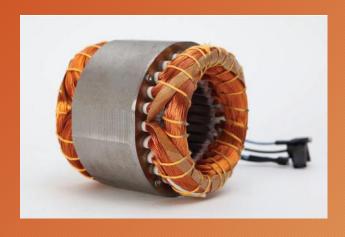
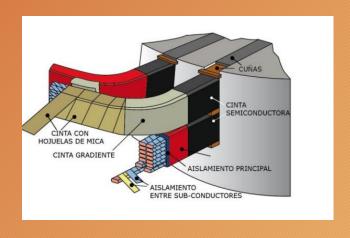
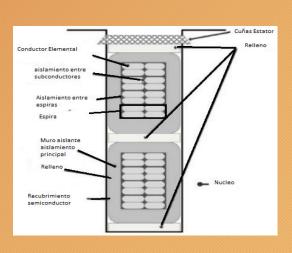
COMPROBACIÓN DEL ESTADO DEL AISLAMIENTO EN MÁQUINAS ELECTRICAS ROTATIVAS MEDIANTE LA APLICACIÓN DE ENSAYOS OFFLINE

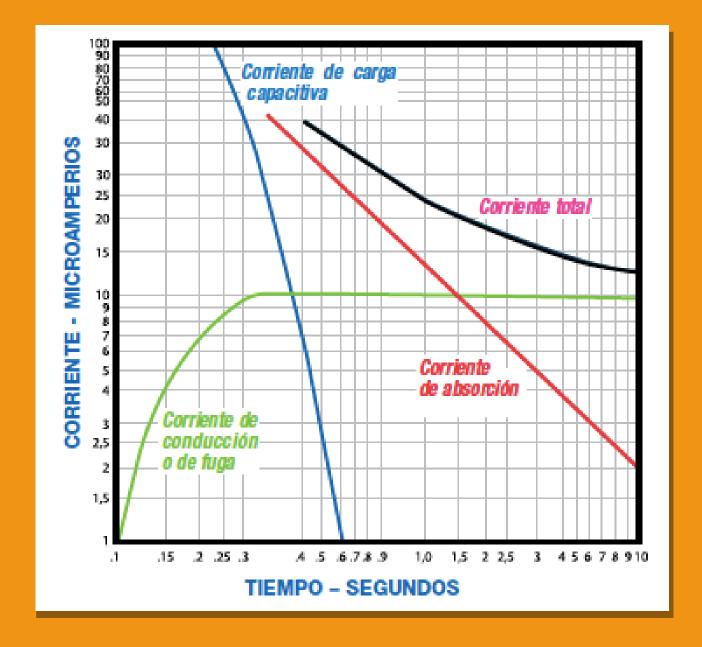





Sistema aislante

Motores de baja Tensión, es hilo de cobre con barniz aislante de poliéster o poliuretano

Motores de Mediana tención, cintas impregnadas o porosas.

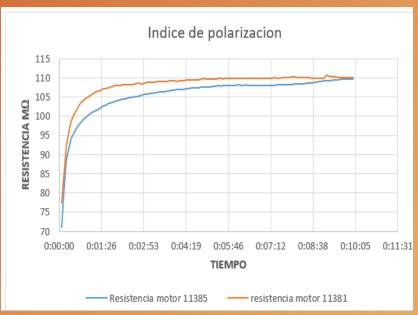


Componentes de la corriente a través de un dieléctrico

Capacitancia.- se extingue rápidamente no influye en la medida

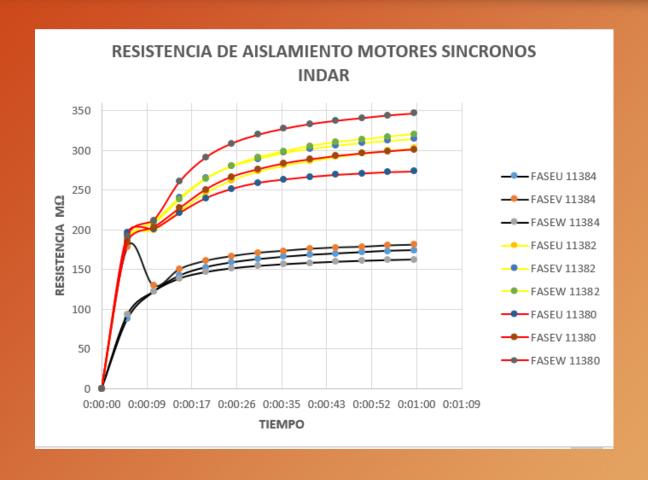
Absorción.- Decae desde un valor relativamente alto a cero se considera que se anula a los 30 min.

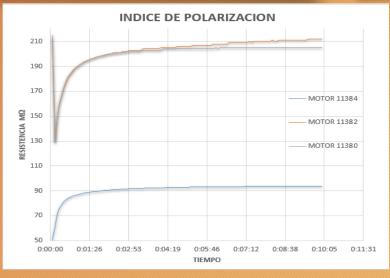
Fuga.- La corriente de conducción propiamente dicha.

