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ABSTRACT 

Worldwide, human activities such as water withdrawals, storing, hydropeaking and climate 
change are negatively impacting freshwater biota. To evaluate the threats posed by these 
phenomena the development of scientifically sophisticated tools has now become a 
fundamental area of research within the scientific community. The physical habitat 
simulation approach has proved to be adequate to evaluate the effect of management 
alternatives, restoration actions and climate change. The physical habitat methods, which 
can be implemented at different spatial scales, assess the quantity and quality (i.e. 

suitability) of the physical habitat for different flows integrating hydrological, hydraulic and 
biological data (i.e. habitat suitability models). The development of the habitat suitability 

models can manifold be approached, although machine learning techniques steadily 

gained adepts over the classical methods and thus they became common practice.  

Scientific literature reported a number of studies employing machine learning techniques. 
However, there are still knowledge gaps and room to test new and elder approaches for 
exploratory freshwater ecology and environmental flow (e–flow) assessment. This 
dissertation focused in the comprehensive analysis of the capabilities of some non–tested 
types of Artificial Neural Networks, specifically: the Probabilistic Neural Networks (PNN) 
and the Multi–Layer Perceptron (MLP) Ensembles. The analysis of the capabilities of 
these techniques was performed using the native brown trout (Salmo trutta; Linnaeus, 
1758), the bermejuela (Achondrostoma arcasii; Robalo, Almada, Levy & Doadrio, 2006) 

and the redfin barbel (Barbus haasi; Mertens, 1925) as target species. The analyses 
focused in the predictive capabilities, the interpretability of the models and the effect of the 
excess of zeros in the training datasets, which for presence–absence models is directly 
related to the concept of data prevalence (i.e. proportion of presence instances in the 
training dataset). Finally, the effect of the spatial scale (i.e. micro–scale or microhabitat 

scale and meso–scale) in the habitat suitability models and consequently in the e–flow 

assessment was studied in the last chapter. 

PNN presented a good trade–off between accuracy (classification) and generalization. 
Nonetheless, the performance in the evaluation site was higher than the one achieved 
during model training. The classificatory capability of the PNN was not significantly 
affected by prevalence. However, they presented some limitations regarding the output 
range (i.e. they presented trimmed probabilistic output range), which may limit their 

application in e–flow assessment if the training datasets present large overlapping 

between categories. 

The MLP Ensemble paradigm presented better performance than the PNN for 
classification and it also performed well in the regression of fish densities. The result with 
active selection of the MLPs eventually included in the Ensemble outperformed the results 
after including the whole set of MLPs, highlighting the benefits of the over–produce–and–
choose approach, which consists of first initiating a large number of MLPs and then 
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selecting the best performing subset. Two methods to do so were compared; the Forward 
selection of MLPs demonstrated to be able to marginally outperform the more complex 
approach based on bit strings and a Genetic Algorithm (GAs). However, there are several 
suitable methods to encode and optimise MLP Ensembles with GAs. The last analysis 
followed the Wang and Alhamdoosh approach, which iteratively increases the ensemble 
size by the stepwise addition of MLPs while in every step the GA searches for the best 
combination of them. The optimal MLP Ensembles developed with this approach provided 
accurate small–sized Ensembles. Consequently, although we did not perform a 
comparison with previous approaches, we considered it a worthwhile methodology. 
Furthermore, the MLP Ensembles also proved able to deal with unbalanced datasets, 
either with excess of zeroes or with low data prevalence. Consequently, due to its high 
predictive performance and its ability to deal with unbalanced datasets, the MLP Ensemble 

paradigm was considered a promising tool in ecology. 

With regard to the modelled habitat suitability and fish ecology, the large brown trout 
preferences did not differed significantly to previous knowledge about the species. 
Therefore the highest suitability was assigned to relatively deep microhabitats with slow 

flow and medium–to–coarse substrate. 

The microhabitat preferences of the bermejuela had never been studied before thus the 
study provided valuable insight on the species habitat suitability. The bermejuela can be 
classified as a shelter–orientated limnophilic species, because cover was the most 
important variable. The other relevant variables indicated the maximum suitability for slow 

and deep microhabitats, related with the natural deposition of silt in the riverbed.  

The redfin barbel habitat preferences were explored at the meso–scale using fish density 
as the dependent variables. The redfin barbel preferred middle–to–upper river segments, 
but not the higher and steeper reaches. The importance of the variable depth confirmed 
that redfin barbel prefer pool–type habitats. Finally, the European eel (a critically 
endangered species) and the cyprinid species present in the study sites had similar habitat 
requirements thus the MLP Ensembles encountered great correlation between their 

densities. 

The habitat suitability (i.e. probability of presence) for the redfin barbel was modelled at 

two different spatial scales (the meso–scale and the micro–scale). The micro–scale MLP 
Ensemble showed high suitability of relatively deep areas with coarse substrate and 
corroborating the cover–orientated and rheophilic nature of the redfin barbel. The meso–
scale model highlighted the advantages of using cross–scale variables, since elevation (a 
macro–scale variable) was selected in the optimal model suggesting that the redfin babel 
eludes the uppermost river segments. The redfin barbel selects deep areas and, at this 
scale, the MLP Ensemble partially contradicted the micro–scale counterpart because 
velocity had a clearer positive effect on habitat suitability, which we related with the current 
flow during the sampling year. Finally, the redfin barbel showed a preference for fine 
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substrate, which may be associated different substrate patches appearing in each 

mesohabitat type. 

The last addressed issue was the influence of the scale modelling approach in e–flow 
assessment because some authors suggested that the meso–scale renders more 
accurate results. Spanish legislation stated that the minimum e–flow assessment based on 
physical habitat simulation must be performed at the microhabitat scale. In our study case 
the micro–scale model predicted a slightly higher minimum e–flow, thus providing a more 
conservative result for the river ecosystem. Therefore, from the legal viewpoint, this scale 

can be considered a choice at least equally adequate than the meso–scale one. 

The present dissertation rendered valuable methodological input yet relevant ecological 
knowledge that may prioritize sound monitoring and may eventually guide ecologically–

friendly management actions. 
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RESUM 

A nivell mundial, les activitats humanes, l’extracció d’aigua, l’emmagatzemament, els 
cabals punta i el canvi climàtic estan afectant negativament la biota d’aigua dolça. El 
desenvolupament de sofisticades eines científiques per a l’avaluació de les amenaces 
representades per aquests fenòmens ha esdevingut una àrea fonamental en la 
investigació científica. La simulació de l’hàbitat físic ha demostrat esser una eina 
adequada per a l’avaluació dels efectes derivats de les distintes alternatives, 
restauracions o del canvi climàtic. Els mètodes basats en l’hàbitat físic, que poden esser 
desenvolupats a distintes escales, avaluen la quantitat i la qualitat (i.e. idoneïtat) de 

l’hàbitat físic per a diferents cabals integrant hidrologia, hidràulica i informació biològica 
(i.e. models d’idoneïtat de l’hàbitat). El desenvolupament dels models d’idoneïtat de 

l’hàbitat pot ser enfocat de diverses formes no obstant però aquells basats en l’ús de 
tècniques d’aprenentatge computeritzat han anat guanyant adeptes així, a hores d’ara són 

pràctica habitual. 

La literatura científica engloba nombrosos estudis emprant tècniques d’aprenentatge 
computeritzat. No obstant existeixen mancances en el coneixement i espai per a provar 
noves tècniques amb l’objectiu últim d’explorar l’ecologia de les espècies d’aigua dolça o 
bé per a l’avaluació de cabals ecològics. Aquesta tesis se centra en l’anàlisi comprensiu 
de les capacitats d’alguns tipus de Xarxa Neuronal Artificial que encara no han estat 
testats: les Xarxes Neuronal Probabilístiques (PNN) i els Conjunts de Perceptrons 
Multicapa (MLP Ensembles). Les anàlisis sobre les capacitats d’aquestes tècniques es 
varen desenvolupar emprant la truita comuna (Salmo trutta; Linnaeus, 1758), la madrilla 
roja (Achondrostoma arcasii; Robalo, Almada, Levy & Doadrio, 2006) i el barb cua-roig 
(Barbus haasi; Mertens, 1925) com a especies objecte d’estudi. Les anàlisi se centraren 

en la capacitat predictiva, interpretabilitat dels models i en l’efecte de l’excés de zeros a la 
base de dades d’entrenament, l’anomenada prevalença de les dades (i.e. la proporció de 

casos de presència sobre el conjunt total). Finalment, l’efecte de la escala (micro–escala o 
microhàbitat i meso–escala) en els models d’idoneïtat de l’hàbitat i conseqüentment en 

l’avaluació de cabals ambientals es va estudiar a l’últim capítol. 

PNN va presentar un bon balanç entre precisió i generalització, ates que l’acompliment al 
lloc d’avaluació fou major que l’aconseguit durant l’entrenament del model. La capacitat 
classificatòria no es va veure compromesa per la prevalença. No obstant, aquest tipus de 
xarxes va presentar certes limitacions pel que fa a la predicció de probabilitats (i.e. 

presentaren un rang d’eixida retallat), la qual cosa podria limitar la seua aplicació en 
avaluacions de cabals ambientals sempre que la base de dades d’entrenament presente 

un gran solapament entre categories. 

El paradigma de les MLP Ensembles va presentar millor acompliment que l’aconseguit 
amb les PNN en problemes de classificació a més a més de funcionar bé durant la 
regressió de densitats de peixos. La selecció activa dels MLPs finalment inclosos al 
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conjunt (Ensemble) presentà millor acompliment que incloure el conjunt de tots els 
candidats entrenats. Aquest fet destaca els beneficis del mètode de sobreproducció–i–tria, 
que consisteix en iniciar primerament un nombre gran de MLPs, seleccionant a posteriori 
aquell subconjunt que presenta el millor acompliment combinat. Es testaren dos mètodes 
per fer aquesta selecció; la selecció basada en el pas endavant (Forward) va demostrar 
un acompliment marginalment superior al mètode en què s’empraren cadenes de bits i un 
Algorisme Genètic (GA). No obstant, existeixen diversos mètodes per a codificar i 
optimitzar MLP Ensembles amb GAs. Així l’última anàlisi va utilitzar el mètode de Wang 
and Alhamdoosh. Aquest mètode incrementa iterativament la mida de l’Ensemble 
mitjançant l’adició pas per pas de MLPs, mentre que a cada iteració el GA busca la millor 
combinació. Els MLP Ensembles optimitzats mitjançant aquest mètode foren en tots els 
casos precisos i de petita mida per tant, malgrat no haver-hi comparativa amb els mètodes 
anteriors, es va considerar que aquest mètode és digne de menció. Els MLP Ensembles 
demostraren esser capaços de tractar amb bases de dades desequilibrats, tant amb 
excés de zeros com amb una baixa prevalença. Conseqüentment, atesa la seua alta 
capacitat predictiva i l’habilitat per a tractar amb bases de dades desequilibrades, el 
paradigma dels MLP Ensembles ha d’ésser considerat una eina molt prometedora en 

ecologia. 

Pel que fa a la idoneïtat de l’hàbitat modelitzada i la ecologia dels peixos, la truita comuna 
no va diferir significativament del coneixement previ que es tenia de l’espècie. D’aquesta 
manera la màxima idoneïtat va ser assignada a microhàbitats relativament profunds amb 

fluxe lent i substrat de mida mitjana i grossa. 

Les preferències de microhàbitat de la madrilla roja no havien estat estudiades amb 
anterioritat el que proporciona informació valuosa sobre la idoneïtat de l’hàbitat per a 
aquesta espècie. La madrilla roja pot ser classificada com a espècie limnofílica orientada 
cap al refugi ja que aquest va esdevenir la variable més important del model. La resta de 
variables indicaren que la màxima idoneïtat s’assolia a microhàbitat lents i profunds, 

relacionats amb la deposició natural de llims a la llera del riu. 

Les preferències d’hàbitat del barb cua–roig foren explorades a meso–escala emprant la 
seua densitat com a variable dependent. El barb cua–roig va preferir segments de riu al 
tram mig i alt dels rius però evitant els trams més alts i escarpats. La importància de les 
variables va confirmar la preferència del barb cua–roig pels hàbitats de tipus tolla. 
Finalment, l’anguila i la resta de ciprínids present als llos d’estudi demostraren tindre 
similars requeriments d’hàbitat ja que el MLP Ensemble va trobar una gran correlació 

entre les seues densitats. 

La idoneïtat de l’hàbitat (i.e. probabilitat de presència) del barb cua–roig va ser modelada 

a dues escales diferents (micro–escala i meso–escala). El MLP Ensemble a miro–escala 
va mostrar una alta idoneïtat en àrees relativament profundes amb substrat gruix i va 

corroborar la seua condició d’espècie reofílica així com la seua preferència pel refugi. 
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El model a meso–escala va destacar els avantatges d’encreuar escales de treball donat 
que l’elevació (una variable a macro–escala) va ser seleccionada al MLP òptim, suggerint 
que el barb cua–roig evita els trams més alts mostrejats. El barb cua–roig seleccionà 
àrees profundes i, a aquesta escala, el MLP Ensemble va contradir parcialment la seua 
contrapart a micro–escala. En aquest cas la velocitat mostrà una efecte clarament positiu 
en la idoneïtat de l’hàbitat, la qual cosa es va relacionar amb el cabal de l’any de mostreig. 
Finalment, el barb cua–roig va mostrar preferència pels substrats fins, el que es pot 
associar als diferents tipus de substrat (clapes o taques) que acostumen a apareixes a 

cada mesohàbitat. 

L’últim element analitzat fou la influència de la escala de modelització en l’avaluació de 
cabals ambientals ja que alguns autors han suggerit que la meso–escala esdevé sempre 
en millors resultats. La legislació espanyola determina que l’avaluació de cabals 
ambientals basada en l’hàbitat físic ha de fer–se a escala de microhàbitat. En el nostre 
cas d’estudi el model a micro–escala va determinar un cabal de manteniment major. Per 
tant, des d’un punt de vista legal, aquesta escala ha d’esser considerada una elecció 

igualment adequada que la meso–escala. 

Aquesta tesi compila informació valuosa des del punt de vista metodològic i proporciona 
nou coneixement ecològic de relleu, el qual hauria ajudar en la priorització de seguiments 

adequats, in en última instància, d’accions de maneig ecològicament amigables. 
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RESUMEN 

A nivel mundial, las actividades humanas, la extracción de agua, el almacenamiento, los 
picos de caudal y el cambio climático están afectando negativamente la biota 
dulceacuícola. El desarrollo de sofisticadas herramientas científicas para evaluar las 
amenazas representadas por estos fenómenos ha devenido un área fundamental en la 
investigación científica. La simulación del hábitat físico ha demostrado ser adecuada para 
la evaluación de los efectos derivados de distintas alternativas, restauraciones o del 
cambio climático. Los métodos basados en el hábitat físico, que pueden ser desarrollados 
a distintas escalas, evalúan la cantidad y calidad (i.e. idoneidad) del hábitat físico para 
diferentes caudales integrando hidrología, hidráulica e información biológica (i.e. modelos 

de idoneidad del hábitat). El desarrollo de los modelos de idoneidad del hábitat puede ser 
enfocado de muchos modos pero aquellos basados en el uso de técnicas de aprendizaje 
computarizado han ido ganando adeptos, de este modo son actualmente práctica 

habitual. 

La literatura científica engloba numerosos estudios empleando técnicas de aprendizaje 
computarizado. No obstante existen aún lagunas en el conocimiento y espacio para testar 
viejos y nuevos métodos con el objetivo último de explorar la ecología de las especies 
dulceacuícolas o para la evaluación de caudales ecológicos. Esta tesis se centra en el 
análisis comprensivo de las capacidades de algunos tipos de Red Neuronal Artificial aún 
no testados: las Redes Neuronales Probabilísticas (PNN) y los Conjuntos de Perceptrones 
Multicapa (MLP Ensembles). Los análisis sobre las capacidades de estas técnicas se 
desarrollaron utilizando la trucha común (Salmo trutta; Linnaeus, 1758), la bermejuela 
(Achondrostoma arcasii; Robalo, Almada, Levy & Doadrio, 2006) y el barbo colirrojo 

(Barbus haasi; Mertens, 1925) como especies nativas objetivo. Los análisis se centraron 
en la capacidad de predicción, la interpretabilidad de los modelos y el efecto del exceso 
de ceros en las bases de datos de entrenamiento, la así llamada prevalencia de los datos 
(i.e. la proporción de casos de presencia sobre el conjunto total). Finalmente, el efecto de 

la escala (micro–escala o escala de microhábitat y meso–escala) en los modelos de 
idoneidad del hábitat y consecuentemente en la evaluación de caudales ambientales se 

estudió en el último capítulo. 

PNN presentó un buen balance ente precisión y generalización. Dado que el desempeño 
en el sitio de evaluación fue mayor que el conseguido durante el entrenamiento del 
modelo. La capacidad clasificatoria no se vio significativamente afectada por la 
prevalencia. No obstante, este tipo de redes presentó ciertas limitaciones en lo que 
respecta predicción de probabilidades (i.e. presentaron un rango de salida recortado), lo 

cual podría limitar su aplicación en evaluación de caudales ambientales siempre y cuando 

la base de datos de entrenamiento presente un gran solapamiento entre categorías. 

El paradigma de las MLP Ensembles presentó mejor desempeño que el conseguido con 
las PNN en problemas de clasificación además de funcionar bien en la regresión de 
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densidades de peces. La selección activa de los MLPs finalmente incluidos en el conjunto 
(Ensemble) presentó mejor desempeño que incluir el conjunto todos los candidatos 
entrenados. Eso destaca los beneficios del enfoque de sobreproducción–y–elección, que 
consiste en iniciar primero un conjunto grande de MLPs, seleccionando a posteriori aquel 
subconjunto que presenta el mejor desempeño combinado. Se testaron dos métodos para 
llevar a cabo esta selección; la selección basada en el paso delante (Forward) demostró 
un desempeño marginalmente superior al método empleando cadenas de bits y un 
Algoritmo Genético (GA). No obstante, existen diversos métodos para codificar y optimizar 
MLP Ensembles con GAs. Así el último análisis utilizó el método de Wang and 
Alhamdoosh. Este método incrementa iterativamente el tamaño del Ensemble con la 
adición paso a paso de MLP, mientras que en cada iteración el GA busca la mejor 
combinación de ellos. Los MLP Ensembles optimizados por este método fueron en todo 
caso precisos y de pequeña dimensión por tanto, a pesar de no existir comparación con 
los métodos anteriores, se consideró que es un enfoque digno de mención. Los MLP 
Ensembles demostraron ser capaces de lidiar con bases de datos desbalanceadas, tanto 
con exceso de ceros como con una baja prevalencia. Consecuentemente, debido a su alta 
capacidad predictiva y su habilidad para lidias con bases de datos desbalanceadas el 
paradigma de los MLP Ensembles debe ser considerado una herramienta prometedora en 

la ecología. 

Por lo que respecta a la idoneidad del hábitat modelada y la ecología de los peces, la 
trucha común no difirió significativamente del conocimiento previo que se tenía de la 
especie. De este modo la máxima idoneidad se asignó a microhábitats relativamente 

profundos con flujo de caudal lento y sustrato medio o grueso. 

Las preferencias de microhábitat de la bermejuela no habían sido estudiadas con 
anterioridad lo que proporciona información valiosa sobre la idoneidad del hábitat para 
esta especie. La bermejuela puede ser clasificada como una especie limnofílica orientada 
hacia el refugio ya que este devino el elemento más importante del modelo. El resto de 
variables indicaron la máxima idoneidad en microhábitat lentos y profundos, relacionados 

con la deposición natural de limos en el lecho del rio. 

La preferencias de hábitat del barbo colirrojo fueron exploradas a meso–escala utilizando 
la densidad de estos como variable dependiente. El barbo colirrojo prefirió segmentos de 
rio en el tramo medio y alto pero no los más altos y empinados. La importancia de las 
variables confirmó la preferencia del barbo colirrojo por los hábitats de tipo poza. 
Finalmente, la anguila y el resto de especies de ciprínidos presente en los sitios de 
estudio demostraron similares requerimientos de hábitat porque el MLP Ensemble 

encontró una gran correlación entre sus densidades. 

La idoneidad del hábitat (i.e. probabilidad de presencia) del barbo colirrojo fue modelada a 

dos escalas espaciales diferentes (la meso–escala y la micro–escala). El MLP Ensemble 
a micro–escala mostró alta idoneidad en áreas relativamente profundas con sustrato 
grueso y corroboró la naturaleza reofílica del barbo colirrojo así como su preferencia por el 
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refugio. El modelo a meso–escala destacó las ventajas de cruzar escalas de trabajo ya 
que la elevación (una variable de macro–escala) fue seleccionada en el modelo óptimo 
sugiriendo que el barbo colirrojo elude los tramos más altos muestreados. El barbo 
colirrojo seleccionó áreas profundas y, a esta escala, el MLP Ensemble parcialmente 
contradijo su contraparte a micro–escala. En este caso la velocidad tuvo un efecto 
claramente positivo en la idoneidad del hábitat, lo que nosotros relacionamos con el 
caudal circulante en el año de muestreo. Finalmente, el barbo colirrojo mostró preferencia 
por sustratos finos, lo que se puede asociar a los diferentes tipos de sustrato (parches) 

que aparecen en cada tipo de mesohabitat. 

El último elemento analizado fue la influencia de la escala de modelización en la 
evaluación de caudales ambientales ya que algunos autores han sugerido que la meso–
escala deviene en mejores resultados. La legislación española determina que la 
evaluación de caudales ambientales basada en la simulación del hábitat físico debe 
llevarse a cabo a la escala de microhábitat. En nuestro caso de estudio el modelo a 
micro–escala predijo un caudal ambiental mayor. Por tanto, desde un punto de vista legal, 
esta escala debe ser considerada una elección, al menos, igualmente adecuada que la 

meso–escala. 

Esta tesis compila valiosa información desde un punto de vista metodológico y 
proporciona conocimiento ecológico relevante que debería priorizar seguimientos 

adecuados y, en última instancia, acciones de manejo ecológicamente amigables. 
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I. GENERAL INTRODUCTION 

I.1 GENERAL PROSPECT 

Worldwide, human activities such as water withdrawals (Benejam et al., 2010), storing for 
irrigation purposes (Costa et al., 2012) or hydropeaking (Yao et al., 2015), directly altered 
river flow regimes impacting freshwater biota (Döll et al., 2009). Moreover, indirectly, 
human activities significantly modified precipitation patterns by altering land use (Döll et 
al., 2009) and climate (Kalogeropoulos & Chalkias, 2013) thus flow regimes in unregulated 
streams are not exempt of anthropogenic impacts (Li et al., 2015). The most evident 
impact correspond to the alteration of the natural flow regime (sensu Poff et al., 1997), 
which plays a vital role in the sustainment of the fluvial ecosystems (Poff et al., 1997; 
Richter et al., 1997; Tharme, 2003). River regulation typically affects all the basic 
components of the natural flow regime (magnitude, frequency, duration, seasonality and 
rate of change), which are associated with a range of biological and physical thresholds 
that determine river dynamics and the integrity and presence of the different communities 
of flora and fauna (Magdaleno & Fernández, 2011). Consequently, setting aside water 
quality, a major issue in river conservation consist of the retrieval of the natural flow regime 
(González Del Tánago et al., 2012). In order to improve the analysis, Bunn and Arthington 
(2002) summarized the major issues in four groups; first, flow is a major determinant of 
physical habitat in streams (e.g. Yao et al., 2015), which in turn is a major determinant of 

biotic composition (Snelder & Lamouroux, 2010). Second, aquatic species have evolved 
life history strategies primarily in direct response to the natural flow regimes thus 
disruptions in the flow patterns affect directly their populations, their distribution and their 
abundances (e.g. Belmar et al., 2013; Mims and Olden, 2013). Third, flow maintains the 

natural patterns of longitudinal and lateral connectivity, it is consequently essential for the 
viability of populations of many riverine species so reductions on flooding events often 
reduce breeding and recruitment success (e.g. Garófano–Gómez et al., 2012) and finally, 

the invasion and success of exotic and introduced species in rivers is facilitated by altering 
the intra– and inter–annual flow variability because most of them are usually lentic species 

(Clavero et al., 2004). 

Spain is especially sensitive to such negative effects because there are currently more 
than 1200 large dams located in its river systems, with a total capacity of 56 000 hm3, 
which corresponds to the fifth highest number of large dams worldwide, exceeded only by 
China, the United States, India and Japan (Magdaleno & Fernández, 2011). Moreover 
water scarcity and shortage caused by climate change is likely to significantly affect the 
patterns of running flows, especially in the semiarid areas of Mediterranean–climatic 
regions (Chirivella Osma et al., 2014), causing the need of significant water abstractions 
(either directly or via groundwater withdrawal) in areas that combine high human 
population densities and agricultural development (Benejam et al., 2010). Broadly all of 
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these negative effects are currently affecting the composition and abundance of species – 
the most studied groups of taxa are macroinvertebrates, fish and riparian vegetation – 
altering the age structure of their communities (Magdaleno & Fernández, 2011). Thereby, 
in Spanish Mediterranean rivers, flow regulation has proved to alter fish (Benejam et al., 
2010; Navarro-Llácer et al., 2010; Olaya-Marín et al., 2012) and macroinvertebrates 
communities (Navarro-Llácer et al., 2010; Filipe et al., 2013) by impoverishing the richness 
and abundance of their populations, with different time scale, and by altering the 
composition and distributions of riparian vegetation (Magdaleno & Fernández, 2011; 
Garófano-Gómez et al., 2013). Dams were the most important factor determining the 
conservation status of fish communities, with a positive association with the number of 
introduced species (most of them invasive species) (Clavero et al., 2004). Although these 
introduced species may have contributed to the decline of native fishes, the ecological 
status proved to be primarily related with the construction of dams and water diversions 
because it fragments river continuum and isolates habitats and native fish communities 
(Aparicio et al., 2000). Thus these communities are increasingly being cornered to the 
upper part of the stream networks without connection between these groups (Aparicio et 

al., 2000; Alcaraz et al., 2014). 

The methodologies addressed to quantify and to evaluate the quality of the flow regime 
(environmental flow assessment or e–flow assessment), allowing the implementation of 
mitigation actions or the inference of ecologically–friendly management protocols were 
brilliantly summarized by Tharme (2003) at the beginning of the millennium. They were 
classified into four different categories: hydrological methods (e.g. Mathews and Richter, 
2007), hydraulic methods (e.g. Lamouroux and Souchon, 2002), physical habitat methods 
(e.g. Bovee et al., 1998; Parasiewicz, 2001) and holistic methods (e.g. McClain et al., 

2014). The hydrological methods rely on the statistical analysis of hydrological data 
whereas the hydraulic methods analyse changes in simple hydraulic variables, such as 
wetted perimeter or maximum depth, as proxies of limiting factors for freshwater biota. 
Physical habitat methods assess the quantity and suitability of the available physical 
habitat for target species or assemblages under different flows, on the basis of integrated 
hydrological, hydraulic and biological data (Maddock, 1999). This approach encompasses 
a hydrodynamic model, to simulate spatial and temporal variations in hydraulic parameters 
and a habitat suitability model, usually developed at the microhabitat scale (i.e. in small 

areas of few m2 with uniform hydraulic conditions) for the target species, thus overstepping 
the simplicity of the hydraulic methods at the expense of increasing the cost rates 
(Lamouroux & Souchon, 2002). Finally the holistic approach goes beyond any of them 
integrating the physical habitat approach and considering several facets of the riverine 

ecosystems as well as social and economic modules (King et al., 2003; Poff et al., 2010). 

This concern about the ecological status of the different water bodies, especially rivers, 
overstepped the academic world and thus, nowadays, legislative frameworks in many 
countries reflect modern societal needs for improved ecological conditions, even requiring 
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the implementation of environmental flow regimes (Katopodis, 2012). In European 
countries, the development of the Water Framework Directive (WFD) (European 
Parliament and Council, 2000) meant a transformation of the guidelines for the monitoring 
and assessment of water bodies across all EU Member States (Martinez-Haro et al., 2015) 
since it is a legislative framework that stated a set of environmental objectives for water 
bodies with the time frame of the year 2015 (Conallin et al., 2010) that triggered programs 
of restoration measures to prevent further deterioration and ameliorate the ecological 
status of water bodies (González Del Tánago et al., 2012). Consequently, its ratification 
resulted in various legislative measures to prevent further degradation and to assure 
biological conservation such as the Spanish norm for hydrological planning (MAGRAMA, 
2008) among others. However, although the WFD implicitly assumes the link between the 
physical and biological components of freshwaters ecosystems (Conallin et al., 2010), the 
requirements and the methods to assess the ecological status strongly depend on the 
considered jurisdiction (Tharme, 2003; Conallin et al., 2010). For instance, within the 
Greek context, another Mediterranean country with similar specificities, the strategies to 
assess environmental flows in altered rivers have been based on simplifications of the 
hydrological methods (Ministry of Environment, Energy and Climate Change, 2011). 
Conversely, the Spanish norm for hydrological planning (MAGRAMA, 2008) specifically 
states that environmental flows must be based on dedicated hydrological and habitat 
simulation methods (i.e. physical habitat studies). 

The aforementioned hydrological methods generally apply statistical analyses on natural 
(unaltered) historical daily mean flows (Mathews & Richter, 2007). Worldwide, the most 
broadly applied method has been the Tennant method (Tennant, 1976) whereas the Palau 
method was formerly the most popular in Spain (Palau & Alcazar, 1996). Up–to–date 
hydrological methods provide satisfactory results (e.g. Mathews and Richter, 2007). 

