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Controller Tuning by means of Multi-objective
Optimization Algorithms: a Global Tuning

Framework

Gilberto Reynoso-Meza, Sergio GaeNieto, Javier Sanchis, and Xavier Blasco

Abstract

A holistic multi-objective optimization design technigéier controller tuning is presented. This
approach gives control engineers greater flexibility teseh controller that matches their specifications.
Furthermore, for a given controller it is simple to analybe trade-off achieved between conflicting
objectives. By using the multi-objective design technigug also possible to perform a global compar-
ison between different control strategies in a simple armisbway. This approach thereby enables an
analysis to be made of whether a preference for a certaimadethnique is justified. This proposal
is evaluated and validated in a non-linear MIMO system us$mg control strategies: a classical PID

control scheme and a feedback state controller.

Index Terms

multiobjective optimization, controller tuning, pid tung, evolutionary algorithm, decision making.

ACRONYMS

DM Decision maker
EA Evolutionary algorithm
GPP Global physical programming

IADU Integral of the absolute value of the derivative cohsmnal
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IAE Integral of the absolute value of the error
ISA Instrumentation, systems and automation society
LD Level diagram

MIMO  Multiple-input multiple-output

MOEA Multi-objective evolutionary algorithm

mood4ct Multi-objective optimisation design for contsslituning
MOO  Multi-objective optimisation

Pl Proportional-integral

PID Proportional-integral-derivative

SISO  Single-input single-output

SS State space

TITO  Two-input two-output

TRMS Twin rotor MIMO system

. INTRODUCTION

Satisfying a set of specifications and constraints requingdeal-control engineering prob-
lems is often difficult with traditional optimization ap@ches. From the control point of view
it is common to face a variety of requirements and speciboati These range from time-
domain specifications (such as maximum overshoot, setiiing, steady state error, raise time)
to frequency-domain requirements (noise rejection or iplidative uncertainty, for example).
Furthermore, constraints such as saturations, or the mewithanges enabled for a control
signal may be considered. Such problems, when multiplecttags must be fulfilled, are known
as multi-objective problems.

A traditional approach for solving a multi-objective prebi is to translate it into a single-
objective problem using weighting factors to indicate thktive importance among objectives
(see for example [1]). The solution obtained strongly delseon which factors are used, and
it is not usually a trivial task to select the right weightimgctor to assure a quality solution
with a reasonable trade-off among objectives [2]. Thisadittn may be more complicated when
constraints are considered. More complex methods to tdbklee issues have been developed

[3], such as lexicographic methods, goal programming nosthay physical programming [4].
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Multi-objective optimization (MOO) can handle these issuea simple manner because of its
simultaneous optimization approach. In MOO, all the olyest and constraints are significant
from the designer point of view, and as a consequence, eaoptisized to obtain a set of
optimal non-dominated solutions. The MOO approach offerthe designer a set of solutions,
a Pareto set approximation, where all the solutions aretérapimal [3]. This set of solutions
offers the decision maker (DM) greater flexibility. The ralethe designer is to select the most
preferable solution according to her/his needs and pmetesefor a particular situation.

There are several widely used algorithms for calculating Frareto set approximation (normal
boundary intersection method [5], normal constraint metf®], and successive Pareto front
optimization [7]). Recently, multi-objective evolutioryaalgorithms (MOEAS) have started to be
used because of their flexibility in dealing with non-convaxd highly constrained functions
[8], [9]. Some examples include NSGA-II [10], MOGA [11], &OGA [12], pa-MyDE [13],
and sp-MODE [14]. General methodologies for MOO have beereldped [15]; nevertheless
new approaches and methodologies using MOO are still redjdacusing on controller tuning.

In this work, a holistic MOO design technique using MOEAresented for controller tuning
purposes. In Section Il a review on MOO is given and in Sectlothe MOO approach for
controller tuning (mood4c} is presented. In Section IV an engineering applicatiomega is
developed and experimentally evaluated and discussedllyffisome concluding remarks and

future work are given.

II. MULTI-OBJECTIVE OPTIMIZATION REVIEW

A MOO problem, without loss of generality,can be stated as follows:

min J(0) = [7(0)....,Jn(0)] € R" 1)

whered € R" is defined as the decision vector, addas the objective vector. In general,
there is no single solution because there is no solutionishetter than the others for all the

objectives. Therefore, a set of solutions, the Paret®setis defined and its projection into the

1A maximization problem can be converted to a minimizatioobfem. For each of the objectives that have to be maximized,

the transformatiorarg max J; (@) = arg min(—J;(0)) can be applied.
] ]
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objective space is known as the Pareto frdipt (see Figure 1). Each point in the Pareto front
is said to be a non-dominated solution (see Figure 2). A gamation#' dominates a second
solution®? only if 8* has a better or equal cost value for all objectives (withgast, one cost

value being better).

Definition (Dominance relation): given a solutight with cost function value’(6'), it domi-

nates a second solutid? with cost valueJ (6?) if and only if:

{Vie[l,2,...m], J,(6") < J;(6%)}
VAN
{3g e [1,2,...m]: J,(0%) < J,(60%)}

1.6 Dominated
Solutions

=) /
0.8

True Pareto front
(continous) J p

~ Solutions describing
a
04 ; Pareto front
approximation
*
p

| | | | |
8,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3,

Fig. 1: Pareto front concept (example of a two objective roation problem).

MOO techniques search for a discrete approxima@jn of the Pareto se®p with a good
descriptionJ; of the Pareto front. In this way, the DM has a set of soluti@rsafgiven problem

and more flexibility for choosing a particular or desiredusain.

