC	

topologies	(e.g.	C-Mesh	and	WK-recursive)	and	the	associated	routing	algorithms.	

Due	to	the	complexity	of	the	project,	three	progressive	steps	are	followed	to	ease	the	learning	process:	

preliminary	work,	study	of	the	baseline	mechanism,	and	implementation	of	a	more	complex	mechanism.	

For	illustrative	purposes,	below	these	three	steps	are	detailed	for	the	hardware	prefetchers	final	project.	

	

D.1.	Hardware	prefetcher	final	project	

Preliminary	Work.	To	start	with,	students	study	the	impact	on	performance	of	varying	the	L2	cache	block	

size	with	two	main	limitations.	The	L2	block	size	has	to	be	multiple	of	the	L1	block	size	while	the	total	L2	

cache	size	must	remain	the	same.	In	this	case,	when	a	miss	rises	in	both	cache	levels,	the	L2	fetches	the	

missing	block	from	main	memory.	This	action	brings	n	L1	blocks,	being	n	the	relation	between	the	L2	and	

the	 L1	 block	 size.	 This	 study	 shows	 a	 similar	 effect	 on	 performance	 as	 prefetching.	 Students	 run	

simulations	to	obtain	the	performance	for	the	studied	benchmarks	varying	the	L2	block	size	from	64B	up	

to	2KB.	Then,	they	study	the	performance	trend	as	the	block	size	grows.	The	overall	system	performance	

is	usually	quantified	in	terms	of	the	IPC	(Instructions	Per	Cycle),	and	results	must	be	delivered	in	a	plot	

like	the	shown	in	Figure	4.	All	the	values	are	normalized	with	respect	to	the	performance	achieved	with	a	

64B	block	 size.	As	 can	be	 seen,	 the	 system	performance	 improves	with	 the	 block	 size	up	 to	 512B	but	

increasing	the	block	size	beyond	this	value	negatively	impacts	on	performance.	

Study	of	 the	baseline	Prefetcher.	 	After	 this	 first	 initial	 study,	designed	 to	provide	a	global	overview	of	

how	 prefetching	 works,	 students	 are	 asked	 to	 implement	 several	 prefetching	 mechanisms	 in	 the	

simulator.	To	help	students	with	this	 learning	phase,	 implementation	stubs	of	the	simplest	prefetching	

technique	 (One	 Block	 Look-Ahead	 or	 OBL)	 jointly	 with	 a	 user’s	 guide	 is	 provided	 to	 them.	 The	 guide	

illustrates	how	the	core	code	must	be	modified	step	by	step	to	implement	other	prefetching	mechanisms.	

Basically,	the	provided	stubs	implement	two	main	components:	a	queue	for	pending	prefetches	and	the	

pattern	 detection/triggering	 mechanism,	 which	 on	 a	 cache	 miss,	 triggers	 new	 prefetches	 that	 are	

inserted	 in	 the	 queue.	 The	 queue	 is	 looked	 up	 at	 the	 issue	 stage	 and,	 if	 not	 empty,	 a	 new	 prefetch	

request	is	issued.	

Implementation	 of	 more	 complex	 prefetchers.	 Once	 students	 become	 familiar	 with	 the	 code	 of	 the	

simple	 prefetcher,	 they	 are	 in	 an	 advantageous	 position	 to	 implement	 and	 analyze	 more	 complex	

prefetchers.	The	following	are	some	examples:	

• n-block	sequential	prefetching:	This	work	consists	in	extending	the	provided	prefetcher	in	order	

to	prefetch	not	only	one	block	in	advance	from	memory	but	to	bring	n	consecutive	blocks	from	

the	 main	 memory.	 Students	 must	 study	 the	 performance	 trends	 across	 all	 the	 benchmarks,	

varying	the	value	of	n	(1,	2,	4,	and	8).	

• Constant	based	stride	prefetching:	In	this	work,	students	evaluate	different	implementations	of	

prefetchers	that	detect	constant	strides.	 	For	each	prefetcher,	different	configurations	that	put	

the	 prefetched	 data	 in	 the	 cache	 or	 in	 stream	 buffers	 are	 evaluated	 varying	 the	 prefetcher	

aggressiveness.	

	
VI.	ASSESSMENT	METHODOLOGY	

Instructors	have	analyzed	both	quantitative	and	qualitative	results	to	evaluate	the	proposal.	Quantitative	

results	 refer	 to	 the	 grades	 achieved	 by	 students,	 while	 qualitative	 analysis	 includes	 i)	 students’	

enrollment	to	the	course,	ii)	understanding	of	the	course	topics,	and	iii)	a	survey	that	was	answered	by	

students.	Below	the	analysis	of	these	items	is	discussed.	