However, they are not exempt of criticisms because in some cases the approach has been 
excessively simplified thus they have been reduced to mere rules–of–thump (Tharme, 
2003). Furthermore, the confounding influence of channel morphology prevents 
streamflow statistics being an adequate surrogate for the assessment of hydraulic 
alteration (Turner & Stewardson, 2014). Thus, although some methods improved the 
hydrological analysis by including many aspects of the hydrological alteration (Mathews & 
Richter, 2007), it can be easily concluded that those based on the physical habitat 
simulation may render better results than the hydrological methods alone (Tharme, 2003). 
Accordingly, physical habitat methods have demonstrated adequate to evaluate the effect 
of different management alternatives (Yao et al., 2015), restoration actions (Mouton et al., 
2007a) and the potential effects of climate change (Belgiorno et al., 2013). Furthermore, it 
has been considered by some environmental flow practitioners as the most scientifically 
and legally defensible methodology available for Environmental Flow Assessment (EFA) 

(Tharme, 2003). 
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I.2 STATE OF THE ART 

The physical habitat simulation approach typically encompasses three elements (Person 

et al., 2014). Namely: 

1. the hydraulic model component 

2. the habitat suitability model component 

3. the hydrologic and/or water temperature and quality models component 

Regarding the hydrodynamic model, nowadays, there are plenty of alternatives specifically 
addressed for the physical habitat simulation. They vary in the number of dimensions used 
to perform de simulation. For instance, PHABSIM (Milhous, 1979) or RHYHABSIM 
(Jowett, 1999) and SEFA (Payne & Jowett, 2012) develop 1D models whereas River–2D 
(Steffler & Blackburn, 2002) can be used to develop 2D models. In addition, other 
alternatives link the hydraulics, simulated with a commercial and non–specific software, 
with the habitat suitability models; i.e. CASiMiR (Jorde, 1997; Schneider, 2001). 

Accordingly, hydraulic models vary in complexity, in increasing order, from simple 1D 
models based on hydraulic geometry (Jowett, 1998) to those based on 2D and 3D 
hydraulic equations (Olsen & Stokseth, 1995; Leclerc et al., 2003; Pasternack et al., 2004). 
As the computational power increased the feasibility of more complex hydraulic models for 
instream habitat analysis increased (Jowett & Duncan, 2012) especially taking into 
account that topographic data can now be acquired at spatial resolutions equal to or 
smaller than the size of fish themselves, and can therefore be used to characterize their 
physical habitat at an ecologically relevant scale (e.g., suitability of depth or velocity to 

support a specific activity such as spawning) (Wheaton et al., 2010). Practitioners must 
decide then about the form of hydraulic model that best suits their purpose and budget 
(Jowett & Duncan, 2012). Nevertheless, although theoretically feasible, 3D simulations are 

still restricted to the field of scientific research (Mouton et al., 2007). 

In accordance with the previous comments and the statutory provisions described in the 
corresponding legislations, it can be easily inferred that the development of reliable habitat 
suitability models play a key role in a proper habitat assessment (Larocque et al., 2011). In 
this regards, Waters (1976) suggested the application of continuous curves representing a 
suitability index. The so–called Habitat Suitability Criteria (HSC) became by far the most 
common approach in studies involving the physical habitat simulation (Conallin et al., 
2010; Muñoz-Mas et al., 2012). The HSC range from 0 (unsuitable) to 1 (completely 
suitable) and the corresponding value is interpolated for the whole set of microhabitat 
variables — the most important at the microhabitat scale are the aforementioned depth, 
velocity, substrate and cover (Gibson, 1993; Conallin et al., 2010; Boavida et al., 2014) — 
then the set of suitability values is typically aggregated to infer global indices describing 
the quantity and quality of the available habitat. The Weighted Usable Area (WUA) is the 
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most renowned general indicator of habitat quality and quantity and it corresponds to the 
sum of the areas (i.e. cells or pixels) weighed by the inferred suitability within the entire 

domain of the hydrodynamic model (Bovee et al., 1998). The WUA is usually calculated for 
each of the simulated flows thus becoming the WUA–flow curve (Boavida et al., 2014). For 
instance, the Spanish norm for hydrological planning (MAGRAMA, 2008) states that the 
minimum environmental flow should be selected within the range of 50–80% of the 
maximum WUA. In addition, upon the WUA–flow curve further calculations can be made 
for the EFA; for instance the comparison of alternative flow regimes and/or scenario 

analysis via habitat time series (Milhous et al., 1990).  

However, the variables used in the development of HSC are treated independently for the 
estimation of the HSC even though interactions among them should be expected (Orth & 
Maughan, 1982). Consequently, there are examples of multivariate approaches (e.g. 

logistic regression) that demonstrated a greater ability in the determination of the presence 
or absence of some species (Guay et al., 2000). Multivariate analysis methods take into 
account the interaction of predictors and determine species response to cumulative effect 
of a set of environmental predictors (Ahmadi-Nedushan et al., 2006). The applications in 
physical habitat studies range from the relatively simple multiple linear regressions (Yu & 
Lee, 2002) to the pretty complex genetically optimized multilayer perceptron ensembles 
(Muñoz-Mas et al., 2014a). Multiple linear regression (MLR) approaches consider the joint 
effect of multiple explanatory variables and their interactions (Conallin et al., 2010) thus 
logistic regression, a variant of the ordinary MLR where the dependent variable is 
categorical (i.e. presence or absence), proved proficient to develop habitat suitability 

models (Guay et al., 2000; Garland et al., 2002). However species responses to 
environmental predictors are likely to be unimodal, often skewed, rather than straight–lines 
(Austin, 2007). Furthermore, the requirements of MLR are pretty restrictive (e.g. normality 

and homoscedasticity) so modern regression techniques such as Generalized Lineal 
Models (GLM) have proved preferable (Ahmadi-Nedushan et al., 2006). GLMs are a more 
flexible family of regression models, which relax the assumption of MLR also allowing 
other distributions for the response variable (e.g. binomial or Poisson). However, they do 

not solve the drawback related to linearity. Thereby when the species–habitat relationships 
are nonlinear, which is the case for most commonly used data (Ahmadi-Nedushan et al., 
2006), researches advocated for semi– or non–parametric approaches such as 
Generalized Additive Models (GAMs) (e.g. Jowett and Davey, 2007), fuzzy logic based 
models (e.g. Muñoz–Mas et al., 2012) or artificial neural networks (e.g. Brosse and Lek, 

2002). Among ANNs’ umbrella the most commonly applied technique has been the feed 

forward Multi–Layer Perceptron (MLPs). 

GAMs (Hastie & Tibshirani, 1990) are semi–parametric models, indicated to deal with 
non–linearity, since they do not presuppose any specific type of distribution of the input 
variables because smooth functions, with different degree and number of curvatures, are 
used to model their effects (Jowett & Davey, 2007). The fuzzy logic approach, firstly 
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introduced by Zadeh (1965), takes into account the inherent uncertainty of ecological 
variables by discretizing the inputs in fuzzy sets (e.g. Low velocity, Medium velocity, High 

velocity etc.) due to the fuzzy nature of these sets, a given value may belong to more than 
one fuzzy sets with different proportion. Furthermore, the fuzzy logic approach enables 
expressing non–linear relations in a transparent manner because the relationship between 
the different combinations of fuzzy sets are articulated in IF–THEN sequences, known as 
fuzzy rules (Muñoz-Mas et al., 2012). For instance, IF velocity is High and depth is 
Medium and substrate is Low THEN the habitat suitability is Low. Artificial neural networks 
(ANNs), even the MLP, is a modelling paradigm inspired in the structure of the human 
brain and thus, its processing capability is fostered by the large number of highly 
interconnected elements called neurons, working in unity to solve specific problems (Olden 
et al., 2008). MLPs are able to identify non–linear relationships between input and output 
data, even if the data are imprecise or noisy and automatically assumes interactions 
between the environmental predictors (Conallin et al., 2010). Although these are the most 
relevant modelling approaches, currently GAMs and fuzzy models are likely to gain 
practitioners since these techniques are actually implemented in commercial software 
packages; GAMs have been implemented in SEFA (Payne & Jowett, 2012) whereas 
CASiMiR allows the use of fuzzy models (Jorde, 1997; Schneider, 2001). Conversely, the 
ANN users need to be experienced in computer programming and models’ building so its 
popularity has been traditionally restricted to the field of scientific research (Conallin et al., 
2010). Nevertheless, they represent by far the most popular technique among those 
encompassed in the group of computational intelligence and machine learning in the bio–
environmental sciences (Fukuda & De Baets, 2012). Nevertheless, scientific community 
and EFA practitioners are constantly innovating and searching for novel and accurate 
techniques. Therefore, the previous enumeration is not exhaustive since there are 
successful studies that used other techniques of lesser popularity. For instance; Fukuda et 
al. (2014), used classification and regression trees (Breiman et al., 1984), Martelo et al. 
(2014) used hurdle models (Mullahy, 1986) or Tirelli et al. (2012) used support vector 

machines (Vapnik, 1995) all of them to relate fish presence and abundance with the 
habitat characteristics achieving pretty competitive results such as random forests 

(Breiman, 2001). 

Despite those successful studies, it has been demonstrated that every single modelling 
technique do not necessarily perform consistently, resulting in divergent predictions 
(Fukuda et al., 2013; Bouska et al., 2015). Such phenomenon is especially remarkable in 
those techniques (e.g. MLPs or genetic fuzzy models) whose initial conditions drive the 

optimization process (Raudys, 2000; Fukuda et al., 2010) thus concluding that even the 
same modelling approach could be able to render different models. In some cases it has 
demonstrated difficult to advocate for a specific model (Fukuda et al., 2013; Bouska et al., 
2015). Therefore the use of model ensembles has been emphasised to overcome these 
limitations (Araújo & New, 2007). The very basic principle of ensemble modelling is to 
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learnt several models, developed with a unique methodology or with several different 
techniques and then, combining each single forecast into a single prediction (Wang & 
Alhamdoosh, 2013). As the computation capability and the programming skills of 
researches raised the ensemble approach gained popularity so nowadays almost every 
single technique have their ensembles counterpart such as GAMs ensembles (Bock et al., 
2010), MLP Ensembles (Hansen & Salamon, 1990) or fuzzy models ensembles (Scherer, 
2012), as well as combinations of different models (Thuiller et al., 2009). Nevertheless 
random forests (Breiman, 2001) is the only approach that can be considered widespread 
in EFA–related studies (e.g. Vezza et al., 2015). 

Regarding the hydrologic and water chemistry and temperature component, process–
based (i.e. physically–based) models have traditionally been preferred (van Vliet et al., 

2012), and there is a myriad of capable models available for hydrologic simulation (Zhuo et 
al., 2015), some with specific modules dedicated to water temperature forecasting (e.g. 

Luo et al., 2013). However, machine learning–based approaches (data–based) such as 
neuro–fuzzy rule base models (Lohani et al., 2012) or Artificial Neural Networks (ANNs) 

(Rabi et al., 2015) have recently gained appreciable visibility (Zhuo et al., 2015). 

Once the three components are set they can be combined to inspect temporal trends by 
developing the Habitat Time Series (HTS), which correspond to the interpolation of 
corresponding quality index (usually WUA) from the pertinent habitat–flow curve (typically 
the WUA–flow curve), whereas the habitat conditions under different flow regimes are 
usually analysed by summarizing the HTS in the so–called Habitat Duration Curves (HDC) 
(Milhous et al., 1990). The HDCs depict the probability of exceedance of a given quantity 
of habitat. Therefore, such curves are very useful to evaluate the frequency and duration 
of suitable habitat, allowing conservationists or managers to discern the long term impact 

of different scenarios and possible bottlenecks for aquatic organisms (Parasiewicz, 2008). 

The levels of the spatial scales used to sample the habitat utilization and consequently to 
model the habitat suitability for the target species can be grouped in three main classes: 
macro–scale (e.g. Olaya–Marín et al., 2012), meso–scale (e.g. Vezza et al., 2015) and 
micro–scale (e.g. Muñoz–Mas et al., 2012). Typically, the flow–related changes in physical 

habitat have been modelled at the microhabitat scale (few m2) using data of one or more 
hydraulic variables (e.g. depth and velocity) collected at multiple locations within a river 

reach (Bovee, 1986; Tharme, 2003). The hydraulic models are thus developed to fit these 
levels of granularity by rendering cells, patches or pixels in accordance with required 
precision (Jowett & Duncan, 2012). The micro–scale approach is the most widely accepted 
technique used to determine how flow alterations affect the habitat characteristics (Vezza 
et al., 2014). It demonstrated a proficient ability to predict fish location (Guay et al., 2000; 
Muñoz-Mas et al., 2014b) and consequently it is the approach described in the Spanish 
norm for hydrological planning (MAGRAMA, 2008). However, the use of the microhabitat 
scale has been criticized as being time–consuming (Parasiewicz, 2001) and for 
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emphasizing cross–sectional variation over the longitudinal one (Vezza et al., 2012). 
Consequently, some studies highlighted the benefits of the mesohabitat scale among the 
possible spatial scales that can be used to analyse fish habitat requirements (Costa et al., 
2012; Vezza et al., 2015). Using the mesohabitat scale it is possible to describe the 
environmental conditions around an aquatic organism not only limiting the analysis at the 
point where it is observed (Vezza et al., 2015). Mesohabitats, generally corresponding in 
size and location to Hydro–Morphological Units such as pool, riffle or rapid, can be used to 
describe fish ecology with a broader range of habitat variables and even considering biotic 
variables such as the density of the accompanying species (Muñoz-Mas et al., 2015; 
Vezza et al., 2015). Furthermore, in some study cases, the mesohabitat approach 
demonstrated a greater ability to properly relate the habitat–suitability predictions and fish 
presence (e.g. Parasiewicz and Walker, 2007). However, more research is needed to 

incontestably assert that the mesohabitat approach outperforms the micro–scale one and 

what will be the ultimate flow recommendations based on the different approaches. 

Finally, the macro–scale approach allows to develop reliable conservation planning tools 
that encompass at least entire river basins sampled at different segments (Olaya-Marín et 
al., 2012) which can be used to evaluate the trade–offs of different management and 
conservation strategies under broad scenarios (Bouska et al., 2015). Nevertheless, 
environmental variables rarely act at a single spatial scale (Boulangeat et al., 2012), and 
there are studies that demonstrated how fish species’ richness, composition and 
distribution are hierarchically conditioned by a suite of environmental predictors, from the 

large–scale to the reach–scale (Morán-López et al., 2012). 

Riparian vegetation (e.g. Magdaleno and Fernández, 2011), macroinvertebrates (Belmar 
et al., 2013) and fish species (e.g. Schmutz et al., 2007) can be used as indicators of 

ecological status but fish species present some advantages that make them especially 
suited for that purpose. Freshwater fish are not only the most diverse group of vertebrates; 
they also feature the greatest proportion of threatened species (Clavero et al., 2004). Fish 
can occupy high trophic levels (Sánchez-Hernández & Amundsen, 2015), they are 
relatively easy to sample and to identify, and generally are known to indicate in–stream 
habitat constraints (Lorenz et al., 2013). Furthermore, fish are mobile species compared to 
other aquatic organism groups, e.g. benthic invertebrates, and often undergo ontogenetic 

shifts in their habitat preferences (Ayllón et al., 2010). Thus, to complete their life cycle, all 
required habitats must be present (Lorenz et al., 2013). Consequently the state of fish 
populations and fish habitats has served as indicators of aquatic ecosystem health 
(Katopodis, 2012), especially in areas such as the Iberian Peninsula, which is considered 
one of the freshwater fish biodiversity hotspots within Europe (Reyjol et al., 2007) with 

several species in imminent risk of extinction (Leunda, 2010). 

Finally, modellers have to deal with another remarkable issue in order to render reliable 
models; the data prevalence (i.e. the proportion of presence in the entire data set). 
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Although there were previous studies pointing out the importance of such parameter in the 
discrimination capability of habitat models (Fielding & Bell, 1997), it was after the seminal 
Manel’s et al. (2001) study when the concern about the limitations imposed by such 
parameter were profusely studied by the scientific community (e.g. Fukuda, 2013; 

Jiménez–Valverde et al., 2009; Mouton et al., 2009). Low values of such parameter can be 
caused by several different reasons (Jiménez-Valverde et al., 2009) such species rarity 
(Fukuda, 2013) but also sampling biases related with the excessively fine granularity 
(Guisan et al., 2007). Fukuda (2013) brilliantly described the information provided by 
presence and absence data. Thereby, presence data indicate clear evidence that a target 
species was observed at a given location whereas absence data contain essentially 
uncertainty. For instance, there could be the case where the target species was absent 
due to the presence of enemy species or simply because the habitat was not yet occupied 

by the species. 

Consequently the capability of a given model to balance the error committed for the 
presence and absence data can lead to different conclusions. Its impact is no exempt of 
controversy. For instance, Jiménez–Valverde et al. (2009) argued that unbalanced habitat 
suitability data are not such a problem from a statistical viewpoint, highlighting that the 
effects of unbalanced prevalence should not be confused with those of low quality data 
affected by false absence data as described by Mouton et al. (2009). However Jiménez–
Valverde et al. used GLMs, which perhaps are able to deal with low prevalence but, as 
described above, present some other limitations. Each technique has their merits and 
demerits and some of them can be not irrespective to data prevalence. For instance the 
GAMS (Leathwick et al., 2006) or fuzzy logic (Fukuda, 2013) have proven to be affected 
whereas some other proved pretty robust in front of such parameter (Muñoz-Mas et al., 
2014b). Therefore, several strategies have been developed from the simply case 
weighting or down–sampling the absence dataset (getting 0.5 prevalence datasets) (Hirzel 
et al., 2001; Maggini et al., 2006) to the application of parallel distributed genetics–based 
approaches that permute the absence cases across several computers to optimize fuzzy 
models (Nojima et al., 2012). Nevertheless, modellers must take into account data 

prevalence and its effects on the novel techniques prior to advocate for any of them. 
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I.3 OBJECTIVES AND OVERVIEW 

Despite the number of studies described above there are still knowledge gaps and room 
for new approaches The present dissertation focused in the comprehensive analysis of the 
capabilities of some novel modelling techniques (i.e. non–tested before) for environmental 

flow assessment and exploratory ecology, specifically: the Probabilistic Neural Networks 
(PNN) and the Multi–Layer Perceptron (MLP) Ensembles. The analysis of the capabilities 
of these techniques was performed using Iberian native fish species as the target species. 
Furthermore, the studies specially focused in the capability these techniques to deal with 
low prevalence or the excess of zeros in the training datasets thus it was common across 

chapters. The remaining specificities are listed below. 

 

Main objective: 

1. Testing the capabilities of PNN and MLP Ensembles to model the habitat suitability 

for native fish species and its usefulness in environmental flow assessment. 

Specific objectives: 

2. To evaluate the effect of data prevalence or a high percentage of zeros in the 
performance of these techniques (i.e. PNN and MLP Ensembles). 

3. To inspect the uncertainty associated with the predictions carried out with these 

techniques. 

4. To evaluate different approaches to determine the optimal MLP Ensemble. 

5. To model the habitat suitability for freshwater fish species: brown trout (Salmo 

trutta; Linnaeus, 1758). Bermejuela (Achondrostoma arcassi; Steindachner, 1866) 

and redfin barbel (Barbus haasi Mertens, 1925). 

6. To evaluate the effect of the modelling spatial scale (micro–scale and meso–scale) 

on environmental flow assessments in Mediterranean rivers. 

 

I.3.1 Chapter II 

There are several kinds of ANN such as aforementioned MLPs (McCulloch & Pitts, 1943; 
Rumelhart et al., 1986) but also the PNN (Specht, 1990) or the Elman (Elman, 1990) and 
Jordan ANN (Jordan, 1997). Each type is especially addressed for a different task. For 
instance the MLPs are especially addressed for regression (Olden et al., 2008), although 
they can also be used for classification (Tirelli & Pessani, 2011). PNN are theoretically 
able to cope with low prevalence (Specht, 1990) making them excellent candidates to 
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swell the group of available habitat suitability modelling techniques. PNN basically 
compare the assessed conditions, typically termed as input patterns (e.g. the pixels of a 

hydraulic models), with the measured conditions included in the training database and 
determines the probability of membership of the input pattern to each of the categories 
present in the training database (typically restricted to two categories, presence or 
absence). To deal with differences on the intensity of the output the weight of each 
category in the database is inversely proportional to the number of cases in the 
corresponding category. Then the classification to a given category depends on the values 

of the variables to be assessed but not on the number of cases from a given category. 

PNN had been applied successfully in pattern classification in some areas related to fish 
(e.g. classification of sonar signals) (Moore et al., 2003) and in the assessment of the 

suitability for bacteria growth in given environmental conditions (Hajmeer & Basheer, 
2002) but to our knowledge this chapter (and the corresponding paper) corresponded to 
the very first application in fish habitat modelling and environmental flows. The study 
aimed at testing the suitability of PNN as a tool for brown trout habitat suitability modelling 
at the micro–scale and for environmental flow assessment. To achieve this general aim, i) 
presence–absence PNN were generated and trained, ii) the effect of prevalence on 
models performance and habitat assessment was thoroughly analysed, iii) the modelled 
brown trout habitat suitability was analysed in a multivariate way, iv) the PNN were 
evaluated in an independent river under similar ecological conditions to those where the 
training database was collected; and finally, v) the applicability of the PNN models to 
assess minimum legal e–flows at the evaluation site was discussed by calculating the 

WUA – flow curve. 

 

I.3.2 Chapter III 

Multi–Layer Perceptron (MLP) Ensembles (Hansen & Salamon, 1990) are the ensemble 
counterpart of ANNs. MLP Ensembles can be used for classification (Watts & Worner, 
2008) and regression tasks (Boucher et al., 2010). Its development typically follows the 
overproduce–and–choose approach (Partridge & Yates, 1996). First, a large pool of MLPs 
is trained, usually by bagging the complete dataset (resampling with replacement), and the 

combination of MLPs that produces the best mean prediction (arithmetic mean) on the 
out–of–bag dataset is sought. In some cases the surplus MLPs are effectively removed 
(e.g. Wang and Alhamdoosh, 2013) whereas in other cases they are simply weighted by a 
sufficiently small value to almost eliminate any influence on the predictions (e.g. Opitz and 

Shavlik, 1996). In this chapter i) two approaches to select the MLPs included in the final 
ensemble, one based on the Forward selection of the candidates and the second one 
used a Genetic Algorithms to select the ultimate set of MLPs included in the Ensemble. 
The target species was the presence–absence (classification) of the Bermejuela 
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(Achondrostoma arcasii; Robalo, Almada, Levy & Doadrio, 2006) at the micro–scale and ii) 

a graphical sensitivity analysis was applied to the model that presented the best 
performance to inspect the habitat preferences of the Bermejuela. Finally results in terms 

of habitat suitability were discussed. 

 

I.3.3 Chapter IV 

Scientists, stakeholder and managers require sound ecological knowledge in order to take 
substantiated decisions to adequately deal with predicted climate–induced changes in the 
flow regime (Santiago et al., 2015; Muñoz-Mas et al., 2016b). Ecological models can be 
used to explore fish ecology thus they have demonstrated to be useful elements to 
understand the realized niche of species and to species conservation in relation to global 
change, which includes climate change (Austin, 2007). Ecological systems often exhibit 
non–linear complex data structures and thus they usually cannot be analysed with simple 
statistical approaches (Crisci et al., 2012). In this context, the MLP Ensembles could be 

especially suited to develop ecological models.  

Fish ecology can be addressed at different spatial scales. Some authors highlighted the 
benefits of the mesohabitat scale among the other spatial scales to analyse fish habitat 
requirements (Costa et al., 2012; Vezza et al., 2015) because using this scale is possible 
to describe the environmental conditions around an aquatic organism not only limiting the 
analysis to the point where it is observed (Vezza et al., 2015). Furthermore, mesohabitats 
– generally corresponding in size and location to Hydro–Morphological Units (HMU) such 
as, pool, riffle or rapid – can be used to describe fish ecology with a broader range of 

variables even including biotic predictors (Vezza et al., 2015).  

The importance of dealing with uncertainty has been stressed as a key challenge in 
ecological modelling (Larocque et al., 2011) (Larocque et al., 2011). Consequently, this 
chapter inspected the uncertainty associated with the MLP aggregation with regard to the 

ranges and distribution of the selected input variables. 

The principal objectives of this chapter were, i) to test the proficiency of the MLP 
Ensembles to model the ecological niche of freshwater fish species, and ii) to test whether 
biotic variables affect the distribution of redfin barbel. To achieve these aims, and using 
MLP Ensembles, two different models of redfin barbel were developed. The first 
considered only physical habitat variables collected at the meso–scale, the second model 
also included biotic predictors (fish and macroinvertebrates). Finally, the uncertainty 
associated to the process of aggregation of each individual forecast within the MLP 

Ensemble was inspected in both models. 
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I.3.4 Chapter V 

In environmental flow assessment the instream habitat has been typically evaluated at the 
micro–scale with habitat suitability models developed at this scale (Tharme, 2003; Conallin 
et al., 2010). However, as we described above, some authors suggested that the meso–
scale could be a better scale to describe the habitat preferences of the inhabiting fish and 
hence rendering more accurate e–flows (Parasiewicz & Walker, 2007; Vezza et al., 2012). 
However, more research is needed to dispel any doubt about the advisability of the meso–
scale over the micro–scale one and about significant differences in the e–flow eventually 

assessed. 

In this chapter i) MLP Ensembles were used to develop presence–absence models for the 
redfin barbel at two different scales (micro–scale and meso–scale and ii) a graphical 
sensitivity analysis was performed to compare our models between them and with 
previous literature. The two MLP Ensembles were linked with a hydraulic model to infer e–
flows iii) evaluating the practical applicability of these models and iv) we briefly discussed 

the merits and demerits of our models and the differences in the e–flow assessment. 

 



 

15 

 

 

 

Chapter I 

 

 

 

 

Chapter II 

 

 

 
Muñoz–Mas, R., Martínez–Capel, F., Garófano–Gómez, V. and Mouton, A.M., 2014. 
Application of Probabilistic Neural Networks to microhabitat suitability modelling for 
adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling and 
Software 59 (0), 30–43. 

APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO 

MICROHABITAT SUITABILITY MODELLING FOR ADULT BROWN 

TROUT (Salmo trutta L.) IN IBERIAN RIVERS 
 



Probabilistic neural networks Chapter II 

 

16 

II. APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO 

MICROHABITAT SUITABILITY MODELLING FOR ADULT 

BROWN TROUT (Salmo trutta L.) IN IBERIAN RIVERS 

 

ABSTRACT 

Probabilistic Neural Networks (PNN) have been tested for the first time in microhabitat 
suitability modelling for adult brown trout (Salmo trutta L.). The impact of data prevalence 

on PNN was studied. The PNN were evaluated in an independent river and the 
applicability of PNN to assess the environmental flow was analysed. Prevalence did not 
affect significantly the results. However PNN presented some limitations regarding the 
output range. Our results agreed previous studies because trout preferred deep 
microhabitats with medium–to–coarse substrate whereas velocity showed a wider suitable 
range. The 0.5 prevalence PNN showed similar classificatory capability than the 0.06 
prevalence counterpart and the outputs covered the whole feasible range (from 0 to 1), but 
the 0.06 prevalence PNN showed higher generalisation because it performed better in the 
evaluation and it allowed a better modulation of the environmental flow. PNN has 

demonstrated to be a tool to be into consideration. 

 

Keywords: Probabilistic Neural Networks; brown trout; microhabitat suitability; prevalence; 

spatially explicit evaluation; Mediterranean rivers 
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II.1 INTRODUCTION 

The environmental impact of hydrological alteration is of major concern for researchers 
(Marsili–Libelli et al., 2013). Therefore, scientists and managers have developed a vast 
body of methodologies to assess the consequences of changes in running river flows 
(Acreman and Dunbar, 2004, Ahmadi–Nedushan et al., 2006). This concern overstepped 
the merely academic environment yielding the Water Framework Directive (WFD) 
(European Parliament & Council, 2000), a legislative framework that stated a set of 
environmental objectives for water bodies with the time frame of the year 2015. The WFD 
implicitly assumes an underlying link between ecological status and abiotic quality 
elements; thus, a key aspect is the identification and assessment of the links between the 
physical and biological components of streams (Conallin et al., 2010). Accordingly, 
freshwater fish are considered good indicators of water quality and biotic integrity in 

freshwater ecosystems (Pont et al., 2006). 

The Instream Flow Incremental Methodology (IFIM) (Bovee et al., 1998) was the first 
methodological framework for the environmental impact assessment and negotiation in 
water allocation schemes (Paredes–Arquiola et al., 2013). Moreover it has been stressed 
as the most scientifically and legally defensible methodology available (Tharme, 2003). 
The physical habitat simulation is a part of the IFIM methodology that permits to 
understand the impact of flow alterations on stream habitat (Maddock, 1999). 
Consequently it has been considered in the transposition of the WFD to the Spanish norm 
for hydrological planning (MAGRAMA, 2008). Among the fish species considered in the 
physical habitat simulation, in the Iberian context brown trout (Salmo trutta L. 1758) has 

been specifically used as an indicator of ecological status (Ayllón et al., 2012). Therefore, 
insight into the habitat suitability of brown trout is crucial for the implementation of the 
WFD and for environmental flow (e–flow) assessments, especially in areas vulnerable to 

global change such as the Mediterranean streams (García–Ruiz et al., 2011). 

The continuous univariate Habitat Suitability Curves (HSCs) are a simple and common 
modelling approach in studies involving physical habitat simulation (Payne and Allen, 
2009); hence several researchers have developed habitat suitability models in the form of 
HSCs (Ayllón et al., 2010, Bovee, 1978, Hayes and Jowett, 1994, Raleigh et al., 1986, 
Vismara et al., 2001). The relationship between Weighted Usable Area (WUA) and river 
flow (Bovee et al., 1998) derived from these models has been used extensively in e–flow 
assessments (Payne, 2003). However, several authors have suggested that considering 
each hydraulic variable independently may be questionable because ignoring significant 
interactions between variables may induce a bias (Orth and Maughan, 1982). As a 
consequence, the multivariate approaches have gained popularity (De Pauw et al., 2006). 
Several data–driven multivariate techniques have been applied in brown trout habitat 
suitability modelling. Specifically at the microhabitat scale, these studies ranged from 
simple bivariate polynomial functions (Lambert and Hanson, 1989, Vismara et al., 2001) to 
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more complex fuzzy rule base models (Jorde et al., 2001). Thereby, logistic regression has 
been used by some researchers (Ayllón et al., 2010, Hayes and Jowett, 1994), as well as 
Generalized Additive Models (GAMs) (Jowett and Davey, 2007) to develop habitat 
suitability models for brown trout. Among the machine learning techniques, Artificial Neural 
Networks (ANN) and specifically the Multilayer Perceptron, have also been applied to 
model habitat suitability for brown trout (Reyjol et al., 2001). In the eastern Iberian 
Peninsula, the fuzzy logic approach has been applied to develop models for brown trout 
with the mesoscale as the central resolution (Mouton et al., 2011) whereas at the 
microscale Muñoz–Mas et al. (2012) developed fuzzy rule base models for middle–size 

brown trout (body length from 10 to 20 cm). 