IIl. M ULTI-OBJECTIVE OPTIMIZATION DESIGN APPROACH FOR CONTROLLER TUNG

As a global framework, three main objectives need to be densd in a controller’s tuning pro-
cedure: performance, robustness and implementationsistlseially, classical controller tuning

techniques have been developed for only one of those olgsctdther tuning techniques are able
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4,0
Dominated
@ solutions
by A
[ ]
[ ]

J,®

Fig. 2: Dominance concept. Solution A has a better cost veduall objectives.

to deal with these objectives. For examptke,/ H ., designs (or mixed-sensitivity techniques) have
been shown to be powerful tools to address the trade-off detvperformance and robustness.
However it is not easy to include constraints in the contmud/ar process variables and the
performance objective interpretability could be lost.aBtgies as Model Predictive Control [16]
deal with this problem solving an optimization statemeneacth sampling time. A quadratic
measure is usually used, whereas an absolute error measreould be helpful to the designer
for interpreting the performance of a proposed controlléowever, useful or interpretable
objectives considered by the DM could lead to complex namser and highly constrained
cost functions.

Evolutionary algorithms (EAs) are a flexible tool for hamgdjinon-convex cost functions that
are highly constrained in decision and objective spacesy Tlave been successfully applied in
several control engineering areas [17] such as contrali@ng [18], PI-PID tuning [19]-[21],
multivariable control [22]-[26], and fuzzy control [27B§]. These algorithms have also been
merged together with predictive control [31] . Hechniques [32], [33], linear matrix inequalities
[34], and loop shaping [35]. The use of such a class of algmst leads to a higher degree of
flexibility, since more interpretable objectives can alsoused to tune any kind of controller.
Therefore, a multi-objective optimization design for qoiier tuning (nood4c} by means of
evolutionary algorithms will be proposed. Any multi-oljee optimisation design approach
must follows three main steps: problem definition, multjeaitive optimisation process and
decision making stage (see figure 3). The main contributibthis work consists in define

a global optimisation problem statement for multivariaptecesses and its integration into the
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optimisation procedure and the decision making stage (wiscnot a trivial task when the
number of objectives is three or more). Any kind of MOEA can used (NSGA-II [10]?,

MOGA [15], [36]3, ev-MOGA [12], pa-MyDE [13], and sp-MODE [14], among others). Such
algorithm must be capable of converging towards the Paretu;fit must have a good constraint

handling mechanism and it must compute a useful well-spegguioximation along the Pareto

front.

Multiobjective Optimization Design Methodology

MOP Definition I—>

Multiobjective Optimization Process

Decision Making Stage I

Decision
Space

Definition

How to

Objective

Evolutionarv Process

PIIs g

Diversity and
Spread

MOO
Statement

>mMO=

Constraint

Handling Convergence

Space
Definition

1
: 1
! T
: !
! |
: |
I solve...? \ Definition [ |
I ! |
: |
! |
: |
: |

Designer's
Analysis and | Preferences

Visuali

Selection

Operational
Requirements

Fig. 3: Multi-objective optimisation design methodology.

The mood4ctapproach, roughly speaking, is based on:

« A highly reliable process model to obtain a measurement efpérformance for a given

controller.

« A MOEA with a constraint handling mechanism which can asswmvergence, spread and

diversity into the Pareto front.

Meaningful process objectives to facilitate the decisicaking stage.

« An intuitive and easy-to-use tool to analyzedimensional Pareto fronts.

2Source code available at: http://www.iitk.ac.in/kangadles.shtml; also, a variant of this algorithm is availahl¢éhe global

optimization toolbox of Matlab.

3Genetic Algorithm toolbox for Matlab available at http:iuw.sheffield.ac.uk/acse/research/ecrg/gat

4Available for Matlab at: http://www.mathworks.com/mdttentral/fileexchange/31080
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A. Process objectives

The use of a process model will lead to a higher degree ofbigtiafor the controller’s
performance under practical considerations such as saturaomplex tracking references,
and/or any kind of constraint. In this work, the integral bétabsolute magnitude of the error
(IAE) and the integral of the absolute value of the derivatoontrol signal (IADU) are used
due to their interpretability. Given a model, which will bentrolled with a sampling time of

T, with t € [to, tf] and with controller tuning parametefs the IAE and IADU are defined as:

TAE6) =T, |rk — ul 2
k=1
N
TADU(0) =)~ |ug — g | 3)
k=1

Where r, y,. and u, are respectively the setpoint signal, the controlled anchipugated
variables at samplé; while N is the number of samples ifty,t;]. The above mentioned
objectives are defined for a SISO system. If a MIMO system witimputs andv outputs is
under consideration, it is possible to have as many obgiid £, I ADU as inputs and outputs.
Nevertheless, this could lead to an exponential increasigeimumber of solutions in the Pareto
front J}, and the analysis on the results could be more difficult. Moee a large subset of
solutions will probably be undesirable for the DM (for exdemontrollers with an outstanding
performance in one controlled variable at the expense ofhanp So, it is worthwhile trying
to reduce the objective space to facilitate the analysisthier DM without losing any of the

advantages of the MOO approach [37]. Let it be:

TAEY(0) TAE*?(0) TAE""(0)
= 4
JE(G) [ ARl ) ARQ ) ’ ARV } ( )
L TADU"(0) <~ IADU*'(0 "\ IADU"?(0)
Ju(0) = N N D RN (5)
j=1 max : max j=1 max

Where TAE" () is the [AE(8) for controlled variablei when there is a setpoint change
AR’ for controlled variablej; IADU"™(0) is the IADU(0) for control signali when there is

a change in setpoint signa) and AU

max

is the maximum change allowed for control signal

Vectors 4 and 5 contain the IAE and IADU values for each védgialbrmalized over a work
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range. Because of this, it is possible to perform a compardmween controlled variables and
between control signals.

Define a sorting functiol : R1*" — R Z(f) = g so thatig = [ay, as, as, . . ., a,|, where
ay > as > as > ...a,, Where eachy; is an element off. The global index for IAE and IADU

performance measurements are defined48) and ., (6) respectively:

Je(0) = Z2(Jp(0)) X w (6)

Ju(0) = Z(Ju(8)) x w (7)

Vector w indicates it is most important to optimize the maximum valtnereby assuring a
minimum worst performance for all objectives. As inputs autputs are usually normalized in
the rang€0, 1] an intuitive value® for w is w = [10°,1072,..., 107" .

