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Abstract
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Using remote accelerators to improve the performance of mathematical

libraries

by Santiago Mislata Valero

Virtualization technologies, such as virtual machines, have demonstrated to provide eco-

nomic savings to data centers because they increase overall resource utilization. However,

in addition to virtualize entire computers, the virtualization of individual devices also

provides significant benefits. As an example, the remote GPU virtualization technique

moves local GPU computations to remote GPU devices.

Nevertheless, it is also possible to offload the computationally intensive CPU parts of an

application to remote accelerators. In this work we present a first implementation of a

new middleware that uses remote accelerators to perform the computations of scientific

libraries, which were initially intended to be executed in the local CPU. Moreover,

forwarding the computationally intensive parts of these libraries to remote accelerators

is done in a transparent way to applications, not having to modify their source code.

The first implementation of the new middleware is based on offloading the FFT and

BLAS libraries, which are used to present the benefits of the new proposal by carrying

out an in-depth performance evaluation. Results demonstrate that the new middleware

is feasible. Moreover, scientific libraries such as FFTW may experience a speed-up larger

than 25x, despite of having to transfer data back and forth to the remote server owning

the accelerator.
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Chapter 1

Introduction

Virtualization technologies have attracted the attention of data center administrators

due to the economic savings provided by these technologies: acquisition and mainte-

nance costs are reduced as well as energy consumption requirements. In this regard,

virtualization can be applied at different levels, as exposed below.

Firstly, virtualization can be applied at the computer level, leading to the widely used

virtual machines. Examples of this technology are frameworks such as VMware [1],

Xen [2], KVM [3], or VirtualBox [4], which have became so popular because several

virtual machines can be concurrently executed in a real computer, sharing its resources

and hence increasing overall resource utilization. As a consequence of the widespread use

of virtual machines, processor manufacturers like Intel or AMD incorporate an increasing

virtualization support into their processors [5].

Secondly, virtualization can also be applied at the device level in order to provide sup-

port to virtual machines. For instance, network adapters for technologies and manu-

facturers as different as Mellanox’ InfiniBand or Intel’s Ethernet include virtualization

features [6][7], which basically allow the network adapter to be replicated, at the logic

level, and assign different replicas to different virtual machines. Moreover, graphics pro-

cessing units (GPUs) have also included virtualization support recently. This is the case

for the GRID K1 GPU by NVIDIA [8], which can be shared among 8 virtual machines,

or Intel GPUs, which incorporate virtualization support for the KVM framework [9]. It

is worth mentioning that this support in GPU is mainly intended for desktop virtual-

ization.

1



Chapter 1. Introduction 2

Notice, however, that in addition to provide support to virtual machines, virtualization

of individual components of a computer may be also intended to provide an increased

degree of flexibility at the cluster level. For example, networked disks enable to share a

file system across a cluster. In a similar way, the recent remote GPU virtualization tech-

nique, implemented in frameworks like rCUDA [10], GVirtuS [11], or DS-CUDA [12],

among others, allows a set of GPUs to be shared among several cluster nodes. More-

over, although remote GPU virtualization frameworks do not usually reduce execution

time for single applications, when applied to a batch of computing jobs this technology

allows reducing the total execution time [13] and the total energy consumed [14] by such

aggregation of jobs.

Networked disks and remote GPU virtualization technologies are examples of the use

of resources external to the computer that is executing the application using them.

However, it is also possible to use external resources to carry out the computations

initially devised to be performed by the local CPU, although in this case, not only

an increased configuration flexibility is expected, as in the case of the remote GPU

virtualization technique, but also a noticeable reduction in execution time should be

achieved. In this thesis we introduce a new middleware that allows the computationally

intensive CPU parts of an application to be offloaded to accelerators located in other

nodes of the cluster. Furthermore, this outsourcing process is carried out in a completely

transparent way to applications, without having to modify their source code.

The main contributions of this thesis are (1) a new middleware is introduced, (2) a

first implementation of the new middleware, focused on the FFT and BLAS libraries,

is presented, (3) some optimizations are thoroughly discussed, and (4) a comprehensive

performance evaluation is carried out.

In order to properly present our proposal, the rest of the thesis is organized as follows.

Chapter 2 presents in detail the general idea of the new middleware. Chapter 3 discusses

the main implementation details of the new middleware for the FFTW and OpenBLAS

libraries. The performance of the new middleware is later evaluated in Chapter 4 for

each library by making use of real executions in several system configurations. Next,

Chapter 5 presents a thorough performance estimation of the new middleware when its

communication layer is optimized, as well as the benefits of applying some architectural

optimizations. Chapter 6 further discusses some additional aspects of the proposal.



Chapter 1. Introduction 3

Later, the new middleware is compared against related proposals in Chapter 7. Finally,

Chapter 8 presents the main conclusions.





Chapter 2

Offloading Local CPU

Computations to Remote

Accelerators

The idea of the new middleware is simple: it consists in moving the computationally in-

tensive parts of an application, written to be executed in the local CPUs, to accelerators

installed in other nodes of the cluster, and doing so without modifying the application

source code. In this way, the computation to be performed in the local CPU cores by

mathematical libraries such as BLAS, LAPACK or FFT, among others, is transparently

offloaded to accelerators in other cluster nodes.

The new middleware is organized following a client-server distributed architecture, as

shown in Figure 2.1. The client side is automatically contacted by the application as

soon as it makes a call to one of the functions of the offloaded mathematical libraries.

Both the application and the client middleware are executed in the same computer. The

client side of the new middleware presents to applications the very same interface as the

BLAS, LAPACK, FFT, or other libraries do. This is achieved by creating a different

wrapper for each of the functions in the mathematical libraries. Upon reception of

a request from the application, the client middleware processes it and forwards the

appropriate command, along with the data, to the remote server, which interprets the

request and performs the required processing by accessing the real accelerator in order to

execute the corresponding mathematical function. Once the accelerator has completed

5
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Application

WrapperIlibrary
Accelerator
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Network
Accelerator

Figure 2.1: Architecture of the new middleware.

the execution of the requested function, results are sent back to the client middleware,

which delivers them to the demanding application. Notice that the application is not

aware of this process. It made a call to a mathematical function, according to its original

source code, and after some time the call is completed and execution resumed, exactly

in the same way as if the computation would have been carried out in the local CPU,

as it is intended in the unmodified application source code.

In order to integrate the new middleware with applications in an automatic and transpar-

ent way, the new framework replaces the mathematical libraries by a library containing

a set of function wrappers that will be called whenever one of the original mathematical

functions is to be executed. These wrappers will take the arguments of the original

function and forward the input data of the function to the actual node of the cluster

that will perform the requested computation in the accelerator.

Using the new middleware is straightforward. First, the library file containing the set of

wrappers at the client side should be copied to the computer executing the application,

which should additionally be compiled so that it uses dynamic libraries, which is the

common case. Furthermore, several environment variables should be set. In the case for

the Linux operating system, for instance, the already existing LD LIBRARY PATH en-

vironment variable should be set according to the final location of the client middleware

file. After that, a new environment variable called RCPU SERVER should be initialized

with the IP address of the computer hosting the server side of the new middleware and

the port number used by the server to receive requests. The syntax for initializing this

variable is “RCPU SERVER=IP address:port”. At the remote node, the binaries of the
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Figure 2.2: Architecture of the new middleware from a library perspective.

middleware server should be executed. This server is configured as a daemon and waits

for computation requests in a configurable port number. In case other operating systems

are used, a similar procedure should be followed.

It is important to remark that the proposed middleware is not limited to certain libraries

in the client node neither in the server computer. On the one hand, in the client node

any library that performs intensive computations in the CPU is eligible to be remotely

accelerated. On the other hand, any library implemented for an accelerator could be

used in the remote computer in order to serve computations for the equivalent CPU-

based functions (as long as the remote computer includes such accelerator, obviously).

Figure 2.2 depicts this idea. In the client node several CPU-based libraries have been

replaced by the wrappers of the proposed middleware. Other libraries not depicted in

the figure could also be considered. In the server side several libraries might be used

to service client requests. For example, if the server uses the GPU technology in order

to provide acceleration, then the cuBLAS [15] library by NVIDIA might be leveraged

to accelerate the computations of libraries such as GotoBLAS [16] or OpenBLAS [17].

Similarly, the MAGMA [18] and PLASMA [18] libraries could also be used. It is also

possible that the server features several GPUs. In this case the cuBLAS-XT library [19]

by NVIDIA could be leveraged in the server to distribute the computations among the

available GPUs. Other libraries such as MAGMA might also be used to take advan-

tage of multi-GPU servers. Notice that distributing data among the GPUs would be

transparently done by the middleware server and, therefore, the application would still

perform a single call to the CPU-based original function, without requiring any change in

its source code. In a similar way, in order to accelerate libraries such as FFTW [20], the

NVIDIA cuFFT [21] library might be used in the server. Other libraries implementing

the FFT computation in GPUs could also be employed. It would even be possible to use
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one library or the other according to the exact performance of each of them depending

on problem size. In case the remote server includes the Intel Xeon Phi accelerator, the

MKL library [22] by Intel could be used to accelerate the computations requested by

the client node.