Overall, each approach for habitat modelling has advantages and disadvantages and due 
to their different model structures they are distinct in their data needs, transferability, user–
friendliness and presentable outputs (Conallin et al., 2010). Therefore, the habitat 
simulation methodologies are in a permanent evolution driven by their imperfections and 
inherent constrains (Lamouroux et al., 1998) (Lamouroux et al., 1998). Probabilistic Neural 
Networks (PNN) (Specht, 1990) are a promising type of ANN. These were applied 
successfully in pattern classification in some areas related to fish (e.g. classification of 

sonar signals) (Moore et al., 2003). But to our knowledge, this technique has never been 

applied before in habitat suitability modelling at the microscale. 

An important aspect in data–driven habitat suitability modelling is the prevalence (i.e., 

proportion of presence in the entire data set) because it can have a strong effect on model 
performance (Fukuda, 2013, Manel et al., 2001). The decreasing trends in brown trout 
populations (Almodóvar et al., 2012) or the temporary absence of the species (Lütolf et al., 
2006) in addition to the sampling protocols, can lead to low prevalence databases. The 
capability to deal with low prevalence has been the main focus in several studies. For 
instance, Mouton et al. (2009) developed a prevalence–adjusted method addressed to 
fuzzy rule base models, and Freeman et al. (2003) tested the ability of Random Forests 
(Breiman, 2001) to deal with low prevalence datasets. In this context, PNN are 
theoretically able to cope with low prevalence databases (Specht, 1990), thus suggesting 
its suitability to construct fish habitat models with unbalanced databases. Another 
remarkable issue in ecological modelling is the over–fitting. Some techniques are prone to 
that phenomenon in a different degree. Therefore, some authors highlighted the 
importance of making a successful evaluation (sensu Guisan and Zimmermann, 2000) 

using independent data to improve the reliability of the models (Bennett et al., 2013). 

Our study aimed at testing the suitability of PNN as a tool for brown trout habitat suitability 
modelling at the microscale. To achieve this general aim, (i) presence–absence PNN were 
generated and trained; (ii) the effect of prevalence on models performance and habitat 
assessment was analysed; (iii) the modelled brown trout habitat suitability was analysed in 
a multivariate way by checking how the PNN assess a synthetic database covering all the 
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possible combinations of velocity, depth and substrate within the survey range; (iv) the 
PNN were evaluated in an independent river under similar ecological conditions to those 
where the training database was collected; and finally, (v) the applicability of the PNN 
models to assess minimum legal e–flows at the evaluation site was discussed by 
calculating the WUA – flow curve. 

 

II.2 METHODS 

II.2.1 Microhabitat data collection 

The target species of this study at the microscale was the adult (body length > 20 cm) 
brown trout. The data samplings were carried out at low–flow conditions during late spring, 
summer and early autumn in the period 2007–2009 in the Guadiela and Cuervo Rivers 
(within the Tagus River Basin; TB) and in the Jucar and Senia Rivers (within the Jucar 

River Basin District; JRBD) (Fig. 1). 

 

 
Fig. 1. In the Iberian Peninsula (left), location of the sites where microhabitat data of brown 

trout were collected in rivers within the Tagus River Basin and the Jucar River Basin 

District. Red circle shows the location where the models were evaluated in the Cabriel 

River. 

 

The microhabitat study was undertaken in complete and connected HydroMorphological 
Units (hereafter, HMUs) and classified as pool, glide, riffle and rapid. A sort of modification 
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of the equal effort approach was applied (Bovee et al., 1998) with the selection of equal 
areas of slow and fast water HMUs, grouping pools with glides (slow) and riffles with 
rapids (fast). Each HMU was studied by underwater observation (snorkelling) during 
daylight with minimum disturbance to the fish according to common procedures 
(Heggenes et al., 1990, Martínez–Capel et al., 2009). This technique allows the 
observation of the fish behaviour, thus only adult brown trout that were ‘feeding’ or 'holding 
a feeding position' were considered because it is assumed that they are occupying such 
positions because are the most energetically profitable (Rincon and Lobon–Cervia, 1993). 
Microhabitat conditions, termed as training patterns, were measured along the HMU in 
cross–sections, classifying fish abundance into two groups as ‘absence’ (no fish observed) 
and ‘presence’ (at least one fish observed). The resulting sampled area per training 
pattern (measurement) ranged from 1.23 m2 to 7.96 m2. The high number of absence 
patterns versus presence patterns led to a low prevalence (average prevalence being 

0.06) that ranged from 0.02 to 0.11 depending on the river (Table 1). 

 

Table 1. Sample sizes of the four campaigns for microhabitat data collection of the adult 

brown trout, in rivers within the Tagus River Basin (TRB) and Jucar River Basin District 

(JRBD). 

River Year N Presence N Absence Prevalence Area surveyed (m2) 
Jucar (JRBD) 2007 7 339 0.02 910 

Guadiela (TRB) 2009 51 411 0.11 3189 
Senia (JRBD) 2007 11 346 0.03 922 
Cuervo (TRB) 2009 29 361 0.07 3065 

 

Depth was measured with a wading rod to the nearest cm and the mean flow velocity of 
the water column (hereafter velocity) was measured with an electromagnetic current meter 
(Valeport®). The percentage of each substrate class was visually estimated around the 
sampling point or fish location. The substrate classification was simplified from the 
American Geophysical Union size scale: bedrock, boulders (>256), cobbles (64–256 mm), 
gravel (8–64 mm), fine gravel (2–8 mm), sand (62 mm–2 mm), silt (< 62 mm) and 
vegetated soil (i.e. substrate covered by macrophytes), similarly to a previous work in 

Iberian rivers (Martínez–Capel et al., 2009). Substrate composition was converted into a 
single value through the Substrate index (hereafter substrate), by summing weighted 
percentages of each substrate type as follows: Substrate index=0.08 ·% bedrock + 0.07 
·% boulder + 0.06 ·% cobble + 0.05 ·% gravel + 0.04 ·% fine gravel + 0.03 ·% sand 
(Mouton et al., 2011) (Table 2). Finally, the three input variables (velocity, depth and 
substrate) were normalized N(0,1). 
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Table 2. Characteristics of the selected rivers within the Tagus River Basin (TRB) and 

Jucar River Basin District (JRBD) where the microhabitat data were collected. Substrate 

(Dominant) corresponds to the larger aggregated percentage. 

 
Cuervo (TRB) Guadiela (TRB) Jucar (JRBD) Senia (JRBD) 

Year 2009 2009 2007 2007 
Mean Width (m) 8.8 9.6 8.4 6.6 

Survey Flow (m3/s) 0.27 0.61 1.05 1.17 
Strahler Order 2 3 2 2 

Mean Flow Velocity (m/s) 0.21 0.18 0.11 0.31 
Max. Flow Velocity (m/s) 1.03 1.15 1.15 1.75 

Mean Depth (m) 0.48 0.59 0.5 0.59 
Max. Depth (m) 1.24 1.78 1.01 1.4 

Substrate (Dominant) Gravel Cobble Vegetation Boulder 

 

II.2.2 Development of the Probabilistic Neural Network 

II.2.2.1 PNN theory 

PNN are radial–basis neural networks based on a Bayes–Parzen classifier (Specht, 1990). 
PNN basically compare how close the input pattern is to the patterns of each category in 
the training database and assign the category that presents the highest number of patterns 
in the vicinity. The number of patterns on each category can vary; in order to deal with 
these differences the weight of each pattern is inversely proportional to the number of 
training patterns in the corresponding category. Thus, the classification within a given 
category depends on the values of the input but not on the number of training patterns 

included in that category. 

From a theoretical point of view but considering the present classification problem, where 
two categories were considered (i.e. adult brown trout 'presence' or 'absence'), the Bayes’ 
theorem considers an input x=[xvelocity, xdepth, xsubstrate] which will be classified in the 
category 'presence' if the following inequality is fulfilled: hPresence·iPresence·fPresence (x) > 
hAbsence·iAbsence·fAbsence (x) where hcat is the a priori probability of occurrence, icat is the cost 
associated with misclassification and fcat(x) is the Probability Density Function (PDF) of the 

corresponding category. The aggregation of these three parameters defines the 
membership function. The Bayes’ theorem tend to increase the probability of the class 
(‘presence’ or ‘absence’) with the higher density of training patterns in the vicinity of the 
unknown input (fcat(x)), or if the cost of misclassification (icat) or prior probability (hcat) of the 

corresponding category are higher (Hajmeer and Basheer, 2002). The cost of 
misclassification (icat) and the prior probability (hcat) allow the development of over–

predictive models where false–positives are preferred, for instance in cancer diagnosis 
(Berrar et al., 2003) and should be adjusted for every specific problem. In our study, the a 

priori probability of occurrence (hcat) was considered 0.5 and no misclassification costs 
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(icat) were applied, thus both factors were neglected. In this case, the training patterns 
must provide the information to estimate the underlying multivariate PDF (fcat(x)) of each 

category (Specht, 1990), following the equation 1: 
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where x is the input pattern to be classified (xvelocity, xdepth, xsusbtrate) and %!$  is the ith training 

pattern for the corresponding category (%&'()�$�*$ , %,' �-$ , %./0.�1��'$ ). The σj are the 

smoothing parameters (σvelocity, σdepth, σsubstrate) that represent the standard deviation 
around the mean of the 3 input variables (p=3) and they control the degree of influence of 
every pattern in the corresponding axe; velocity, depth or substrate. Finally, the n 

parameter corresponds to the total number of training patterns in that category; it varies 
depending on the considered PDF, and it was set to 1457 in the ‘absence’ PDF and to 98 

in the ‘presence’ PDF.  

PNN architecture differs from other ANN such as the Multilayer Perceptron (MLP) (Fig. 2). 
Unlike MLP, the activation functions or the architecture are not optimised and the main 
reason to include PNN within the ANN discipline is that the input is compared or connected 

to every training pattern. The PNN have a unique type of activation function, the so called 
radial basis function, and the network architecture depends on the training database, thus 

presenting equal amount of nodes as training patterns (Bishop, 1995).  

In the case of presence–absence classification, the PNN calculated two PDF (fcat(x)) in 

parallel, one for each output category. The first layer (the input layer) is a distributing layer 
where x is the input pattern (i.e. a combination of velocity, depth and substrate), and it is 

connected to every node in the second layer (the hidden layer). The hidden layer has a 
number of neurons equal to the number of training patterns (i.e. the 1555 collected 
patterns; n=98 presences, m=1457 absences). In the hidden layer, the 'distance' between 
the input pattern and each training pattern in the corresponding node (XP1, XP2, ..., XP98, 
and XA1, XA2, ..., XA1457) is calculated. The third layer executes the summation of the 
signals (‘distances’) produced in the previous layer, but each category has an independent 
summation of signals, as demonstrated in Fig. 2. Once the σj parameters are selected, the 

network is already prepared to assess any pattern. That is the main reason why PNN are 
considered a one–pass learning method because they are automatically trained by the 
patterns in the training database (Specht, 1989). Finally, the output of both nodes is 
standardized between 0 and 1, by dividing the results with the sum of both outputs, in 

order to agree with other habitat suitability models. 
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Fig. 2. General architecture of a Probabilistic Neural Network (PNN) in a presence–

absence classification problem. x corresponds to the assessed pattern. XP and XA 

correspond to the presence training patterns (n=98) and the absence training patterns 

(m=1457) respectively. 

 

The σj parameters have a decisive impact on the PNN performance (Fig. 3). Therefore, its 

optimisation is recommended to obtain an optimal PNN (Hajmeer and Basheer, 2002). If 
the smoothing parameter is too small, the PDF would be highly over–fitted to the training 
patterns, thus reducing the capability of the network to generalize (i.e. to assess properly 
an unseen pattern). If the σj parameters are too large, the output value would be almost 

constant and proportional to the number of training patterns in the considered class 
('presence' or 'absence'); in this case, the values of the inputs would not play any role in 
the assessment of a given pattern (Zhong et al., 2005). The present study considered a 
single smoothing parameter, thus resulting in σvelocity=σdepth=σsubstrate.  
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Fig. 3. Effect of the selection of different values of a single smoothing parameter (σ) in the 

habitat assessment of a pool at the Cabriel River (Z=elevation). The larger the σ, the more 

smooth the discriminant surface becomes. Large values of the smoothing parameter 

sigma (0.25) do not provide the extremes of the output range (0–1) whereas very low 

values (0.025) produce sharp transitions and the output range achieves the extremes of 

the output range. 

 

II.2.2.2 PNN optimisation 

The PNN was implemented in the R environment (R Core Team, 2015) considering the 
complete database (hereafter PNNC). The σ parameter was optimised by leave–one–out 
cross–validation with the subplex algorithm proposed by Rowan (1990) and implemented 

in the R environment (R Core Team, 2015) by King (2008). Waters (1976) introduced the 
use of univariate Habitat Suitability Curves (HSC) assessing the degree of suitability of the 
usual microhabitat variables, such as depth or velocity, ranging from 0 and 1. Accordingly, 
several studies comprising difference techniques ranged the habitat suitability from 0 to 1 
(Ayllón et al., 2010, Jowett and Davey, 2007, Muñoz–Mas et al., 2012). However, large 
values of σ typically do not provide the extreme feasible outputs (Fig. 3). The use of single 

performance criterion may lead to counterproductive results such as favouring models that 
do not reproduce important features of a system (Bennett et al., 2013). Therefore, two 
main goals were included in the objective function, the maximization of the classification 
strength and the maximization of the output range. The classification strength was 
quantified by means of a performance measure arising from the confusion matrix 
components (true positive [TP], false positive [FP], false negative [FN] and true negative 
[TN]). The selected performance criterion was the True Skill Statistic (TSS) (Equation 2) 
because it has been demonstrated suitable in models dealing with unbalanced prevalence 
databases and it favours a good balance between Sensitivity (Sn) and Specificity (Sp) 
(Allouche et al., 2006, Fukuda et al., 2013, Mouton et al., 2010). Sn is the true positive rate 
(=TP/(TP+FN)) and Sp is the true negative rate (=TN/(FP+TN)). The output range was 
considered by subtracting the minimum output value, which was expected to be 0, to the 
maximum output value which was expected to be 1. The objective function was the 

aggregation of both indices. 
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233 = 3456787978: + 3<4=7�7=78: − 1 (Equation 2) 

 

II.2.3 Effect of the data prevalence on performance of the PNN 

We analysed the effect of prevalence on PNN performance by altering the prevalence of 
the training dataset but keeping the optimised σ parameter constant. Bagging was an 

alternative but it has been reported as extremely time–consuming (Zhong et al., 2005). 
Therefore, the selected datasets had to be statistically similar to the original database, 
presenting similar distributions for depth, velocity and substrate. The sub–sampling 
methodology presented in Muñoz–Mas et al. (2012) was used to generate each of the five 
alternative datasets with prevalence of 0.1, 0.2, 0.3, 0.4, and 0.5. The statistical analysis, a 
robust generalization of Welch test (Welch, 1951) and a robust generalization of Kruskal–
Wallis test (Rust and Filgner, 1984) showed no significant differences with the complete 
database (prevalence=0.06). Therefore, these new five datasets were considered suitable 
for further analyses. Considering the optimal σ calculated for the PNNC, the leave–one–out 

cross–validation was carried out for each alternative dataset, assessing the corresponding 
training patterns. The TSS and the output distribution (minimum, maximum, quartiles, 
median and mean) were calculated and compared with those obtained from PNNC. Finally, 
the results were univariatelly plotted (hereafter univariate habitat suitability plots) and 
these plots were used to check differences in the predicted suitability derived from 
changes in the prevalence. Subsequently, the PNN based on the 0.5 prevalence dataset 
(hereafter PNN05) which corresponds to the ideal situation (i.e. the training dataset 

presents equal number of training patterns per category) was used for further analyses. 

 

II.2.4 Model transparency and ecological relevance 

Formerly, a great effort has been made to improve the transparency of Neural Networks 
(Olden and Jackson, 2002, Gevrey et al., 2006). Following this premise, our PNN models 
(PNNC and PNN05) were used to assess the habitat suitability over a synthetic database 
that covered all possible combinations of velocity, depth and substrate within the surveyed 
range. With velocity ranging from 0 to 1.75 m/s, depth from 0 to 1.75 m and the substrate 
ranging from 0 to 8. The entire process represented a modification of the assessment 
presented in Hajmeer and Basheer (2002). The assessed three–dimensional database 
was simultaneously plotted (hereafter multivariate habitat suitability plot) with the training 
database assessed by means of the leave–one–out procedure; both datasets were 
separated in slices representing the classes of substrate (from 0 to 8), thus 9 plots were 
made. The consideration of all possible combinations of velocity and depth disagree with 
the usual distribution of these variables (Coarer, 2007) that tend to fit the distribution found 
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in the training database. However, these plots allowed the inspection of the modelled 
suitability for every combination of velocity, depth and substrate within the feasible range, 
as well as the capability of PNN to extrapolate. The multivariate habitat suitability plot and 
the univariate habitat suitability plot derived from the PNNC were discussed in comparison 

with previous studies. 

Brown trout has been successfully introduced due to its ecological flexibility and its 
reputation as fine food and good sport (Klemetsen et al., 2003), therefore it presents a 
worldwide distribution. Accordingly, it has been the target species of several studies 
covering a huge range of ecological conditions and spatial scales. Given the large amount 
of information about its habitat selection at the microscale, it was necessary to prioritize by 
selecting some benchmarking studies that were mainly located in the Mediterranean 
context and had applied multivariate techniques (Ayllón et al., 2010, Lambert and Hanson, 
1989, Vismara et al., 2001). However, the multivariate approach is not as widespread as 
the univariate one. Therefore, we finally considered other studies from Europe and other 
continents that used multivariate approaches, as well as others of great international 
relevance for the target fish species (Bovee, 1978, Heggenes, 1996, Jorde et al., 2001, 

Jowett and Davey, 2007, Rincon and Lobon–Cervia, 1993). 

 

II.2.5 Model evaluation and transferability 

To assess the transferability of the generated PNN (PNNC and PNN05), a spatially explicit 
evaluation was carried out in a river reach of the Cabriel River (main tributary of the Jucar 
River), where a hydraulic model was available (Muñoz–Mas et al., 2012). The selected 
reach met different requirements for the study of habitat suitability; underwater visibility (to 
observe fish underwater with minimum disturbance), abundance of the target fish species 
within the region where it is native, habitat heterogeneity and representativeness (all the 
habitat types present in the river appeared in the selected reach in similar proportion), 
neither morphological alteration nor relevant human impacts in the aquatic environment, 
and high water quality (not limiting the fish community in any aspect, and without any 

health risk for the diver) (Martínez–Capel et al., 2009). 

 

II.2.5.1 Hydraulic modelling 

A 2D hydraulic simulation was done in an approximately 300 m long reach of the Cabriel 
River. The topographic data of the river channel and banks were collected using a Leica© 
Total Station. The average area per topographic measurement was approximately 2 m2, 
surveying the wetted area more intensively, thus ranging from 0.51 m2 in the wetter area to 
3.72 m2 in banks. Substrate composition was visually estimated as described in the 
Microhabitat data collection. The hydrometry was performed in 11 cross–sections, with 
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depth and velocity measured along these sections and the resulting information was used 
to gauge the flow rate. Measurements were performed at three different flow rates (0.54, 
1.04 and 2.75 m3/s) and these were used for model calibration. The hydraulic modelling 
was carried out with River–2D© (University of Alberta, 2002) and the bed roughness was 
used to calibrate the model based on the depth and mean column velocity at each transect 
in accordance with previous studies (Jowett and Duncan, 2012). The model was 
considered acceptable when errors in water surface elevation were smaller than 5 cm at 
any cross–section, and when the patterns of the generated velocities and those measured 
at each cross–section were similar (Fig. 4). The topographic data obtained in the biological 
evaluation survey (section 2.5.2) were used to check differences and changes in the river 
bed. An average difference between channel elevation in the model and control measures 
of 0.04±0.13 m was obtained. Therefore, the topography was considered similar and the 
hydraulic model acceptable for further analyses. Thirty four different flows were simulated, 
ranging from 0.05 to 6.5 m3/s; in all the cases the water level was below the bankfull stage 

of the river channel. 

 

 

Fig. 4. Water Surface Elevation (WSE) along the thalweg (left) and observed versus 

predicted WSE (right). 

 

II.2.5.2 Biological evaluation 

A new field campaign was carried out in the Cabriel River in the early summer 2012, at a 
flow rate of 0.89 m3/s. Unlike the previous campaigns, the diver did not snorkel entire 
HMUs, but the whole area included in the hydraulic model. The survey was performed  
according to the previous microhabitat surveys (Heggenes et al., 1990, Martínez–Capel et 
al., 2009). Rather, instead of recording velocity, depth and substrate only the locations 
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(coordinates X, Y, Z) of observed adult brown trout were recorded using a FOIF© Total 

Station. 

 

II.2.6 PNN evaluation and applicability in e–flow assessment 

The flow occurring during the biological evaluation survey was simulated with the hydraulic 
model. The two PNN (PNNC and PNN05) were used to assess the habitat suitability in the 
entire simulated reach. The frequency analyses of the habitat suitability assessed in the 
trout locations and over the entire reach were compared in order to check the 
generalization capability of the PNN. The main purpose of the transferability tests is the 
quantification of model accuracy at destination (Fukuda, 2010, Randin et al., 2006, 
Thomas and Bovee, 1993). Among the transferability tests, the most popular in studies 
involving the microhabitat suitability modelling for fish species was the test of Thomas and 

Bovee (1993). However, those authors recognized that the ?
 test was affected by sample 
sizes. Therefore, we calculated the Sn, Sp and TSS to quantify the transferability success 
and to allow the comparison with the training results based on the same performance 

criteria. 

The Spanish norm for hydrological planning (MAGRAMA, 2008) specifies that the 
minimum legal e–flow should be proposed based on the analysis of WUA versus flow 
curves. The WUA corresponds to the aggregation of the simulation cells (e.g. pixels) 
weighted by the corresponding suitability (i.e. the output of the habitat suitability model 

based on the velocity, depth and substrate of each of the simulation cells) (Equation 3). 

 

@AB = ∑ ��C4DE=78:, F4<8ℎ, 3HI68JK84�$ × BJ4K$�$"	  (Equation 3) 

 

where, ��C4DE=78:, F4<8ℎ, 3HI68JK84� is the prediction of the PNN employing the velocity 

depth and substrate of the pixel 7, and the BJ4K$ corresponded to 1 m2. 

To check the applicability of PNN for habitat assessment at different flows and for the 
identification of that minimum legal e–flow, the simulated flows were assessed with the 
PNNC and the PNN05 and the WUA–flow curves were constructed. The patterns and 

potential implications were then discussed. 
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II.3 RESULTS 

II.3.1 Effect of the data prevalence on performance of the PNN 

The PNNC showed an acceptable value of the True Skill Statistic (TSS=0.35) in addition to 

an acceptable output range (0–0.86) and the Sn was higher than the Sp (Table 3). 

The univariate habitat suitability plots of mean flow velocity showed a suitable habitat 
between 0 and 1 m/s, and a maximum around 0.35 m/s (Fig. 5). The highest mean velocity 
that was classified as 'presence' was 1.031 m/s. Depth showed two trends in the univariate 
habitat suitability plots. The majority of the data showed an increase of suitability as depth 
increased including the hull of the training patterns whereas a secondary branch showed a 
decrease as depth increased (Fig. 5). This effect was mainly produced by differences in 
the underlying substrate and is clarified in the multivariate habitat suitability plot (Fig. 7). 
The minimum depth classified as 'presence' was 0.16 m. The trend of the univariate 
habitat suitability plot for substrate was parabolic with an optimal around substrate indices 
corresponding to medium–to–coarse substrates, ranging from 4 to 7 (on average gravels 

to boulders) with a maximum at 6 (on average cobbles). 

 
Fig. 5. Univariate habitat suitability plots based on the PNNC. Green dots represent 

'presence' data and grey dots represent 'absence' data. The patterns were classified as 

'presence' when they were higher than the threshold (0.5 suitability), and as 'absence' 

below that threshold. The presence data were mostly correctly classified (Sn=0.77), thus 

they appear over the 0.5 threshold. 

Considering the different training datasets and their corresponding PNN, prevalence did 
not appear to affect the model results in a significant manner because the univariate 
habitat suitability plots (Fig. 6) were similar to the one based on the PNNC (Fig. 5). 
However, slight differences were observed in the multivariate plot (see Fig. 6 for the PNNC 
and Fig. 8 for the PNN05) and numerically (Table 3). Regarding the numerical analysis, the 
mean and median output values decreased with decreasing prevalence whereas the 
performance (TSS) slightly increased (Table 3). Although there were some inconsistencies 
in these trends, they were considered mainly due to the difficulty to extract exactly the 
same distribution by means of the sub–sampling procedure from a limited amount of data, 
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rather than to an unclear pattern. Therefore, the results indicated that the prevalence 
slightly affected the intensity of the output signals (i.e. the maximum modelled suitability 

increased as prevalence increased) but did not produce a higher classificatory strength 

because the TSS decreased as prevalence increased. 

 

Table 3. Performance criteria (Sensitivity – Sn; Specificity – Sp; True Skill Statistic – TSS) 

and output statistics (minimum – Min; first quartile – 1st Q; Median; Mean; third quartile – 

3rd Q; maximum – Max) corresponding to the PNNC and the five alternative datasets with 

different prevalence and a constant smoothing parameter (σ=0.31). 

PNN Prevalence Sn Sp TSS Min 1st Q Median Mean 3rd Q Max 

PNNC 0.06 0.77 0.58 0.35 0.00 0.27 0.46 0.44 0.58 0.86 

PNN01 0.1 0.79 0.57 0.35 0.00 0.27 0.48 0.45 0.60 0.89 

PNN02 0.2 0.77 0.54 0.31 0.00 0.31 0.51 0.46 0.61 0.85 

PNN03 0.3 0.78 0.54 0.31 0.00 0.33 0.53 0.48 0.63 0.87 

PNN04 0.4 0.71 0.57 0.29 0.00 0.34 0.52 0.49 0.61 1.00 

PNN05 0.5 0.76 0.55 0.31 0.00 0.39 0.54 0.51 0.64 0.94 

 

II.3.2 Model transparency and ecological relevance 

In the multivariate habitat suitability plots based on the PNNC, the combination of high 
depth and high flow velocity values resulted in the greatest habitat suitability. However, the 
locations with high depth and simultaneously high flow velocity are rare or absent in the 
considered Mediterranean river systems of small size –order 2 or 3–; such locations did 
not appear in any training dataset, neither during the maximum simulated flow. Therefore, 
this specific aspect of the results was considered an anomaly due to the extrapolation of 
the model (Fig. 7, top–right corners) and was not analysed further. The PNNC over–
predicted the 'presence' in most cases as indicated by the Sn (Table 3; Fig. 7). The finest 
substrates appeared almost unsuitable (Fig. 7, substrate = 0, and 1) corresponding to the 
secondary branch in the univariate habitat suitability plots (Fig. 5). The habitat suitability 
increased broadly at medium–sized substrates, but in a small fringe corresponding to the 
shallower areas which remained unsuitable (Fig. 7, substrate from 2 to 5); that fringe 
enlarges for higher values of substrate and the suitable habitat was restricted to areas with 

depth larger than 0.5 m and velocity lower than 1 m/s (Fig. 7, substrate from 6 to 8). 
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Fig. 6. Univariate habitat suitability plots based on the alternative PNN developed varying 

the prevalence from 0.1 to 0.5. Green dots represent 'presence' data and grey dots 

represent 'absence' data. The patterns were classified as 'presence' when they were 

higher than the 0.5 suitability threshold, and as 'absence' if lower than that threshold. 
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Fig. 7. Multivariate habitat suitability plot based on the PNNC (prevalence=0.06). Asterisks 

correspond to the training data of 'presence' classified as 'presence' in dark green and 

'presence' classified as 'absence' in light blue. Circles correspond to 'absence' classified 

as 'absence' in black and 'absence' classified as 'presence' in light green. 

 

The multivariate analysis of habitat suitability for the PNN05 (Fig. 8) showed similar 
patterns to the PNNC. The plots showed the anomaly in the assessment of large depth 
combined with high velocity, where the model indicated the maximum suitability (Fig. 8 
top–right corners). Obviating these areas, the PNN05 also showed large unsuitable areas 
over the finer substrates, except a fringe centred on the velocity of 0.5 m/s (Fig. 8, 
substrate = 0 and 1). On average the habitat suitability increased as substrate increased, 
achieving the maximum suitability at medium–sized substrates (Fig. 8, substrate = 3, 4 and 
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5). However, for these substrates PNN05 did not show a region with lower habitat suitability 
in deeper areas. At larger values of substrate, the aforementioned fringe increased and the 
suitable habitat was also restricted to areas deeper than 0.5 m with velocity lower than 1 
m/s (Fig. 8 substrate = 6, 7 and 8). In general the multivariate analysis of PNN05 showed a 
higher degree of over prediction (with larger areas of maximum suitability in Fig. 8 than in 

Fig. 7) but it did not result in significant differences of the performance criteria (Table 3). 