Please note that this objective reduction is important tdifate the decision making step. In
one hand, the multi-objective approach gives to the DM aebatight concerning the objective
trade-offs; in the other hand, too much information (too ynabjectives) can hinder the DM
task to select a desired solution. This topic, known as nabjgetives optimization (usually
more than 4 objectives) is not trivial, and some algorithrosld face several problems due to
their diversity improvement mechanisms [38], [39]. Theeative reduction is an alternative to
face the many-objectives optimization issue [40], and whik proposal the relevant information
about the conflict between control actions and performascetained.

Additionally, a measurement for coupling effects is regdir

IAE" TAE> [AE™
JC(O): TQXW(?,TQXW(LO),.”,I?;EJXW‘? ,2'6[1,2,...,1/] (8)
Je(0) = Z(Jc(0)) x w (9)

Where AR! is the maximum allowable setpoint step change for contloligriable:.

max

®Notice that settings = [1,0,...,0] is equivalent to sefls(8) = ||Jz(0)|~ - Nevertheless, any MOEA would not be able
to differentiate, for example, between one solutibn(8') = [0.9,0.9,0.9,0.9,0.9] with Z(Jg(8")) x w = 0.9 from another
one Jg(6%) = [0.9,0.5,0.01,0.5,0.7] with Z(Jg(6%)) x w = 0.9. The latter should be preferred over the former.

January 11, 2012 DRAFT


gilreyme
Resaltado
comentario sobre no estar convencido en el tema de many-objectives optimization


166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

186

187

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, N@X, JANUARY 20XX 9

Finally, it is not possible to rely only on the process modkie to un-modeled dynamics
or parametric uncertainty. Therefore, a robustness abged required to guarantee a robust
stability. One possible choice is to use complementaryigensfunction 7 (s) with a linearized

process model as follows:

Jro= swpa (T)W(w)),w € @ w) (10)

Usually 7 (s) together with weighting functiof'(s) is stated as a hard constraint(< 1).
SincelV (s) selection is not a trivial task [41], thmood4ctapproach can manage this task as an
optimization objective (.e., it will be minimized instead of being used as a hard constyaihe
mood4ctcan deal with constraints in the same way it deals with eagbctibe and represents a
feasible alternative to constraint-handling [42], [43hiF approach, combined with an adequate
tool to analyzem-dimensional Pareto fronts, is useful to analyze the impmdctelaxing, if
possible, one or more constraints.

With the above mentioned objectives, it is possible to bailllOO statement to adjust any
kind of parametric controller (see eq. 11). That is, givenoatwl structure with numerical
parameters to adjust, the latter MOO problem can be stasig @s performance measurement
information from the simulation process. The objectivegetdhe most important requirements
for a controller: performance, control effort, couplingeets and robustness. Although these
performance measurements have been proposed as first mpgtiorn, some other measures can
be used (or added) by the DM.

win J(0) = [ J¢(0). u(0). Je(0). 12(0), Jr(6) | € %’ (11)

Since the implementation objectives are related with a particular controller, they will be
considered according to each specific case. Constraintingrittpends on the selected algorithm
and its own mechanisms. In general, the guidelines statdddihcan be used to incorporate
them into the cost function evaluation or into the MOO statrtras and additional objective
[42], [43].
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B. Multiobjective evolutionary algorithm

As it was noticed earlier, any kind of MOO algorithm can be cuge the multi-objective
optimisation design methodology. A MOEA is selected duetsdlexibility to handle complex
functions. The MOEA will adjust the parameters of a giventoglter to be used in the closed
loop process simulation. Then it will use the performandeutated from the simulation process
to evolve the population to the Pareto front. In particutae sp-MODE algorithm is selected
[14], due to its performance in academic benchmarks for MQgorahms and its flexibility
for control purposes. This algorithm is based on Differ@nEvolution technique, which is a

real-coded evolutionary algorithm.

C. Pareto front visualization

It is widely accepted that visualization tools are valuadhe provide decision makers with
a meaningful method to analyze the Pareto front and takesidesi [45]. For two-dimensional
problems (and sometimes for three-dimensional) it is gsalaightforward to make an accurate
graphical analysis of the Pareto front, but the difficultgraases with the dimension of the
problem. Tools as VIBO [46] can plot a fourth dimension by using a color-codingha a 3-
dimensional plot. Nevertheless, it is usual to state moae tour objectives in an MOO process.
Common alternatives to tackle an analysis in higher dintensire: Scatter diagrams, Parallel
coordinates [47] and Level Diagrams [48]. Scatter diagrasea 2-dimensional graph for each
pair of objectives whilst Parallel coordinates plotadimensional objective vector in a two
dimensional graphs. The former becomes difficult to analyzen visualizing several objectives
(since at Ieasf% plots are required); the latter, is a very compact way, blases clarity
with large sets of data.

Level diagram (LD) visualization [48] helps us to perform amalysis of the obtained Pareto
front J}, which is not a trivial task when the number of objectivesaigiér than three. It has been
used with success in control systems up to 15 objectives p&ty systems analysis [50] and
engineering design [51]. As pointed in [52], LD visualizatiis one of the most useful methods
to visualizem-dimensional Pareto fronts. LD visualization is based an ¢lassification of the
approximationJ; obtained. Each objectivd,(#) is normalized with respect to its minimum

and maximum values. That is:

January 11, 2012 DRAFT
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J,(0) = [jl(e),jg(e),...,jq(e) gell,... ml. (12)
217 where
. Jq(O)—J;””
= : 1,....m]. 1
J4(0) T — ngnvq cll,...,m (13)
218 and
Jmin — in J,(0),... in J,,(0 14
[J(rgler}]; 1(0), i, ()} (14)
Jmar — J(0). ... Jm0 15
L{G%Bg; 1(0), ) e ()] (15)

m 1/p
20 To each normalized objective vectdi(#) a p-norm||z||, = <Z |xq|1’) is applied to
o evaluate the distance to an ideal solutidif® = J™", Common norms are:

2

N

1T@)] =" J,(8) (16)
1T(O)]l2 =" J,(6)? (17)
|7 (6)]|oo = max J(8) (18)

221 The LD visualization uses a two dimensional graph for evdrjective and every decision
. variable. The ordered pairéJq(O), ||f(0)||p) in each objective sub-graph ar(d?l, Hj(0)||p>
223 IN each decision variable sub-graph are plotted. Thergfoiggaven solution will have the same

2

N

224 gy-value in all graphs (see Figure 4). This correspondendeheip to evaluate general tendencies
25 along the Pareto front and compare solutions accordingeacséhected norm. For example, an
226 euclidian norm is helpful to evaluate the distance of a giselution with respect to the ideal
227 solution, meanwhile a maximum norm will give informationoaib the trade-off achieved by this

228 solution. Using a norm to visualize tendencies in the Pafetnt does not deform the MOP

N

229 €SSence, since this visualization process take place theoptimization stage.
230 In all cases, the lower the norm, the closer to the ideal molul™". For example, in figure

21 4, point A is the closest solution td™ with the || - ||; norm. This does not mean that point A
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Fig. 4: LD visualization. Points at the same level in LD cepend on each graphic.

1 2 ) 3
J l(6) [ 1(9) units]

3,0): [JZZ(S) units]

(b) Representation using LD visualization.

12

must be selected by the DM. Selection will be performed atiogrwith the visual information

from the LD visualization and the DM preferences. In the sdignere, it is possible to visualize

how the tradeoff rate changes in solution A. That is, it isqilde to appreciate two different

tendencies around solution A: in one hand, the betie#) value, the worst/; (8) value (circles).
In the other hand, the worsk,(0) value, the bettet/;(0) value (diamonds). It is difficult to

appreciate such tendencies with classical visualizatigtis more than three objectives. For the
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remainder of this paper, the- |2 norm will be used.

The LD visualization also enables the comparison of Paratat$ obtained for different
design concepts [53] (in this case, controller schemes3ubi visualization, it will be possible
to analyze the different trade-offs achieved by differemmtcol solutions, and determine under
which circumstances it is justified to use one over anoth@rekample, in figure 5, it is possible
to see how a PID can achieve a better trade-off than a PI dlantietween load rejection and
step setpoint change (Zone Y). In the same way, it is possildetermine under which conditions
performance will be the same (Zone W).

To plot the LD, the LD visualization tool (LD-toolf will be used. This isa posteriori
visualization tool (e. is used after the optimization process) and enables the DMeatify
preferences zones along the Pareto front, as well as sejesntid comparing solutions. With this
tool, it is possible to remove objectives or to add new penfoice measurements, not used in the
optimization stage. Furthermore, it is possible to integjthe DM preferences in a lexicographic
environment (as the one proposed by physical programmmg@entify preferred solutions.

The aforementioned steps (problem definition, MOO processthe decision making stage)
are important to guarantee the overall design methodoMigh a poor problem definition, not
matter how good our MOEA and decision making methodologiesvae will not have solutions
which guarantee a good performance on the real system. MMEA have a low performance,
the DM will not have a useful Pareto set to analyze and selsdiwion according with his/her
preferences. Finally, a lack of decision making tools andho@ologies imply a lower degree
of embedment of the DM into the solution selection and trédewpacts. Furthermore it could

lead the DM to a lack of interest in the MOO approach.

IV. EXPERIMENTAL VALIDATION OF THE MOOD4CT PROCEDURE

To show the applicability of the method, two different apgcbes of controller tuning for a
non-linear twin rotor MIMO system (TRMS) are presented.

The TRMS is an academic workbench and a useful platform tduatea control strategies
[54]-[56] due to its complexity, non-linearities, and icassibility of states. It is a TITO (two

inputs, two outputs) system, where two DC motors have cbwirer the vertical angle (main

®Available at http://www.mathworks.com/matlabcentridéikchange/24042
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Fig. 5: Typical LD comparison for a SISO using a P{)(and a PID controller()).

angle) and horizontal angle (tail angle) respectively.hBioputs are limited in the normalized
range+1, the main angle being in the rang¢e0.5,0.5] rad. And the tail angle ifn—3.0, 3.0]
rad.

The mood4ctprocedure is validated in two steps:

1) An optimization stage using an identified process moda@htain ©%, J5.

2) An experimental validation of the MOO resul®;, J; on the real TRMS.

A. Optimization stage

A non-linear state-space model was identified as a part otdmgroller tuning-design pro-
cedure. Details on the system modeling and the observegrdesin be consulted in [57] and
Appendix A.

To evaluate the performance of a given controller a Sim@inknodel with the identified
non-linear model was used. Two simulations were carriedwotlt different patterns:

« Simulation pattern 1: Setpoint step change for main fforad to0.4 rad while tail setpoint

is maintained ab.

January 11, 2012 DRAFT
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« Simulation pattern 2: Setpoint step change for tail fromad to2.4 rad while main setpoint

is maintained ab.

The objectives defined in equations (6), (7), (9) and (10uaexl according to a TITO system:

max TAELY(0) TAE?2(0)
TITO ARt AR?
Je (0) =T, X w (29
. IAELY(0) TAE?2(9)
min
ART 7 AR?
- 4T
2 » 2 2
max IADU1 ) IADU2 J(0)
AUmaa: ’ . AUmaa:
JHITO(g) = ! ! X w (20)
2 , 2 o
min TADUY(0) > TADU%7(6)
le AU}UGT ’ jzl AUTQFLG‘X)
A <1AE1»2(9) 1AE2»1(0)>
ARL .. ' ARZ
JTITO 0 - T max max X W 21
¢ (O)=T, . (TAE'2(0) IAE>1(9) (21)
min
AR’}?’IQI ’ AR%‘LG(IJ

Where w is set tow = [10°,107']. To evaluate/-(6) a linearized model is used. As a

U542 will be

weighting function for the robustness objective, the tfangunction W(s) = <255

used.