Regarding the initial implementation of the new middleware presented in this document,

it makes use of TCP/IP based communications between clients and servers, although

a more sophisticated communication layer based on the InfiniBand Verbs API will be

developed in the future. Also, the new middleware currently supports only NVIDIA

GPUs, but the use of Intel Xeon Phi accelerators is intended to be supported in future

versions. Finally, this initial implementation of the new middleware provides partial

support for the BLAS library whereas some support for the FFT library is also imple-

mented. Support for the LAPACK library will be addressed in future versions.



Chapter 3

Implementation Details of the

New Middleware

Once the coarse details of the idea about the new middleware have been introduced,

in this chapter we present how the new middleware has been implemented for the two

mathematical libraries studied in this thesis (FFT and BLAS) when the remote server

makes use of a CUDA-compatible GPU in order to accelerate computations. In addition

to consider other computationally intensive libraries in future research, other implemen-

tation options for each of the libraries presented in this chapter could also be feasible.

An important issue that has to be considered while implementing the proposed middle-

ware for a given mathematical (or computationally intensive) library is that two different

approaches can be followed. In the first one, the client part of the middleware consists

of a set of extremely simple wrappers for each of the functions in the library being

remotely accelerated. These wrappers just forward the operation along with its input

data to the remote server and wait for the results. Although this naive implementation

may probably achieve execution time reductions in most cases, a better approach can

be followed. In the second approach, the client part of the middleware also forwards

to the remote server the operation to be performed along with its input data, but it

does so in such a way that several optimizations can be applied in order to achieve

larger speedups. Obviously, the server part of the middleware has to be accordingly

designed so that it actively collaborates in these optimizations. Also, notice that these

optimizations will probably be different not only for each targeted library but also for

9
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each particular mathematical function remotely accelerated within each library and will

also depend on the exact acceleration technology used in the remote server (GPU, Xeon

Phi, etc).

3.1 Offloading the FFTW Library

In order to implement the FFT library within the proposed middleware, the FFTW [23]

library may be selected, which is widely used due to its very good performance. Never-

theless, other libraries such as the Intel MKL could also be selected without significantly

modifying the discussion in this section. The FFTW library is a relatively small package

composed of about 40 functions. It computes the discrete Fourier transform (DFT) of

complex and real data, and also the discrete Hartley transform (DHT) of real data. The

current work is based on the DFT.

An important detail about the internals of FFTW is that it may use different algorithms

to compute different DFT transforms. The specific algorithm to use is carefully selected

depending on the exact underlying hardware, so that the performance of the DFT is

maximized. Thus, computing a DFT is split into two phases: first, the FFTW planner

analyzes the fastest way to perform the requested DFT in the current hardware taking

also into account input data size. The planner generates a data structure, called plan,

containing the result of this analysis. Afterwards, the plan is executed to apply the

DFT to input data. As a consequence of this division of labor, functions within the

FFTW library can be coarsely classified into two types: those for creating the plan

(which might be represented by the fftw plan function, although there are other flavors

of this function depending on the exact data types used) and those for executing the

plan (represented by the most general fftw execute function). The typical program flow

for computing the DFT is first calling the fftw plan function to create the plan and then

calling the fftw execute function for executing it.

Dividing the work among creating the plan and executing it imposes an important con-

cern when offloading the computations to be performed by the FFTW library to remote

accelerators. Basically, the concern is how to efficiently deal with the two functions

involved in the DFT transform (fftw plan and fftw execute) without having to forward

twice the input data to the remote server. Notice that it cannot be assumed that both
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functions will be sequentially called because of two reasons. First, it is possible for an

application to create several plans for the same input data and finally select one of them

according to some criteria of the application programmer. This is what the Gromacs ap-

plication [24] does, for instance. Second, it is possible to have several sets of input data,

with different size, and create the plans for these sets and execute them in many different

interleaved combinations. Hence, the strategy used for offloading the computations of

the FFTW library must be carefully designed.

A first detail to consider when designing the strategy to offload the FFTW library is

that plans are computed for a specific hardware. Thus, they must be created in the

remote server, according to its hardware features. Moreover, in case several plans are

created by the application, if input data is sent to the remote server by the wrapper

replacing the fftw plan function, then special care should be taken so that input data

is not sent several times.

A second detail to be taken into account is that, for some flavors of the fftw execute

function, it may just have a single input parameter: the plan. Thus, as we are creat-

ing a general strategy able to deal with all the different versions of the fftw plan and

fftw execute functions, it seems to be necessary that the plan created at the server is

returned back to the client so that it can be used as the input parameter to the wrap-

per that replaces the fftw execute function, which should just forward it to the remote

server, where it will be used to compute the DFT. Notice that in case several plans were

created, the original code of the application will select the exact plan to use, according

to the original programmer’s directives, and will deliver such plan to the wrapper that

replaces the fftw execute function.

One more concern to be considered when designing the strategy to outsource the FFTW

library is that, in the simplest version of the fftw execute function, the memory pointers

to input and output data used to compute the DFT transform are embedded into the

plan, which, additionally, is an opaque data structure which does not allow retrieving

the location of input and output data. Knowing the location of input data is not actually

required given that the fftw execute function at the server will use the plan and therefore

will automatically access input data. However, it is necessary to know the location of

output data in order to return it back to the client computer so that output data is
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delivered there to the original application. Thus, the pointer to output data, which is

known at the fftw plan function, should be stored somewhere in the server.

Having all these concerns in mind, a feasible strategy to be followed to outsource the

FFTW library could be to forward input data to the remote server when the fftw plan

function is called. Then, in addition to creating the plan, input data should be stored

at the server as well as the pointer to output data. Once the plan is created, it should

be returned back to the client, so that it is later used to feed the fftw execute func-

tion wrapper. In case several plans are computed for the same input data, only the

first call to the fftw plan wrapper should forward data to the server. Moreover, when

the fftw execute function is called in the client machine, the plan is forwarded to the

server and the DFT transform is computed there (without forwarding again input data).

Finally, output data is returned to the client using the pointer previously stored.

Although feasible, the described approach to offload the FFTW library to a remote

server presents two concerns. The first one is related to the possibility of computing

several plans for different input data sets presenting different sizes. In this case, the

aggregation of all input data, for the several plans, may probably not fit into GPU

memory and therefore input data should be moved back and forth to the server main

memory, what may translate into an important time overhead. One solution could be

to store input data in main memory instead of in the GPU memory. However, this

possibility leads us to the second concern: if data is stored in main memory at the

server, then when the request from the fftw execute wrapper is received, input data

must be moved from main memory to GPU memory, requiring a non-negligible amount

of time. Thus, a different strategy should be followed.

The approach finally followed for offloading the FFTW library consists in the wrapper of

the fftw plan function storing its input parameters in an internal data structure within

the wrapper library at the client computer and not forwarding any information nor

request to the remote server at that stage. Notice, however, that the fftw plan wrapper

must return a plan. As no plan has actually been created, the wrapper for the fftw plan

function will return a fake plan which has been initialized with an internal identifier,

which will be later used by the fftw execute wrapper to locate the stored parameters in

the internal data structure of the wrapper library. In this way, when the fftw execute

function is called, the stored parameters are used to locate and forward the input data
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to the remote server and store the results once received from the server. At the remote

server, once input data is received, the plan will be computed before applying the DFT

transform to the received data.

Notice that the proposed approach is compatible with the creation of several plans

because the wrapper of the fftw plan function stores in the internal data structure

of the new middleware the parameters for all the different fake plans (with different

identifiers, obviously). Therefore, when finally executing one of them, the wrapper for

the fftw execute function will browse the internal data structure searching for the exact

plan to be executed and will forward the right parameters, along with the input data, to

the remote server. Furthermore, contrary to what happened in the previous approach,

the proposed strategy makes a very efficient use of the memory of the GPU at the server,

since only the input data actually needed for the requested DFT transform will be stored

at the GPU memory. In this regard, this second approach is simpler and more scalable.

One possible optimization to the presented approach is based on the fact that the exact

value of input data is not required for creating a plan, but only input data size needs to be

known. Thus, it is possible to enhance the previous strategy by sending a short command

to the remote server as soon as the wrapper to the fftw plan is called at the client, asking

the server for creating the plan for such data size in advance (notice that the fftw plan

wrapper at the client will still return a fake plan, as described above. Furthermore,

the server should allocate the required memory for input data before creating the plan,

given that such pointer is needed). In this way, once input data is later forwarded

by the fftw execute wrapper, the plan will probably have been already created at the

server and hence the total execution time will be accordingly reduced. This optimization

requires to make sure that the plan is already created before actual computation of the

DFT transform begins. However, checking this issue is straightforward and will generate

no additional time overhead. On the contrary, the internal structure of the middleware

server must be enhanced by making use of threads. A performance comparison between

this strategy and the non-optimized one will be carried out in Chapter 5.

One final consideration about the implementation of the new middleware is how the

DFT is computed at the remote server, which in this initial implementation owns a

GPU. In this regard, once input data has arrived at the remote server, it is transferred

to the GPU by making use of regular GPU memory copies (the GPU has been previous
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initialized). After copying input data to GPU memory, the appropriate function of the

cuFFT library by NVIDIA is used to compute the DFT in the GPU. Once the transform

is completed, results are copied back from GPU memory to main memory in the server

and then they are sent to the client side of the middleware. After receiving the results

at the client side, the call that the application performed to the fftw execute function

is completed and application execution is resumed.