 
Fig. 8. Multivariate habitat suitability plot based on the PNN05 (prevalence=0.5). Asterisks 

correspond to the training data of 'presence' classified as 'presence' in dark green and 

'presence' classified as 'absence' in light blue. Circles correspond to 'absence' classified 

as 'absence' in black and 'absence' classified as 'presence' in light green. 
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II.3.3 Model evaluation and transferability 

During the biological evaluation survey, we observed thirty one adult brown trout in the 
reach within the hydraulic model (Q=0.89 m3/s). The current flow was simulated and 
indicated a maximum depth of 1.4 m and a maximum velocity of 0.53 m/s, whereas the 
dominant and subdominant substratum were boulders (substrate=6; 39 %) and very fine 
substrate (substrate=0; 22 %). The PNNC and the PNN05 had a similar performance, 
showing the higher suitability in the deeper areas (dark–green and green) and the 
unsuitable habitats (orange and red) in shallow areas as a consequence of the presence 
of low depth and fine substrate (Fig. 9 Left). Both PNN provided a good trade–off between 
areas assessed as ‘presence’ and as ‘absence’, thus showing crossed distributions, 
although the PNNC gave a maximum suitability of 0.8 and the PNN05 of 1 (Fig. 9 Right). 
These observations confirm the aforementioned results about the effect of prevalence on 
model performance. On an equal footing, low prevalence (e.g. PNNC) slightly reduces the 

intensity of the signal providing lower output values. Nevertheless, PNNC presented better 
transferability (i.e. higher TSS) because it outperformed PNN05 due to the larger Sn. Both 

PNN were underpredictive because Sp was higher than Sn (Table 4). 

 

Table 4. Transferability evaluation (Sensitivity – Sn; Specificity – Sp; True Skill Statistic – 

TSS corresponding to the PNNC and PNN05 at the evaluation site with a constant 

smoothing parameter (σ=0.31). 

 Prevalence Sn Sp TSS 
PNNC 0.06 0.65 0.75 0.40 
PNN05 0.5 0.55 0.77 0.32 
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Fig. 9. Left side, comparison of the habitat assessment on the evaluation site (Q=0.89 

m³/s) using the PNNC (A) and the PNN05 (B). Red colour means unsuitable locations and 

dark green means locations with the maximum suitability. Black squares represent adult 

brown trout locations during the survey. On the right side, frequency histograms of the 

assessment of both PNN. General is represented by black bars (assessment of the entire 

simulated reach) and trout locations (assessment at fish locations) by grey bars. It is 

notable that only the assessment based on PNN05 provided the maximum suitability (range 

0.8–1). 

 

The Weighted Usable Area (WUA)–Flow curves differed depending on the considered 
PNN (Fig. 10). The PNNC presented a WUA–Flow curve with an asymptotic shape (curve 
A). It presented an increasing trend until 3.5 m3/s. Then the curve slightly decreased 
onwards that point but rising again for the higher simulated flows (Fig. 10). However, the 
PNN05 presented a monotonic increasing trend (curve B), without any relevant change in 

the trend of the curve. 
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Fig. 10. Weighted Usable Area (WUA)–Flow curves for adult brown trout calculated with 

the 34 simulated flows ranging from 0.05 to 6.5 m3/s. The curve A based on PNNC 

presented an asymptotic shape, whereas the curve B based on PNN05 showed a 

monotonic increasing trend. 

 

II.4 DISCUSSION 

II.4.1 Optimization results 

Mediterranean streams are characterised by strong intra and inter–annual flow variations 
thus becoming one of the main drivers on the observed oscillations of trout populations 
(Ayllón et al., 2010). Moreover, the sampling protocols can also introduce false negatives 
on the training database because a higher resolution increases the probability of sampling 
sites of ‘absence’ with similar characteristics as the observed at ‘presence’ locations. From 
an ecological viewpoint, some of these ‘absence’ records should be assessed as suitable 
in a different degree (Mouton et al., 2008, Mouton et al., 2009). Therefore, the selected 
modelling techniques might deal with this issue. In this study the Probabilistic Neural 
Networks (PNN) demonstrated proficient to cope with this kind of databases and provided 
acceptable results, with an adequate True Skill Statistic (TSS) value (Table 3) that is 
similar to those in studies using performance criteria based on the confusion matrix and 
databases with similar prevalence that were collected following the same protocols 
(Muñoz–Mas et al., 2012). Additionally, the PNNC over–predicted the 'presence' providing 
larger values of Sensitivity (Sn) in contrast with the Specificity (Sp) (Table 3), which has 

been demonstrated preferable as stated above (Mouton et al., 2008, Mouton et al., 2009). 
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II.4.2 Analysis of prevalence effect on PNN performance 

The analysis of performance criteria versus prevalence (Table 3) in combination with the 

model evaluation (Fig. 9) showed that the predictive accuracy was practically unaffected 
(confidence interval of 5.6 % of the mean TSS) but the maximum output value presented a 
decreasing trend. Some inconsistencies in these trends were observed with small 
fluctuations (Table 3). However, we considered they were mainly due to the difficulty in 
extracting exactly the same distribution (by subsampling) from a limited amount of data. 
The procedure certainly kept the original distribution and the shapes of the univariate 
habitat suitability plots (Fig. 6) were fairly similar than those based on the PNNC (Fig. 5). 
The interpolation of the theoretical aggregation of velocity, depth and substrate that should 
be selected is straightforward. However, the sub–sampling method selects a real 
measurement that can differ from the theoretical value. This issue can be caused by the 
inherent discretization in the measurement of any continuous variable (Giri and Banerjee, 
2012) (i.e. velocity at the nearest cm/s, depth at the nearest cm and the substrate in the 

percentage of 8 classes) or because the database does not contain enough training 
patterns. Nevertheless, we considered these differences negligible and the analysis robust 
enough to conclude that PNN is a suitable technique to deal with unbalanced databases; 
but the output values must be taken into account if values along the whole feasible range 
are desired (Table 3). The use of an artificial database was considered because it could 
facilitate the subsampling procedure. However, uncertainty about the effect of prevalence 

in a real database remains a primary reason not to use artificial databases in this way. 

The results agreed with previous analyses that tested several databases and 
demonstrated that PNN are not constrained by the undesirable effects of unbalanced 
databases (Zhong et al., 2005), but the range of outputs was not considered in the 
aforementioned study. The range of outputs has been of major concern in the present 
study in order to fit the output range in common microhabitat suitability models (Jowett and 
Davey, 2007, Muñoz–Mas et al., 2012, Payne and Allen, 2009). Other techniques such as 
the fuzzy logic approach had to contend with trimmed output ranges and practical 
solutions have been proposed. For example, CASiMiR© (Jorde, 1997, Schneider, 2001) 
allow the rescaling of the outputs between 0 and 1. Nevertheless, we considered the 
outputs close enough to the maximum and discarded that option. The reduction on the σ 
parameter would solve this issue, thus providing values along the whole range. But it 
would produce overfitting because PNN are sensitive to this phenomenon (Grim and Hora, 
2010, Zhong et al., 2005). The modeller should select a larger σ in order to improve the 
model generalization, which could lead to a smaller output range (Fig. 3). A possible 
solution is the consideration of the classificatory capability of PNN isolatedly. Although we 
cannot ensure that a dichotomous output would not provide us with reliable results, the 
PNN will clearly be disadvantaged in comparison with other modelling techniques. Brown 
trout has been categorized as ecologically flexible (Klemetsen et al., 2003) and 
accordingly we observed a large overlapping between 'presence' and 'absence' datasets 
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(Fig. 7). Therefore we considered that databases with better defined discriminant surfaces 
(i.e. lesser overlapping between categories) would not tend to produce trimmed outputs 

regardless of the prevalence in the training database. However these issues should be 

thoroughly explored in future research. 

 

II.4.3 Model transparency and ecological relevance 

The multivariate and the univariate habitat suitability plots based on the PNNC (Fig. 5 and 
Fig. 7) in combination with the model evaluation (Fig. 9) showed on average, a remarkable 
agreement with some of the most important studies. However, differences within the 
literature were also observed, mainly related to several factors such as differences in fish 
size or river types (Jowett and Davey, 2007) or in the selected sampling protocol 
(Heggenes et al., 1990) and their limitations. Direct observation is accurate in specific 
conditions and tend to underestimate the amount of individuals in shallow waters 
(Heggenes et al., 1990). Electrofishing is characterized by coarser resolution (Heggenes, 
1996) and presents a bias related to the displacement caused by galvanotaxis (Gatz Jr et 
al., 1987). Neither the direct observation nor the electrofishing allow the easy observation 
of fish behaviour, thus databases could become noisy when including different activities 
(Heggenes et al., 1990). The observed differences could be due to the selected modelling 
approach. A recent study proposed that each modelling technique could be focused on 
different aspects of the training database, even predicting different habitat suitability 

(Fukuda et al., 2013). 

Habitat selection patterns of brown trout are well established in broad terms (Ayllón et al., 
2010). In near–natural rivers it has been reported to prefer relatively deep pools, 
occupying near–bottom locations with slow flow and medium–to–coarse substrate 
(Armstrong et al., 2003, Ayllón et al., 2010, Heggenes, 1996, Moyle, 2002). Accordingly, 
our results showed an increase of suitability as depth increases (Fig. 5) but it presented an 
important interaction with substrate (Fig. 7). Specifically, the substrate index of 0 and 1 has 
been assessed as unsuitable regardless the considered depth, suggesting that, in some 
cases, substrate cannot be compensated with the other variables. Conversely, depth did 
not show restrictions of habitat suitability from the substrate index of 5 onward (Fig. 7). 
Velocity has been reported as an important constraint on habitat suitability (Ayllón et al., 
2010, Heggenes, 1996). The maximum sampled mean velocity was 1.75 m/s (Senia 
River), although most of the training data were below 1 m/s. The maximum velocity 
classified as 'presence' was 1.031 m/s (Fig. 5), therefore our results indicated a wider 
suitable range in comparison with previous studies (Armstrong et al., 2003) and similar in 
magnitude with studies conducted on larger rivers (Jowett and Davey, 2007). 
Mediterranean climate is characterized by the marked seasonality in climate events, 
intermittent periods of torrential rains and droughts, and high inter and intra–annual flow 
variation (Baeza et al., 2005, Gasith and Resh, 1999). Summer is associated with low flow 
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and consequently with an increment on water temperature (Lorig et al., 2013). This study 
was carried out mostly in summer during low flow; therefore the Mediterranean climate 
could influence trout behaviour via the water temperature. We did not consider specifically 
water temperature as an input, although in the Iberian context it is expected to cover 
warmer waters than previous studies (Nicola et al., 2009). For instance, the maximum 
temperature in the Cabriel River corresponded to 22.32 ºC during 2010 (unpublished). 
Brown trout selects more slow flowing water in winter in comparison with summer due to 
differences in water temperature (Klemetsen et al., 2003) and the consequent effect on the 
rate of biochemical reactions (Kingsolver, 2009). Moreover, local adaptations of brown 
trout populations to environmental conditions even in populations subjected to stocking 
activities have been reported (Keller et al., 2011). Therefore, in accordance with the 
expected differences in water temperature, we considered plausible that adult brown trout 
endure higher velocity in Mediterranean rivers, thus supporting the idea that our results are 

ecologically significant. 

Regarding previous studies with multivariate approaches for habitat suitability modelling, 
the heterogeneity on the applied techniques and consequently on the outputs suggested 
that any comparison should be considered in broad terms. Vismara et al. (2001) collected 
data by electrofishing from an Italian alpine river thus the degree of Mediterraneity is 
expected to be buffered because lower temperatures were reported, as approximately 10–
11 ºC. The bivariate polynomial functions from Italy, based on velocity and depth, showed 
a monotonic increment of the suitability as depth increases from 0 to 1 m, whereas velocity 
had an inverse influence on it. Thereby the maximum suitability was set to be at the 
velocity of 0 m/s. This pattern generally matched our findings because they presented also 
a positive correlation between depth and suitability (Fig. 5) whereas velocity had a 
negative impact on suitability, especially over coarse substrate (Fig. 7, substrate = 6, 7 and 
8). The substrate size has a positive effect on the endurance of higher velocity (Greenberg 
et al., 1996) in contrast to the aforementioned pattern (Fig. 7, substrate = 6, 7 and 8). 
However we imputed this phenomenon to the unrealistic extrapolation because the 
suitable range was wider than the observed in previous studies (Armstrong et al., 2003) 
and this decrement appears in the area with no training patterns. Nevertheless, Vismara et 

al. (2001) did not consider substrate, thus the comparison cannot be carried out reliably. 

Lambert and Hanson (1989) also developed bivariate polynomial functions from data 
collected by snorkelling in small streams of the King River Basin in the Sierra Nevada of 
California, with noticeable Mediterranean influence, but no temperatures were reported. 
The results strongly differed, since the optimal velocity and depth corresponded to 0.0 m/s 
and around 0.5 m respectively, and both gradually tailed off as they approached their 
maxima, corresponding to 0.75 m/s and 1.5 m. It has been reported that the optimal depth 
for adults increases in accordance with the proportion of pools and with the maximum 
depth of that pools (Ayllón et al., 2009, Ayllón et al., 2010). The samplings by Lambert and 
Hanson (1989) were conducted in river stretches at an elevation of 1500 to 1800 m above 
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datum, with running flows ranging from 0.7 to 0.03 m3/s. Therefore we suggest that the 
observed shift of habitat suitability could be partially produced by differences in habitat 
availability because the study sites are likely to be shallower than in our study. However, 
Lambert and Hanson (1989) developed the model based only on ‘presence’ data whereas 
Vismara et al. (2001) apparently developed the model by applying the forage ratio (Voos, 
1981) thus considering ‘presence’ and ‘absence’ data. The forage ratio tends to displace 
the optima to higher depth and velocity (Bovee and Zuboy, 1988). Vismara et al. (2001) 
surveyed a smaller range (maximum depth was 0.9 m and maximum velocity 1 m/s) than 
our study, thus we cannot discard the effect of the selected approach as the main reason 
for these differences. In addition, the polynomial functions were considered rigid in the 
adjustment of a smooth surface to the collected data (Lambert and Hanson, 1989, Vismara 
et al., 2001). In contrast, the PNN was versatile in the encompassment of the suitable 
microhabitats (Fig. 7). However, their capability to adjust the suitable space is not exempt 
of criticism (Grim and Hora, 2010). The development of reliable PNN must face the bias 
and variance dilemma (Geman et al., 1992), thus the selection of a larger σ shall yield 

smoother transitions between categories (Fig. 3) whereas a very small σ would overfit the 
discriminant surface to the training patterns. The selected σ provided a continuous suitable 

niche (Fig. 7) but it was not completely insusceptible to that phenomenon, consequently 

some irregularities can be observed in the discriminant surface (Fig. 7). 

The fuzzy logic approach has been used to develop and evaluate expert–knowledge 
habitat suitability models in an alpine river, the Brenno River (Jorde et al., 2001). This river 
showed the maximum suitability within the velocity range of 0.3–0.9 m/s and the depth 
range of 0.15 – 0.5 m over medium–to–coarse substrate. Deeper areas showed high 
suitability in accordance with our results. However, the maximum depth did not present the 
highest suitability. The morphology of braided gravel–bed rivers and the consideration of 
cover did not allow the proper comparison. Nevertheless, habitat selection in salmonids is 
based on their competitive abilities and the profitability of territories in terms of both 
potential net energy intake rate and predation risk (Grand and Dill, 1997, Railsback and 
Harvey, 2002). Pools usually provide sufficient depth and cover to obscure fish from avian 
predators (Bunt et al., 1999). However, turbidity plays a fundamental role as a constraint 
on predator–prey interactions (Abrahams and Kattenfeld, 1997). Consequently, salmonids 
become more unwary when turbidity increases (Gregory and Griffith, 1996). According to 
the literature, the Brenno River is expected to present higher turbidity than our rivers 
(Brunke, 2002); therefore, we hypothesize that turbidity could partially explain the 

differences on microhabitat suitability. 

Jowett and Davey (2007) applied GAMs in modelling habitat suitability for large brown 
trout with data collected by snorkelling in a large New Zealand river (average flow > 226 
m3/s). The partial plots showed a pointed curve for velocity with an optimal around 0.5 m/s, 
whereas the depth showed a wider curve with the optimum in a range between 2 and 4 m. 
Although body length (> 40 cm) and the river size strongly differed with our study, their 
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results lend credibility to ours. These outcomes remarked the observed ontogenetic shift 
towards the selection of deeper habitats and as the availability of deep microhabitats 
increases (Ayllón et al., 2010). In this regard, we considered our target rivers of 
intermediate size in comparison with previous studies (Ayllón et al., 2010, Heggenes, 
1996, Jowett and Davey, 2007, Lambert and Hanson, 1989, Rincon and Lobon–Cervia, 
1993) especially concerning the available depth. Thus, the observed pattern in the 
multivariate habitat suitability plot (Fig. 7) (i.e. positive correlation between suitability and 
depth) was considered reliable. Regarding the Iberian context Ayllón et al. (2010) 

surveyed by electrofishing some northern Iberian rivers and developed habitat suitability 
models with logistic regression. When considering only the rivers that better fit our range of 
sampling conditions (river types 4, 5 and 7) these models demonstrated a negative 
correlation with velocity and a positive correlation with depth, although both variables were 
summarized in the Froude number and the model also included cover and mesohabitat 

type. Therefore, proper comparison was considered unreliable. 

Regarding previous studies with univariate approaches, Ayllón et al. (2010) also 
developed univariate Habitat Suitability Curves (HSC). The curves for depth were typically 
stable (horizontal) at the right of the optimum depth from 0.8 m onwards. Some studies on 
brown trout indicated such stable suitability for deep habitats (Bovee, 1978, Vismara et al., 
2001). However, other studies indicated a decrease (Hayes and Jowett, 1994, Heggenes, 
1996, Lambert and Hanson, 1989) with optima approximately ranging from 0.5 to 1 m. This 
phenomenon could be a result of the modelling approach because in some cases only 
‘presence’ data were used (Category II HSC, after Bovee et al., 1998) or it could be a 
result of the absence of incoming drift (Hauer et al., 2012) in deep waters, instead of the 
direct negative effect of depth on the habitat suitability. Unfortunately, our results do not 

provide information about its discernment. 

From a univariate perspective, the mean velocity showed a wider suitable range in 
comparison with the optima in most of the studies in the Iberian Peninsula (0.0–0.4 m/s) 
(Ayllón et al., 2010, Rincon and Lobon–Cervia, 1993). Nevertheless, our results were 
comparable with other authors (Hayes and Jowett, 1994) who did not attribute the highest 
suitability to very slow microhabitats, in contrast with other studies (Heggenes, 1996, 
Vismara et al., 2001) where habitat availability was more limited than in the present study. 
Moreover, it has been stressed that habitat simulations based on HSC presenting optimum 
suitability at low current velocity are prone to predict biased maximum WUA values at very 

low flows (Railsback, 1999), thus highlighting the value of the model presented here. 

The substrate presented fewer opportunities for comparison because in some cases it has 
been neglected (Jowett and Davey, 2007, Lambert and Hanson, 1989) or because in 
some other cases few substrate types appeared (Rincon and Lobon–Cervia, 1993, 
Vismara et al., 2001). The model showed a maximum suitability for medium–to–coarse 
substrate. In general, suitability tended to increase from fine–gravel to bedrock (Fig. 7). 
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These results partially agreed with previous studies in the Iberian peninsula (Rincon and 
Lobon–Cervia, 1993) and abroad (Bovee, 1978, Heggenes, 1996). However, those studies 
also showed a decrease over the bedrock whereas our model did not (Fig. 7). This could 
be produced by the deficient substrate distribution (Rincon and Lobon–Cervia, 1993, 
Vismara et al., 2001) or due to the use of the substrate index (Mouton et al., 2011). The 
substrate index restricted the number of ‘presence’ patterns on pure bedrock to one 
(substrate=8) whereas the alternative of using the dominant substrate could result in 
different suitability over bedrock. The effect of different substrate aggregation methods 

should be thoroughly analysed in further research. 

Although the range of microhabitat availability was generally larger than previous 
European studies, the spatial distribution of the training patterns (Fig. 7) suggests that the 
whole distribution range of adult brown trout was not completely covered. The model 
assessed some extrapolated conditions unreliably (Fig. 7 top–right corners) then, the 
modeller should be cautious when applying PNN outside the range of observations. In this 
regard PNN presented a deficiency in comparison to fuzzy logic, which allows the 
modification of models in areas outside of the surveyed range (Mouton et al., 2009). To 
overcome this problem, further sampling campaigns should comprise extremer conditions 
(velocity > 1.75 m/s, depth > 1.78 m) to accurately define the suitable habitat. Fortunately 
these extreme conditions are rare or non–existent in the considered Mediterranean river 
systems (e.g. maximum simulated velocity equalled 1.3 m/s and maximum simulated 

depth 1.73 m), allowing the application of these new models in the brown trout habitat 

assessment. 

 

II.4.4 Model evaluation and transferability 

Some authors have pointed out the difficulty to decide which models are the best, even 
when good model performance is achieved (Vaughan and Ormerod, 2005). Often, 
independent data to evaluate models is lacking, and the best model is then selected based 
on comparison of different performance criteria (e.g. TSS, Sn and Sp in our study). 

However, our results showed that evaluation based on independent data (Guisan and 
Thuiller, 2005) may provide valuable additional information on model performance and its 
generalisation capability. Specifically, the PNN05 performed better when comparing 
different performance criteria (i.e. similar TSS and larger maximum output) but the PNNC 

showed larger generalisation capability when applied to independent data. Certainly, the 
optimal σ for PNNC might differ from the optimal for PNN05. Thereby a reoptimised σ could 

improve the PNN05 performance or its generalisation capability. Nevertheless, once in the 
ideal situation (prevalence=0.5) the range of modelling techniques shall become very large 
and the use of PNN may become unnecessary. Aside from this, we considered that 
modifications of the training database would reduce the model reliability by reducing the 
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considered variability, especially when few cases are sub–sampled. Consequently, these 

factors suggested that the use of the complete database should be the first option. 

The transferability of habitat suitability models has been of major concern for researchers 
(Fukuda, 2010, Randin et al., 2006, Thomas and Bovee, 1993). Failures on model 
transferability have been reported due to site–specificity and seasonal or size–related 
changes on habitat preferences (Fukuda, 2010). The PNNC showed a good transferability 
with a Sn of 0.65 and high Sp. This success highlighted the capability of the PNN to 
properly model the microhabitat suitability. However, it showed underpredictive (i.e. Sp < 

Sn) which has been reported to be less defendable from an ecological viewpoint (Mouton 
et al., 2008, Mouton et al., 2009). The modification of the classification threshold (0.5) 
(Fukuda et al., 2013), the inclusion of misclassification costs or the alteration of the prior 
probability should improve the transferability. However, it was not considered within the 
scope of this piece of research, because the main purpose of the study was not the 

development of an optimal model at the evaluation site but testing the PNN capabilities. 

Once a single σ (σ=0.31) was selected, the Weighted Usable Area (WUA)–Flow curve 

presented two different patterns depending on the prevalence of the training dataset (Fig. 
10). The curve calculated with the PNNC (curve A) presented a close–to–asymptotic 
shape, in comparison the curve based on the PNN05 (curve B) presented a monotonic 
increment. The Spanish norm for hydrological planning (MAGRAMA, 2008) established 
that the minimum legal e–flow released to stakeholders or water managers should be 
selected within the range of 50–80 % of the maximum WUA or considering a relevant 
change in the slope of the WUA–flow curve. A monotonously increasing curve akin to 
curve B, could only produce a single e–flow if the break of slope was detected and not a 
range of minimum e–flow. Thereby, the PNNC (curve A) may be more appropriate for the 
public agreement about the minimum legal flow, allowing for its better modulation within 

the legal range (from 50 % to 80 % of the maximum WUA). 

 

II.4.5 Implementation on further studies 

Habitat suitability for the adult brown trout has been the main focus in many scientific and 
research projects (see aforementioned studies). The previous knowledge gained from 
these has allowed us to discern broadly the reliability of the developed model. In the 
present study we used an optimisation algorithm, but certainly with a single σ it was not 
obligatory. Therefore, we propose the following optimisation approach to deal with an 
unstudied species, thereby improving the applicability of PNN in habitat suitability 
modelling. The PNN optimisation should start from an arbitrary but large σ and the 
modeller should reduce the σ in a step–by–step procedure. The results of the leave–one–

out cross–validation procedure for each step should be plotted and the modeller should 
select an intermediate σ when a good trade–off between the bias and variance is 
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achieved. Depending on the considered problem and the selected σ, this procedure starts 

from a general scope on the habitat suitability for the target species and ends with an 
over–fitted model lacking ecological relevance because it is likely to yield suitable 
microhabitats inserted within an unsuitable frame. The goal is to select an optimal model in 
an intermediate stage thus providing a unique continuous microhabitat. In that sense, the 
PNN could be considered an intermediate step between purely data–driven models (e.g. 

Multilayer Perceptron) and the expert knowledge–based models such as the fuzzy rule 

base systems or the Category I HSC (after Bovee et al., 1998). 

A recent study focused on modelling the habitat suitability for the spawning of the 
European grayling (Thymallus thymallus L.), using a broad range of modelling techniques 

(Fukuda et al., 2013), showed that Random Forest outperform any other modelling 
technique. Although previous studies demonstrated PNN as less competitive than other 
approaches (Zhong et al., 2005), results were strongly dependent on the considered 
databases. Therefore, once the capability of PNN to model habitat suitability is confirmed, 
subsequent research should focus on the comparison of PNN performance with other 
popular modelling techniques. Moreover, researchers are frequently introducing novel 
techniques for e–flow assessment (Lamouroux et al., 1998). Recently, the use of random 
forests (Breiman, 2001) has been coupled to a habitat simulation system (MesoHABSIM) 
(Parasiewicz, 2001) providing valuable results (Vezza et al., 2012). Similarly, a new study 
applied Takagi–Sugeno fuzzy logic models to improving the IFIM approach, allowing the 
analysis of a wider range of scenarios (Marsili–Libelli et al., 2013). Likewise we expect that 
in the near future PNN could be taken into consideration in microhabitat suitability 

modelling and e–flow assessments. 
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III. MULTI-LAYER PERCEPTRON ENSEMBLES (MLP 

ENSEMBLES) IN MODELLING MICROHABITAT SUITABILITY 

FOR FRESHWATER FISH 

 

ABSTRACT 

Some Iberian native fish species should be the targets of conservation actions, given the 
decline of their populations and their vulnerable/threatened status of conservation. In this 
context, Species Distribution Models (SDMs) play a significant role in understanding 
habitat requirements guiding further conservation actions. Multi–Layer Perceptrons (MLPs) 
have been proficiently used in the development of SDMs at different spatial scales. 
However, many real–world problems are too complex for a single MLP. Therefore the use 
on MLP Ensembles, which perform co–ordinate predictions, achieved superior accuracies. 
The active selection of the MLP involved in the Ensemble could outperform the inclusion of 
every trained MLP. Then, we tested two approaches in the selection of the proper MLPs in 
the development of a SDM at the microhabitat scale for an endemic freshwater fish 
species, the Bermejuela (Achondrostoma arcasii; Robalo, Almada, Levy & Doadrio, 2006). 

The first method was based on the Forward selection and the second one in Genetic 
Algorithms. The results proved that the Forward methodology can outperform the more 
complex Genetic Algorithm–based approach. The sensitivity analysis showed that the 

Bermejuela is a shelter–orientated limnophilic species. 

Keywords: Achondrostoma arcasii, MLP Ensemble, Genetic algorithms, Microhabitat. 
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III.1 INTRODUCTION 

The native fish species of the Iberian Peninsula present a high degree of endemicity; 
therefore, they should be the target of biodiversity conservation actions (Doadrio, 2002a). 
Species Distribution Models (SDMs) are being used in nearly all branches of life and 
environmental sciences (Guisan & Thuiller, 2005), playing a significant role in 
understanding habitat requirements of fish species and providing a framework from which 
spatial and temporal prediction in their distribution patterns can be done (Olden et al., 
2002). Therefore they might improve the effectiveness of any restoration and management 
action (Mouton et al., 2007a). The most popular Artificial Neural Networks architecture has 
been the Multi–Layer Perceptron (MLP) appearing most often in the ecological literature 
because it proved to be a universal approximation of any continuous function (Olden et al., 
2008). There are several examples about the use of a single MLPs in the development of 
SDMs at the microhabitat scale (hereafter microhabitat suitability models) (Brosse & Lek, 
2000; Laffaille et al., 2003) as well as in other modelling tasks addressed to fish 
conservation (Olaya-Marín et al., 2012). However several studies have demonstrated that 
SDM do not perform equally even providing discrepant forecasts depending on several 
factors, such as the initial conditions or the selected modelling technique (Buisson et al., 
2010). To deal with this drawback, and considering that many real–world problems are too 
large and too complex for a single monolithic system to solve alone (Yao & Xu, 2006), the 
use of MLP Ensembles was proposed (Hansen & Salamon, 1990). The main idea behind 
ensemble learning is to minimize those discrepancies by combining several models that 
can be generated using either different subsets of training examples or the whole training 
dataset and different models settings. Finally, the individual predictions are combined into 
a single forecast (Wang & Alhamdoosh, 2013). In regression problems, the aggregated 
prediction is usually calculated by averaging the prediction of each of the considered 
MLPs, whereas in classification problems the majority vote or the winner–takes–all 
approaches are common (Hansen & Salamon, 1990). Originally in ensemble modelling, 
the ensemble forecast included every developed MLP (Hansen & Salamon, 1990), but it 
was promptly demonstrated that the active selection of the proper networks improve the 
final predictions (Opitz & Shavlik, 1996; Zhou et al., 2002b). There are several methods to 
produce and select the proper MLPs (Zhou et al., 2002b; Yao & Xu, 2006; Wang & 
Alhamdoosh, 2013) but some hints have suggested that in some cases more 
straightforward methodologies can outperform more complex algorithms achieving at least 

similar performance (Akhand & Murase, 2010; Lofstrom et al., 2010). 