With the mood4ctapproach, any kind of controller can be tuned. In this wonkg schemes
are used: an ISA-PID controller [58] and a state-space cbeitr(see figures 6 and 7). For
both cases, the controller is required to work with a sangptime of 20/1000 seconds with a
saturated control signal in the normalized range

1) PID controller tuning: PID controllers currently represent a reliable digital ttohsolution
due to their simplicity. They are often used in industriaplgations and so there is ongoing
research into new techniques for robust PID controllemgb9]-[63]. For this reason, the PID
scheme will be the first to be evaluated.

A two degrees of freedom ISA-PID controller with a derivatifilter and an anti-windup

scheme will be used:

1 T,
= K. (b+—4c—=t
vis) ( +Tis+ch/Ns+1)R(S)
1 T,
— K (l4+—+—t )y 22
(+Tis+Td/Ns+1) () (22)
January 11, 2012 DRAFT
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KfiesTe
| Tys Tul0stl

Main

Reference K[+
Main 7
Reference 1 TS
Tail —> K”-’(bZJrH”Tﬂ/zoS“)
Fig. 6: PID controller scheme.
Control
Action
Reference Controller —b
[Main angle,
Tail Angle]

Observer

Fig. 7: State space controller proposal.

296 where

297 K. is the proportional gain.

w8 1 represents the integral time (secs).

299 T, is the derivative time (secs).

oo N represents the derivative filter. Common values for thierfiie in the rangeV = [3, 20].

o1 b is the setpoint weighting for the proportional action.

w2 C is the setpoint weighting for the derivative action.

303 The antiwind-up is performed by conditional integrationemhthe output signal is saturated
a4 [64]. The strategy to be implemented is a Pl controller fa thain angle and a PID controller

a5 for the tail angle. A setpoint weighting for the derivativetian of c = 0 and a derivative filter of

January 11, 2012 DRAFT
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TABLE |: MOO statement for the PID controller approach.

min J(0) € R°

6cR7
Main Tail Main Tail
Je(0) = T, {max (”%2” e ) +107% min (“’ffffp e >J Kotz € [0,1]
Ju(0) = max (3 Aulam + 3 Audlein ST AWTE + 3 Aul i) + Ti1,i2 € (0,100]

10~2 min (Z Aué\fé‘;" +> Au%?é", > AusTt‘Z,f +> Au;‘fgﬁtl)

TAEMain [AETail . TAEMain IAETail
Je(0) = T [max ( (Q.ng)t , (2_‘”38)” ) + 10~ ? min ( (2.8.6;; , (2_%‘3” )] Ta2 € [0, 10]
Jz(0) = supa (S(jw)),w € (1072,10%) bi,2 € [0, 1]

Jr(@) = supa (T(w)W(w)),w € (1072,10%),s.t..J5 > 0.8

N = 20 will also be used. Therefore, tmeood4ctapproach will be used to adjust the parameters
K., Ty, by for the Pl controller and¥ ., T, bo and T, for the PID controller. Both will be
tuned under SISO design considerations.

A total of five objectives are defined (see Tablely(0), J,,(0), J-(0), and.J;(0) are defined
according to equations (19), (20), (21) and (10) respdgti@bjective./z(0) is included to prefer
controllers with better disturbance rejection.

The ©% and J}, from the mood4ctapproach for PID tuningare shown in Figure 8. A total
of 471 non-dominated controllers were found (a controlirssetGk,; is identified for further
analysis). The following geometrical remarks (GR) on theleliagrams and their corresponding

control remarks (CR) can be seen in Figure 8:

GR 1: It can be observed that two different subsets of salati@ppear when solutions with

A random search with the same number of function evaluatises by the MOEA was performed for comparison purposes.
This approach calculates a Pareto front approximation $6thsolutions. The approximation calculated by the MOEA nhaites
49 solutions of the random search approach; the randomtseppmroximation does not dominate any solution of the MOEA

approximation.
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Best IAE

Best IAE

~ # g . M

L IR : j - . et PR +*$#(&G§2)/

(GR3,GR4)

5 10 15 20 25 30
JE(G) : Performance (IAE)

10
Best IAE Gk,

it
T
et

Gk, ;. le‘2

50

1 2 3
Jc(e) : Coupling (IAE)
(GR4) - -

10 20 30 40 50
JT(G) : Robustness (Multiplicative uncertainty)

Fig. 8: J} for PID controller. Dark solutions match the arbitrary reqment.j;; < 1.

Jyu(0) <1 are separated.

CR 1: The IADU performance indicator for control action isuwatity indicator to differentiate
damping solutions along the Pareto front.

GR 2: For solutions with/,,(8) < 1, the lower.J,(8), the higherJ:(0).

CR 2: For overdamped solutions, the higher the control efl&DU), the better the perfor-
mance (IAE).

GR 3: For solutions with/,,(8) < 1, the lowerJ¢(8), the higherJz(6).

CR 3: For overdamped solutions, the better the performddde) (the worse the disturbance
rejection (/z(8)).

GR 4: For solutions with/,,(8) < 1, the lower.J:(8), the higherJ,(8).

CR 4: For overdamped solutions, the better performance)(l&t worse the robustness.

All of these points are well-known considerations in cohth@ory. The Pareto front enables

the visualization of this trade-off between objectivesgd dhe DM can choose a solution that

meets his own needs and preferences.
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TABLE Il: MOO statement for the state space controller apgto

min J(0) € R°

6cR16

Main Tail Main Tail
Je(0) = T, {max (“onep , IA’jj;ep) +10~2 min (IAEO%j;P A ety )J 6; € [~10, 10]
Ju(0) = max (Z Auﬂfszf" +> Au%ﬁé", > AusTt‘Z,f +> Auge“,f,f)—l— i€ (1,2,...,16)

10~2 min (Z Au%eapm +> Au%?é”, > Augfég +> Augf,f,f)

TIAEMain TAETail _o . [1AEMain 1AERla
Je(0) = T [max( (2,5.5; » T (23) t) +10 Qmm( (2-8.5; 39 : >]

Jz(0) = trace(K x K')

Jr(@) = supa (T(w)W(w)),w € (1072,10%), s.t.J5 > 0.8

2) State space feedback controller tuninghe above proposal used a PI-PID SISO strategy
to address the control of a MIMO system. Such an approachnsetmes not enough to gain
satisfactory control in a wide operational working zonejmtyebecause of the coupling dynamics.
For this reason, a matrix gain for a state space (SS) conpymioach is selected as a second
strategy (see Figure 7).