3.2 Offloading the OpenBLAS Library

In the same way as we selected the FFTW software as an example for offloading the

FFT library, in the case for the BLAS library we have to select a target package. In

this case there are several good candidates, such as the GotoBLAS implementation, the

OpenBLAS software, or the MKL library. Among these candidates we have selected

the OpenBLAS library given its superior performance with respect to the other two

incarnations of the BLAS library [17]. However, as it happened with the FFTW library

in the previous section, selecting a different candidate for the BLAS outsourcing would

not significantly modify the discussion in this chapter.

In order to present the main idea about the offloading process of the BLAS library, we

may start with a simple analysis of three representative functions of the BLAS library:

DGEMM, DGEMV, and DDOT. These three functions, which use double precision

data, present different computational complexity. DGEMM basically performs a matrix-

matrix product, denoted by the formula C = αAB + βC being A, B, and C matrices

whereas α and β are scalars. DGEMM presents a complexity O(n3). Because of this

complexity, it is said that the DGEMM function belongs to the Level 3 subset of BLAS.

On the other hand, DGEMV performs a matrix-vector product, according to the formula

y = αAx+βy being A a matrix, x and y vectors, and finally α and β are scalars. DGEMV

presents a complexity O(n2), thus belonging to the Level 2 subset of BLAS. Finally, the

DDOT function performs the dot product of two vectors, given by the formula xT y being

x and y vectors. DDOT has complexity O(n), being classified as a Level 1 function.

Another interesting point of view when analyzing these functions is the amount of com-

putations performed per input data element. Assuming the use of square matrices in

order to simplify this analysis, the DGEMM function requires 3n2 input elements, being



Chapter 3. Implementation Details of the New Middleware 15

n the matrix dimension, and performs, in total, n3 + 2n2 multiplications and n3 + n2

additions. Therefore, the amount of computations per input data element is (n + 2)/3

multiplications and (n+1)/3 additions, what might be simplified, given the higher com-

plexity of multiplications, to (n+ 2)/3 operations. In the case for DGEMV, it performs

n2 + 2n multiplications and n2 + n additions, involving n2 + 2n data elements (n be-

ing both the matrix dimension and also the vector length). Thus, making a similar

simplification as before, the DGEMV function performs 1 operation per data element.

Finally, the DDOT function performs n multiplications and n additions with 2n data

elements, thus accounting for a total of 0.5 operations per input data element if only

multiplications are considered. As can be seen, the different computational complexity

of these functions translates into a different amount of computations per data element.

In a similar way, it also translates into a different computation-to-communication ratio.

Given that the main concern in the proposed middleware is moving data to the remote

server, it can be easily derived that the functions of the BLAS library that best fit into

the idea of the new middleware are those belonging to the Level 3 of BLAS. This is why

we are going to discuss first some ideas about their implementation, using the DGEMM

function as an example. Notice, however, that other BLAS3 functions should probably

undergo a different discussion specially tuned for the particular operation they perform.

As it happened to the FFT implementation discussed in the previous section, in the

case of the DGEMM function one may think about two possible ways of outsourcing

its computations. In the first one, the naive approach, as soon as the wrapper for the

DGEMM function is called by the application at the client node, the wrapper moves all

the input data to the remote server and there the cuBLAS library is used to compute

the DGEMM operation in the GPU. Once computations in the GPU are completed,

results are returned back to the client side of the middleware, which forwards them

to the original application. This is the approach we follow for the first version of the

middleware.

Although this naive implementation would probably provide some acceleration with re-

spect to performing the DGEMM function in the local CPU cores, there is a smarter way

to carry out the offloading process, which is based on combining data transmission with

computations in a pipelined way. Figure 3.1 describes this process as an optimization

of the middleware with a matrix example.



Chapter 3. Implementation Details of the New Middleware 16

x + =
A1

A2

A3

A4

B1 B2 B3 B4

C1

C2

C3

C4

r1

r2

r3

r4

r7 r13

r8 r14

r5 r6 r9 r15

r10 r11 r12 r16

8000

80
00

(a) Diagram of DGEMM operation when matrices are split into four blocks.
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Figure 3.1: Pipelining the DGEMM operation.

Figure 3.1(a) shows a DGEMM operation applied to 8000 by 8000 square matrices. It can

be seen that matrices have been split into four blocks, each of them with dimensions equal

to 2000x8000 elements. The key point about Figure 3.1(a) is that for computing a given

element in the output matrix only some input data is required, but not the entire set of

input data. For example, for computing those elements in the “r1” block of the output

matrix, only blocks “A1”, “B1”, and “C1” are required. This allows appropriately

organizing input data transmission so that computation in the server begins much before

than the entire matrices have arrived, thus partially hiding data transmission time, which

is the main drawback of the proposed middleware. This is shown in the upper part of

Figure 3.1(c). In that figure it is shown that once the server has received blocks “A1”,

“C1”, and “B1” then computation for the “r1” block can begin1. In a similar way, once

1It is important to remark that the width of the boxes in Figure 3.1 is proportioned to their actual
duration in the experimental setup used in Chapters 4 and 5.
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blocks “A2” and “C2” have arrived, results for block “r2” can be computed. Notice that

transmission of blocks from the C matrix happens before than transmission of blocks

from the B matrix. This reordering allows that computations for block “r2” start before

receiving block “B2” from matrix B, thus saving some additional time. Another possible

reordering could be first to forward block “B2” and then blocks “A2” and “C2”. This

would allow starting the computation of block “r3” even earlier without causing the gap

shown in the figure after block “r1”. However, this second ordering may cause a gap

after computing “r3”, given that blocks “A2” and “C2” are required before continuing

with the computations. Finding an optimal transmission order is an open question that

mainly depends on the relationship among transmission time and computation time,

being both times dependent on block size.

Figure 3.1(b) shows a similar example when a smaller block size is leveraged. In this case,

instead of splitting input matrices into four blocks, they have been divided into eight

blocks. The bottom part of Figure 3.1(c) depicts the overlap between data transmission

and computations in the GPU for this smaller block size. It can be seen that although

transmitting each individual block requires less time, given their smaller size, the overall

transmission time for the three matrices remains the same. However, using a smaller

block size allows starting computations in the remote GPU earlier. This means that

there is a bigger overlap between transmission of input data and computation. Hence,

the main cause of overhead in the proposed middleware is reduced, making the proposal

more appealing. Notice, however, that the use of many smaller blocks leads to an

increased synchronization complexity and synchronization overhead, what may cancel

part of the benefits of overlapping computations with transmission. Moreover, it is very

common that network fabrics attain their maximum bandwidth for transfer sizes larger

than some minimum length. Thus, the use of very small blocks would allow to begin

computations in the remote GPU earlier but would probably present some drawbacks

that may probably reduce the overall benefits. Analyzing the optimal block size is an

open issue that mainly depends on the specific GPU used at the remote server and also

on the exact network fabric used.

Finally, the discussion above was focused on the DGEMM operation. In a similar way, an

analysis for the DGEMV and DDOT functions should be performed with both the naive

implementation and the pipeline optimization. However, given the low computation-to-

communication ratio that these operations present, it is very likely that applying the
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pipelining optimization to them provides no real acceleration with respect to carrying

them out with the naive approach.



Chapter 4

Performance Evaluation

In this chapter we present a thorough performance evaluation of the new middleware

based on real executions. With respect to the testbed used in the experiments, the client

node executing the original application will be either an Atom or Xeon-based system.

Notice that the reason for including Atom systems in this performance evaluation is

based on the recent proposals that consider low-power processors such as Atoms or

ARMs to be used in datacenters. The X10 MicroBlade server by Supermicro [25], which

includes up to 6272 Avoton cores (architecture Atom), is an example of this trend. A

system with an ARM architecture has also been included in the study, but due to some

technical limitations with it (few memory, only Ethernet connector), the results obtained

will be shown in Appendix C.

The exact characteristics of the systems used in this study are the following. The Atom-

based system is a Supermicro 5018A-TN4 server containing an 8-core Atom C2750

processor working at 2.4 GHz and 16 GB of memory at 1600 MHz. It includes one

PCIe 2.0 x8 connector. The Xeon-based system is a 1027GR-TRF Supermicro server fea-

turing two Intel Xeon hexa-core E5-2620v2 processors (Ivy Bridge) operating at 2.14 GHz

and 32 GB of memory at 1600 MHz. An additional Xeon-based system has been con-

sidered, for comparison purposes, comprising two Intel Xeon quad-core E5-2637v2 pro-

cessors (Ivy Bridge) working at 3.5 GHz and 32 GB of memory at 1866 MHz.