In the present study we modelled the microhabitat suitability with MLP Ensembles for the 
Bermejuela (Achondrostoma arcassi; Steindachner, 1866), an Iberian endemic fish 

classified as vulnerable by the IUCN (International Union for Conservation of Nature). Two 
approaches were used in the active selections of the MLPs included in the ultimate 
ensemble. The first one was based on the Forward selection of candidates and the second 
one was performed using a Genetic Algorithm. A graphical sensitivity analysis was applied 
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to the outperforming MLP Ensemble, and results in terms of habitat suitability were 

discussed. 

 

III.2 METHODS 

III.2.1 Microhabitat data collection 

The microhabitat data collection took place by snorkelling in 2009 during spring and 

summer in the Guadiela and Escabas Rivers, both within the Tagus River basin (Fig. 11).  

 
Fig. 11. Location of the study sites where the surveys of microhabitat selected by brown 

trout were performed, in rivers of the Tagus River Basin. 

 

The microhabitat study was done in complete Hydro–Morphological Units (HMU), such as 
pools or riffles with similar proportion of fast and slow HMU areas. In general this approach 
reduces the bias on the dataset, surveying the different habitat conditions in similar 
proportions (Muñoz-Mas et al., 2012). The physical environmental parameters used by the 
Bermejuela were surveyed during daylight with minimum disturbance to the fish 
accordingly to standard procedures (Heggenes et al., 1990). The Bermejuela proved to be 
a schooling fish and thus it appeared in groups with individuals of different sizes. 
Nevertheless, presence–absence was considered the proper approach in modelling fish 
habitat requirements at the micro–scale to better fit the requirements of ulterior habitat 
evaluations (e.g. environmental flow assessment). Fish were observed in 87 locations, 

whereas the habitat in the surrounding area was measured in 798 locations organized in 
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cross–sections uniformly distributed along the HMUs, finally providing a Prevalence of 

0.10. 

The four usual variables on microhabitat studies were measured; mean water column 
velocity, water depth, substrate composition and the presence (or absence) of different 
cover types (Gibson, 1993). Velocity was measured with an electromagnetic current meter 

(Valeport®) and depth was measured with a wading rod at the nearest cm.  

The percentages of the different substrates classes present were visually estimated 
around the sampling point or fish location (Bovee & Zuboy, 1988). The substrate 
classification was simplified from the American Geophysical Union size scale in: bedrock, 
boulders (>256 mm), cobbles (256–64mm), gravel (64–8 mm), fine gravel (8–2 mm), sand 
(2 mm – 62 µm), silt (< 62 µm) and vegetated soil (i.e. substrate covered by macrophytes); 
accordingly, a Substrate index (hereafter abbreviated as S) (Mouton et al., 2011) was 

calculated. 

The cover types were vegetation, shade, boulders, caves, roots or woody debris. The 
maximum surveyed mean velocity was 1.01 m/s and the maximum depth was 2.05 m, the 
most abundant substrate type was cobble (Substrate index = 6) and the largest number of 

cover types present at a single location was 3. 

 

III.2.2 Microhabitat suitability modelling 

III.2.2.1 MLP candidates training 

The selected modelling technique was the Multilayer Perceptron Ensemble (MLP 
Ensemble) (Hansen & Salamon, 1990). In accordance with Waters (1976), who firstly 
introduced the use of habitat suitability curves, the microhabitat suitability was desired to 
be standardised in a value ranging from zero to one, with zero (absence) being unsuitable 
and one (presence) fully suitable. Therefore, the hyperbolic tangent and linear 
transformation functions were used to build each of the MLP candidates. The MLP training 
was carried out in R (R Core Team, 2015) with the package monmlp (Cannon, 2012), 

which allows a versatile generation of different MLP architectures and optimizes the MLP 
weights using the non–linear minimization (nlm) routine (R Core Team, 2015). The number 

of neurons in the hidden layer was set to two because it represents an acceptable trade–

off between the bias and variance (Geman et al., 1992). 

In MLP Ensemble modelling each member of the committee (or ensemble) should 
complements each other, improving the predictive capability (Akhand & Murase, 2010), but 
differences between the members of the Ensemble are also advisable. There are a variety 
of ways to construct an MLP Ensemble with certain diversity between candidates; using 
different training sets, architectures or learning methods, although Bagging has been 
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demonstrated to be sufficiently effective for most of the situations (Opitz & Maclin, 1999; 
Brown et al., 2005; Akhand & Murase, 2010). Therefore each MLP was trained with the 60 
% randomly selected presence cases (52 cases), and considering that prevalence may 
have an strong effect on model performance with equal number of Absence cases (Manel 
et al., 2001), which were likewise randomly selected. Thus each training dataset had 104 
cases and 0.5 prevalence. The remaining cases were gathered in the validation dataset. It 
has been reported that the diversity among classifiers generally compensates for the 
increase in error rate of any individual classifier, both in the training and in the validation 
datasets (Opitz & Maclin, 1999). Therefore, no care was taken about the over–fitting and 
the training algorithm was left unconstrained. However, for the active selection of the 
considered MLPs in the Ensemble, it is advisable to analyse the error in training and 
validation for each of the ensemble members. Therefore we analysed the error that each 
member of the MLP Ensemble would commit on each training and validation datasets of 

the selected candidates. 

The objective function was the one that minimised the Mean Absolute Error (MAE). 
Additionally, the objective function included a penalty if the outcomes did not cover the 
whole considered range (i.e. from 0 to 1). The amount of trained MLPs was heuristically 

determined, because testing all the possible combinations of 0.5 Prevalence datasets was 
considered unaffordable. The number of trained MLPs was the one that produced stable 
MAE considering every trained MLP. Therefore, 2000 MLPs were trained and pooled. 
Finally, the classification strength of the developed MLP Ensembles was also considered, 
then the Sensitivity (i.e. ratio of presences classified as presences), the Specificity (i.e. 

ratio of absences classified as absences) and the global performance criterion True Skill 

Statistic (TSS) (Allouche et al., 2006) were also calculated. 

 

III.2.2.2 Forward selection of candidates 

Considering previous studies that applied this approach (Akhand & Murase, 2010; 
Lofstrom et al., 2010), the forward selection of the best combination of MLPs was carried 
out as follows: starting from each of the pooled MLP, the remaining were added one by 
one, and their predictions were averaged. The one that produced the largest improvement 
on the model performance (largest reduction of the MAE) was selected and the remaining 
MLPs were tried next following the same procedure. The process continued until no 

improvement of the objective function was obtained. 

 

III.2.2.3 Genetic Algorithms for candidates selection 

Genetic Algorithms (GA) comprise search and optimization algorithms that work based on 
the process of natural selection (Akhand & Murase, 2010) and they have proved proficient 
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for Network selection in the optimization of MLP Ensembles (Zhou et al., 2002b; Akhand & 
Murase, 2010). The optimization was carried out in R (R Core Team, 2015) by means of 
the rgenoud package (Mebane Jr & Sekhon, 2011). This function combines evolutionary 

algorithm methods with a derivative based (quasi–Newton) method to solve difficult 
optimization problems. Rgenoud presents 9 operators driving the optimization which 

correspond to: cloning, uniform mutation, boundary mutation, non–uniform mutation, 
polytope crossover, simple crossover, whole non–uniform mutation, heuristic crossover 
and local–minimum crossover (see Mebane Jr and Sekhon, 2011 for further details). 
These operators were set to, 0.5, 0.5, 0, 0, 0, 0.5, 0.1, 0.2 and 0 respectively. The 2000 
available MLPs were encoded in chromosomes of 2000 length bits. The population size 

was formed by 40000 individuals and 100 generations were considered. 

 

III.2.3 Graphical sensitivity analysis  

A graphical sensitivity analysis (Plate et al., 2000) was applied to investigate the effect of 
the input variables on the output. This methodology presents an easy interpretation and 
has been successfully applied in the analysis of several problems (Cannon & McKendry, 
2002). The graphical method uses modified scatter plots which permits the assessment of 
the effects of inputs on the output (see Cannon and McKendry, 2002 for a thorougly 
explanation). For each input variable (i), the variation of the model output due to variation 
of i (Δi) is calculated considering an arbitrary baseline (the mean value) and plotted as 
segments, with slope equal to the partial derivative of the model output with respect to Xi. 
The visualization of the partial derivatives as segments allows the identification of trends 
and types of non–linear relationships between each input variable and the output. The 

plots contain information about: 

1. The effect of input variables on the output. Variables with no effect on the model 

appear as horizontal lines. 

2. The variable importance, described by the overall Δi vertical range. The greater the 

overall Δi vertical range, the greater the influence of the variable on the model. 

3. The interaction with other variables, described by the spread of Δi along the y–axis. 

Variables with no interaction appear as single lines. 

4. Trends and non–linearity shown by trends and non–linearity of the derivatives. If the 

small segments describe curves, the function computed by the network is not linear. 

A dedicated example can be consulted at the end of the present chapter. 
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III.3 RESULTS 

III.3.1 Training results 

The Forward selection of MLPs showed a low value of the objective function 0.15 whereas 
the Genetic Algorithm (GA) provided a slightly higher value of 0.17 (Table 5). The whole 
MLPs set (the one without MLP selection) provided a larger value 74.00 whereas the best 
single net provided a value of 0.31. The Forward procedure selected 6 MLPs whereas the 
GA only 3. However, regarding the classificatory strength they did not differed substantially 
(Table 5) because sensitivity (Sn), specificity (Sp) and TSS were similar. Therefore, the 
MLP Ensemble developed by means of the Forward procedure was selected for the 
sensitivity analysis. The inspection of the errors distribution in training and validation 
showed differences (Fig. 12). However, considering that most of the data belonged to the 
validation dataset, it was finally considered acceptable; thus the difference was not 
extreme, even presenting a slight overlap, and the classificatory strength was high (Fig. 

12). 

 

Table 5. Results summary, Number of selected networks, Value of the Objective function 

(weighted aggregation of MAE), Sensitivity (Sn), Specificity (Sp) and TSS obtained using 

two approaches, the Forward method and the Genetic Algorithm 

 
Forward selection Genetic Algorithm 

Number of selected Nets 6 3 
Fitness 0.15 0.17 

Sensitivity 0.92 0.91 
Specificity 0.74 0.75 

True Skill Statistic 0.66 0.65 
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Fig. 12. Distribution of the training and validation Mean Absolute Errors (MAEs) committed 

by each of the selected datasets on every training and validation dataset. The optimal 

ensemble rendered by the forward approach encompassed 6 MLPs involving 36 training 

and 36 validation datasets. As expected, the selection of datasets with 0.5 Prevalence 

(104 cases) produced a larger error in validation, although it resulted in a relatively small 

overlap. 

 

III.3.2 Sensitivity analysis 

The sensitivity analysis (Fig. 13) showed that all the variables presented interactions 
because they presented a vertical spread at each of the considered values. Velocity 
showed a negative effect on the presence of Bermejuela, thus no positive values were 
observed beyond 0.2 m/s. Depth showed a positive effect on its presence, but shallow 
waters also presented positive effects due to some combinations with the remaining 
variables. Substrate showed a negative effect as it gets coarser, thus the larger positive 
effects corresponded to substrate index around 0. Cover presented the largest positive 
effect if present, but the increment on the suitability was mitigated as the amount of 
elements of cover increased. The ranking of variables showed that the most important 

variable was cover, followed by depth and velocity and lastly by substrate. 



MLP Ensembles & Bermejuela Chapter III 

 

54 

 

Fig. 13. Sensitivity analysis. Dashed line represents the base line corresponding to the 

mean value. The four considered variables showed interactions thus presented local and 

general spread. Red values represent the variable importance. The most important 

variable was cover. 

 

III.4 DISCUSSION 

The developed MLP Ensemble could be considered good and the results consistent for 
further applications. The microhabitat suitability model achieved higher values of the 
performance criteria than previous studies on freshwater fish at the micro–scale, 
specifically considering its classificatory strength (Mouton et al., 2008; Muñoz-Mas et al., 

2012). 

The results agreed previous studies (Zhou et al., 2002b), regarding that the active 
selection of the MLP Ensemble outperformed the inclusion of the whole set. However, the 
extreme difference observed (0.15 versus 74) could be certainly attenuated by 

constraining the overfitting to the training dataset. The results partially agree with previous 
studies where more straightforward methodologies outperform more complex algorithms, 
achieving at least similar performance (Akhand & Murase, 2010; Lofstrom et al., 2010). 
Theoretically the use of GAs is a proficient approach that allows testing alternatives that 
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could not be tested in the Forward procedure, and it has been recognized that relatively 
bad models can provide satisfactory results since errors are compensated (Opitz & Maclin, 
1999). However, the optimization problem was relatively simple whereas the searching 
space was too large. Therefore the Forward successfully searched for the best core of 
complementary MLPs eventually providing a lower MAE. The GA started from a broader 
searching space which hindered the achievement of better results. The main factors 
controlling the results derived from the rgenoud are the population size and the amount of 

generations (Mebane Jr & Sekhon, 2011), then an alternative will rely on the increment of 
that parameters, but the GA lapsed longer than the Forward procedure dissuading us from 
using this procedure. Recently the use of GA has been satisfactorily applied in the 
selection of MLPs (Wang & Alhamdoosh, 2013) following a different approach. In that 
study, the amount of MLPs in the ensemble was increased iteratively thus (Wang & 
Alhamdoosh, 2013) thus first the best pair of MLPs was found by means of GA, then the 
best trio, and so on. That approach could be faster than the Forward approach and the 
combinations would be not conditioned by previous steps. However, we considered that 
regarding the present problem the results shall not differ substantially. Nevertheless it 
should be thoroughly studied in future research. At this point we recommend the Forward 
methodology. However, other alternatives such as the negatively correlated MLPs 
Ensembles (Yao & Xu, 2006) or the aforementioned approach should be tested in order to 

determine without peradventure the prominence of a given methodology. 

Regarding the sensitivity analysis, the Bermejuela can be classified a shelter–orientated 
limnophilic species, because cover was the most important variable. The other relevant 
variables indicated the maximum suitability for slow and deep microhabitats, related with 
the natural local deposition of silt in the riverbed. The observed interactions corroborated 
the critics to the univariate approach, who stated that the consideration of each habitat 
variable independently would produce larger errors (Orth & Maughan, 1982). That occurs 
because fish, and Bermejuela as well, do not select the habitats based on single variables, 
but considering them as a whole. No examples of microhabitat suitability appear in the 
literature, but their status and distribution (Doadrio, 2002a) and some technical reports at 
the local level (Martínez-Capel et al., 2009, 2011). Therefore, the selected model is 
considered valuable in its application on restoration efforts, which should be encouraged 
because the Bermejuela has disappeared from some of the main streams of the Iberian 

Peninsula (Elvira, 1995). 
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III.5 GRAPHICAL SENSITIVITY ANALYSIS – EXAMPLE 

The following example originally appeared in Cannon and McKendry (2002) and has been 
adapted with illustrative purposes. The in silico problem states that a given phenomenon is 

affected by six different variables named from V1 to V6 (Equation 4). V1 and V2 interact and 
have a non–linear effect on the response (Y). V3 and V4 do not interact. The effect of V3 is 
parabolic whereas the one for V4 is linear. Finally V5 and V6 interact and have a linear 

effect on the response variable. 

 

M = 5 O sin�C	 O C
� + 20 O �CU − 0.5�
 − 10 O CW + 20 O CX O CY (Equation 4) 

 

The V1 and V2 interaction is characterized by the butterfly shape of the effects (similar to 
the one observed in Fig. 13) whereas the sinusoidal effect is observed through the pattern 

described by the plotted segments (Fig. 14).  

 

 
Fig. 14. Example of the effects plots for inputs to the function in Equation 4 

 

V3 and V4 are not involved in any interaction consequently they have a purely additive 
effect appearing as single lines, although some error derived from the modelling approach 
is observable (Fig. 15). The parabolic shape of the V3 effects fit its theoretical effect on the 

response whereas V4 presents a linear response.  
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Fig. 15. Example of the effects plots for inputs to the function in Equation 4 

 

Finally V5 and V6 present interactions consequently they present the butterfly–like shape of 
the effects (Fig. 16). However responses are linear therefore, in contrast to V1 and V2, the 

effects present a linear disposal. 

 

 
Fig. 16. Example of the effects plots for inputs to the function in Equation 4 
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IV. CAN MULTILAYER PERCEPTRON ENSEMBLES MODEL THE 

ECOLOGICAL NICHE OF FRESHWATER FISH SPECIES? 

 

ABSTRACT 

The potential of Multilayer Perceptron (MLP) Ensembles to explore the ecology of 
freshwater fish species was tested by applying the technique to redfin barbel (Barbus 

haasi Mertens, 1925), an endemic and montane species that inhabits the North–East 

quadrant of the Iberian Peninsula. Two different MLP Ensembles were developed. The 
physical habitat model considered only abiotic variables, whereas the biotic model also 
included the density of the accompanying fish species and several invertebrate predictors. 
The results showed that MLP Ensembles may outperform single MLPs. Moreover, active 
selection of MLP candidates to create an optimal subset of MLPs can further improve 
model performance. The physical habitat model confirmed the redfin barbel preference for 
middle–to–upper river segments whereas the importance of depth confirms that redfin 
barbel prefers pool–type habitats. Although the biotic model showed higher uncertainty, it 
suggested that redfin barbel, European eel and the considered cyprinid species have 
similar habitat requirements. Due to its high predictive performance and its ability to deal 
with model uncertainty, the MLP Ensemble is a promising tool for ecological modelling or 

habitat suitability prediction in environmental flow assessment. 

Keywords: Artificial neural networks, Barbus haasi, data mining, species distribution 

modelling, uncertainty analysis. 
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IV.1 INTRODUCTION 

Ecological models for the quantitative prediction of species distributions are key to 
understanding the realised niche of species and its implication for species conservation in 
relation to global change (Austin, 2007). Therefore, ecological models have increasingly 
received attention due to their wide management applications in the context of 
biogeography, conservation biology and climate change studies (Mouton et al., 2010). 
Many studies on ecological modelling have focused on explanation rather than prediction 
(Elith and Leathwick, 2009); however, differences in the life–history or in the gene flow of 
fish assemblages could result in different realised niches (Mouton et al., 2010). Abiotic 
factors, together with dispersal and biotic interactions, are often considered the three 
elements that shape the ecological niche by determining species distribution and 
abundance (Barve et al., 2011). However, ecological models have usually focused on 
abiotic factors only (Boulangeat et al., 2012), and very few studies in freshwater fish 
ecology have explicitly included biotic variables (Elith and Leathwick, 2009) to explore 
biotic interactions and consumer–resource dynamics (Soberón, 2007). The consideration 
of these three elements (i.e. abiotic, biotic and dispersal factors) do not allow for simple 

statistical analysis because the data collected often exhibit non–linear and complex data 
structures (Crisci et al., 2012). Consequently, there is a need for new and innovative 

approaches to understand the complex structure of living systems (Larocque et al., 2011). 

Several sophisticated modelling techniques have been applied in the ecological modelling 
of fish species, ranging from linear to multivariate and machine learning techniques such 
as Artificial Neural Networks (ANN) (Brosse and Lek, 2000, Muñoz–Mas et al., 2014, 
Palialexis et al., 2011). The most popular ANN architecture has been the Multilayer 
Perceptron (MLP) paradigm because it is considered to be able to approximate any 
continuous function (Olden et al., 2008). Formerly, MLP was referred to as a ‘black box’ 
because it provided little explanatory insight into the relative influence of variables in the 
prediction process (Olden and Jackson, 2002). To date, an enormous effort has been 
made to develop methods that clarify variable importance and interactions (Gevrey et al., 
2006, Lek et al., 1996, Olden and Jackson, 2002), and consequently, MLPs should no 

longer be treated as ‘black box’ models (Özesmi et al., 2006). 

There are several examples of single MLP applications in freshwater fish ecology (Park 
and Chon, 2007). For instance, MLPs have been successfully applied to model fish 
ecology through a broad range of ecosystems (Brosse and Lek, 2000, Gevrey et al., 2006, 
Kemp et al., 2007, Laffaille et al., 2003) and in some cases outperforming other statistical 
approaches (Baran et al., 1996, Lek et al., 1996). Despite those successful studies, it has 
been demonstrated that single models (e.g. a single MLP) do not necessarily perform 

consistently, resulting in divergent predictions (Buisson et al., 2010, Fukuda et al., 2011, 
Fukuda et al., 2013). The use of model ensembles has been emphasised to overcome this 
phenomenon (Araújo and New, 2007). The Multilayer Perceptron Ensemble (MLP 
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Ensemble, Hansen and Salamon, 1990) has proven to be proficient in several areas of 
ecology (Palialexis et al., 2011, Watts and Worner, 2008), but has rarely been applied in 

freshwater ecosystems (Muñoz–Mas et al., 2014). 

Fish communities in Mediterranean rivers are an interesting targets to develop these novel 
statistical approaches (Hopkins II and Burr, 2009), particularly communities dominated by 
cyprinids, as they are characterised by a high number of endemic species for which there 
is insufficient knowledge about their ecology (Ferreira et al., 2007). Furthermore, endemic 
species tend to facilitate a more robust analysis of species–environment relationships. In 
this paper, we focused on the redfin barbel (Barbus haasi Mertens, 1925), a rheophilic 

small barbel (maximum body–length 30 cm) that is endemic to the Iberian Peninsula 
(Bianco, 1998) and categorised as vulnerable (Freyhof and Brooks, 2011). Their 
populations have decreased markedly, with pollution and the presence of exotic species 
being the main factors involved in the decline (Perea et al., 2011). Although redfin barbel 
has been the subject of numerous studies addressing its life–history, home–range, habitat 
preferences and the effects of pollutants (Aparicio and De Sostoa, 1999, Aparicio, 2002, 
Figuerola et al., 2012, Grossman and De Sostoa, 1994), a knowledge gap remains on the 
impact of biotic variables such as the density of accompanying fish species or invertebrate 

predictors in its ecological niche. 

Therefore, the objective of this study was: (1) to test the proficiency of the MLP Ensembles 
to model the ecological niche of freshwater fish species, and (2) to test whether biotic 
variables affect the distribution of redfin barbel. To achieve these aims using MLP 
Ensembles, two different models of redfin barbel were developed. The first considered 

only physical habitat variables, the second included biotic and physical habitat variables. 

 

IV.2 METHODS 

IV.2.1 Data collection  

The study was conducted at the meso–scale in every summer, between 2003 and 2006. 
The study sites were located in the headwaters of the Ebron and Vallanca Rivers (Turia 
River tributaries), the Palancia River and the Villahermosa River (Mijares River Tributary) 
(Fig. 17) which approximately correspond to the southern limits of redfin barbel distribution 
(Perea et al., 2011). All the study sites were in unregulated streams and therefore a wide 
flow range was sampled (i.e. from 0.02 m3/s to 1.84 m3/s). For complete climatic 

description of the study area, see Alcaraz–Hernández et al. (2011) and Mouton et al. 

(2011). 
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Fig. 17. Location of the target river basins in the Iberian Peninsula (left) and study sites in 

the Mijares, Palancia and Turia River basins. 

 

IV.2.1.1 Physical habitat survey 

The physical habitat was assessed in every 300 m reach using an adaptation of the 
Basinwide Visual Estimation Technique (Dolloff et al., 1993). The approach stratifies the 
study site by HydroMorphological Units (hereafter called HMUs) classified as: pools, 
glides, riffles, and rapids (see Alcaraz–Hernández et al., 2011 for further details). Once an 
HMU was categorised, its physical attributes were recorded. They were, length, average 
width, obtained from three cross–sections corresponding to ¼, ½, and ¾ of the total 
length, mean depth (hereafter as depth), calculated from nine points corresponding to the 
measurements taken at each of the aforementioned cross–sections and the maximum 
depth, measured at the corresponding point. Percentage of shading over the channel, 
percentage of embeddedness, pieces of woody debris and percentage of the substrate 
types following a simplified classification from the American Geophysical Union (Martínez–
Capel et al., 2009, Muñoz–Mas et al., 2012) were visually estimated and summarised in 
the substrate index (Mouton et al., 2011). In addition, the cover index (García de Jalón and 
Schmidt, 1995) was determined. This index characterises the available refuge due to 
caves, shading, substrate, submerged vegetation and water depth by assigning six scores 
from 0 (no refuge) to 5 (maximum score), and the weighted aggregation of these scores 

produces an index range from 0 to 10 (Table 6). 

The river flow was gauged in at least one cross–section using an electromagnetic current 
meter (Valeport®), and flow velocity was calculated by dividing the flow by the average 
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cross–section area. Elevation and slope were extracted from cartography in a geographic 
information system, whereas habitat variability was estimated with the Shannon–Weaver 
diversity index, taking into account the number of habitat types (i.e. number of pools, 

glides, riffles or rapids) from the visual stratification of each study site (Table 6). 

 

IV.2.1.2 Biological survey 

The biological survey was undertaken by electrofishing, and all captured fish species were 
recorded. In each study site, one slow (i.e. pool or glide) and one fast (i.e. riffle or rapid) 

HMU were selected and surveyed (3–passes removal) after netting off the HMU. Due to a 
severe drought, some study sites were dry, resulting in 93 HMUs being sampled. Redfin 
barbel males are mature at approximately 45 mm, while females are mature at 100 mm 
(Aparicio, 2002), and therefore it was regarded as conservative to consider all specimens 
larger than 45 mm, resulting in a prevalence of 0.42. No size restrictions were imposed on 
the remaining fish species, and thus all the individuals were considered in the data analysis. 
Since the fish community varied across streams, the cyprinid species were grouped in a 
single variable (Table 7), and following previous studies fish densities were log(x+1) 

transformed (Brosse and Lek, 2000, Fukuda et al., 2011). 
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Table 6. Code, summary, units and description of the variables included in the MLP Ensemble models. 

Variable code Min. 1st Qu. Median Mean 3rd Qu. Max. Units Description 

River.Reach 1 4 8 8.108 12 16 – Study site code 
Year 2003 2004 2005 2005 2006 2006 – Date 

Meso.type 1 2 3 2.95 4 4 – Mesohabitat type 
Meso.diversity 0.2 0.62 0.7 0.68 0.76 0.99 – Reach mesohabitat diversity 

Length 8.6 19.1 24.36 26.92 31.5 54.7 m Length 
Width 1.26 3.43 4.79 4.66 5.83 8.8 m Width 
Depth 0.04 0.22 0.32 0.35 0.46 0.79 m Mean depth 

M.Depth 0.15 0.43 0.63 0.64 0.83 1.23 m Maximum depth 
Velocity 0.01 0.09 0.24 0.3 0.42 1.06 m/s Mean flow velocity 

Substrate 2.65 4.9 5.2 5.22 5.7 8 – Substrate index 
Embeddedness 0 0 15 29.35 50 100 % % mud covering substrate 

Cover 1 2.75 3.5 3.67 4.25 7.5 – Cover index 
Shadow 0 20 60 54.95 85 100 % % shading 

Wood.debris 0 0 0 0.01 0 0.16 pieces/m2 Woody debris 
Elevation 605 655 743 745.8 792 968 m Reach elevation above datum 

Slope 0.01 0.01 0.01 0.02 0.02 0.04 m/m Reach slope 
D.redfin 0 0 0 2.61 2.66 31.22 ind./100 m2 Density of Barbus haasi 

D.b.trout 0 1.32 4.48 11.19 16.12 86.47 ind./100 m2 Density of Salmo trutta 

D.eel 0 0 0 0.9 0 20.74 ind./100 m2 Density of Anguilla anguilla 

D.r.trout 0 0 0 3.64 2.18 42.58 ind./100 m2 Density of Oncorhynchus mykiss 

D.cyprinids 0 0 0 12.31 11.09 198.3 ind./100 m2 Cyprinids density 

Inv.density 0 1930 4680 7910 9590 56010 ind./ m2 Invertebrates density 
Inv.richness 0 16 19 18.55 22 34 – Invertebrates richness 
Inv.diversity 0 0.34 0.41 0.39 0.46 0.56 – Invertebrates diversity 

Inv.biomass 0 0 0.07 0.39 0.27 6.02 g/m2 Invertebrates biomass 
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Benthic invertebrates were collected with a Hess sampler (0.5 m2) following the 
International Standard ISO 8265:1988, official version of the European Standard EN 
29265 (January 1994). Samples were later identified to the lowest possible taxonomic 
level (predominantly at family level), sorted and counted to obtain the density of 
invertebrates. Specimens were dried in an oven at 65 ºC for 24 h and the dry residue was 
weighed to obtain invertebrate biomass. Finally, two additional predictors were derived: 
invertebrate richness (i.e. the sum of present taxa in each sample) and invertebrate 

diversity by applying the Shannon–Weaver diversity index based on the number of 

individuals per taxa at each sampled HMU (Table 6). 

 

Table 7. Fish community in the four rivers. The cyprinid fish community varied across 

rivers and was summarized in a single variable. 

Ebron Vallanca Palancia Villahermosa 
Salmo trutta 

Oncorhynchus mykiss 
Babus haasi 

Luciobarbus guiraonis 
Anguilla anguilla 

Salmo trutta 
Oncorhynchus mykiss 

Babus haasi 
Luciobarbus guiraonis 
Achondrostoma arcasii 

Salmo trutta 
Oncorhynchus mykiss 

Babus haasi 
Luciobarbus guiraonis 

Anguilla anguilla 

Salmo trutta 
Oncorhynchus mykiss 

Babus haasi 
Luciobarbus guiraonis 
Achondrostoma arcasii 

Squalius valentinus 
Anguilla anguilla 

 

IV.2.2 Models’ development 

The physical habitat and biotic models were developed by means of MLP Ensembles 

(Hansen and Salamon, 1990). 

The development of the optimal MLP Ensembles followed the overproduce–and–choose 
approach. This approach consists of the generation of an initial large pool of MLP 
candidate classifiers (overproduce) whereas the second phase is devoted to select the 
best performing subset of MLPs (choose). The choose phase was performed by means of 
the step–forward algorithm. Thus, starting from every MLP candidate classifier the best 
complementary MLP candidate is iteratively searched until no improvement in the Mean 

Squared Error (MSE) was achieved (Fig. 18 A).  