The mood4ctapproach will be used to adjust a feedback gain makfixs to control the
system. A total of five objectives are defined (see Table Ihjetives Je, J, Je, and Jr
are again defined according to equations 19, 20, 21 and 1@ctg /7 is included to have
preference over controllers with lower numerical senghil.e. well balanced controllers at the
implementation stage.

The Pareto front approximatiod;8 is shown in Figure 9. As a result, 589 non-dominated
solutions were found (a controllers subgst,; is identified for further analysis). The following

geometrical remarks (GR) and their corresponding congolarks (CR) can be seen in Figure

8A random search with the same number of function evaluatises by the MOEA was performed for comparison purposes.
This approach calculates a Pareto front approximation 86tlsolutions. The approximation calculated by the MOEA dwates
85 solutions of the random search approach; the randomhseaproximation does not dominate any solution of the MOEA

approximation.
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Fig. 9: J; for the SS controller. Dark solutions match the arbitraryuieement.J,,(0) < 1.

s O

us  GR 1: For solutions with);; < 1, the lower.J,(0), the higher.J¢(9).

346 CR 1: For overdamped solutions, the higher the control eff&DU), the better the perfor-
a7 mance (IAE).

s GR 2: For objective/z(8), solutions matching the requiremestf;(6) < 1 have the lower
349 trace.

0  CR 2: Solutions with more balanced coefficients in the magan are solutions that offer

351 less damping responses.

2 B. Experimental validation

353 To validate both approaches, the setpoint pattern on Figj0res used on the real TRM%S
s It IS important to note that such a pattern is different frdme bne used at the optimization

s Stage. In this way, it will be possible to evaluate and vaéd&ie mood4ctapproach. The new
°Controllers from Tables Ill and VI were implemented in a Matl Instruments PXI-1002 System.
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03 | ¥ " ' ' —
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Fig. 10: Pattern for test on real TRMS. Idle state value f@ main angle is around 0.3 rad.

pattern evaluates the performance of a given controlleramtaining zero-reference (zone A);
a setpoint change in the main angle (zone B); a setpoint eéhanghe tail position (zone C);
and simultaneous changes in reference (zone D).

1) PID controller - experimental resultsA subset of three controllers (see Table Ill) are
selected from the Pareto set (Figure 8) for further analgsighe TRMS. ControlleiGk3 is
selected due to its performance dp(0); controller Gk;; due to its trade-off for objectives
Jyu(0) and J:(0) (some performance is sacrificed in order to obtain a bettetrabeffort and
less coupling between the main and tail closed loops). Kinadntroller Gk, is selected due to
its robustness (this is a controller capable of working vétharger set of plants because it has
a smallerJ-(0) value). In all cases, it is observed that the robustnessragant.J;(0) < 1
is not achieved. The reason for this could be: 1) it is not ipbsdo use a PID scheme to
control the system; or 2) the weighting function for robests has not been chosen correctly
(i.e. it is an excessive constraint) and the control engineer s\¢@cvaluate if this constraint
could be relaxed. After some analysis on the closed loopufBQgy response, it is determined
that it is possible to use these controllers in a small ogeratnge. The performances of these
controllers with the reference pattern for the real tesé (Bggyure 10) are shown in Tables IV,
V and Figure 11.

As expected, controlleZk;; had the worst performance, but fewer coupling effects aed th
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TABLE llI: PID controllers selected fron®;, (Figure 8).

22

J=(0) Je(0) Jz(0) Jr(0) 0= (Kc1,Tin, b1, Kea2, Tiz, Taz, b2)
Gk 6.83 0.65 476 458 6 — (0.001,0.006,0.99,0.269,8.258, 1.420, 0.626)
Gkiz  8.60 059 294 261 6= (0.001,0.008,0.68,0.2533,8.45, 1.14, 0.84)
Gkis  6.81 274 476 458 6 = (0.001,0.006,0.70,0.999, 7.396, 1.887, 0.6721)

TABLE IV: Performance of PI-PID controllers on the real TRM&ones A and B)

January 11, 2012

Zone A
IAE IADU Obj
Main 4.76E+000 2.85E-002 J; = 1.31F — 001
Gkyw Tail  1.07E+001 4.67E+000 J; = 4.67E + 000
_ _ Jg=— — — — —
Main  6.45E+000 3.05E-002 .J; = 2.43E — 001
Gki2  Tail 3.42E+001 4.81E+000 J, = 4.81FE + 000
— — J3 = — — — — —
Main  3.58E+000 2.03E-002 J; = 9.89F — 002
Gkiz  Tall 8.17E+000 1.65E+001 J» = 1.65FE + 001
— — J3 = — — — — —
Zone B
IAE |IADU Obj
Main 3.73E+002 2.23E+000 J; = 2.49F + 001
Gkyw Tall  1.14E+003 5.74E+001 J; = 5.74E + 001
— — J3 = 3.81E + 000
Main  4.44E+002 2.11E+000 J; = 2.96F + 001
Gkio Tail 1.27E+003 5.91E+001 J2 = 5.91F + 001
— — J3 =4.24F + 000
Main  3.86E+002 2.20E+000 J; = 2.57F + 001
Gkiz  Tall 3.12E+002 1.80E+002 J> = 1.80F + 002

— Js = 1.04F + 000
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23

TABLE V: Performance of the PI-PID controllers on the realM®& (Zones C and D)

best control effort on zones C and D. Controliék,3, as indicated by the Pareto front, has the