For the server part, the one that actually performs the computations, we considered

a 1027GR-TRF Supermicro server featuring two Xeon hexa-core E5-2620v2 processors

(Ivy Bridge) operating at 2.1 GHz and 32 GB of DDR3 memory at 1600 MHz. The

19
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server also includes an NVIDIA Tesla K40 comprising 12 GB of GDDR5 memory. The

Linux CentOS release 6.4 was used along with Mellanox OFED 2.3-2.0.0 (InfiniBand

drivers and administrative tools) and CUDA 6.5 with NVIDIA driver 340.29. The same

software configuration (except for the NVIDIA software) was used in the client nodes.

With respect to the network fabric connecting the client and server nodes we have

considered, for the Xeon-based systems, InfiniBand QDR and FDR network adapters

delivering a maximum theoretical bandwidth, respectively, of 40 and 56 Gbps. Addi-

tionally, the widely available 1 Gbps Ethernet fabric has been also used. In the case for

the Atom-based system, only Ethernet and InfiniBand QDR were used due to the lack of

a PCIe 3.0 connector in this system. Furthermore, notice that TCP/IP communications

will be leveraged over Ethernet and InfiniBand. In this regard, no kind of optimization

has been implemented in the communication layer of the new framework, which in this

initial implementation is quite simple: the client side sends all the input data of the

outsourced function to the remote server using the standard TCP socket API and, once

all the data involved in the requested computation has arrived at the server, it is copied

to the GPU memory using the appropriate CUDA commands. In this way, there is no

parallelism nor pipeline in the data movement from main memory in the client node to

the GPU memory in the remote server. Actually, this is the worst scenario for the new

middleware given that these non-optimized communications cause the biggest overhead.

4.1 Performance of the FFTW Offloading

Figure 4.1 depicts the performance attained by the new framework when computing

the one-dimensional DFT, using double complex data type (16 bytes) as input and

output (complex-to-complex, C2C). The transform of the function involving real data

(8 bytes) in the input (real-to-complex transform, R2C) or in the output (complex-

to-real transform, C2R) was also considered, although similar results were obtained.

These additional results are shown in Appendix A. Execution time of the original (non-

outsourced) executions is included as reference. In this case, the system with Xeons at

2.1 GHz and the system with Xeons at 3.5 GHz are leveraged. Curves labeled “Xeon

2.1 Local” and “Xeon 3.5 Local” depict these results. The performance of the cuFFT

executions in the GPU (without the new middleware) is also shown for comparison

purposes (curve “GPU Local”). Notice that times shown for the “GPU Local” curve
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Figure 4.1: Performance of the C2C-DFT 1D function in the Xeon-based system.

include the creation of the plan as well as moving data between main memory and GPU

memory. On the other hand, when the new middleware is used, the client node is a

Xeon-based system operating at 2.1 GHz. The Ethernet network (curve labeled “Xeon

2.1 ETH”) as well as the Infiniband QDR and FDR network fabrics are considered. The

speed up obtained when using the FDR interconnect is also shown. Bars labeled “FDR

vs Local 2.1” and “FDR vs Local 3.5” refer, respectively, to the speed up with respect

to the local execution in the Xeon 2.1 GHz and Xeon 3.5 GHz processors.

Notice that the results for the FDR fabric are displayed in the curve “Xeon 2.1 FDR”,

but there is no information regarding the results for the QDR fabric. The reason why this

curve has not been displayed in Figure 4.1 is because Infiniband QDR and FDR provided

very similar results. As obtaining similar results for both networks was surprising, we

decided to use the well known iperf tool [26] to gather TCP bandwidth results (remember

that we are making use of TCP/IP over InfiniBand). This tool showed that for the

Xeon 2.1 GHz system both interconnects provide basically the same performance, around

1190 MB/s. Interestingly, when the processors are upgraded to the 3.5 GHz version, the

iperf tool reported noticeable better performance: 1883 MB/s for the QDR fabric and

2255 MB/s for the FDR network.

Figure 4.1 clearly shows that the use of a slower network, like 1 Gbps Ethernet, does

not provide performance gains, despite of accelerating the computation of the DFT by

using a powerful GPU. However, a faster network, such as InfiniBand, provides near

3x better execution times with respect to the Xeon 2.1 GHz and 1.75x better times
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(a) InfiniBand FDR network adapter. (b) ETH network adapter.

Figure 4.2: Execution time breakdown for the C2C-DFT 1D function in the Xeon-
based system.

when the reference is the Xeon 3.5 GHz. Nevertheless, these accelerations are still far

away from the maximum acceleration provided by the cuFFT library used with the local

GPU (curve “GPU Local”). In this case, the local GPU provides a speed up between

30x and 35x (speed up not shown) with respect to executions of the FFTW library

in the CPU. These results confirm that, in order to accelerate the executions of the

FFTW library, network performance is a key concern, as expected. In next chapter we

will see how by using an improved communication architecture over the same network

hardware, the performance of the new middleware is noticeably increased. Finally, in

all the experiments in Figure 4.1 the overhead introduced by the execution of the code

of the new middleware is less than one millisecond.

Figure 4.2 presents a breakdown of the execution time when using the new middleware.

Execution time is split into six components: (1) time required to move input data of

the FFTW function from main memory in the client to main memory in the remote

server (“To Server”), (2) time spent in the server to copy input data from main memory

to GPU memory (“Mem to GPU”), (3) time required to complete the creation of the

plan at the server (“Plan”), (4) time spent by the GPU to compute the DFT transform

(“Computation”), (5) time required to move the results from GPU memory to main

memory in the server (“GPU To Mem”), and (6) time for returning the results back to

the client (“From Server”).

Figure 4.2(a) shows the breakdown using the InfiniBand FDR network adapter. Almost

60% of the time is spent in moving data between the client and the server computers,

whereas about 37% of the time is used for moving data between main memory in the

server and the GPU. Actual computation requires only 3% of the total time. When the

Ethernet network is used (Figure 4.2(b)) about 95% of the time is spent in moving data
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(a) Execution time and performance.

(b) Breakdown with IB QDR network adapter. (c) Breakdown with ETH network adapter.

Figure 4.3: C2C-DFT 1D function in the Atom-based system.

to and from the remote server. This data movement time is further increased by the time

required to move data between main memory in the server and the GPU, what finally

causes that less than 0.4% of the total time is devoted to computations in the GPU.

It will be shown in next chapter that a better communication architecture noticeably

increases performance gains. Finally, notice that in both Figures 4.2(a) and 4.2(b) the

creation of the plan is hidden for all transform sizes except for the smallest one using the

InfiniBand FDR adapter, where the time for creating the plan partially overlaps with

communication time.

The results regarding the use of our middleware in the Atom-based system are shown in

Figure 4.3. Figure 4.3(a) depicts the execution time when the Ethernet and InfiniBand

QDR fabrics are used. It can be seen that in this case, and due to the smaller computing

capacity of the Atom processor with respect to the Xeon one, the speed up attained is

larger. Figures 4.3(b) and 4.3(c) show the breakdown of the execution time considering

the InfiniBand QDR adapter and Ethernet network, respectively. The results depicted
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(a) 2D DFT, Xeon-based sytems. (b) 3D DFT, Xeon-based sytems.

(c) 2D DFT, Atom-based systems. (d) 3D DFT, Atom-based systems.

Figure 4.4: Performance of the C2C-DFT multi-dimensional functions.

are similar than the ones showed for the Xeon-based systems, being in this case the

percentage of the time required for the computations smaller than the previous ones:

around 2% of the total time when the InfiniBand QDR adapter is used, and 0.3% with

the Ethernet network.

In the case of outsourcing multi-dimensional DFT transforms, Figure 4.4 shows execu-

tion time and speed up for the 2D and 3D transforms in Xeon and Atom-based systems,

respectively. Input data size presents the same number of elements in the two or three

dimensions. Experiments with input data having different number of elements in differ-

ent dimensions provided similar results. Executions have been carried out in the same

scenarios considered in Figures 4.1 and 4.3. Figure 4.4 shows that the use of the new

middleware for accelerating the multi-dimensional DFT transform follows, in general,

the same trend already analyzed for the 1D transform. In this regard, the use of a low

performance network provides a noticeable degradation of execution time. On the con-

trary, the use of the high performance InfiniBand interconnect reduces total execution

time. In the case of the 2D transform, between 1.5x and 2.5x speed up is achieved when

compared to local executions in a Xeon 2.1 GHz. In the case of comparing against a
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(a) 2D, IB-FDR, Xeon-based systems. (b) 2D, Ethernet, Xeon-based systems.

(c) 3D, IB-FDR, Xeon-based systems. (d) 3D, Ethernet, Xeon-based systems.

(e) 2D, IB-QDR, Atom-based systems. (f) 2D, Ethernet, Atom-based systems.

(g) 3D, IB-QDR, Atom-based systems. (h) 3D, Ethernet, Atom-based systems.

Figure 4.5: Breakdown of C2C-DFT multi-dimensional.

Xeon 3.5 GHz, attained speed up is around 1.5x. Similar results are obtained for the

3D transform, although speed ups are slightly lower: between 1.5x and 2x with respect

to using a Xeon 2.1 GHz and around 1.25x when compared to local executions in a
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Figure 4.6: Amount of floating-point operations carried out in the 1D, 2D, and 3D
FFTW transforms.