To render parsimonious models, the optimal input variables’ subsets for both models were 
also selected by means of the step–forward algorithm. First, the best pair of input variables 
was determined by developing a MLP Ensemble for every uncorrelated pair following the 
aforementioned procedure and then this pair became the base for the following step 
forward variable selection. The algorithm continued until no more variables were available 
and the selected model was the one with the lowest number of variables and error. Finally, 
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in order to rule out overfitting, we visually estimated differences between the distributions 

of the MSE based on the training and validation datasets of the selected MLPs (Fig. 18 B). 

 

 

Fig. 18. Flowchart of the steps followed in the development of the physical habitat and 

biotic models. 

 

IV.2.2.1 Multilayer Perceptron Ensemble development 

Building a MLP Ensemble involves training several individual models (MLPs) and 
combining them to produce aggregated predictions (Hansen and Salamon, 1990). The 
construction of the individual models (hereafter MLP candidates) was carried out in R (R 
Core Team, 2015) with the package monmlp which optimises the model weights using the 
non–linear minimisation (nlm) routine (Cannon, 2012). The activation functions were the 

hyperbolic tangent and the linear transformation, while the number of nodes was restricted 

to improve generalisation (Özesmi et al., 2006) following equation 5. 

 

Z�),'. = max �]1, ^�5H_I4J E� 9KJ7KID46 +  1�/2`a� (Equation 5) 
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The aggregated forecast was determined by averaging the individual predictions of each 
selected model. Since model training depends on initial conditions, every MLP candidate 

was optimised five times with 500 iterations each.  

Heterogeneity, or diversity, between MLP candidates is crucial because MLP Ensembles 
achieve better generalisation when models are complementary (Opitz, 1999). Several 
approaches allow for the construction of an MLP Ensemble with heterogeneous 
candidates, such as using different training datasets, architectures or learning methods 
(Brown et al., 2005). To increase heterogeneity among models, the database was divided 
in 63 different training and validation datasets corresponding to all possible combinations 
of 66 % of the cases for training, and 33 % for validation (i.e. following the k–fold 

approach). Consequently, 63 different MLP candidates were trained for every tested 

combination of input variables. 

Originally the MLP Ensembles included all the developed models (Hansen and Salamon, 
1990), but it was promptly demonstrated that active selection of the MLP candidates 
improved the final predictions (Opitz and Shavlik, 1996, Zhou et al., 2002). There are 
several methods to apply the overproduce–and–choose approach (Soares et al., 2013, 
Wang and Alhamdoosh, 2013, Yao and Xu, 2006, Zhou et al., 2002), but to our knowledge 
those sophisticated methods have not been coupled to a variable selection procedure. 
Consequently, we applied a step–forward selection of the MLP candidates which has been 
proved to perform similarly to more complex algorithms (Muñoz–Mas et al., 2014). Our 
step–forward selection was run starting from each of the 63 MLP candidates, searching for 
the best combination and stopping when no improvement was achieved. This was in 
contrast to the usual step–forward routine where the procedure would start from the best 

single model. 

Since the optimal MLP Ensemble may not include all the MLP candidates, the observed 
performance could be affected by overfitting because the selected models may be trained 
only with some parts of the training database. Therefore the role of test data was twofold; 
first we applied an a priori regularisation method with the early stop regularisation (sensu 

Ludwig et al., 2014) by calculating the MSE on the validation dataset every 100 iterations 
of the nlm routine and then we visually estimated for each selected MLP differences 

between the distributions of the MSE based on the training and validation datasets of all 
the selected MLPs. In the case of dissimilar distributions, the number of nodes and the 
number of iterations ran between calculations of the MSE on the validation dataset were 

readjusted.  

To allow for the comparison with previous studies that either included all trained networks 
(Palialexis et al., 2011) or based the model selection on a ranking of the individual 
performances, including the top MLPs (Watts and Worner, 2008), the MSE of the best 
MLP candidate and of the MLP Ensemble Complete (i.e. the one without any models’ 
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selection) and then for the best five, ten and fifteen models were calculated and compared 

with our optimal MLP Ensembles. 

 

IV.2.2.2 Variable selection 

To identify the most important variables shaping the ecological niche, for both models an 
input variable subset was selected based on the step–forward procedure because it has 
proven computationally efficient and tends to result in relatively small input variables’ 
subsets (May et al., 2011). In contrast to some other approaches (e.g. Generalised 

Additive Mixed Models, Lin and Zhang, 1999) the MLP Ensemble approach does not 
specifically allow for the consideration of spatial or temporal autocorrelation among training 
data. To rule out any influence of study site and sampling year, they were included as 
input variables (Table 6). Their absence on the ultimate models would indicate their 
irrelevance, thus corroborating the properness of the data packing. In addition, to render 
parsimonious models, instead of the usual step–forward procedure that discontinues when 
no improvement is achieved, the procedure was sustained until no more variables were 
available. The performance of the best model (MLP Ensemble) and the number of 
variables considered at every iteration were rescaled between 0 and 1 (1 being optimal), 
with the optimal MLP Ensemble being the one that maximised the sum of both criteria. The 
step–forward procedure may fail to consider variable interactions and may depend on the 
variable that was selected first. To overcome this limitation, one model was developed for 
each pairwise combination of variables. The best pair of variables was selected as the 
starting set of variables in the step–forward procedure. Additionally, during the entire 
process, neither correlated (r2 > 0.5) nor collinear (variable inflation factor; vif > 5) 

combinations of variables were considered. Since the input database was a combination of 
ordinal and continuous variables, the function hetcor in the package polycor (Fox, 2010) 

was used to calculate the variables’ correlation. 

 

IV.2.3 Partial dependence plots and uncertainty analysis  

Model reliability and transparency is of major concern for ecological modelling (Austin, 
2007, Guisan and Thuiller, 2005, Özesmi et al., 2006) and is fundamental when models 
are used with exploratory purposes. Therefore, to graphically characterise the relationship 
between the input variables and the predicted densities obtained by the optimal MLP 
Ensembles, partial dependence plots (Friedman, 2001) implemented in the package 
randomForests (Liaw and Wiener, 2002) were developed. 

The importance of dealing with uncertainty has been stressed as a key challenge in 
ecological modelling (Larocque et al., 2011). Consequently, partial dependence plots were 
developed also for every model in the optimal MLP Ensemble, and the function 
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densregion.normal in the package denstrip (Jackson, 2008) was used to visually inspect 

the uncertainty associated to the MLP aggregation in comparison with the input variable 

distribution. 

 

IV.3 RESULTS 

IV.3.1 Training results 

The optimal physical habitat model included five variables (three nodes): elevation, 
embeddedness, depth, slope and cover (Fig. 19) with a maximum correlation of 0.33 and a 
variable inflation factor of 1.41. The optimal biotic model also included five variables (three 
nodes): density of eel, cyprinids’ density, width, invertebrates’ density and cover (Fig. 19) 
with a maximum correlation of 0.38 and variable inflation factor of 1.51. In addition, the 
spatiotemporal correlation was considered negligible since study site and sampling year 
were not selected as inputs in the ultimate models (i.e. the physical habitat and the biotic 

models). 

 

 

Fig. 19. Sequence of the variable selection during the step–forward procedure to develop 

the MLP Ensemble (from left to right). The plots show the Mean Squared Error, MSE, in 

function of the number of variables. The circle indicates the selection of the optimal model. 

 

Although the two models showed similar performance (i.e. similar values of the Mean 

Squared Error, MSE) and the relatively large amount of zeros in the training dataset 
slightly biased their outputs, the biotic model slightly outperformed the physical habitat 

model with MSE of 0.12 and 0.13 respectively (Fig. 20 & Table 8). 

The physical habitat model selected 15 MLPs. Consequently, 15 training datasets and 15 
validation datasets were involved in its development. Cross–evaluation (i.e. the evaluation 
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of every training and validation dataset with every selected MLP candidate) showed that 
MSEs were distributed equally for the training and the validation datasets (Fig. 21), and 
therefore we considered the physical habitat model not overfitted. The biotic model 
selected eight MLPs, with eight training and validation datasets involved in the 
development of the selected MLPs. Likewise, the distribution of the training and validation 

MSE clearly overlapped, and therefore the biotic model was also considered not overfitted. 

The best MLP candidate, the MLP Ensemble Complete (i.e. considering all sixty three 

MLPs) and the top five, top ten and top fifteen MLPs yielded higher MSEs than the optimal 
MLP Ensembles. The highest difference appeared between the MLP Ensemble Complete 

and the optimal physical habitat model (Table 8). 

 

 

Fig. 20. Relation between the observed and predicted values of the optimal MLPs. The 

optimal physical habitat and biotic models show transformed output. 
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Fig. 21. Frequency analysis of the Mean Squared Error (MSE) of the selected MLP 

candidates based on the corresponding training and validation datasets. 

 

Table 8. Mean Squared Error (MSE) of the best MLP candidate, the optimal MLP 

Ensemble, the MLP Ensemble Complete (considering all MLPs; 63) and of the top five, top 

ten and top fifteen MLP. The amount of considered networks appears in brackets. 

Model Physical habitat model Biotic model 
Best MLP candidate 0.31 (1) 0.27 (1) 

Optimal MLP Ensemble 0.14 (15) 0.13 (8) 
MLP Ensemble Complete 0.95 (63) 0.31 (63) 

Top MLP – 1 to 5 0.23 (5) 0.19 (5) 
Top MLP – 1 to 10 0.21 (10) 0.18 (10) 
Top MLP – 1 to 15 0.18 (15) 0.18 (15) 

 

IV.3.2 Partial dependence plots – physical habitat model  

The optimal physical habitat model showed a unimodal response between redfin barbel 
density and elevation, with a maximum density at 738 m above sea level. Embeddedness 
showed an almost flat trend but an exponential increase from 75 % onwards. Depth 
showed a steep positive linear trend, thus suggesting the major impact among the 
selected variables, whereas slope and cover were negatively and almost linearly related to 
redfin barbel density. As expected, uncertainty was higher at the extremes of the variables’ 

distributions and therefore trends at these extreme values could be unreliable (Fig. 22). 
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Fig. 22. Partial dependence plots of the physical habitat model (black line). Light lines 

(Blue lines on the e–version) correspond to the partial dependence plot of every selected 

MLP candidate. Faded background corresponds to uncertainty analysis based on mean 

and standard deviation of predictions, and the darker the colour the smaller the 

uncertainty. 

 

IV.3.3 Partial dependence plots – Biotic model  

The optimal biotic model showed a positive linear relation between eel and redfin barbel 
densities. Cyprinids’ density presented a unimodal response with the peak around 4 
individuals/100 m2. Width showed an almost positive linear influence on redfin barbel 
density whereas invertebrates’ density presented a unimodal response inflecting at 21718 
individuals/ m2. Likewise the physical habitat model cover presented a linear trend but with 
smaller uncertainty and slope. Uncertainty was higher than in the physical habitat model 
although it presented a similar pattern with the extreme values being more uncertain than 

the central part of the input variables’ distributions (Fig. 23).  
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Fig. 23. Partial dependence plots of the biotic model (black line). Light lines (Blue lines on 

the e–version) correspond to the partial dependence plot of every selected MLP candidate. 

Faded background corresponds to uncertainty analysis based on mean and standard 

deviation of predictions, and the darker the colour the smaller the uncertainty. 

 

IV.4 DISCUSSION 

IV.4.1 MLP Ensemble development 

Our results indicated that the MLP Ensemble paradigm can be considered proficient to 
model the ecological niche of freshwater fish species, in line with previous studies that 
modelled fish density with neural networks (Baran et al., 1996, Brosse and Lek, 2000, 
Laffaille et al., 2003). The presented optimal models also outperformed any single MLP, 
which agrees with previous research (Palialexis et al., 2011). We also demonstrated that 
active selection of MLP candidates to create an optimal subset can further improve MLP 
Ensembles’ performance. This is consistent with Zhou’s et al. (2002) statement that “many 

could be better than all”. Moreover, our candidates’ selection approach resulted in a better 

performance in contrast with the selection approach based on the individual performance 
(i.e. top five, ten and fifteen). We recommend this procedure in contrast to previous studies 

that selected the best subset based on the individual performance of the MLPs (Watts and 
Worner, 2008). However, our step–forward process is determined by the first selected 
model, and despite the fact that the procedure started from every single neural network, 
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the possibility to get stuck at a local minimum exists. Therefore, untested combinations of 

models could outperform those obtained by the step–forward algorithm. 

Genetic algorithms may overcome the aforementioned constraints (Soares et al., 2013, 
Wang and Alhamdoosh, 2013). There are successful applications of genetic algorithms in 
variable selection procedures (May et al., 2011, Olden et al., 2008) and also within the 
selection of optimal MLP Ensembles (Soares et al., 2013, Wang and Alhamdoosh, 2013). 
Although the use of genetic algorithms for both variable selection and MLP candidates’ 
selection could exponentially increase the computation effort, this approach is certainly 

promising and should be the subject of future research. 

The effect of the relatively large amount of zeros in the training dataset was a remarkable 
issue and slightly biasing models’ outputs. There are specific techniques in count data 
modelling to deal with excess of zeros with either parametric (Mullahy, 1986, Lambert, 
1992) and non–parametric (Liu and Chan, 2010) responses. Certainly the comparison of 
the capability of MLP Ensembles and these techniques in ecological modelling would be of 
interest, although these techniques by definition do not easily account for variable 
interactions and thus do not easily assure better performance. Nevertheless, our results 
were considered satisfactory since they provided an acceptable balance between model 
complexity, performance and computational effort, and they were devoted to explore rather 

than to predict fish density in further analysis. 

 

IV.4.2 Ecological relevance of the physical habitat model 

The optimal physical habitat model included five variables: elevation, slope, depth, 
embeddedness and cover. Elevation is broadly accepted as a proximal predictor of 
temperature (Elith and Leathwick, 2009), and consequently we considered that it may 
reflect the effect of climate on redfin barbel distribution. Similarly, the negative trend of 
redfin barbell density versus slope agrees with its preference for middle–to–upper stream 
reaches of mountainous rivers (Perea et al., 2011). The positive impact of depth 
corresponds with previous studies that considered the redfin barbel a pool dweller 
(Aparicio and De Sostoa, 1999). Our results may also suggest the importance of 
backwaters or stagnated areas as resting habitats. This could also explain the positive 
relationship between redfin barbell density and embeddedness, since pool substrates are 
generally more embedded. Despite the negative relationship between cover and redfin 
barbel density in our study, some authors classified the redfin barbel as a shelter–
orientated fish (Grossman and De Sostoa, 1994). Aparicio (2002) reported the active use 
of cover in an ephemeral river but related its use to the absence of deep pools in this 
specific river, rather than to a redfin barbel preference for cover. Our study suggests that in 
more complex river systems with well–developed pool–riffle patterns, redfin barbel may 

tend to avoid excessive cover complexity. 
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IV.4.3 Ecological relevance of the biotic model 

In contrast to previous studies (Vezza et al., 2015, Watts and Worner, 2008) where the 
combination of physical habitat and biotic variables outperformed the model developed 
only with physical habitat variables, our biotic model did not significantly perform better 
than the physical habitat model. Moreover, uncertainty was higher in the biotic model, 
which underlines the previously reported complexity related to the assessment of biotic 
interactions (Leathwick and Austin, 2001). Although larger datasets may reduce this 
uncertainty, our study nevertheless suggests interesting and plausible relationships. In 
addition, the observed associations between biotic variables and red fin density agreed 
with the ecological gradient theory because responses were quasi–linear or unimodal 

(Austin, 2007).  

The biotic model demonstrated a positive association between redfin barbel and European 
eel, which confirms the work of Laffaille et al. (2003). They modelled eel habitat suitability 
in a small coastal catchment with a single MLP. Eels were more abundant in deep and low 
flow shaded areas without aquatic vegetation (Laffaille et al., 2003). Such a pattern 
broadly concurs with the requirements of redfin barbel. Also the suggested relationship 
between redfin barbel and cyprinids corresponds with previous studies on the Iberian 
Peninsula that reported the presence of multi–species shoals as well as an overlap in 
microhabitat use (Martínez–Capel et al., 2009). Fish schooling benefits include the 
enhancement of hydrodynamics and the protection against predators (Landa, 1998). 
Moreover, similar positive interactions with cyprinid species have been reported for Iberian 
chub (Squalius pyrenaicus, Günther, 1868) and eastern Iberian barbel (Luciobarbus 

guiraonis, Steindachner, 1866) (Vezza et al., 2015). This indicates that restoration actions 

focused on redfin barbel could also result in habitat enhancement for other cyprinid 

species.  

Although previous work positively correlated invertebrate density to fish density (Mas–
Martí et al., 2010), our results show a maximal redfin barbel density at 21718 
individuals/m2. This could be related to food availability. However, the preferred prey 
invertebrates of redfin barbel (i.e. Chironomidae, Ephemeroptera and Trichoptera following 

Miranda et al., 2005) were strongly correlated with the invertebrate density applied in our 
model. Therefore, we attributed the avoidance of the higher invertebrate densities to a 
habitat correlation. Previous studies suggested that in Mediterranean rivers, with very 
unstable climatic conditions, riffles tend to host higher invertebrate density than pools 
(Bonada et al., 2006). Therefore the decrement of the partial dependence plot could be 
showing the necessity for larger depth rather than a preference for intermediate 
invertebrate densities. Nevertheless, the discrepancy between our results and the 
literature can also be a consequence of the applied model complexity (e.g. linear versus 

non–linear models), and the impact of model complexity should be thoroughly analysed in 
further studies modelling the relationship between invertebrate and fish density. The biotic 



Redfin barbel’s ecology & MLP Ensembles Chapter IV 

 

76 

model also selected two physical habitat variables, cover index and width, and the 
relationship with cover index being similar to that shown in the physical habitat model. The 
positive association between redfin barbel density and width may be attributed to the 
negative correlation between width and elevation, in line with the aforementioned redfin 
barbel preference for middle–to–upper stream reaches, but with a slightly different 

response because the study encompassed four different rivers. 

Although the biotic model appears to suggest interactions between redfin barbel and other 
species, significant positive or negative correlations between species does not imply a 
causative effect (Wisz et al., 2013). A simple correlation does not mandatorily correspond 
to any species interaction, neither mutualism nor facilitation, and therefore further research 
should clarify the true impact of species interactions. Furthermore, changes in the habitat 
available may result in a substantial increment in the competition between species (Wisz 
et al., 2013). The cyprinids density partial dependence plot showed a decrement at the tail 
of the curve. Therefore, in spite of being uncertain, it could suggest that, under different 
habitat conditions than those in our study, the positive interaction with cyprinid fish species 
may become habitat competition, thus emphasising the necessity of close monitoring in 

the near future to avoid ecological loss. 

 

IV.4.4 Model uncertainty  

Relatively few studies address uncertainty in ecological modelling and its effects on model 
predictions and decision making (Elith and Leathwick, 2009). In accordance with previous 
studies (Peters et al., 2009), the largest uncertainty tended to appear in the regions of the 
input variables that were poorly represented in the training database. In contrast to the 
high uncertainty demonstrated by the different MLP candidate predictions, the optimal 
MLP Ensembles produced sound and smoother partial dependence plots that allowed 
general trends to be derived from a wide range of model outputs. This has been stimulated 
by three approaches applied in our study. First, the bias and variance dilemma (Geman et 
al., 1992) was addressed by limiting model complexity (i.e. limiting the number of nodes 

and variables), leading to less complex models than in previous studies (Dedecker et al., 
2004, Lek et al., 1996). Second, the early stop regularisation considered the errors 
committed on the training and validation datasets (Ludwig et al., 2014). Third and most 
importantly, we assessed overfitting by checking whether species responses to 
environmental variables were consistent with the ecological gradient theory (Austin, 2007). 
Inconsistent model results would have suggested a more restrictive modelling approach by 
limiting model complexity or adjusting the early stop parameters. Uncertainty could also 
arise when samples from different periods are combined, since fish density is a density–
dependent phenomenon (Mas–Martí et al., 2010); however, the sampling year was not 
selected as an important variable in the optimal MLP Ensembles. The results from our 
study suggested that temporal packing can be considered admissible when focusing on a 
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short time span and consequently it can be concluded that MLP Ensembles can be used 

to model the ecological niche of freshwater fish species. 
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V. ON SPECIES DISTRIBUTION MODELLING, SPATIAL 

SCALES AND ENVIRONMENTAL FLOW ASSESSMENT WITH 

MULTI–LAYER PERCEPTRON ENSEMBLES: A CASE STUDY 

ON THE REDFIN BARBEL (Barbus haasi; MERTENS, 1925) 

 

ABSTRACT 

Inconsistent performance of Species Distribution Models (SDMs), which may depend on 
several factors such as the initial conditions or the applied modelling technique, is one of 
the greatest challenges in ecological modelling. To overcome this problem, ensemble 
modelling combines the forecasts of several individual models. A commonly applied 
ensemble modelling technique is the Multi–Layer Perceptron (MLP) Ensemble, which was 
envisaged in the 1990s. However, despite its potential for ecological modelling, it has 
received little attention in the development of SDMs for freshwater fish. Although this 
approach originally included all the developed MLPs, Genetic Algorithms (GA) now allow 
selection of the optimal subset of MLPs and thus substantial improvement of model 
performance. In this study, MLP Ensembles were used to develop SDMs for the redfin 
barbel (Barbus haasi; Mertens, 1925) at two different spatial scales: the micro–scale and 

the meso–scale. Finally, the potential of the MLP Ensembles for environmental flow (e–
flow) assessment was tested by linking model results to a hydraulic model. MLP 
Ensembles with a candidate selection based on GA outperformed the optimal single MLP 
or the ensemble of the whole set of MLPs. The micro–scale model complemented 
previous studies, showing high suitability of relatively deep areas with coarse substrate 
and corroborating the need for cover and the rheophilic nature of the redfin barbel. The 
meso–scale model highlighted the advantages of using cross–scale variables, since 
elevation (a macro–scale variable) was selected in the optimal model. Although the meso–
scale model also demonstrated that redfin barbel selects deep areas, it partially 
contradicted the micro–scale model because velocity had a clearer positive effect on 
habitat suitability and redfin barbel showed a preference for fine substrate in the meso–
scale model. Although the meso–scale model suggested an overall higher habitat 
suitability of the test site, this did not result in a notable higher minimum environmental 
flow. Our results demonstrate that MLP Ensembles are a promising tool in the 

development of SDMs for freshwater fish species and proficient in e–flow assessment. 

Keywords: Artificial neural network, genetic algorithm, Iberian Peninsula, Mediterranean 

river, meso–scale, micro–scale. 
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V.1 INTRODUCTION 

Species distribution models (SDMs) play a significant role in understanding habitat 
requirements of fish species, providing a framework from which spatial and temporal 
distribution patterns can be predicted (Olden et al., 2008). Thereby SDMs are useful tools 
to select cost–efficient restoration or management actions (Mouton et al., 2010). To date, a 
wide range of SDMs is available, encompassing several modelling techniques. Examples 
include Generalized Additive Models (Fukuda et al., 2013), Fuzzy Rule Base Systems 
(Mouton et al., 2011), or Artificial Neural Networks (ANNs) – most commonly Multi–Layer 
Perceptrons (MLPs) – (Olaya–Marín et al., 2012). All these techniques are typically 
applied to generate a single monolithic SDM, which often has proven to be sufficient for 
ecological modelling (Olden et al., 2008). The MLP paradigm, for instance, has been 

widely used due to its high predictive performance and its versatility to cope with different 
kinds of datasets (Olden et al., 2008, Olaya–Marín et al., 2012, Fukuda et al., 2013). 
Therefore, there are successful examples of single MLPs modelling fish habitat 
requirements at different scales, from the micro–scale (Brosse and Lek, 2000, Gevrey et 
al., 2006, Laffaille et al., 2003) to the macro–scale (Olaya–Marín et al., 2012) while at the 
meso–scale some studies have demonstrated that a single MLP can outperform other 
statistical approaches (Baran et al., 1996, Lek et al., 1996). Yet, many real–world 
problems, like demonstrated for marine ecosystems (Meier et al., 2014), are too large and 
too complex for a single monolithic model (Yao and Xu, 2006). Moreover, SDMs may not 
perform consistently and even provide discrepant predictions, depending on several 
factors such as the initial model conditions or the applied modelling technique (Thuiller et 

al., 2009, Fukuda et al., 2013). 

To deal with these inconsistencies, ensemble modelling is now an emerging field of 
research in ecological modelling (Araújo and New, 2007). Ensemble modelling is based on 
the minimization of the error through the integration of several models by combining their 
different predictions into a single forecast. Despite their promising potential for species 
distribution modelling, only few applications of ensemble modelling have been reported, 
including an example combining several different techniques to develop SDMs for fish 
species (Thuiller et al., 2009). To date, Random Forests is the only ensemble modelling 
technique that could be considered widespread (Mouton et al., 2011, Fukuda et al., 2013, 
Mostafavi et al., 2014). Although the ANN ensemble modelling counterpart, the MLP 
Ensemble, was conceived more than twenty years ago (Hansen and Salamon, 1990) and 
may have the same potential as Random Forests, it has been rarely applied in fish SDMs 
so far (e.g. Muñoz–Mas et al., 2014a, 2015, 2016). Originally MLP Ensembles included all 

trained MLPs (Hansen and Salamon, 1990) but it was soon demonstrated that active 
selection of the considered MLPs improved the final predictions (Wang and Alhamdoosh, 
2013), and that Genetic Algorithms (GA) were appropriate for this selection (Soares et al., 

2013, Wang and Alhamdoosh, 2013). 
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Therefore, the present study developed SDMs for the redfin barbel (Barbus haasi Mertens, 

1925) with GA–optimised MLP Ensembles. The redfin barbel is a small rheophilic barbel 
mainly inhabiting middle–to–upper stream reaches of mountainous rivers. Although redfin 
barbel occurs in the North–East quadrant of the Iberian Peninsula, its distribution area has 
been halved mainly due to pollution and the presence of invasive species (Aparicio, 2002, 
Perea et al., 2011). Thus, it is a particularly suitable target species for development and 
testing for these models since it is considered threatened in the Mediterranean region 
(Freyhof and Brooks, 2011), but a sustainable extant population is still present in our study 
area. From the ecological viewpoint, the redfin barbel is considered a cover–orientated fish 
(Grossman and De Sostoa, 1994) preferring deep and slow–flowing pools with abundant 

cover (Aparicio and De Sostoa, 1999). 

In environmental flows (e–flow) assessment the instream habitat has been typically 
evaluated at the micro–scale (few m2 of the instream area) using data and SDMs 
concordant with the scale (Conallin et al., 2010). The micro–scale SDMs have 
demonstrated proficient ability to predict fish location (e.g. Muñoz–Mas et al., 2014) and 

accordingly, this scale is specified in the Spanish norm for hydrological planning as the 
legal standard in e–flow assessment (MAGRAMA, 2008). However, the use of the micro–
scale has been criticized for being time–consuming (Parasiewicz, 2001) and for 
emphasizing cross–sectional variation over the longitudinal one (Vezza et al., 2012). 
Consequently, some studies highlighted the benefits of the meso–scale – which typically 
correspond with Hydro–Morphological Units (HMUs) such as pools, riffles or rapids – 
among the possible spatial scales that can be used to analyse fish habitat requirements 
(Costa et al., 2012; Vezza et al., 2015). Using the meso–scale it is possible to describe the 
environmental conditions around an aquatic organism, even using biotic predictors, and 
not only limiting the analysis to the point where fish were observed (Vezza et al., 2015). 
Therefore, meso–scale models demonstrated great ability to properly relate the habitat–
suitability predictions and fish presence (Parasiewicz & Walker, 2007). However, more 
research is needed to dispel any doubt about the advisability of the meso–scale over the 

micro–scale one and about significant differences in e–flow assessment. 

In this paper, we hypothesized i) that the spatial scale affects the SDMs performance and 
structure and ii) that these differences may lead to differences in the assessed e–flows. 
We developed models at two different scales; the micro–scale and the meso–scale. Once 
models were developed, a graphical sensitivity analysis was performed to compare our 
results with previous literature. To evaluate the practical applicability of these models, the 
two SDMs were linked with a hydraulic model to infer e–flows. Finally, the merits and 

demerits of our models and differences in the e–flow assessment are briefly discussed. 
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V.2 METHODS 

V.2.1 Micro–scale data collection 

The presence of adult redfin barbel (body length > 5 cm) (Aparicio, 2002) 'feeding' or 
'holding a feeding position' (i.e. active specimens) was observed by snorkelling in the 

Mijares River (Jucar River Basin District, east of the Iberian Peninsula) during the early 
summer of 2012 (Fig. 24). The survey included the area covered by the hydraulic model 
(Fig. 24) and we surveyed complete HMUs classified as: pools, glides, riffles, and rapids, 
by selecting a similar area of slow (pools and glides) and fast (riffles and rapids) HMUs 
(Alcaraz–Hernández et al., 2011). Four abiotic variables were measured in cross–sections 
randomly distributed over each HMU: mean water velocity (velocity), water depth (depth), 
the substrate composition (substrate) and the presence of several types of cover (cover) 
because these variables have been reported to be the most relevant for fish distribution at 
the micro–scale (Gibson, 1993). Velocity and depth were measured with an 
electromagnetic flow velocity meter (Valeport®, UK) and a wading rod, respectively. Both 
substrate and cover were visually estimated. The substrate was classified in bedrock, 
boulders, cobbles, gravel, fine gravel, sand, silt and macrophytes (Muñoz–Mas et al., 
2012), and the percentages of the different substrate types were summarized in a single 
substrate index (Mouton et al., 2011). The considered types of cover were large boulders, 
undercut banks, woody debris, roots, shade (intense) and vegetation, and the number of 
different cover types present at each location was summed to calculate the cover index 
(e.g. no cover = 0, boulders + undercut banks = 2, etc.) (Table 9). The initial dataset 

included 92 presences, and 341 instances where redfin barbel was absent, resulting in a 

data prevalence (proportion of presence data in the entire dataset) of 0.21. 

 

Table 9. Code, summary, description and units of the variables included in the micro–

scale MLP Ensemble. 