Zone C
IAE IADU Obj
Main 5.68E+001 3.45E-001 J; = 1.13F + 001
Gk Tail 5.65E+002 4.26E+001 J, = 4.26F + 001
— — Js =1.14F + 000
Main 5.71E+001 2.74E-001 J; = 1.28F + 001
Gki»  Tall 6.42E+002 3.87E+001 J, = 3.87FE + 001
— — Js =1.14F + 000
Main 6.36E+001 3.69E-001 J; = 8.64FE + 000
Gkis Tail 4.32E+002 1.21E+002 J> = 1.21F + 002
e —_ J3 =1.27TE 4 000
Zone D
IAE IADU Obj
Main  3.97E+002 2.36E+000 J; = 5.48F + 001
Gki1 Tall 1.41E+003 7.45E+001 J, = 7.45F + 001
J— J— J3 _ - — - —
Main  6.03E+002 1.97E+000 J; = 7.76F + 001
Gki2  Tail  1.87E+003 6.34E+001 J; = 6.34E + 001
_ _ Jg=— — — — —
Main 3.88E+002 2.19E+000 .J; = 3.70E + 001
Gkis  Tail  5.57E+002 2.24E+002 J, = 2.24F + 002

_ J3=— — — — —

highest control effort in all cases and the best performamceones A and D. Finally, controller

Gk, presents a good trade-off between performance and corftool. e
2) State space approach - experimental resullssubset of six controllers (Table VI) was

selected from the Pareto set (Figure 9), according to théraorequirements and the closed

loop frequency response on the linear model. Notice that possible to fulfill the requirement

Jr(0) < 1, meaning that a larger set of plants can be controlled by tte space approach.

Controller Gky; is selected because it is the controller with the lowest 2mon the level

diagram, while controlleiGk,, is selected to analyze the impact @f(6) on performance.

Controllers Gko3 and Gko4 are selected to validate the trade-off achieved by decrgaie
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Fig. 11: Performance on the real TRMS of thmod4ctPID approach for the setpoint pattern.

performance in order to gain a better control action and ¢esgpling effects between the main
and tail angles. The performance of these controllers vighréference step pattern for the real
test (see Figure 10) is shown in Tables VII, VIII and in Figdiz

TABLE VI: State space controller and their performanceshat aptimization stage.

Je(0)  Ju(®) Je(0) Jr(0) Jr(6)
Gks 361 191 125 4358  0.83
Gk, 482 141 053 20152 0.83
Gkss 577 077 068 367 083
Gks 7.93 065 071 296 083

Gkoy and Gk, are controllers with outstanding performance at the expearishigh control
efforts (J,(0)) and larger trace valueg4(0)). ControllerGk,; exhibits more coupling effects as
was pointed by/-(0), and noise sensitivityf(0)). ControllerGk,, exhibits a better performance
than Gk, due to coupling effects/:(0)), but also shows a higher noise control effoft(@)).

Controller Gko3 and Gksy has almost the same performance for objectivgéd), J-(9),
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w2 Jz(0), J7(0) and it is possible to see the tradeoff predicted by the Pdrett approximation.

a3 Controller Gky4 shows worse performance than controliet,s, but with less control effort.

TABLE VII: Performance of the state space controller on thal TRMS (Zones A and B).

Zone A
IAE IADU Obj
Main 8.64E+000 3.07E+001 J; = 2.18F — 001
Gko1  Tail  1.36E+001 2.17E+001 J, = 3.07E + 001
— — J3=— — — — ——
Main 6.47E+000 7.71E+001 J; = 1.88F — 001
Gkoo  Tall 1.74E+001 2.90E+001 J, = 7.71F + 001
— — J3 = — — — — —
Main  9.96E+000 7.94E+000 J; = 2.79F — 001
Gkos  Tail 2.39E+001 8.61E+000 J, = 8.61FE + 000
_ _ Jg=— — — — —
Main 9.67E+000 6.71E+000 .J; = 2.66E — 001
Gkoy  Tail  2.19E+001 5.11E+000 J2 = 6.71E + 000
_ _ Jg=— — — — —
Zone B
IAE IADU Obj
Main 2.53E+002 1.61E+002 J; = 1.69F + 001
Gkor  Tail  1.63E+002 1.24E+002 J, = 1.61E + 002
—_— —_— Js = 5.42F — 001
Main 2.11E+002 4.18E+002 J; = 1.40F + 001
Gkoy  Tail  3.46E+002 1.59E+002 J, = 4.18E + 002
e —_ J3 = 1.15E + 000
Main 3.17E+002 4.85E+001 J; = 2.11E + 001
Gkas Tail 3.28E+002 5.72E+001 J, = 5.72EF + 001
— — Jz = 1.09E + 000
Main 5.79E+002 4.33E+001 J; = 3.86F + 001
Gkoy  Tail  3.28E+002 3.56E+001 J> = 4.33E + 001

J3z = 1.09E + 000
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TABLE VIII: Performance of the state space controller on thkal TRMS (Zones C and D).

Zone C
IAE IADU Obj
Main 1.34E+002 1.57E+002 J; = 1.01FE + 001
Gko1  Tall  5.07E+002 1.10E+002 J> = 1.57FE + 002
— — Jz = 2.6TE + 000

Main 4.86E+001 4.02E+002 J;, = 1.25E + 001
Gko2  Tall  6.26E+002 1.58E+002 J; = 4.02E + 002
— — J3 =9.73E — 001

Main 6.77E+001 3.70E+001 J; = 1.04E + 001
Gkos  Tall 5.20E+002 4.23E+001 J, = 4.23E + 001
— — Jz = 1.35E + 000

Main  1.06E+002 3.09E+001 J; = 1.46E + 001
Gkos  Tail  7.28E+002 2.52E+001 J> = 3.09F + 001
— —_ Jz = 2.12EF + 000

Zone D
IAE IADU Obj
Main 2.90E+002 2.25E+002 J; = 3.01E + 001
Gko1  Tail 5.34E+002 1.64E+002 J, = 2.25FE + 002
— S Jp= —— — — —