Xeon 3.5 GHz. When the client computer uses an ATOM processor, maximum speed

up is 4x and 3x for the 2D and 3D DFT transforms, respectively. The breakdown of

the execution time for both dimensions and systems, whose results are similar to the

ones shown in Figures 4.2(a), 4.2(b), 4.3(b) and 4.3(c) for the 1D-DFT, are depicted in

Figure 4.5.

Contrary to the trend depicted in Figure 4.1, where some speed up was attained for

all the considered transform sizes, Figure 4.4 shows that in the case of the 2D and 3D

transforms the smallest transform sizes report no performance gain. For instance, for

the 2D DFT, transform sizes up to 30002 elements provide no acceleration with respect

to local executions in CPU. In the case of the 3D DFT, transform sizes up to 2003

elements experienced no acceleration. From these sizes, speed up starts growing as the

number of elements increases, until it gets a steady state.

The reason for this different behavior among the one-dimensional transform and the

multi-dimensional DFT can be found in Figure 4.6, which depicts the amount of floating

point operations for each of these transforms. The amount of operations carried out for

each transform size is broken down into the three operations used: additions (ADD),

multiplications (MULT), and fused multiply-additions (FMA). These latter operations

are composed of a multiplication and an addition performed in a single step in the

GPU. Numbers in Figure 4.6 have been gathered by making use of a profiling feature

already included in the FFTW library. As can be seen in Figure 4.6, the total amount of

operations increases with transform size, as expected. However, what is more interesting

is to analyze the ratio between the number of elements and the amount of operations,

which is shown in the figure with the black line labeled “Ratio”. This ratio is less

dependent on the transform size and points out that, for the smallest transform sizes,

the amount of operations per element decreases as the amount of dimensions considered

for the DFT transform increases. On the contrary, for the largest transform sizes, the
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1D, 2D, and 3D transforms present similar ratios. Interestingly, smaller transform sizes

do not experience any performance gain until the ratio reaches a value equal to or larger

than 120, approximately, when the client node is a Xeon 2.1 GHz. In this regard, in the

case of the 1D transform, the smallest transform size presents a ratio equal to 129, thus

providing performance gains. Notice that this result is aligned with the general spirit of

the new middleware, which accelerates computations at the cost of moving data to/from

the remote server. Hence, the performance gains of the new middleware might be seen

as a tradeoff between the time saved because of accelerating the computations with a

GPU and the extra time spent in moving data to/from that remote GPU. This effect

of the ratio among computations and communications will be more noticeable in next

chapter, when a better communication layer is used.

4.2 Performance of the OpenBLAS Offloading

In the same way as we have done with the FFTW library, we have carried out a perfor-

mance evaluation of the OpenBLAS library when offloading its representative functions

(DGEMM, DGEMV and DDOT) to a remote GPU.

Figure 4.7(a) depicts the performance attained by the DGEMM function in Xeon-based

systems. Execution times when using the local CPU have been included as references,

and they are referred to by the curve labeled “Xeon 2.1 Local” and “Xeon 3.5 Local”,

depending if the execution has been carried out in the system with the Xeon at 2.1 GHz

or in the system with the Xeon at 3.5 GHz, respectively. Notice that the 12 available

(a) Xeon-based systems. (b) Atom-based systems.

Figure 4.7: Execution time of DGEMM function.
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CPU cores in the system have been used in the local experiments for the Xeon at

2.1 GHz. The same experiments have been done with the system with Xeon at 3.5 GHz,

using its 8 available cores. Figure 4.7(a) also depicts the execution time when using the

new middleware along with an Ethernet network as well as the InfiniBand QDR and

FDR network fabrics (curves labeled “Xeon ETH”, “Xeon QDR”, and “Xeon FDR”,

respectively). Results clearly show, as in the case for the FFTW library, that the

performance of the network connecting the client and server nodes is crucial. In this

regard, when 1 Gbps Ethernet is used, execution time is noticeably increased with

respect to the execution time in the local CPUs. When the InfiniBand network is used,

execution time for the new middleware is only slightly larger than the time required for

the executions in the local CPU cores. Nevertheless, notice that times become similar for

the largest matrix sizes. These results seem to point out that when the communication

between client and server nodes is improved (next chapter), the new middleware may

provide some performance gains. Notice the similar results obtained for both QDR and

FDR network, whose behavior has been already explained in the Chapter 4.1. Also

remember that these results do not include the pipelined approach described in the

previous chapter.

(a) Ethernet network, Xeon system (b) InfiniBand FDR network, Xeon system

(c) Ethernet network, Atom system (d) InfiniBand QDR network, Atom system

Figure 4.8: DGEMM execution time breakdown.



Chapter 4. Performance Evaluation 29

In the same way, Figure 4.7(b) shows the performance for the DGEMM function in Atom-

based systems. In this case, the curve labeled “Atom Local” refers to the execution time

of the function using the local CPU in the the Atom system. Notice that the 8 CPU

cores have been used for the local experiments. In addition, curves labeled “Atom ETH”

and “Atom QDR” show the execution time when our middleware is used along with an

Ethernet and the InfiniBand QDR network fabric, respectively. In this case, the smaller

computing capacity of the Atom processor compared to the Xeon one makes that, even

moving the data to the server, using the new middleware with the Ethernet network is

faster than making the executions locally.

Figure 4.8 presents the breakdown of the execution time when using the new middleware.

Time is broken down into five components: (1) time required to move the input data

of the DGEMM function to the main memory of the remote server, (2) time required

to move the input data from the main memory of the server to the GPU memory,

(3) time spent in the CPU doing the calculations, (4) time required to return back

the results from the GPU memory to the main memory of the server, and (5) time

required to return back the results to the client node. Labels “To Server”, “Mem to

GPU”, “Computation”, “GPU to Mem”, and “From Server” refer, respectively, to each

of these components. It can be seen that when using the Ethernet network in the

Xeon-based scenario (Figure 4.8(a)), most of the total time is spent in moving data

to/from the remote server (around 95%), thus causing a noticeable increment in total

execution time despite of using a powerful GPU to accelerate computations. The large

time for data movement is diminished for the InfiniBand fabrics (Figure 4.8(b)), although

communications still represent an important fraction of the total time (nearly 60%), thus

increasing total execution time with respect to local executions in the CPU cores, as

shown in Figure 4.7(a). Breakdown of results for the Atom-based system (Figure 4.8(d)

and 4.8(c)) show similar percentages although in this case some performance gains are

attained.

Contrary to the results of the DGEMM function, Figure 4.9(a) shows that for the

DGEMV function there is no benefit on offloading the computations when using the

TCP/IP protocol stack. Even for the faster InfiniBand interconnect, the use of our

middleware increases execution time by a factor of 10x aproximately. The reason is that

the penalty of moving data to the remote server is too large (around 70% of the total

time when using InfiniBand, as shown in Figure 4.9(b)) and the faster computation of
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(a) Execution time in Xeon-based system. (b) Breakdown with InfiniBand FDR.

(c) Execution time in Atom-based system. (d) Breakdown with InfiniBand QDR.

Figure 4.9: Performance of DGEMV function.

the Testa K40 GPU does not compensate for it. Experiments with the low-power pro-

cessors provided similar results (Figure 4.9(c) and 4.9(d)). The smaller computation-to-

communication ratio of this function is the responsible for no experiencing any execution

time reduction.

Finally, Figure 4.10 shows the execution time and its breakdown for the DDOT function.

In this case, and given the lower computational complexity of the DDOT function with

(a) Execution time in Xeon-based system. (b) Breakdown with InfiniBand FDR.

Figure 4.10: Performance of DDOT function.
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respect to the DGEMM and DGEMV functions, it can be easily understood that this

function should not be offloaded, at least with the communication layer currently used

in our middleware, which causes that sending the input data to the server required up

to 75% of the total time.





Chapter 5

Performance Estimation With

Improved Communications

In the previous chapter we have presented the performance attained by the initial im-

plementation of the new middleware, which makes use of the TCP/IP protocol stack to

move data between client and server nodes. The communication layer currently available

in the new middleware is very simple: data is moved from the client node to the server

memory without any kind of optimization and, after receiving all the input data, it is

moved to the GPU memory and then computation starts. However, it is possible to op-

timize such data movement in order to noticeably increase its throughput. For example,

the InfiniBand Verbs API may be used instead of the TCP/IP protocol stack, boosting

attained bandwidth. Also, an efficient communication pipeline could be leveraged, as in

the rCUDA remote GPU virtualization framework [27]. Another possibility is using the

GPU Direct RDMA mechanism provided by NVIDIA and Mellanox [28] when finally it is

properly implemented and tuned so that it provides high performance. Moreover, notice

that in these latter options, data is directly moved from main memory in the client node

to GPU memory in the remote server, thus not only making use of a higher network

bandwidth, but also of an improved communication architecture. Actually, avoiding the

intermediate stop at the server’s main memory is what really will improve performance.