Code Min. 1st Qu. Median Mean 3rd Qu. Max. Variable & units 
Velocity 0.00 0.29 0.60 0.59 0.86 2.13 Mean water velocity [m/s] 
Depth 0.09 0.38 0.54 0.60 0.75 2.75 Water depth [m] 

Substrate 1.00 5.00 5.00 5.12 5.56 8.00 Substrate index [–] 
Cover 0.00 0.00 0.00 0.36 1.00 3.00 Cover index [–] 
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Fig. 24. Location of the target river basins in the Iberian Peninsula (upper–right corner) 

and study sites in the Mijares, Palancia and Turia River basins. 

 

V.2.2 Meso–scale data collection 

Electrofishing surveys for adult redfin barbel were conducted every summer between 2003 
and 2006 in the headwaters of four rivers in the Jucar River Basin District: the Ebrón River 
and the Vallanca River (both tributaries of the Turia River), the Villahermosa River (a 
Mijares River tributary) and the Palancia River (Fig. 24). Note that the micro–scale study 
site was not included in the four meso–scale study sites, although it encompassed the 
segment of the hydraulic model. Four study sites per river were surveyed following an 
adaptation of the Basinwide Visual Estimation Technique (BVET, Dolloff et al., 1993; for 
additional details, see Alcaraz–Hernández et al. (2011) and Mouton et al. (2011)). Two 

HMUs per reach, one slow HMU (pool or glide) and one fast HMU (riffle or rapid), were 
sampled and, in addition to the HMU type, 13 abiotic habitat variables were assessed in 
each HMU: length, mean width, mean depth, maximum depth, the percentage of shading, 
the percentage of embeddedness, the density of woody debris, the substrate index 
(following the aforementioned classification), the cover index, mean flow velocity, the 
elevation and slope of the reach and the habitat variability. Length and mean width were 
measured with tape. Width was measured three times at cross–sections located at ¼, ½, 
and ¾ of the total HMU length whereas depth was measured with a wading rod in three 
uniformly distributed locations per cross–section. For each HMU, depth measurements 
were then averaged to obtain mean depth and the maximum depth was measured in the 
corresponding location. The percentage of shading, the percentage of embeddedness (i.e. 

the percentage of the HMU area covered by silt), the number of woody debris particles and 
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the substrate classification were visually estimated. The number of woody debris particles 
was divided by the HMU area to obtain the density of woody debris. The cover index was 
calculated as a weighted aggregation of scores assigned to the presence of undercut banks, 
shade, large substrate, submerged vegetation and the mean depth (García de Jalón and 
Schmidt, 1995). The river flow at the time of the survey was gauged with an 
electromagnetic flow velocity meter (Valeport®, UK) and the mean flow velocity was 
calculated by dividing the gauged flow by the mean cross–section area. Finally, elevation 
and slope were derived from digital elevation models (National Centre for Geographic 
Information, CNIG) and the habitat variability was estimated by the Shannon–Weaver 
diversity index, considering the number of different HMUs in a 300–m–length stretch 
surrounding each study site (Table 10). The initial dataset included 39 presences, and 54 

HMUs where redfin barbel was absent, resulting in a prevalence of 0.42. 

 

Table 10. Code, summary, description and units of the variables included in the meso–

scale MLP Ensemble. 

Code Min. 
1st 
Qu. 

Media
n 

Mean 
3rd 
Qu. 

Max. Variable & units 

HMU type 1.0 2.0 3.0 3.0 4.0 4.0 HMU type [#] 
Depth 0.0 0.2 0.3 0.4 0.5 0.8 Mean depth [m] 

M.Depth 0.2 0.4 0.6 0.6 0.8 1.2 Maximum depth [m] 
Length 8.6 19.1 24.4 26.9 31.5 54.7 Length [m] 
Width 1.3 3.4 4.8 4.7 5.8 8.8 Mean width [m] 

Substrate 2.7 4.9 5.2 5.2 5.7 8.0 Substrate index [–] 

W.Debris 0.0 0.0 0.0 0.0 0.0 0.2 
Woody debris 

[pieces/m2] 
Elevation 605.0 655.0 743.0 745.8 792.0 968.0 Elevation a.s.l. [m] 

Slope 0.0 0.0 0.0 0.0 0.0 0.0 Slope [m/m] 

Embeddedness 0.0 0.0 15.0 29.4 50.0 100.0 
Percentage of 

embeddedness [%] 

Shade 0.0 20.0 60.0 55.0 85.0 100.0 
Percentage of  

shade [%] 
Cover 1.0 2.8 3.5 3.7 4.3 7.5 Cover index [–] 

Diversity 0.2 0.6 0.7 0.7 0.8 1.0 HMU diversity [–] 
Velocity 0.0 0.1 0.2 0.3 0.4 1.1 Mean flow velocity [m/s] 

 

V.2.3 Variable selection 

Due to the limited number of variables included in the micro–scale sampling and the 
assumed relevance of these variables for fish distribution (Gibson, 1993), all four variables 
were included in the micro–scale model. Nevertheless, none of these variables appeared 
significantly correlated (spearman r2 < 0.5) or collinear (variable inflation factor; vif < 5).  
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Since the meso–scale surveys resulted in a high number of explanatory variables, for the 
final meso–scale model, a parsimonious suite of variables were selected following the 
step–forward procedure (May et al., 2011); this procedure consists of adding iteratively 
one variable at a time while the performance is being improved, and stops adding as soon 
as performance decreases. This approach has proved computationally efficient and tends 
to result in relatively small input variable sets (May et al., 2011). During the step–forward 
procedure, neither correlated (spearman r2) nor collinear (vif) combinations of input 

variables were allowed. 

 

V.2.4 Multi–Layer Perceptron (MLP) Ensemble development 

V.2.4.1 MLP Candidates training 

The overproduce–and–choose approach (Partridge and Yates, 1996) generates the 
optimal MLP Ensemble by first initiating a large number of MLP Candidate classifiers and 
then selecting the best performing subset of classifiers (Soares et al., 2013). Diversity 
among the selected MLP Candidates is a key factor of a MLP Ensemble (Wang and 
Alhamdoosh, 2013) because the diversity among classifiers generally compensates for the 
increase in error rate of any individual classifier (Opitz, 1999). In diverse ensembles, each 
candidate complements the others, and thus improves the aggregated forecast (Akhand et 
al., 2009). There are several methods to construct a diverse MLP Ensemble (Wang and 
Alhamdoosh, 2013). However, bagging has proven better than several of the more 
sophisticated methods (Akhand et al., 2009) and can be easily implemented. Bagging 
splits the initial dataset in training and a test dataset. First, k training (bag) datasets of size 
m are generated by sampling, with replacement, the initial dataset of size n, with m < n. 
For each training dataset, the test dataset (or the out–of–bag dataset) then consists of the 

non–sampled instances from the initial dataset. MLP Candidates are developed based on 
these k training datasets and the aggregated forecast is finally obtained by averaging the 

predictions of the individual MLP Candidates. Since the prevalence of the training dataset 
may affect the result of SDMs (Mouton et al., 2009, Fukuda, 2013), m was chosen in 

accordance to the prevalence of the initial dataset.  

The micro–scale dataset contained a number of absences that exceeded by far the 
number of presences and therefore, 66 % of the presences (i.e. 61 instances), and the 
same number of absences were randomly selected (m=122). The micro–scale dataset did 

not allow training all possible combinations with a prevalence of 0.5. Therefore an arbitrary 
but large number of MLP Candidates (k=2000) were trained in order to ensure that every 

‘presence’ instance was linked to every ‘absence’ instance several times. 

To reduce the number of input variables, the optimisation of the MLP Ensemble at the 
meso–scale was inserted in the step–forward variable selection procedure (May et al., 
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2011). The meso–scale dataset had a more balanced prevalence (0.42), therefore instead 
of the bagging approach the k–fold approach was performed. This approach can be seen 
as a systematic bagging without replacement. Thus, the training datasets consisted of all 
possible combinations of 66 % of the observed cases with varying prevalence (m=61). 
Thus, sixty three MLP Candidates (k=63) were trained, with each combination of input 

variables in the step–forward procedure. 

MLP Candidates were trained with the R (R Core Team, 2015) package monmlp (Cannon, 
2012) which optimizes the MLP weights using the non–linear minimization (nlm) routine (R 

Core Team, 2015). The number of neurons corresponded to the integer of half the number 
of variables included in the MLP Ensemble. Hyperbolic tangent and logistic transformation 
functions were used in the hidden and the output layers, respectively. In line with the 
Habitat Suitability Index (Bovee et al., 1998), the model output will hereafter be referred to 
as suitability index. To assess the degree of overfitting of the model results, we compared 
the performance, quantified by the True Skill Statistic (TSS) [–1, 1] (see Mouton et al., 
2010 for additional details about performance criteria), of each selected MLP Candidate on 
both the bag and the out–of–bag datasets. 

 

V.2.4.2 Selection of candidates – Genetic algorithms 

GAs are search and optimization algorithms based on the process of natural selection 
(Olden et al., 2008). From the wide range of GA approaches to select the optimal subset of 
MLP Candidates (Wang and Alhamdoosh, 2013, Soares et al., 2013, Muñoz–Mas et al., 
2014), we followed Wang and Alhamdoosh (2013) since satisfactory results were obtained 
with small–sized ensembles. This approach iteratively increases the ensemble size by the 
stepwise addition of MLPs while in every step the GA searches for the best combination of 
MLPs. That is to say, the GA first finds the best ensemble of two MLPs, subsequently it 

finds the best ensemble of three MLPs and so on. 

We applied the rgenoud package (Mebane Jr and Sekhon, 2011), including nine operators 

driving the optimization which correspond to cloning, uniform mutation, boundary mutation, 
non–uniform mutation, polytope crossover, simple crossover, whole non–uniform mutation, 
heuristic crossover and local–minimum crossover (Mebane Jr and Sekhon, 2011). The 
phenomenon whereby GAs get stuck on local optima is known as premature convergence 
(Fogel, 1994). To avoid this, the population diversity and the selection pressure should be 
balanced (Pandey et al., 2014). Therefore, the cloning operator was restricted (0.25) 
whereas the operators that increase diversity (i.e. uniform mutation, simple crossover and 

heuristic crossover) were set relatively high (0.6, 0.6 and 0.4). In summary, the whole set 
of operators were set to 0.25, 0.6, 0.05, 0.05, 0.05, 0.6, 0.05, 0.4 and 0 respectively. On 
the other hand, the population size as well as the number of generations varied in 
accordance with the ensemble size (Enssize). The population size followed 
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log1.5·(Enssize)·4000 and log1.5·(Enssize)·2000 in the micro–scale and the meso–scale 
models respectively whereas the number of generations was set to·(Enssize)·10 in both 
models. The models were optimised based on a multi–objective function. Specifically, the 
GA maximized the TSS while stimulating overprediction (sensitivity > specificity) (Mouton 
et al., 2010) and forcing model outputs to span the whole output range (from 0 to 1) 

following equation 6, 

 

bIc4=8794 = 233 + min]0, Sensitivity − 3<4=7�7=78:a − min]hij k564_ID4�FK8KIK64�a −
l1 − max]hij k564_ID4�FK8KIK64�am(Equation 6) 

 

where MLP Ensemble corresponds to the aggregated forecast based on the different 

predictions performed by each MLP component (i.e. ~����) and Database to the training 

dataset (i.e. ~�). 

To assess the quality of the MLP Ensembles obtained with the Wang and Alhamdoosh 
approach (Wang and Alhamdoosh, 2013), the performance of three different ensembles 
was compared: the ensemble containing only the best single MLP Candidate (Best MLP 
Candidate), the ensemble aggregating all MLPs (Complete MLP Ensemble) and the GA 

optimised MLP Ensemble (Optimal MLP Ensemble). 

 

V.2.5 Graphical sensitivity analysis 

The applied sensitivity analysis uses modified scatter plots to assess the effects of the 
model inputs on the output. For each variable Vi, the variation of the model output due to 

variation of Vi (Δi) is calculated and plotted as segments, with the slope of these segments 
equalling the partial derivative of the model output related to Vi. The visualization of the 

partial derivatives as segments allows the identification of trends and non–linear 
relationships between each input variable and the output but also provides other 

advantages: 

1. The general trend provides information about the overall impact of Vi on the 

response variable; 

2. The variable importance is quantified by the overall vertical range of all the 

segments;  

3. The interaction with other variables is described by the spread along the y–axis and 

thus variables with no interaction appear as single lines. 
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To avoid that the sensitivity analysis would focus only on the conditions sampled during 
the data collection, two artificial datasets with 1000 instances were generated with the 
function runif (R Core Team, 2015) and both the training and the artificial datasets, were 

used to perform the sensitivity analysis. 

 

V.2.6 Experimental application of the SDMs 

Although 2D hydraulic models can be considered the general standard in micro–scale e–
flow assessment (e.g. Muñoz–Mas et al., 2016) it has been demonstrated that the 

adequate implementation of 1D model can perform similarly, even over complex river 
morphologies such as braided river channels (Jowett & Duncan, 2012). The meso–scale 
model was based on one single value of each input variables per surveyed HMU thus the 
use of 2D models would have required the oversimplification of hydraulics and thus 
worthless modelling effort. Therefore, to balance the modelling effort and the requirements 
of each scale (the micro–scale and the meso–scale) and following previous studies (Costa 
et al., 2011), the hydraulics were simulated with RHYHABSIM (Clausen et al., 2004) in a 
Mijares River segment that overlapped only with the area surveyed for the micro–scale 
model (Elevation = 659 m a.s.l) (Fig. 25). RHYHABSIM is a one–dimensional hydraulic 
model based on cross–sections and the water surface elevation. The habitat simulation 
encompassed a river segment of 383.94 m length where 20 cross–sections were placed 
covering all the significant elements in the river channel (mean distance = 20.2 m). The 
cross–sections were marked so that they could be located for subsequent measurements. 
Detailed topography (mean distance between measurements = 0.58 m) was surveyed over 
the study site and both water surface elevation and water velocity along the cross–section 
were surveyed twice at two different flow rates (0.372 and 1.525 m³/s) (Fig. 26). Substrate 
composition and the presence of cover were assessed and an additional survey was 
carried out at a flow rate of 4.21 m³/s to ascertain the stability of the limits of the HMU. We 
simulated 50 evenly distributed flows and for each flow the habitat suitability was simulated 
using the optimal MLP Ensembles. In addition the Weighted Usable Area (WUA) (Bovee et 
al., 1998) was calculated and to assess the practical applicability of our models in e–flow 
assessment, a minimum e–flow was derived from the WUA–flow curves based on Spanish 
legislation. Specifically, the Spanish norm for hydrologic planning (MAGRAMA, 2008) 
establishes that the minimum e–flow should correspond with 50 % to 80 % of the 
maximum WUA. If no maximum could be observed in the WUA–Flow curve, the inflection 

point should determine the minimum e–flow. 
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Fig. 25. General view of the model, located in the Mijares River (Elevation = 659 m a.s.l), 

used to simulate hydraulics at the working scales (micro–scale and meso–scale). The 

figure depicts the plain, lateral and isometric views of the topographic data (coloured dots), 

the wetted perimeter and the water surface elevation for one of the calibration flows (0.372 

m3/s). The data are depicted in meters and local coordinates. 
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Fig. 26. Water Surface Elevation (WSE) along the thalweg (left) and observed versus 

predicted WSE (right). 

 

V.3 RESULTS 

V.3.1 Training results 

Following the step–forward algorithm, the meso–scale model with the highest performance 
(Optimal MLP Ensemble) contained four variables: elevation, velocity, maximum depth and 
substrate (in order of selection) (Table 11). For both the micro–scale and the meso–scale 
model, the complexity of the MLPs involved in the Ensemble was low since only two nodes 

were considered for each MLP. 

The GA–optimised MLP Ensemble (Optimal MLP Ensemble) outperformed the Best MLP 
Candidate and the ensemble aggregating the prediction of all candidates (Complete MLP 
Ensemble) (Table 11). For the micro–scale model, the predictions of the absent and 
present instances strongly overlapped, which revealed lower discriminant (classificatory) 
capability (Fig. 27 – Left). Nevertheless, the TSS was high (0.62) and the number and 
values predicted for the present instances were higher than the absent instances (i.e. 

sensitivity > specificity). The meso–scale model showed a stronger distinction between the 
predictions of absent and present instances and consequently it presented higher, almost 

perfect (TSS=0.92), discriminant capability (Fig. 27 – Right).  
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Fig. 27. Observations versus predictions for the micro–scale and the meso–scale models. 

Solid line depicts the regression line whereas the dashed line corresponds to the perfect 

discrimination.  

 

The micro–scale model encompassed four MLPs whereas the meso–scale model involved 
seven MLPs. Consequently, four bag and four out–of–bag datasets were involved in the 

micro–scale MLP Ensemble, and seven by seven in the meso–scale counterpart. Cross–
evaluation (i.e. the evaluation of every bag and out–of–bag dataset with every selected 
MLP Candidate) rendered similar distributions (i.e. they presented evident overlapping) of 

the TSS, thus it revealed low overfitting to the data. As a consequence both models were 

considered suitable for further analysis (Fig. 28). 

 

 

Fig. 28. Distribution of the TSS (True Skill Statistic) rendered by each MLP over each bag 

(red) and out–of–bag (green) datasets involved in the Optimal MLP Ensembles (o × o for 

the micro–scale model and p × p for the meso–scale). The distributions for both models, 
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with 16 and 79 data respectively, presented significant overlapping revealing low 

overfitting to the data. 

 

Table 11. Summary of the performance TSS (True Skill Statistic) of developed MLP 

Ensembles at the micro–scale and the meso–scale (Optimal MLP Ensemble) and the 

counterparts without MLP selection (Complete MLP Ensemble) and considering no MLP 

aggregation (Best MLP Candidate). 

    # MLPs TSS 

Micro–scale 

Best MLP Candidate 1 0.49 

Optimal MLP Ensemble 4 0.62 

Complete MLP Ensemble 2000 0.52 

Meso–scale 

Best MLP Candidate 1 0.71 

Optimal MLP Ensemble 7 0.93 

Complete MLP Ensemble 63 0.69 

 

V.3.2 Sensitivity analysis – Micro–scale model 

All the input variables presented interactions, as demonstrated by the spread over the 
ordinate axis (Fig. 29). Although differences in variable importance appeared small, depth 
was the most important variable. Depth demonstrated a quadratic relationship with a 
parabolic trend inflecting around 0.85 m, while velocity appeared negatively linearly related 
to redfin barbel presence. Cover had an asymptotic relationship with a remarkable 
increment from absence of cover (0) to presence of cover (1). Substrate was the least 
important variable and showed a positive trend. The sensitivity analysis of the artificial 

dataset showed a similar response than the one based on the original dataset. 
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Fig. 29. Micro–scale sensitivity analysis of the original dataset and the artificial dataset; 

black segments correspond to the original dataset and yellow ones to the artificial dataset. 

The variable importance is indicated in the upper right corner. 

 

V.3.3 Sensitivity analysis – Meso–scale model  

In the meso–scale model, also all included variables showed interactions (Fig. 30). 
Elevation showed a clear linear negative effect on fish presence and was the most 
important variable. Velocity showed an asymptotic trend with positive effects beyond 0.25 
m/s. Substrate presented a small negative trend, in contrast to the micro–scale model. 
Maximum depth was the least important variable and only showed a slightly positive trend. 
Sensitivity analysis of the artificial dataset also matched the one based on the training 

dataset. 
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Fig. 30. Meso–scale sensitivity analysis of the original dataset and the artificial dataset, 

black segments correspond to the original dataset and yellow ones to the artificial dataset. 

The variable importance is indicated in the upper right corner. M. Depth = Maximum depth.  

 

V.3.4 Habitat assessment 

The WUA–Flow curves for of the micro–scale and the meso–scale models neither 
presented an asymptote nor a clear optimum (Fig. 31). The smooth.spline function in R (R 

Core Team, 2015) was used to remove curve irregularities and to calculate the inflection 
points of both curves. The inflection point of the micro–scale WUA–Flow curve appeared 
at 1.1 m3/s whereas the meso–scale WUA–Flow curve inflection point occurred at 0.7 

m3/s. 
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Fig. 31. Weighted Usable Area (WUA) – Flow curves derived from the micro–scale and 

the meso–scale MLP Ensembles at the test site. Dashed lines show the smoothed curves 

whereas dots indicate the inflection points. 

 

Habitat conditions at the minimum simulated flow (0.2 m3/s) and at the flows 
corresponding to the inflection points (1.1 and 0.7 m3/s for the micro–scale and the meso–
scale respectively) where then evaluated and visualised for spatially explicit inspection 
(Fig. 32). The habitat assessment at the micro–scale yielded suitable areas all along the 
hydraulic model for the minimum simulated flow and the inflection flow, although habitat 
suitability was significantly higher at the latter flow. Conversely, the meso–scale model 
assessed most of the low flow with low to middle suitability but a very little narrow rapid 
whereas practically all of the HMUs at the inflection flow were assessed with high or very 

high suitability. 
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Fig. 32. Assessment of the minimum simulated flow (0.2 m3/s) and of the minimum 

environmental flow corresponding to 1.1 m3/s for the micro–scale SDM and to 0.7 m3/s for 

the meso–scale SDM. Black lines indicate the cross–sections. 
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V.4 DISCUSSION 

V.4.1 General prospect 

The approach employed by Wang and Alhamdoosh (2013) proved proficient to develop 
optimal MLP Ensembles since it provided small sized ensembles, and the Optimal MLP 
Ensembles outperformed the corresponding Best MLP Candidate and the Complete MLP 
Ensemble. The sensitivity analysis indicated that the effects of the artificial dataset 
matched the effects derived from the training datasets, emphasizing the reliability of the 
two SDMs. The outputs of both models also covered the whole feasible range (from 0 to 
1), which facilitates the interpretation by inexperienced readers, but especially by 
stakeholders and managers. Furthermore, the output span allows its treatment as 
probabilistic–like outputs and its comparison with previous physical habitat modelling 
studies (Bovee et al., 1998) as being analogous to the outputs rendered by the more 
traditional univariate Habitat Suitability Curves (HSCs) (Muñoz–Mas et al., 2012). 
Altogether should encourage the use of MLP Ensembles in e–flow assessment studies 
(e.g. Muñoz–Mas et al., 2016). 

 

V.4.2 Micro–scale model 

The micro–scale model achieved a TSS similar to previous studies that used ensemble 
techniques at this scale (i.e. Random Forests) (Fukuda et al., 2013) and it showed a good 

trade–off between specificity and sensitivity, regardless of the prevalence of the original 
training dataset. However, it achieved the lowest TSS between the two models. 
Nevertheless, the results were considered satisfactory because it achieved high values of 
TSS in comparison with previous studies (Fukuda et al., 2013, Muñoz–Mas et al., 2014). 
MLP Ensembles are sensitive to prevalence like other techniques (Fukuda, 2013), but 
training the MLP Candidates with 0.5 prevalence datasets contributed to our objectives, 
which included maximising TSS, obtaining a sensitivity higher than the specificity and 
overlapping bag and out–of–bag TSS distributions. Therefore, we strongly recommend this 

approach in the development of micro–scale suitability models with MLP Ensembles. 

The habitat suitability for the redfin barbel was optimal from 0.5 m to 1 m depth and where 
cover and medium–to–coarse substrate were present; on the other hand, flow velocity 
presented a general negative influence on fish presence, although positive effects were 
found all along the surveyed range even at the maximum surveyed velocity (2.13 m/s). 
The differences in variable importance were small, although we consider the ranking 
coherent with the prior knowledge about the species (Grossman and De Sostoa, 1994, 
Aparicio, 2002). The redfin barbel certainly should be categorized within the group of 
rheophilic barbels (Aparicio, 2002) because our results modelled high velocity as suitable. 
Interestingly, this result contrasts with previous HSCs for this species that suggest a more 
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limnophilic nature (Sostoa et al., 2005), although our results on depth agree with those of 
the aforementioned study. These differences could have been influenced by 
circumstances at the time when data were collected (Copp, 2008) or the kind of available 
microhabitats (Ayllón et al., 2009). Unfortunately the reasons for such differences cannot 
be revealed based on the available information. Literature disagrees on substrate 
suitability, either suggesting a preference for algae and organic matter (Grossman and De 
Sostoa, 1994) or the opposite, for coarse substrates (Sostoa et al., 2005). This 
discrepancy probably originates from the fact that those previous studies have joined 
some substrate and cover types rather than providing a clear preference for any of them. 
Yet, substrate appeared to be of lesser importance within our micro–scale model. Finally, 
the results agreed with previous studies demonstrating that the redfin barbel is a cover–
orientated species (Grossman and De Sostoa, 1994), based on the influence of cover on 
fish presence. Consequently, the micro–scale model combines novel insights and 
information from previous studies, and thus it improves the knowledge about redfin 

barbel’s habitat preferences at the micro–scale. 

 

V.4.3 Meso–scale model 

The meso–scale model proved the competence of the GA–optimised MLP Ensembles 
because it yielded a similar performance to previous studies that modelled the presence–
absence of freshwater fish species with Random Forests (Mouton et al., 2011, Vezza et 
al., 2015). Some studies indicated that models based on multiple spatial scales usually 
outperform single–scale analyses (Olden et al., 2006) mainly because environmental 
variables rarely act at a single spatial scale (Boulangeat et al., 2012). The optimal meso–
scale model included not only three purely meso–scale variables (velocity, substrate and 
maximum depth) but elevation as one meso–to–macro scale variable. The selected 
variables significantly interacted, thus modifying the predicted effects positively or 
negatively. However, despite the higher performance, the step–forward algorithm for 
selecting variables may have been conditioned by the first selected variable (elevation), 
which could lead the algorithm to get stuck in a local minimum (May et al., 2011). There 
are examples of the use of GAs in variable selection procedures (May et al., 2011, Olden 
et al., 2008) and in MLP candidates’ selection (Soares et al., 2013, Wang and 
Alhamdoosh, 2013). Therefore, further research should be performed in order to inspect 
the capabilities of GAs to simultaneously undertake the selection of the variables and the 

MLP Candidates. 

Elevation had a linear and negative effect on redfin barbel presence. This variable is 
broadly accepted as a proximal predictor of water temperature (Elith and Leathwick, 2009). 
In the Iberian Peninsula, cyprinids increase their dominance in fish assemblages in the 
lower river segments (Santos et al., 2004) thus we considered such a pattern reliable. 
However elevation may also partially explain the effect of slope and the fact that the upper 



Spatial scales, e–flows & MLP Ensembles Chapter V 

 

99 

segments had very low flow and thus shallow HMUs. In contrast with the micro–scale 
model, velocity had purely a positive effect on redfin barbel’s presence, which agrees with 
its rheophilic classification (Aparicio, 2002). Nevertheless, the meso–scale model involved 
data from several years in contrast to the micro–scale study, which was performed in one 
single campaign, and thus we cannot discard that such discrepancy is not reflecting 
differences on the sampled running flows. In a previous study that involved the redfin 
barbel’s meso–scale dataset (Muñoz-Mas et al., 2015) the influence of the study site and 
sampling year, which can be univocally related to the running flow at the time of the 
sampling, was ruled out. However, flow significantly varied among years thus some of the 
uppermost river stretches became completely dried up during two sampling campaigns. 
The redfin barbel have demonstrated a strong site–fidelity, which is only contravened 
when the habitat suitability significantly degrades (e.g. by noticeable reductions on the 

available water depth) (Aparicio & De Sostoa, 1999). In such situation the redfin barbel 
undertakes the largest displacements in search of suitable habitats, typically moving 
towards extant lowland pools (Aparicio & De Sostoa, 1999). Consequently, the patterns 
observed for flow velocity could be depicting such type of migrations toward suitable 
habitats, which in our study area would be associated with higher flows and, given the 
slope or the study sites, also with higher flow velocity. Maximum depth surprisingly was the 
least important variable, in contrast to depth being the most important variable in the 
micro–scale model. However, the deepest surveyed HMUs were predicted to be most 
suitable for redfin barbell, which matches the aforementioned studies that considered the 
redfin barbel a pool dweller (Aparicio and De Sostoa, 1999). The meso–scale analysis for 
substrate indicated an inverse pattern compared to the micro–scale model. Such 
discrepancy in the response across scales has been reported previously (Gosselin et al., 
2010). However it is remarkable that the meso–scale results are not necessarily different 
from the micro–scale model because the substrate index is calculated as the average 
value of the different types of substrate present. Therefore, the micro–scale model depicts 
the substrate observed at fish locations and due to the small sampled area around the fish, 
it is unlikely to encompass a heterogeneous group of substrates. Conversely, the meso–
scale model depicts the mean value for the patches appearing at the sampled HMUs and 
they may encompass multiple types of substrate, as this patchy distribution is common at 
the meso–habitat scale (e.g. Inoue and Nunokawa, 2002). Substrate heterogeneity has 

previously been considered in the study of the redfin barbel (Aparicio & De Sostoa, 1999) 
and it certainly could clarify these apparent discrepancies, although given the accuracy of 
the developed model it was considered unnecessary. Nevertheless, the values of 
maximum depth in the meso–scale data corresponded to the median depth in the micro–
scale model, and, in contrast to the micro–scale study, the meso–scale survey assessed 
several rivers. Therefore, comparison between them should be taken cautiously in broad 
terms; the meso–scale model might be considered a regional model focusing on broader 

scale aspects and the microscale model was more specific for the Mijares River. 
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V.4.4 Habitat assessment and implications of developed SDMs 

Previous comparisons of micro– and meso–scale models also yielded differences in the 
assessed suitability (Parasiewicz and Walker, 2007). The sampling methods have been 
identified as potential sources of bias in the development of SDMs, since no method can 

ensure that all fish are detected (Mcmanamay et al., 2014). At the micro–scale, snorkelling 
has been proved preferable over electrofishing (Brosse et al., 2001); while every HMU was 
netted off before carrying out any survey at the meso–scale. Moreover, the use of 
presence–absence data rather than abundance data can be a cost–effective and accurate 
approach to monitor aquatic species (Joseph et al., 2006). Consequently, we considered 
the effect of the sampling method negligible and assumed the observed differences mainly 
occurred due to ecological and mathematical aspects. The micro–scale model could be 
assumed to represent 'feeding' or 'holding a feeding position' behaviour because it is 
assumed that such positions are the most energetically profitable (Rincón and Lobón–
Cerviá, 1993) and hiding and/or disturbed fish observations were ruled out. However, the 
redfin barbel was observed several times in multi–species shoals mainly composed by 
cyprinids (e.g. Squalius valentinus; Doadrio y Carmona, 2006), with which the redfin barbel 

has shown evident affinity (Muñoz-Mas et al., 2015), and these observations were 
included in the ultimate dataset. These shoals were wandering nearby elements of cover 
(e.g. logs and woody debris) with some individuals foraging on the debris and substrate. 