Grading.	 One	 important	 aspect	 that	 gives	 information	 about	 the	 effectiveness	 of	 the	 proposal	 is	 the	

marks	 obtained	 by	 students.	 Table	 I	 summarizes	 them	 for	 the	 year	 before	 the	 methodology	 was	

introduced	 and	 the	 year	 where	 it	 was	 applied.	 After	 applying	 the	 methodology	 their	 marks	 have	

noticeably	 improved;	 the	 percentage	 of	 students	 with	 a	 grade	 of	 “B”	 doubles	 with	 respect	 to	 the	

previous	year	and	the	number	of	students	with	a	grade	of	“D”	has	significantly	dropped.	

The	 final	 marks	 consider	 both	 written	 exams	 and	 the	 assessment	 of	 the	 work	 performed	 in	 the	

laboratory	sessions.	To	develop	the	lab	work	instructors	provide	the	students	with	working	guidelines.	To	

grade	 the	 lab	 sessions	 students	 deliver	 to	 the	 professor	 a	 report	 containing	 the	 answers	 to	 a	

questionnaire	 that	 instructors	 previously	 prepared	 aimed	 at	 checking	 the	 correct	 interpretation	 and	

analysis	of	the	obtained	results.	

The	evaluation	methodology	weighted	70%	and	30%	exams	and	lab	sessions,	respectively,	to	obtain	the	

final	grade.	Table	II	presents	the	final	grade	achieved	by	students	broken	down	in	exams	and	lab	sessions.	

Two	 important	observations	can	be	appreciated.	On	the	one	hand,	 labs	marks	are	slightly	 lower	when	

applying	the	methodology	due	to	the	increase	in	complexity	of	the	concepts	worked	in	the	lab	sessions.	

However,	 this	 fact	 does	 not	 negatively	 affect	 the	 final	 grade	 because	 students	 have	 significantly	

improved	their	marks	in	written	exams	with	similar	difficulty.		

Better	 understanding	 of	 the	 course	 topics.	 The	 increase	 in	 the	 final	 marks	 can	 be	 explained	 by	 the	

followed	 methodology.	 The	 use	 of	 a	 realistic	 processor	 simulator	 framework	 offers	 two	 important	

advantages.	 Students	 can	 read	 the	 detailed	 simulator	 code	 of	 specific	 components	 and	 study	

performance	 interactions	among	 the	different	 system	components.	Authors	would	 like	 to	 remark	 that	

the	 same	 instructor	works	with	 students	both	 in	 lectures	and	 laboratory	 sessions.	This	way	allows	 the	

professor	 to	 better	 follow	 the	 student	 learning	 process,	 and	 thanks	 to	 this,	 instructors	 can	 claim	 that	

improvements	 in	the	exams’	marks	come	in	part	from	the	sound	knowledge	students	have	acquired	 in	

the	lab	sessions	with	the	detailed	simulator.	

Enrollment.	Since	the	course	is	elective,	the	enrollment	grows	or	drops	depending	on	how	attractive	the	

course	 is	made	 to	 students.	Most	 of	 them	 have	 really	 appreciated	 the	 proposed	 approach,	 since	 the	

enrollment	has	grown	by	2.6x	(from	18	students	in	2013	to	55	students	for	the	next	course	in	2014	after	

the	methodology	has	been	applied),	making	 the	AAV	 (Advanced	Architecture)	Course	one	of	 the	most	

popular	among	students.	

Survey.	 Finally,	 to	 provide	 qualitative	 results	 about	 this	 great	 success,	 a	 survey	was	made	 to	 analyze	

students’	 perception	 of	 both	 the	 course	 and	methodology.	 The	 survey	 included	 twenty-five	 questions	

classified	 in	 four	 main	 categories	 to	 evaluate	 possible	 motivation	 factors:	 i)	 use	 of	 a	 single	 tool,	 ii)	

understanding	 complex	 microprocessor	 mechanisms,	 iii)	 hiding	 non-necessary	 structures,	 and	 iv)	

approaching	labs	to	real	processors.	The	questionnaire	was	completed	by	22	students	corresponding	to	

those	 belonging	 to	 one	 of	 the	 two	 lab	 groups.	 Table	 III	 shows	 an	 excerpt	 of	 the	 questions	 and	 the	

provided	 marks.	 For	 illustrative	 purposes	 one	 question	 from	 each	 category	 is	 shown.	 Most	 of	 the	

students	 selected	 either	 the	 highest	 mark	 or	 the	 second	 one	 regardless	 the	 category	 to	 which	 the	

question	belongs	 to,	which	means	that	all	 these	categories	 really	 impact	on	motivation.	An	 interesting	

observation	is	that	the	fourth	category	is	the	most	appreciated	by	students,	which	is	the	main	point	of	

our	approach.	