Given that moving data is the main concern in the new framework, in this chapter we

present a performance estimation if an optimized communication layer were used. The

performance estimation methodology consists in replacing, in the results presented in

33
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the previous chapter, the data transfer time from main memory in the client to GPU

memory in the server (including the intermediate stop at the server’s main memory)

by the time that an optimized communication layer would attain to move data directly

between memory in the client node and the GPU memory in the server. Notice that for

estimating the time required to move data to and from the remote server, which depends

on the volume of input and output data and also on the network bandwidth attained for

each transfer size, the bandwidth achieved by the rCUDA remote GPU virtualization

framework [10] has been considered instead of using the raw bandwidth of the Infini-

Band fabric. This approach is more accurate than using the raw network bandwidth

because software layers always impose some loss to theoretical performance numbers.

Additionally, notice that we have considered in this chapter the use of InfiniBand FDR

(56 Gbps) and InfiniBand EDR (100 Gbps) network adapters.

5.1 Improved FFTW

In this chapter, it is presented a performance estimation of the execution time for the

FFTW library. It has been considered the improved communication architecture pre-

viously explained. The optimization described in the previous chapter regarding plan

overlapping has not been included in the first plots of this section. The estimation of

the execution time including both the improved communication architecture and this

optimization is shown in Appendix D.

Figure 5.1 presents the performance estimation of the new middleware. The figure shows,

as the reference, the execution time of the 1D DFT using double complex data type as

input and output (complex-to-complex transform) when carried out in the traditional

way (using the local CPU). As mentioned in Chapter 4, results regarding real data, either

in the input (real-to-complex transform) or the output (complex-to-real transform) show

similar results, and they are shown in Appendix B. Curves “Xeon” and “Atom” refer,

respectively, to the FFTW executions using the local Xeon 2.1 GHz and the Atom

processors. When the new middleware makes use of the improved communication layer,

curves “Atom QDR”, “Xeon FDR”, and “Xeon EDR” refer, respectively, to the FFTW

executions using the remote accelerator from the Atom system with InfiniBand QDR,

from the Xeon 2.1 GHz with InfiniBand FDR, and from the Xeon 2.1 GHz system with
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Figure 5.1: Estimation of the FFTW 1D in different system configurations.

InfiniBand EDR. The speed up with respect to local executions is also shown. Notice

the logarithmic scale in the execution time axis.

Figure 5.1 shows that when the main concern in the new middleware (data transfers

across the network) is addressed by making use of an improved communication architec-

ture, noticeable reductions in execution time can be achieved. For example, for trans-

form sizes larger than 90 millions of elements, the use of the new middleware reports,

in general, a speed up higher than 10x (or 15x) for InfiniBand FDR (or EDR). More

specifically, when the InfiniBand EDR fabric is used, speed up is well above 15x. Notice,

however, that in the case for the Atom system using InfiniBand QDR, for instance, speed

up has been increased from 4x up to 17x, approximately, while communication band-

width has been increased from 1.8 GB/s with TCP up to 3.3 GB/s with the improved

communication architecture. Hence, how is it possible that FFTW has been sped up by

a factor of 4.25x whereas communication bandwidth has only been increased by a factor

of 2x? The answer is based on the fact that when TCP-based communications were used

in the previous chapter, data was sent from the client memory to the server memory

and once all data arrived at the server memory, then it was moved to the GPU memory.

Thus, data was moved in a stop&wait fashion, what introduced a large communica-

tion latency. On the contrary, with the improved communication layer, data is directly

moved from the client’s main memory to the GPU memory at the server. Additionally,

data transmission is pipelined and therefore performance is not only improved because a

higher network bandwidth is attained thanks to the use of the InfiniBand Verbs API, but
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also due to the fact that data transmission is not following a stop&wait approach but it

is done in a cut-through way, thus also reducing communication latency. Nevertheless,

although an improved communication layer is being used, maximum speed up is still

smaller than the provided by the cuFFT library (30x-35x) when the new middleware is

not used.

Figures 5.2(a), 5.2(b), and 5.2(c) show the breakdown of the total estimated execution

time. Notice that in this case the time breakdown is slightly different from the one

depicted in the previous chapter, given that in this case data is directly transferred

between main memory in the client and GPU memory in the server without being stored

in the server’s main memory. In this way, time “To Server” refers to the movement of

input data from main memory in the client node to the GPU memory in the server,

whereas time “From Server” refers to the movement of output data in the opposite

direction. On the other hand, Figure 5.2(d) depicts a percentage comparison of the

times shown in Figures 5.2(a), 5.2(b), and 5.2(c). Curves labeled with the “Comm”

suffix in Figure 5.2(d) refer to the total communication time (comprising both “To

Server” and “From Server” times). In general, it can be derived from the four figures

that as input data transfer time decreases because of a faster network, the percentage of

time devoted to computation increases. Figure 5.2(d) shows that the computation time

is about 10% in the case for QDR, and it increases to nearly 20% when the InfiniBand

EDR network adapter is used. Notice also that the percentage of the plan creation

decreases when transfer size increases, since the time for creating a plan in the remote

server requires an almost constant time of 340 ms.

When multi-dimensional DFT transforms are considered, noticeable reductions in execu-

tion time are also achieved. Figure 5.3 shows the estimated execution time and attained

speed up for 2D and 3D DFT transforms when using our middleware along with an

improved communication layer. The same scenarios considered in Figure 5.1 for the 1D

transform are also used in Figure 5.3. It can be seen that for the largest transform sizes,

an speed up between 10x and 20x is achieved both for the 2D and 3D transforms. In

the case of the 2D transform, even larger speed ups are attained for some transform

sizes. Notice that, in general, speed up attained for multi-dimensional DFT transforms

is slightly smaller than that achieved for the 1D FFTW function. One of the reasons, in

addition to the different computation per element ratio shown in Figure 4.6, is the very

different time required for creating the plan. In this regard, the time for 1D FFTW plan
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(a) Atom system using QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

(d) Comparison among the three systems.

Figure 5.2: Execution time breakdown for the FFTW 1D function.

creation in the local Xeon 2.1 GHz ranges from 130 to 3485 ms depending on transform

size, whereas creating the plan in the remote GPU server requires an almost constant
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(a) FFTW 2D function.

(b) FFTW 3D function.

Figure 5.3: Performance estimation of the FFTW 2D and 3D functions.

amount of time around 340 ms. In this way, when outsourcing the 1D FFTW trans-

form, the reduction in the time required for creating the plan causes an increment in

the speed up. On the contrary, creating the plan for 2D and 3D transforms in the local

Xeon 2.1 GHz requires just a few milliseconds1, thus causing that speed up is reduced

when the FFTW function is offloaded to the remote GPU, where creating the plan still

requires about 340 ms.

1Time for plan creation mainly depends on the number of elements in each dimension. In this way,
for a similar total transform size, 2D and 3D transforms present a much smaller number of elements per
dimension than 1D DFTs.
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Figure 5.3 also shows the effect already pointed out in previous chapter about the ex-

ecution time degradation for the smallest transform sizes, given that local executions

in the Xeon and in the Atom processors require less time than remote executions, thus

suggesting that the new middleware should not blindly offload every computation but

it should consider data size and network bandwidth in order to determine whether to

remotely or locally execute the requested computation. This may be easily achieved

with an automatic configuration stage to be performed just after installation of the new

middleware in a given cluster.

Finally, remember that in Chapter 3 we have presented an optimization consisting in

creating the plan for the DFT in the remote server in advance, before input data ac-

tually arrives. Thus, one may wonder whether this optimization, which will increase

the programming complexity of the middleware as already discussed, reports significant

benefits. In order to answer this question, we have overlapped the time of the plan cre-

ation with the time that input data takes to arrive to the GPU (labelled as “To Server”

in Figures 5.2(a), 5.2(b), and 5.2(c)). Figure 5.4 presents the percentage of reduction in

execution time among both versions when the three InfiniBand interconnects considered

in the study are used along with the 1D transform. The time savings introduced by

the optimization is in the range between 10% and 30%, mainly depending on transform

size and network bandwidth. Actually, this dependence on the number of elements of

the transform and on the performance of the network was the expected behavior, given

that the proposed optimization uses input data transfer time (which depends on the two

parameters mentioned) to hide the time required for creating the plan, which is almost

constant when the GPU is involved. Notice that similar results were obtained for the

multidimensional transforms.

5.2 Improved OpenBLAS

Chapter 3 has described the coarse idea for offloading the functions within the Open-

BLAS library along with an optimization for the DGEMM function. In this chapter we

present an estimation of the execution time as we did in the previous section with the

FFTW library. The optimization mentioned in the previous chapter for the DGEMM

function has not been considered in the first plots of this section.
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Figure 5.4: Reduction in the estimated execution time of the FFTW 1D function due
to overlapping plan creation with input data transfer.

also considering the mentioned optimization for the DGEMM function.

Figure 5.5 presents the estimated performance for the DGEMM function. The label

“Xeon Local” refers to the execution of the DGEMM function in the local Xeon 2.1 Ghz.

The labels “Xeon FDR” and “Xeon EDR” refer to the system configurations where the

network adapter was either a Mellanox InfiniBand FDR or EDR.

Figure 5.5 shows that the use of an optimized communication layer increments perfor-

mance, almost achieving a 4x speed up when using InfiniBand FDR and 4.5x when

InfiniBand EDR is used. Figures 5.6(a) and 5.6(b) present the breakdown of the to-

tal estimated execution time when using the new middleware with the FDR and EDR

network adapters, respectively. Execution time is split into three components: (1) time

required to move the data from main memory in the client node to the GPU memory
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Figure 5.5: Estimated execution time for the DGEMM function.