Main 2.18E+002 6.37E+002 J; = 2.96F + 001
Gkoo  Tall  7.54E+002 2.48E+002 J> = 6.37E + 002
_ _ J3=— — — — —

Main  3.42E+002 4.99E+001 J; = 3.61E + 001
Gkos  Tall  6.64E+002 5.51E+001 J, = 5.51FE + 001

S S J3=— — — — —

Main 6.20E+002 5.15E+001 J; = 6.26E + 001
Gkos  Tall 1.06E+003 4.23E+001 J» = 5.15FE + 001

S S J3=— — — — —

a4 C. Comparison between control approaches

s With the multiobjective approach and the LD tool it is possito perform an overall com-
a6 parison between both control approaches. The comparisirbevinot limited by using just a
a7 pair of solutions (controllers), and the whole set of coltgrs will be used in accordance with

a8 the quality of their performances along the Pareto frontreximation.
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0.6 T T 0.6 T T
- - - Setpoint - - - Setpoint
— 0.4r —GK22 — 041 - - .GK21
g > rid ? - --Gk23 g A e ——GK24
e 0.21 0 e, 'c 0.2r
© ©
S gressemsdd YT =

Tail [rad]
Tail [rad]

. . i 1
260 280 300 260 280 300
Time [secs] Time [secs]

Fig. 12: Performance on the real TRMS of theod4ctSS approach on setpoint pattern.

As objective Jz(€) corresponds to the particular implementation of each oflaty a com-
parison can be performed in the objective subBg®) = [J:(0), J(0), Jc(0), Jr(0)]. A new
level diagram, using both set of solutions (with the idedlison being the minimal offered by
two approaches) is built (see Figure 13). Again, it is pdesib make some geometrical remarks
(GR) and their corresponding control remarks (CR):

GR 1: In objective/; there is a range of solutions where both approaches cointithee LD

(Zone A).
CR 1: There are configurations for each controller capableeathing the same level of
performance in the rangkAE =~ [6, 15].

GR 2: For the above mentioned range, solutions of the fresitde space tend to have better

values inJq(0) and J+(0).

CR 2: For the performance rangedE =~ [6,15] the state space controller gives a better

trade-off for control effort and robustness than a PID culidr.

GR 3: Solutions below|.J(8)|, (Zone B) correspond to second front solutions. These solu-

tions tend to disperse with larger values in objectivg$d), J:(0), and.J1(0).
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0.5r 0.5r Better tradeoff
Similar Performance " a4 State Space approach
& x
04 for both approaches 0.4l ,{ T .
kot Worst tradeoff
=o03f 0.3F %3 P'P approach
)
& +
= 0.2f . - 0.2f P
& ¢ 5% i Zone A
0.1F . 0.1r
- Zone B ks cvomee Zone B
0 ; ; i 0 ; i
0 5 10 15 0 2 4 6 10
JE(B):Performance (IAE) Ju(e): Control effort (IADU)
0.5¢ 0.5¢
N " Better tradeoff
04 N } jiﬂ . X 0.4kt o+ * State Space approach
LA e ey * i 4%
e nf o 1: N o . x Worst tradeoff
AP Fr e, + PID approach
— “ Tt o Lt + I 2
> P e S I S o 2 Zone A
S ol bk ty I, M [ N
=02 TR T L T ’
M X m taE o Zone A * i "
017 s xu % %
= : ”“X@*&X: 7 Zone B * zone B %
0 i i i ; ; ; ; ; ; i
0 2 3 4 5 1 2 3 4 5 6 7 8 9 10
Jc(e): Coupling (IAE) JT(G): Robustness (Multiplicative uncertainty)

Fig. 13: Design concept comparison between: PID contll€) and state space controllers (x).

414 CR 3: The state space approach can reach closer values tdedlesblution. Nevertheless,
415 these solutions may include the worst values for contrabreffcoupling effect, and
416 robustness.

a7 With such graphical analysis, it is possible to see the tdtigained by using a modern
s control strategy such as a state space controller over a ®batler. In some instances, it will
a9 be worthwhile seeing if a complex control technique is fiesti over a classical technique (such

20 as a PID controller) according with the DM preferences.

421 V. CONCLUSIONS

422 In this work, a holistic multi-objective optimisation dgsi for controller tuning fhood4c}

23 has been presented. Withood4ct it is possible to achieve a higher degree of flexibility for
22 Choosing a solution that matches the desired level of tadfdbetween conflicting objectives,
w5 such as performance, control effort, and robustness. Tpeoaph includes the use of mean-
26 Ingful performance objectives through simulation, and tise of a flexible tool to visualize

27 m-~dimensional Pareto fronts.
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Mood4cthas been used to control a non-linear MIMO system. The clatrioning approach
has been shown to be flexible for classical PID controlleid state space controllers tuning. It
has also been shown to be reliable and robust enough to tdah&osystem with different
reference patterns. This approach makes it possible tceaeha desired trade-off between
performance and robustness, which leads to better impleti@m results on a real system than
the results achievable by optimizing just a performancesmesment. As the tendencies are those
predicted byJ} from the optimization stage with the process model, rit@od4ctprocedure is
validated as a tool for designing different control arctiitees.

Finally, using the level diagram tool a global comparisols baen made between different
control approaches, and this is useful to determine if a ¢exngontrol technique is justified in
preference to a classical technique that matches the DMnaeretes. Further research will focus

on more interpretable objectives for robust control antibta

APPENDIX

All models and controllers in this work are available to démau (SimulinkC) format) from:

« http://personales.upv.es/gilreyme/mood4ct/moodtut.h

A. State space linear model

i — Az + Bu 100000
C = (23)
y=Cu 000100
0 1 0 0 0 0 0 0
—4.74 —0.03 566 0 0 0 0 0.239
0 0 —075 0 0 0 0.752 0
A= B = (24)
0 0 0 0 1 0 0 0
0 0 0 -012 —019 1 0 0
0 0 0 0 0 —2.33 0 2326
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