There are no specific studies on the redfin barbel’s diet (Verdiell-Cubedo, 2011), although 
it has been suggested its preference for drifting invertebrates such as Chironomidae, 
Ephemeroptera and Trichoptera (Miranda et al., 2005). Other akin Iberian species (Gante 
et al., 2015) (i.e. Barbus and Lucioababus spp.) typically ingest a great variety of items 

without any clear preference (omnivory, eurifagy), even presenting significant proportions 
of the diet composed by vegetation (Magalhães, 1993; Collares-Pereira et al., 1996). In 
accordance with these generalist feeding behaviour we considered our choice adequate, 
although based on previous studies about the diel dynamics of habitat use of the 
European barbel (Barbus barbus; Linnaeus, 1758) (Baras & Nindaba, 1999) our dataset 

could be including a mixture of activities. Then, despite of a great uncertainty, these data 
could be depicting the so–called activity centre or the daily activity area, which can be 
roughly estimated as the HMU encompassing the residence and the feeding area (Baras, 

1997). 

Conversely, the meso–scale model is based on fish catches in HMUs where the fish 
develop any of the diel activities such as ‘feeding’ but, in this case, it surely encompassed 
also 'hiding' or 'resting' individuals as long as electrofishing does not allow the 
differentiation of the activity undertaken by fish captures. Therefore, in the meso–scale 
model, the training data considered all the fish in the HMU without any distinction of 
activity and assuming that any potential migration occurred in spring, before sampling 
(Aparicio and De Sostoa, 1999). Significant changes in habitat use have been 
demonstrated for the European barbel depending on the time of the day and the season 
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(Baras and Nindaba, 1999). Therefore, these two SDMs could represent different habitat 

needs. 

Despite the potential ecological differences between models and the ranges of the 
sampled input variables, the patterns of the two WUA curves were similar. However, the 
micro–scale approach assessed the hydraulics in a very detailed way (every cell can be 
assessed differently) whereas the meso–scale approach presented a coarser resolution, 
and thus as soon as it considered an HMU suitable it added the entire HMU area to the 
WUA. Consequently, there is a difference in magnitude between both WUA flow rating 
curves, which would principally be caused by the discrepant resolution used in the habitat 
assessment (i.e. the mean size of the assessed cells were larger in the meso–scale 

model). The use of a density–based suitability index could provide more gradual 
information on species habitat selection in the meso–scale model (Fukuda et al., 2011) 
and may thus lead to more similar WUA–flow curves, although it should be corroborated 

by dedicated studies. 

Compared to the traditional micro–scale evaluation the meso–scale approach permitted 
the survey of longer river segments, involving a wider range of habitat variables that could 
consider diverse fish behaviour at larger spatial scales (Vezza et al., 2012). Indeed, by 
sacrificing some detail it is possible to reveal larger spatial and temporal ecological 
patterns (Jewitt et al., 2001). Consequently, in this study a hydraulic model developed on a 
longer river segment may enable a more thorough and varied meso–scale assessment. 
However, this issue was already partially dealt with by simulating water depth and flow 
velocity for unmeasured discharge conditions (following RHYHABSIM) in contrast to some 
other approaches, which are based in a finite number of observations (MesoHABSIM; 
Vezza et al., 2012). Taking into account that no habitat time series analysis has been 
performed (Milhous et al., 1990), the differences in the magnitude of the WUA–Flow 
curves did not result in notable differences in the minimum legal e–flow (1.1 m3/s and 0.7 
m3/s ). Nevertheless, the micro–scale models, which is the scale specified in the Spanish 
norm for hydrological planning for e–flow assessment (MAGRAMA, 2008), remained on 

the conservative side because it has determined a slightly higher e–flow. 

Previous research already demonstrated that a lower e–flow is derived from a WUA–Flow 
curve that presented larger values of the WUA (Muñoz–Mas et al., 2012), which suggests 
that a revision of these legal specifications may be appropriate. The capability to simulate 
large numbers of flows has risen along the decade and thus the WUA–Flow curves 
nowadays present smooth transitions from flow to flow. In this case the inflection point is 
determined by a very little difference and could vary by reducing the number of simulated 
flows. Further, the Mijares River is subject to severe droughts, with one of the calibration 
flows being 0.372 m3/s. The species naturally occurs in this river segment and its 
adaptation to droughts has been confirmed (Aparicio and De Sostoa, 1998, 1999). 
Therefore, it can be concluded that the minimum legal e–flow derived from both SDMs 
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would not eventually pose any threat to the species. Altogether, our results demonstrated 
that MLP Ensembles are a promising tool in the development of SDMs for freshwater fish 

species and proficient in e–flow assessment. 
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VI. GENERAL DISCUSSION 

The present dissertation focused in the comprehensive analysis of the capabilities of some 
non-tested modelling techniques for environmental flow assessment and exploratory 
ecology. The tested techniques have been the Probabilistic Neural Networks (PNN) 
(Specht, 1990) and the Multi–Layer Perceptron (MLP) Ensembles (Hansen & Salamon, 
1990). The analyses of the capabilities of these techniques were performed using 
exclusively native Iberian fish species. Specifically, the fish species were, brown trout 
(Salmo trutta; Linnaeus, 1758), bermejuela (Achondrostoma arcassi; Robalo, Almada, 
Levy & Doadrio, 2006) and redfin barbel (Barbus haasi; Mertens, 1925) as targets of the 

tested modelling routines. The analyses principally focused in the predictive capability, 
without loss of generalization, thus great interpretability (i.e. the capability to express the 

behaviour of the real system through the model in a comprehensible way) (Casillas et al., 
2005) was also chased. The evaluation of the impact of low data prevalence (i.e. the ratio 

of presence data within the entire dataset) and excess of zeros in the training datasets 
was common across the analyses. Finally, the effect of the spatial scale in the habitat 
suitability models and the consequent differences in the assessed e–flow has been studied 

in the last chapter. 

 

VI.1 PROBABILISTIC NEURAL NETWORKS – PNN 

The optimal PNN, modelling the presence-absence of brown trout, was considered 
proficient because it achieved an acceptable value of the True Skill Statistic (TSS) and the 
sensitivity was higher than the specificity, as recommended by some other authors 
(Mouton et al., 2008). Furthermore, the PNN rendered a slightly higher value of the TSS in 
the evaluation site, which highlighted the validity of the model, and the accuracy was only 
marginally lower than other studies employing similar datasets of salmonids (i.e. Salmo 

farioides; Karaman, 1938) (Muñoz-Mas et al., 2016b). Accordingly, it would be expected 

further studies employing PNN to model the microhabitat suitability or to calculate e–flows. 

However, in a follow up paper that involved the same dataset (i.e. the one for brown trout) 

to study the potential impact of climate change (Muñoz-Mas et al., 2016a), we achieved 
similar or superior accuracy with four out of five of the employed machine learning 
techniques (i.e. generalized additive models, MLP Ensembles, random forests, support 

vector machines and fuzzy rule base systems). Thus the TSS obtained with the PNN was 
solely comparable to the value achieved by the fuzzy rule base systems (i.e. Takagi and 

Sugeno, 1985) whereas the remaining techniques achieved higher values. Interestingly, 
the highest value was achieved by Support Vector Machines (SVMs) (Vapnik, 1995) an 
approach that may resemble PNN, especially when the SVMs are developed employing 

radial basis functions. 
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The basic idea with SVMs is constructing a discriminant (classificatory) hyperplane with 
the maximum discriminant margin (Huang & Wang, 2006). The radial basis functions are 
the most common employed functions to do so (Howley & Madden, 2005; Hoang et al., 
2010); therefore, any derived graphical sensitive analyses may resemble the one for the 
PNN (i.e. the contour plot depicted in Fig. 7 and Fig. 8, Chapter II). Furthermore the 

training of the support vector machines was significantly faster than the lapse for the PNN, 
which may tip the balance towards the use of SVMs. However, researchers soon 
developed some methods to improve PNN (Specht, 1992). Between them, those based on 
Berthold and Diamond’s (1998), which have some similarities with SVMs training, are 
among the most promising (Li & Ma, 2008; Sunay et al., 2009; Qader & Adda, 2014). The 
term “support vectors” refers to the training patterns used to define the lower and the 
upper margins of the discriminant hyperplane, which are selected during models’ training. 
In contrast, the approaches based on Berthold and Diamond’s rely in the selection of some 
prototypes (i.e. a subset of training patterns) exhibiting noticeable similarity with the former 

technique. As a consequence of the pattern subsampling, the training process is 
significantly accelerated and the effect of outliers is to be reduced (Li & Ma, 2008; Sunay 
et al., 2009; Qader & Adda, 2014). Although scientific literature nowadays covers several 
comparisons between SVMs and PNN where SVMs outperformed PNN they employed the 
standard implementation of PNN (Muniz et al., 2010; Modaresi & Araghinejad, 2014); thus 
the aforementioned enhanced algorithms should be the subject of further research before 

to indubitably advocate for one or another. 

Despite the limitations regarding the output range described above, PNN performance 
kept mostly constant for different prevalence of the training datasets. SVMs that employ 
Platt’s (2000) approach to calculate probabilities demonstrated unable to adequately deal 
with such dataset characteristics because the probabilistic output of SVMs was sufficiently 
affected by class overlapping and low prevalence to ban its predictions from ulterior 
analyses (Muñoz-Mas et al., 2016a). The interaction between dataset nature and the 
optimal modelling algorithm has been evidenced in a number of studies (e.g. Eugster et 

al., 2014) and thus it would be expected  the trimmed output range observed for PNN to be 
reduced for databases with lesser overlapping between categories. Therefore, studies with 
coarser resolutions (i.e. meso–scale and broader) and better balances between classed 

should not suffer from such drawbacks (Platts et al., 2008). 

Regarding the target species, the modelled habitat suitability for the large brown trout 
obtained with the PNN was similar to previous studies where the preference for relatively 
deep microhabitats (i.e. pools) with slow flow and medium-to-coarse substrate was 

reported (Armstrong et al., 2003; Ayllón et al., 2010; Heggenes, 1996 and Moyle, 2002). 
Therefore, from an ecological viewpoint PNN, and the kin SVM (Muñoz-Mas et al., 2016a), 
rendered trustworthy results, especially because both of them predicted a decrement of 
the suitability for the higher flow velocity (Muñoz-Mas et al., 2016a). As long as several 
authors have suggested a pronounced decrease in habitat suitability beyond a water 
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velocity of ca. 0.5 m/s (Jowett & Davey, 2007; Ayllón et al., 2010) and considering that 

such decrease is certainly reasonable due to increasing energy costs to stand higher 
velocities (Rincón & Lobón-Cerviá, 1993), the habitat suitability modelled with the PNN 
and the SVM would be plausible. In contrast, the remaining techniques (i.e. generalized 

additive models, MLP Ensembles and random forests) suggested high habitat suitability 
beyond 0.5 m/s. The use of several modelling techniques (ensemble modelling) typically 
renders predictions ecologically more reliable than the ones obtained using a single 
technique (Muñoz-Mas et al., 2016a). Therefore, it can be inferred that the inclusion of the 
predictions obtained with the PNN is likely to improve the ultimate predictions of a given 
ensemble. PNN have proven to be a useful tool able to render ecologically sound models 
and thus further applications either, in ecological modelling or e–flow assessment, would 

be desirable. 

 

VI.2 MULTI-LAYER PERCEPTRON ENSEMBLES – MLP ENSEMBLES 

Ensemble modelling typically becomes in an improvement in models’ accuracy either 
employing ensembles based on multiple techniques (e.g. BIOMOD; Thuiller et al., 2009) or 
based in a single technique (e.g. random forests; Breiman, 2001). Therefore, the better 

results obtained with MLP Ensembles were expected. The main theoretical evidence 
behind ensemble methods is the bias–variance–covariance decomposition, which offers 
theoretical justification for the improved performance of an ensemble over its constituent 
base predictors (Ren et al., 2016). Although it is actually subject to scientific debate 
(Didaci et al., 2013), the main school of thought assumes that the key issue in ensemble 
methods is diversity, which includes data diversity, parameter diversity or structural 
diversity among others (Ren et al., 2016); and therefore, the approach followed should be 

considered embedded within sound theoretic background. 

Although MLP ensembles have been profusely used in many scientific research areas 
such as running flow forecasting (Abrahart et al., 2012) or lung cancer diagnosis (Zhou et 
al., 2002a) they have received little attention in ecology. Consequently, although the 
number of published papers involving Artificial Neural Networks showed a steady 
increment during the last decade (Fukuda & De Baets, 2012), they have been mainly 
restricted to training single MLPs. As described in the introduction, habitat suitability and 
species distribution modelling with ensemble approaches have principally employed tree–
based techniques such as random forests (e.g. Vezza et al., 2015), although boosted 
regression trees are not far behind (e.g. Elith et al., 2008). Indeed, these techniques 

involve noteworthy capabilities such as their ability to handle strongly nonlinear 
relationships with high order interactions and different variable types (e.g. numerical or 

nominal) (Olden et al., 2008; Grubinger et al., 2014), which may tip the balance towards 
them. However tree–based approaches typically separate the feature space by axis–
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parallel hyperplanes, which may be sub-optimal (Truong, 2009) and ecologically unreliable 
because they render irregular stair-like decision surfaces (Menze et al., 2011). 
Furthermore, with some of these techniques we observed erratic discriminant surfaces 
(Muñoz-Mas et al., 2016a) that disagree with the precepts of the ecological gradient theory 
(Austin, 2007). Consequently, from our personal viewpoint, these technique should not 
automatically relegate other alternatives such as the MLP Ensembles (Muñoz-Mas et al., 
2016). MLP Ensembles presented satisfactory accuracy and smooth partial dependence 
plots (Fig. 22 and Fig. 23, Chapter IV), which fit better the aforementioned ecological 
gradient theory, and they demonstrated great versatility dealing with classificatory and 
regression problems. In addition, they showed noticeable aptitude to deal with low data 
prevalence and excess of zeros. Therefore, despite the inconclusive results about the best 
overproduce–and–choose approach (i.e. Forward or GA-based), we consider MLP 

Ensemble an appealing technique. 

In the past, the training of MLPs proved to be slower compared to other approaches 
(Olden et al., 2008). However, despite Moore's law is showing signs of slowing (Yeric, 
2015), computers are becoming faster and faster (Schmidhuber, 2015). Calculus 
parallelization (employing multiple CPUs) is becoming widespread (e.g. Bryan, 2013) and, 

although at slower pace than desired (Valle & Berdanier, 2012), programming skills of 
ecologists are increasing significantly. Nowadays there are plenty of software packages of 
free distribution allowing the implementation of MLP Ensembles such as the one employed 
here (monmlp; Cannon, 2012). Consequently, we expected the present dissertation and 

the accompanying publications to foster the use of MLP ensembles in ecological studies. 

Nevertheless, neural network topologies are recently increasing its complexity with 
networks involving hundreds of millions of weights, and billions of connections between 
units (i.e. deep neural networks) (Lecun et al., 2015). Training such large networks lasted 

weeks few years ago but progress in hardware, software and algorithm parallelization 
have reduced training times to a few hours (Lecun et al., 2015). These new topologies 
demonstrated unprecedented capacity for pattern recognition (Schmidhuber, 2015) 
whereas dropout has become a successful yet simple approach to sustain good 

generalization (Srivastava et al., 2014). Thus, this set of improvements is likely to help 
ecologists to incrementally extract knowledge from observational datasets. Big data 
scientist have already developed ensembles of deep neural networks (Wenhao Huang et 
al., 2015; Ren et al., 2016). Consequently, testing the capabilities of these novel 
approaches shall be the subject of further research and we hope the publications 
associated with the dissertation may additionally turn the focus towards these more 

complex approaches.  
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VI.3 BERMEJUELA 

Translocated species have been traditionally viewed acquiescently, although there is 
evidence that they can produce negative impacts likewise non–natives (Oscoz et al., 2006; 
Alcaraz et al., 2014). Consequently, in accordance with Gozlan et al. (2010), it is crucial to 
improve our abilities to forecast the risks resulting from translocations. The Cabriel River 
harbours the most important populations, in terms of presence and fish density of the 
Jucar nase (Parachondrostoma arrigonis; Robalo, Almada, Levy & Doadrio, 2006) 

(Alcaraz et al., 2014), the Iberian fish species more susceptible of extinction (Doadrio, 
2002b). The Jucar nase nowadays cohabits with the apparently translocated bermejuela 
(sampled during the development of Olaya-Marín et al. 2012), which showed great 
similarity with the habitat selection of the Jucar nase by selecting microhabitats with slow 
flow velocity, fine substrate but shallow to medium depth (Fig. 13). Accordingly, in a follow-
up study (Muñoz-Mas et al., 2016 – under review), it has been concluded that this species 
may poses the largest threat for the endangered Jucar nase. Fortunately, very few 
specimens of bermejuela were found in the Cabriel River (Olaya-Marín et al., 2012), in 
areas that they share with the brown trout, suggesting that either the propagule pressure 
(sensu Gozlan et al. 2010) or the recruitment success were low. Therefore, bermejuela is 

actually not considered an invasive fish species. However, its presence could be masked 
due to its hybridization with the Jucar nase since there is previous evidence of 
hybridization between bermejuela and the Iberian nase (i.e. Pseudochondrostoma 

polylepis × Achondrostoma arcassi) (Collares-Pereira & Coelho, 1983). Altogether, the 

habitat suitability modelling and the associated physical habitat simulation approach 
demonstrated to be a valuable and versatile tool dealing with different exigencies either in 

risk or e-flow assessment. 

 

VI.4 REDFIN BARBEL 

The Eastern Mediterranean region of the Iberian peninsula is likely to be characterized by 
a continued decrease in water yield (Chirivella Osma et al., 2014; Salmoral et al., 2015), 
which may create a bottleneck for species survival. This general concern has been 
confirmed in dedicated studies employing the last set of climate change scenarios (IPCC, 
2014), the so-called Representative Concentration Pathways (RCPs) scenarios (Muñoz-
Mas et al., 2016a). The rear edge of species distribution ranges have proven to be of 
enormous importance for the survival and evolution of biota (Hampe & Petit, 2005). 
Therefore the coupled studies on the redfin barbel rendered valuable information about 
potential impacts on the species at the southern edge of its historical distribution area 
(Aparicio, 2002; Perea et al., 2011). The habitat preferences confirmed the redfin barbel 
selection of pool-type habitats, although velocity had also a positive effect on its presence 
(Fig. 29 and Fig. 30, Chapter IV). In accordance with these general habitat preferences the 
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reduction in the magnitude of the running flow is likely to have synergistic impacts 
eventually displacing the species towards benign locations. Redfin barbel has several 
adaptations to Mediterranean flow regimes being able to inhabit intermittent rivers 
(Aparicio, 2002). Therefore, females have multiple spawning (releasing two to five egg 
batches) whereas the timing and length of the breeding season are related to high flow 
periods (Aparicio & De Sostoa, 1998). However, the frequency and recurrence of peak 
temperatures and droughts are likely to increase by the end of the century (Santiago et al., 
2015) and then, the adaptive traits of the species could be insufficient for the species 
survival. Furthermore, the observed correlation between babel density and cyprinid density 
suggest that any negative impact to the species would be extendable to most of the 
inhabiting ichthyofauna. These conclusions highlight the interest of the herein presented 
results on the habitat preferences and ecology of the redfin barbel, especially regarding 

interspecific relationships. 

 

VI.5 MICRO–SCALE AND MESO–SCALE IN E–FLOW ASSESSMENT 

The comparison between the micro–scale and meso–scale in e–flow assessment proved 
that none of the working spatial–scales is applicable in every case study. Some studies 
achieved better correlation between habitat suitability and fish densities employing meso–
scale approaches (e.g. Parasiewicz and Walker, 2007) whereas our results suggested that 

better performance not necessarily implies higher and more ecologically friendly e–flows. 
A large suite of elements and conditionals converge in e–flow assessment affecting each 
of its components such as data availability (Auerbach et al., 2015) or site specific 
constraints (Vezza et al., 2015). Despite some modelling techniques may render more 
accurate yet reliable models, each one has its merits and demerits thus increasing 
uncertainty on the ultimate predictions (Lin et al., 2015). Model evaluation (sensu Guisan 
and Zimmermann, 2000) is obviously a fundamental task that may tip the balance towards 
the most accurate approach (e.g. Parasiewicz and Walker, 2007). Then, the evaluation of 

model’s generalization and transferability is a fundamental task that comes recurrently out 
in scientific literature (Vaughan & Ormerod, 2005; Wenger & Olden, 2012; Huang & 

Frimpong, 2016). 

However, the target species can be occasionally extirpated and transferability evaluation 
must rely on traditional cross-validation to disfavour over–fitted models (Wenger & Olden, 
2012). In such a situation the approaches tested in this document may represent a step 
forward towards improved results. Furthermore, our results highlighted the importance of 
the legal requirements thus they should not be underrated because they can tip the choice 
towards option that would be most likely ruled out. Therefore we subscribe that none of the 
existing methods can be neglected and its choice may depend on a balance between legal 
requirements, ecological goals, economic costs and scientific uncertainties (Poff et al., 
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2010). Therefore, low intensity hydraulic habitat assessment methods may be applicable 
to generalise the habitat assessment over large river segments (e.g. Lamouroux and 

Souchon, 2002) whereas MesoHABSIM (Parasiewicz, 2007) and physical habitat methods 
(Bovee et al., 1998) should be employed in increasing order to gain resolution in e–flow 
studies. Finally, all of them should feed broader scale methodologies such as the ELOHA 
(Ecological Limits of Hydrologic Alteration) framework to perform holistic evaluation of the 
ultimate effect of changing running flows on freshwater ecosystems (Poff et al., 2010). The 
present dissertation rendered valuable methodological input yet relevant ecological 
knowledge that may prioritize sound monitoring protocols eventually guiding ecologically–

friendly management actions. 
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VII. CONCLUSIONS & FURTHER RESEARCH 

VII.1 CONCLUSIONS 

The present dissertation generated conclusions that were split in two different sections. 
The first one addressed to describe the advantages of the tested techniques and the 
second one referred to the insights of fish ecology and habitat selection and the 

consequences in the e–flows eventually calculated. 

 

VII.1.1 Conclusions on modelling techniques 

In general, Probabilistic Neural Networks (PNN) have proven to be a useful tool in 
modelling habitat suitability, especially considering the use of raw datasets. Results on this 
approach presented two major issues, i) prevalence did not significantly affect its 
performance (it held constant regardless of the prevalence) and ii) PNN may present 
limitations regarding the output range. Nevertheless, the performance stability prevails 
over output trimming thus, it is expected that PNN will play a relevant role in microhabitat 
suitability modelling and e–flow assessment, although its popularity will certainly depend 

on the availability of user–friendly software packages. 

Broadly, the Multi–Layer Perceptron (MLP) Ensemble presented better performance than 
the PNN. In regard to the MLP Ensemble for the Bermejuela, it was considered to be 
proficient because it achieved high values of the performance criteria. Furthermore, the 
active selection of the MLPs included in the Ensemble outperformed the results including 
the whole set, demonstrating the virtues of the over–produce–and–choose approach. The 
Forward selection of MLPs demonstrated to be able to marginally outperform the more 

complex approach based on Genetic Algorithms. 

The MLP Ensembles for the redfin barbel density also corroborated the value of the over–
produce–and–choose approach and the uncertainty related with models aggregation 
released valuable information about the uncertainty inherent to models assembling. 
Therefore, in both models, the largest uncertainty tended to appear in the regions of the 
input variables distribution that were poorly represented in the training database. In 
accordance to their high predictive capability and its ability to deal with model uncertainty, 

the MLP Ensemble paradigm was considered a promising tool in exploratory ecology. 

The MLP Ensembles developed following the Wang and Alhamdoosh approach provided 
accurate small–sized Ensembles thus, despite the lack of comparison with the approaches 
employed for the bermejuela and redfin barbel density, it was deemed a worthwhile 
methodology. The mesoscale model stood out because it presented almost a perfect 

accuracy (TSS = 0.93) with only four variables. 
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The legal norm in Spain stated that studies on e–flow assessment based on the physical 
habitat simulation approach must be performed at the microscale, which eventually 
predicted a slightly higher e–flow. Therefore, from the legal viewpoint, this scale can be 
considered potentially a choice at least equally adequate or better than the meso–scale 

one in the context of the Spanish water planning. 

 

VII.1.2 Conclusions on fish ecology 

The results on habitat suitability for the large brown trout did not differ significantly from the 
previous knowledge about the species. Therefore, our results agreed with previous studies 
where large brown trout has been reported to prefer relatively deep pools with slow flow 

and medium–to–coarse substrate. 

The microhabitat preferences of the Bermejuela had never been studied before thus the 
study provided valuable insight on the species. It was concluded that the Bermejuela can 
be classified as a shelter–orientated limnophilic species, because cover was the most 
important variable. The other relevant variables indicated the maximum suitability for slow 

and deep microhabitats, related with the local deposition of silt in the riverbed.  

The two MLP Ensembles for the redfin barbel density provided great insight on the species 
ecology. The redfin barbel preferred middle–to–upper river segments, but not the higher 
and steeper reaches. The importance of depth confirmed that redfin barbel prefer pool–
type habitats. The redfin barbel, the European eel and the cyprinid species present in the 

study sites had similar habitat requirements. 

The comparison of the habitat preferences at the micro–scale and the meso–scale 
confirmed previous studies and complemented existing knowledge on the habitat 
preferences of redfin barbel. The micro–scale MLP Ensemble showed high suitability of 
relatively deep areas with coarse substrate and corroborating the cover–orientated and 
rheophilic nature of the redfin barbel. The meso–scale model highlighted the advantages 
of using cross–scale variables, since elevation (a macro–scale variable) was selected in 
the optimal model suggesting that the redfin babel inhabits preferably midland river 
segments. The redfin barbel selects deep areas; at this scale the MLP Ensemble partially 
contradicted the micro–scale counterpart because velocity had a clearer positive effect on 
habitat suitability, which was associated with the current flow. Finally, the redfin barbel 

showed a preference for fine substrate. 
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VII.2 FURTHER RESEARCH 

Researchers have proposed several methods to improve to improve PNN (Specht, 1992). 
Those based on Berthold and Diamond’s (1998), which rely on data clustering or 
subsetting, are among the most promising (Li & Ma, 2008; Sunay et al., 2009; Qader & 
Adda, 2014). However, in any of them the smoothing parameter is constant across the 
input space. The Bayesian rule in the pattern layer estimates the conditional probability of 
each class given an input pattern without considering any probable local densities or 
heterogeneity in the training data (Ahmadlou & Adeli, 2010). Recently, an Enhanced PNN 
(EPNN) was presented using local decision circles to overcome the aforementioned 

shortcoming and improve its robustness to noise in the data (Ahmadlou & Adeli, 2010). 

For the foregoing one research topic will be testing the capabilities of several of these 
approaches, principally the most promising one based on data sub-setting and clustering 
and the one based on local decision circles. The capabilities of these improved PNN will 
be compared with benchmark approaches to develop and train Support Vector Machines 
(SVMs) (Vapnik, 1995) and the dedicated R code will be released to facilitate modellers 
and ecologists to make use of these novel approaches. This study is actually under 

development. 

Models ensembles, including MLP Ensembles, achieved noticeable accuracy in the follow 
up paper addressed to study the potential impact of climate change in the suitable habitat 
for brown trout (Muñoz-Mas et al., 2016a). In that paper three out of five of the assembled 
techniques are uncommon in the development of model ensembles (i.e. MLP Ensembles, 

support vector machines and fuzzy rule base systems). In that case, ensemble modelling 
rendered predictions ecologically more reliable than the ones obtained using a single 
technique (Muñoz-Mas et al., 2016a). However, SVMs were ruled out from the analysis 
based on probabilistic outputs (employing the Weighted Usable Area) because they 
rendered trimmed outputs that did not allow comparison. Therefore, another research topic 
will rely in the study of the benefits or disadvantages of including additional techniques in 
standard models ensembles. These tested modelling techniques could be then included in 

standard models assembling platforms such as BIOMOD (Thuiller et al., 2009). 

The use of deep neural networks for pattern recognition is gaining momentum thus their 
paramount capabilities has caused most major technology companies (e.g., Google, 
Facebook or Microsoft) to initiate research and development projects related with deep 
nets (Lecun et al., 2015). However, its popularization is not exempt of some criticism since 
there is empirical demonstration that shallow feed-forward nets can learn the complex 
functions previously learned by deep nets and achieve accuracies previously only 
achievable with deep models (Ba & Caruana, 2014). In this regard another research topic 

will be testing the usefulness of deep architectures in ecological studies. 
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Finally, the relationship between the redfin barbel and the accompanying cyprinids 
presented in chapter IV corroborated other studies; for instance, the one of Vezza et al. 
(2015) performed in the Jucar River basin. These results suggest that ecological models 
and e–flow assessment could be done employing guilds instead of single species to 
provide global indicators about the effects of different scenarios on the ichthyofauna 
present. This approach based on guilds has demonstrated useful in other studies (e.g. 
Ferreira et al., 2007), although the strength of species association and hence the validity of 
derived models requires dedicated studies (e.g. Vadas and Orth, 2001). Therefore, the last 
research topic will focus in testing the strength and validity of ecological models based on 
guilds. The last proposal is under development at the time of finishing the present 

dissertation. 
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