Chapter 5. Performance Estimation With Improved Communications 41

(a) InfiniBand FDR. (b) InfiniBand EDR.

Figure 5.6: DGEMM breakdown of estimated time execution.

(“To Server”), (2) time required to make the actual execution of the DGEMM function

in the GPU (“Computation”), and (3) time required to move the data back to the client

from the GPU memory (“From Server”). It can be seen that, when an improved com-

munication layer is used, most of the time is spent on the actual computations in the

GPU instead of using most of the time in moving data.

On the other hand, remember that the DGEMM function analyzed above belongs to the

Level 3 of BLAS, which comprises those functions with complexity O(n3). In this case,

the new framework takes advantage of the high computation-to-communication ratio

((n+ 2)/3 as discussed before). However, the DGEMV and DDOT functions present a

much lower computation-to-communication ratio, what explains that in the estimations

carried out with the improved communication layer (Figure 5.7), no performance gain

is attained for these functions.

Finally, Figure 5.8 shows the estimated performance when the optimization discussed in

Chapter 3 is used. It can be seen that splitting the overall DGEMM computations into

(a) DGEMV execution time. (b) DDOT execution time.

Figure 5.7: Estimated execution time for DGEMV and DDOT.



Chapter 5. Performance Estimation With Improved Communications 42

Speed up FDR Speed up EDR Time FDR Time EDR

Sp
e

e
d

 u
p

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

0

1

2

3

4

0

400

800

1200

Sub-matrix dimension
800500 1000 2000 4000 8000

200

600

1000 5

6

Figure 5.8: Performance estimation when the DGEMM operation in the remote GPU
is pipelined. Square 8000x8000 matrices are used.

smaller operations reduces total execution time by 20% for the case of using 8 blocks

per input matrix. In summary, Figure 5.8 shows that by overlapping the transmission

of data with computations the main concern of the proposed middleware, which is ex-

changing data with the remote server, is minimized. Notice, however, that computing

the DGEMM function in the remote GPU takes longer than data transmission. Hence,

a way to further accelerate the remote computation of the DGEMM function could be

to make use of several GPUs and distribute the DGEMM computation among them

by using the cuBLAS-XT library. This data and computation distribution is an open

research issue to be analyzed.
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Discussion

The new middleware presented in this thesis requires some additional discussion. First

of all, we carried out an initial contact with the LAPACK library [29], since it is one of

our future works. LAPACK is a software package intended to solve several mathematical

functions related with linear algebra, such as linear least square problems, systems of

linear equations and eigenvalue problems, among others. Functions within LAPACK can

be classified into three different categories: driver routines, computational routines, and

auxiliary routines. Figure 6.1 shows a traditional flow of a driver routine, which typically

uses a sequence of computational routines in order to solve the problem. Auxiliary rou-

tines are intended to perform certain subtasks and common low-level computations and

are not usually employed by LAPACK users but by driver and computational routines.

The behavior of driver routines perfectly matches the idea of the new middleware. In

this regard, once a driver routine is called by the application, the associated wrap-

per would forward to the remote server the input data to that driver routine. At the

server, the driver routine would be executed in the GPU, involving several computa-

tional routines. Once all the computations have been performed and the execution of

Comp.
routine 

Comp.
routine 

input
data

output
data

Comp.
routine 

Comp.
routine 

Comp.
routine 

Driver routine

Figure 6.1: Relationship between driver and computational routines in LAPACK.
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the driver routine has been completed at the GPU, results would be returned back to

the client side of the middleware. As can be seen, driver routines present a very high

computation-to-communication ratio, what will make them very good candidates for

being remotely accelerated, given that the communication overheads will be amortized

by the larger amount of computations performed. Thus, the main concern in the pro-

posed middleware, which is the overhead of communications, should be minimized for

driver routines. Regarding computational routines, these ones could also be offloaded

to the remote accelerator, in the same way as functions from BLAS and FFTW were

outsourced.

Considering these issues, we have estimated the performance of the proposed middleware

when it is applied to the SGESV function and the optimized communications explained

in the previous chapter are set. This function computes the solution to a real system of

linear equations B = A ∗ X where A is an n-by-n matrix and X and B are n-by-nrhs

matrices (nhrs stands for number of right hand sides, that is, the number of columns

of matrix B). The SGESV function internally makes use of the LU decomposition with

partial pivoting and row interchanges in order to factor matrix A. Once matrix A is

factored, the result is used to solve the system of equations B = A ∗X. As can be seen,

this driver routine does not make an intensive use of computational routines. Figure 6.2

shows a comparison between the execution time of this function using all the 12 available

cores in the system and the estimated execution time attained by the new middleware.

The MKL library has been used for the CPU-based executions to make a fair comparison.

In the case of the new middleware, the MAGMA library has been selected to carry out
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the computation of this function in the GPU. It can be seen in the figure that the use

of the new middleware would provide noticeable improvements in execution time for

both the FDR and EDR InfiniBand networks with up to 16x speedups. Notice also that

MAGMA is able to use several GPUs for many of the functions it addresses. Thus, when

several GPUs are used, speedups shown in Figure 6.2 might be larger.

But there are also some additional concerns regarding the libraries studied in this work.

First, the evaluated problem sizes range from 10 to 270 million of elements for 1D DFTs.

However, how should larger transform sizes be managed? Notice that available memory

at the GPU is the limiting factor. Hence, given that the Tesla K40 features 12 GB of

GDDR5, then transform sizes up to 400 million of elements could be considered. For

larger DFT sizes, the DFT operation can be divided into smaller DFTs [30] which can be

independently computed and later combined. Therefore, if problem size exceeds GPU

memory, the new middleware should automatically split input data into smaller chunks

that individually fit into GPU memory so that results are later combined before being

delivered to the application executing the original fftw execute function. This splitting

and combining process should be transparent to the application. In the case of BLAS

operations, a similar decomposition should be considered.

One more concern to be discussed regarding the FFTW library is that many use cases of

3D DFT in scientific computing involve domain decomposition with slab or pencil type

subdomains, coupled with an alltoall type transpose communication. This enables the

use of 1D DFTs to solve 3D DFT problems. Additionally, domain decomposition allows

much larger problems to be handled with the GPU’s limited on-board memory. Thus,

in a similar way to the decomposition of 1D DFTs mentioned above, multi-dimensional

DFTs should also be automatically managed by the new middleware in a transparent

way to the application, which just performed a call to the FFTW library to carry out a

multi-dimensional DFT. On the contrary, in case this decomposition is already managed

by the application, then the new middleware would manage 1D DFT transforms and

should only address whether the 1D transform requested fits into GPU memory, as

explained before. Although this concern has been explained for the FFT library, it

applies in the same way for the BLAS and LAPACK libraries.

Finally, notice that in addition to the GPU, the remote server also features one or more

CPU sockets, which have not been used in this implementation of the new middleware in
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order to further accelerate the execution of the functions. However, the new middleware

is not tied to the use of the NVIDIA cuFFT and cuBLAS libraries in the remote server,

but other libraries could also be used. In this regard, more complex libraries that

distribute the computations among the GPU and the available CPU cores could also be

used if available. In a similar way, libraries that leverage several GPUs could also be

used in those cases when the remote server features more than one GPU.



Chapter 7

Related Work

In this chapter the new middleware is put into the right context. In this regard, of-

floading computations to specialized hardware or servers has been previously proposed

in a variety of contexts, such as heterogeneous multicores within a chip, GPU offloading

within a computing node (this is what NVIDIA does with CUDA), and scheduling the

entire job to specialized nodes in grid-computing infrastructure. Their difference with

the new middleware is that the latter works at the cluster level instead of at the node

domain.

At the cluster level, the new middleware may resemble the remote procedure call (RPC)

mechanism [31] [32], which is a well-established technique to allow function shipping to

remote nodes using function skeletons. However, there are important differences between

the RPC mechanism and the new middleware. First, in order to use RPCs, programmers

have to explicitly program their use whereas the new middleware does not require any

modification to application source code. Second, contrary to the RPC mechanism, the

new middleware does not require the intervention of the operating system to move

data to the remote server (for instance, in the optimized communication layer using the

InfiniBand Verbs API is used, all the code is executed at the user level without requiring

a context switch). Furthermore, the new middleware does not use client or server stubs

neither in the caller nor in the callee machine, as RPCs do. Moreover, an RPC runtime

is neither required: the new middleware is integrated within the application at the client

side and, at the server side, the server directly deals with computation requests, without

requiring the intervention of any other entity. Also, the new middleware does not require

47
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the use of specialized compilers such as rpcgen or the use of functions from the RPC

Programmer’s Interface such as rpc reg() or rpc call(). Finally, the RPC mechanism

is stateless (each RPC call is independent from each other) whereas the new middleware

requires to store several state variables between different calls from the application, such

as the fake plans described in Chapter 3.