	
VII.	CONCLUSIONS	

This	paper	has	presented	a	new	methodology	 that	has	been	carried	out	during	 the	 last	 two	academic	

years	 at	 the	 UPV	with	 the	 aim	 of	 providing	 the	 students	 with	 a	more	 realistic	 approach	 of	 how	 real	

processors	work.	The	methodology	relies	on	the	use	of	a	detailed	simulator	used	both	in	the	academia	

and	the	industry,	and	design	a	set	of	phases	with	gradual	difficulty	which	enables	students	to	acquire	a	

solid	understanding	of	real	microprocessors	mechanisms	without	overwhelming	them.	Due	to	the	high	

complexity	of	the	simulation	framework,	authors	suggest	to	use	it	in	several	courses	in	order	to	gradually	

improve	students’	simulator	skills,	allowing	them	to	reach	a	realistic	understanding	about	how	current	

processors	 work.	 Unlike	 other	 existing	 proposals,	 undergraduate	 students	 not	 only	 change	 simulator	

parameters	but	the	provided	skills	also	allow	them	to	extend	the	simulator	code	by	implementing	new	

microprocessor	mechanisms.	

The	obtained	results	have	shown	that	students,	in	a	reasonable	time,	can	work	quite	fluently	with	some	

parts	 of	 the	 simulator,	 acquiring	 a	 deep	 knowledge	 of	 real	 hardware	 that	 has	 positively	 impacted	 on	

students’	 marks.	 In	 addition,	 students’	 attitude	 has	 significantly	 changed.	 The	 number	 of	 students	

interested	in	following	the	offered	computer	architecture	courses	and	Degree	Thesis	has	increased	in	a	

meaningful	manner.	Moreover,	the	results	of	the	work	developed	in	some	of	these	projects	have	been	

published	in	top	computer	architecture	conferences.	

Finally,	from	the	instructors’	point	of	view,	once	this	methodology	has	been	developed	and	the	simulator	

framework	has	been	deployed,	we	have	built	up	a	platform	for	next	editions	of	the	offered	courses	that	

will	allow	us	 to	obtain	a	higher	number	of	Degree	and	Master	Theses	 to	help	students	 in	 the	study	of	

processor	architectures.	The	work	to	be	done	in	these	theses	will	be	carefully	selected	to	motivate	both	

students	and	instructors.	

	
ACKNOWLEDGMENTS	

This	work	has	been	financed	by	the	Spanish	Government	under	grant	TIN2012-38341-C04-04.	

	
REFERENCES	

[1]	http://class2go.stanford.edu/EE282/Spring2013#	

[2]	 Daniel	 Sanchez	 and	 Christos	 Kozyrakis.	 ZSim:	 fast	 and	 accurate	 microarchitectural	 simulation	 of	

thousand-core	systems,	ISCA,	2013,	pages	475-486	

[3]	S.	M.	Aziz,	E.	Sicard	and	S.	Ben	Dhia.	Effective	 teaching	of	 the	physical	design	of	 integrated	circuits	

using	educational	tools,	IEEE	Transactions	on	Education,	Vol.	53,	No.	4,	New	York:	IEEE,	pp.	517-531,	Nov.	

2010.	

[4]	S.	L.	Dexter,	R.	E.	Anderson,	and	H.	J.	Becker.	Teachers’	views	of	computers	as	catalysts	for	changes	in	

their	teaching	practice.	Journal	of	research	on	computing	in	education,	31,	221-239,	1999.	

[5]	 Todd	 Austin,	 Eric	 Larson	 and	 Dan	 Ernst.	 SimpleScalar:	 An	 Infrastructure	 for	 Computer	 System	

Modeling.	IEEE	Computer	vol.	35(2),	2002.	

	[6]	Trevor	E.	Carlson,	Wim	Heirman	and	Lieven	Eeckhout.	Sniper:	exploring	the	 level	of	abstraction	 for	

scalable	 and	 accurate	 parallel	 multi-core	 simulation.	 Conference	 on	 High	 Performance	 Computing	

Networking,	Storage	and	Analysis,	page	52,	2011.	

[7]	Rafael	Ubal,	Julio	Sahuquillo,	Salvador	Petit	and	Pedro	Lopez.	Multi2Sim:	A	Simulation	Framework	to	

Evaluate	Multicore-Multithreaded	Processors.	19th	 International	Symposium	on	Computer	Architecture	

and	High	Performance	Computing,	pages	62–68,	2007.	

[8]	The	Multi2Sim	Simulation	Framework	Website,	http://www.multi2sim.org	

[9]	 S.	Woo,	M.	 Ohara,	 E.	 Torrie,	 J.	 Singh	 and	 A.	 Gupta.	 The	 Splash-2	 programs:	 Characterization	 and	

methodological	considerations.	In	22th	International	Symposium	on	Computer	Architecture	(ISCA),	pages	

24–36,	1995.	