Other previous proposals that may also resemble the new middleware are Object Request

Brokers (ORB) [33], which consist of a broker process running in a network that puts

into contact a client requesting a service with a server providing that service. In the ORB

approach, the programmer either uses an Interface Definition Language (IDL) to declare

the public interfaces of the server or the compiler of the used programming language

translates the language statements into IDL statements. In contrast, the new middleware

does not require a centralized entity to put into contact requesters with servers nor it

requires to modify the application code nor specialized compilers. Moreover, on the

ORB’s client side, stub objects are created and invoked, serving as the only visible part

within the client application. Contrariwise, the new middleware does not require any

kind of stubs.

In summary, the main differences among other proposals and the new middleware are (1)

the latter does not require any modification to the source code of applications (it does

not even require applications to be recompiled as long as they use dynamically linked

libraries) and (2) the new middleware does not require stubs or additional runtime

systems to work or specialized compilers.

Finally, notice that this middleware can make use of GPUs in the remote server, as

remote GPU virtualization frameworks do. However, there is an important difference

between both: remote GPU virtualization frameworks redirect GPU requests from their

original destination (a local GPU) to a remote GPU, whereas the new middleware moves

the computation of compute-intensive libraries, initially intended to be performed at

the local CPU cores, to a remote accelerator thus transforming the nature of the call

in order to execute a different instantiation of the code, which provides exactly the

same results. Furthermore, notice that outsourcing the computations to be performed

within scientific libraries with the new middleware reports execution time savings. On

the contrary, remote GPU virtualization frameworks do not accelerate the computations
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forwarded to the remote server but they are usually slightly penalized due to the longer

path to the remote GPU with respect to the case of using it locally.





Chapter 8

Conclusions

In this thesis we have presented the initial implementation of a new middleware that of-

floads the CPU-based computations of scientific libraries to remote accelerators located

in other nodes of the cluster. Moreover, we have conducted a thorough performance

evaluation of the new middleware, which partially supports the FFTW and OpenBLAS

libraries as well as CUDA-compatible GPUs. Results clearly show that this new frame-

work provides important reductions in execution time. Results also show that perfor-

mance greatly depends on the throughput of the underlying network fabric.

Although the current version of the new middleware partially supports the FFT and

BLAS libraries, future versions will fully support both and also the LAPACK library,

as well as the use of Intel Xeon Phi accelerators and an optimized communications

layer. Once the main scientific libraries are supported, the benefits that the new mid-

dleware may report to real applications, in terms of execution time reductions, should

be evaluated. In this regard, it is important to remark that although the use of GPUs

is being considered for many applications, there are other applications that, although

being initially ported to CUDA, they later discontinued this support. This is the case,

for example, for the DL POLY application [34]. Other applications never were ported

to GPUs, for instance the TINKER molecular modeling software package [35]. There-

fore, for those applications not being ported to GPUs, the new middleware might be

especially appealing in order to reduce execution time. Actually, the use of the new

middleware with those applications may delay the need for adapting them to the use

of GPUs or other accelerators. Notice also that the new middleware is compatible with
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the use of MPI. In this case, each of the MPI processes would independently offload its

computations to the remote server. Automatic load balancing among servers would be

an open research topic.

Finally, although we have presented the use of the new middleware for the FFT and

BLAS libraries, our main goal is targeting the complete Intel MKL library in the near

future, so that all of its functions can be offloaded to remote accelerators. Other widely

used scientific libraries intended to be executed on CPUs will also be considered in

future versions. Additionally, concurrent usage of remote servers among several clients

and scheduling issues are other open future research terms.



Appendix A

Performance Evaluation for C2R

and R2C DFT

As a complement of the results depicted in Chapter 4, we present in this appendix the

performance evaluation of the FFTW functions involving real data in the input (real-

to-complex transform, R2C) or in the output (complex-to-real transform, C2R).
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(a) 1D.

(b) 2D.

(c) 3D.

Figure A.1: Performance of the R2C-DFT function in the Xeon-based system.
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(a) 1D, InfiniBand FDR. (b) 1D, Ethernet.

(c) 2D, InfiniBand FDR. (d) 2D, Ethernet.

(e) 3D, InfiniBand FDR. (f) 3D, Ethernet.

Figure A.2: Breakdown of R2C-DFT in the Xeon-based system.
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(a) 1D.

(b) 2D.

(c) 3D.

Figure A.3: Performance of the R2C-DFT function in the Atom-based system.
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(a) 1D, InfiniBand QDR. (b) 1D, Ethernet.

(c) 2D, InfiniBand QDR. (d) 2D, Ethernet.

(e) 3D, InfiniBand QDR. (f) 3D, Ethernet.

Figure A.4: Breakdown of R2C-DFT in the Atom-based system.



Appendix A. Performance Evaluation for C2R and R2C DFT 58

(a) 1D.

(b) 2D.

(c) 3D.

Figure A.5: Performance of the C2R-DFT function in the Xeon-based system.
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(a) 1D, InfiniBand FDR. (b) 1D, Ethernet.

(c) 2D, InfiniBand FDR. (d) 2D, Ethernet.

(e) 3D, InfiniBand FDR. (f) 3D, Ethernet.

Figure A.6: Breakdown of C2R-DFT in the Xeon-based system.



Appendix A. Performance Evaluation for C2R and R2C DFT 60

(a) 1D.

(b) 2D.

(c) 3D.

Figure A.7: Performance of the C2R-DFT function in the Atom-based system.
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(a) 1D, InfiniBand QDR. (b) 1D, Ethernet.

(c) 2D, InfiniBand QDR. (d) 2D, Ethernet.

(e) 3D, InfiniBand QDR. (f) 3D, Ethernet.

Figure A.8: Breakdown of C2R-DFT in the Atom-based system.





Appendix B

Performance Estimation for C2R

and R2C DFT

In this appendix we have included the execution time breakdown for the multidimen-

sional DFT transforms with complex data in both input and output (complex-to-complex,

C2C), not shown in Chapter 5. Furthermore, in the same way we did in Appendix A, as a

complement of the results depicted in Chapter 5, we present in this appendix the perfor-

mance estimation with improved communications of the FFTW functions involving real

data in the input (real-to-complex transform, R2C) or in the output (complex-to-real

transform, C2R).
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.1: Execution time breakdown for the C2C-DFT 2D.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.2: Execution time breakdown for the C2C-DFT 3D.
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(a) 1D.

(b) 2D.

(c) 3D.

Figure B.3: Performance estimation of the R2C-DFT function.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.4: Execution time breakdown for the R2C-DFT 1D.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.5: Execution time breakdown for the R2C-DFT 2D.



Appendix B. Performance Estimation for C2R and R2C DFT 69

(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.6: Execution time breakdown for the R2C-DFT 3D.
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(a) 1D.

(b) 2D.

(c) 3D.

Figure B.7: Performance estimation of the C2R-DFT function.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.8: Execution time breakdown for the C2R-DFT 1D.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.9: Execution time breakdown for the C2R-DFT 2D.
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(a) Atom system with QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure B.10: Execution time breakdown for the C2R-DFT 3D.





Appendix C

Performance Evaluation of FFTW

with ARM

In Chapter 4 we presented a performance evaluation of the middleware based on the

results obtained with the the testbenches based on Xeon and Atom processors. A similar

performance evaluation has also been carried out in an ARM-based system.

The ARM-based system is a Jetson TK1 DevKit [36] by NVIDIA comprising a 4-core

ARM Cortex A15 CPU at 2.3 GHz and 2 GB of memory, version 21.4 of L4T (Linux for

Tegra) and 1 Gbps Ethernet as a network fabric connecting it with the server. The lack of

more memory and PCIe connectors in this system is the reason why the results obtained

Figure C.1: Execution time of low-power based systems for the C2C 1D-DFT.
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by the Jetson TK1 Devkit have not been included in the main study. Additionally, a

problem with the 1 Gbps ETH driver in the new platform is that the bandwith of the

Ethernet interface is downgraded to 100 Mbps.

With these limitations, and only having connectors of 1 Gbps Ethernet, the performance

of this system with the FFTW library does not provide benefits. This result is aligned

with the ones presented in Chapter 4 for both the Xeon and Atom-based systems using

the same connector.



Appendix D

Performance Estimation of

FFTW With Improved

Communications and Framework

Optimizations

Chapter 3 presented the implementation of the FFTW library within the new middle-

ware along with a possible optimization. This optimization consists of overlapping the

creation of the plan with the transfer of the input data to the server. Results presented

in Chapter 5 showed the percentage of reduction in execution time when both proposals

(with and without the optimization) are compared. In this appendix, we present the

results of the execution time with this optimization of the 1D DFT using double complex

data type as input and output.

Figure D.1 shows the estimation of the execution time. Results show an speed up

bigger than the attained without the optimization (up to 25x). Finally, Figures D.2(a),

D.2(b) and D.2(c) show the breakdown of the total execution time for different system

configurations. Notice the reduction in the time for creating the plan thanks to the

optimization.
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Figure D.1: Estimation of the FFTW 1D in different system configurations using the
optimization.

(a) Atom system using QDR network adapter.

(b) Xeon system with FDR network adapter.

(c) Xeon system with EDR network adapter.

Figure D.2: Execution time breakdown for the FFTW 1D function using the opti-
mization.
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