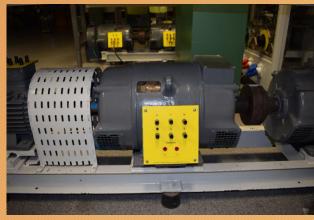

Tipos de ensayos Off-line

Ensayo	Descripción
Resistencia del aislamiento	$R_{aisl60s} = \frac{E}{I}$
Índice de polarización I.P.	$I.P. = \frac{I.R{10}}{I.R{1}}$
Relación de absorción dieléctrica D.A.R	$AD = \frac{I.R{1 min}}{I.R{30 s}}$
Prueba estándar capacitiva	$C = \frac{I}{\omega * V}$
Prueba Hi-Pot	2(U)+1000
Prueba de impulso o surge	$f = \frac{1}{2 * \pi \sqrt{LC}}$

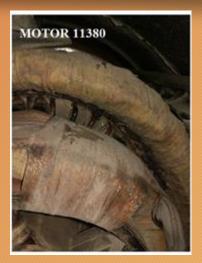
Motores asíncronos Indar



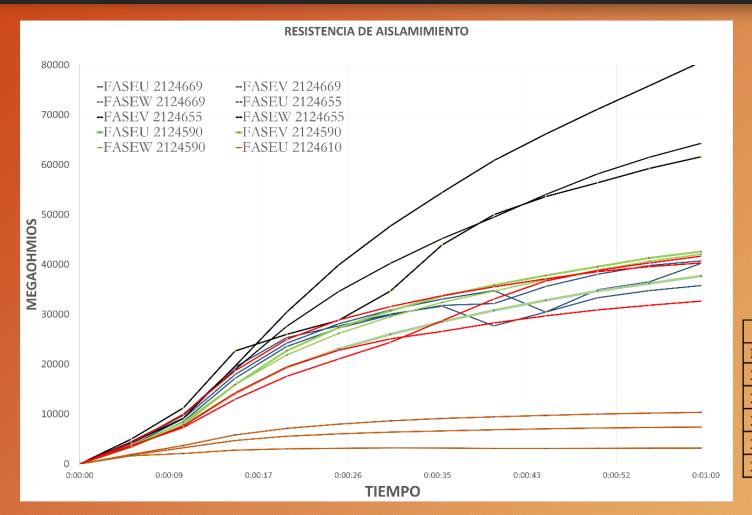

Motores asíncronos Indar


MOTOR AS	SÍNCRONO 1138	5					
FASE	D.A.R.	Valor min. DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	1,079	1.25	Deficiente			2,0	Deficiente
Fase v	1,049	1.25	Deficiente	Estrella	1,093		
Fase w	1,033	1.25	Deficiente				
MOTOR AS	SÍNCRONO 1138	1					
FASE	D.A.R.	Valor min.	Estado	Conexión	I.P. Motor	Valor I.P.	Estado
114012	D .71.11.	DAR	Listado	Concaton		Min	Loudo
Fase u	1.03	1.25	Deficiente				Deficiente
Fase v	1.04	1.25	Deficiente	Estrella	1,045	2,0	
Fase w	1.05	1.25	Deficiente				

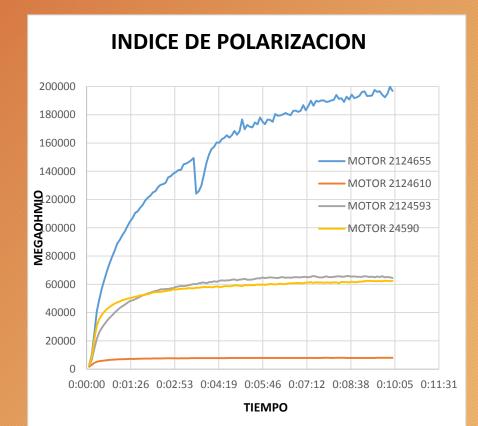
Motores síncronos Indar



Motores síncronos Indar


MOTOR A	SÍNCRONO 1138	4					
FASE	D.A.R.	Valor mir DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	1.069	1.25	Deficiente				
Fase v	1.059	1.25	Deficiente	Estrella	1,06	2,0	Deficiente
Fase w	1.052	1.25	Deficiente				
MOTOR A	SÍNCRONO 1138	2					
FASE	D.A.R.	Valor mir DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	1,1076	1.25	Deficiente				
Fase v	1,0872	1.25	Deficiente	Estrella	1,11	2,0	Deficiente
Fase w	1,1011	1.25	Deficiente				
MOTOR A	SÍNCRONO 1138	0					
FASE	D.A.R.	Valor mir DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	1,0551	1.25	Deficiente				
Fase v	1,0971	1.25	Deficiente	Estrella	1,07	2,0	Deficiente
Fase w	1,0842	1.25	Deficiente				

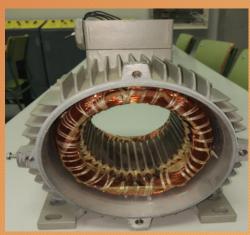
Motor Siemens Asíncrono 1LA20904AA10



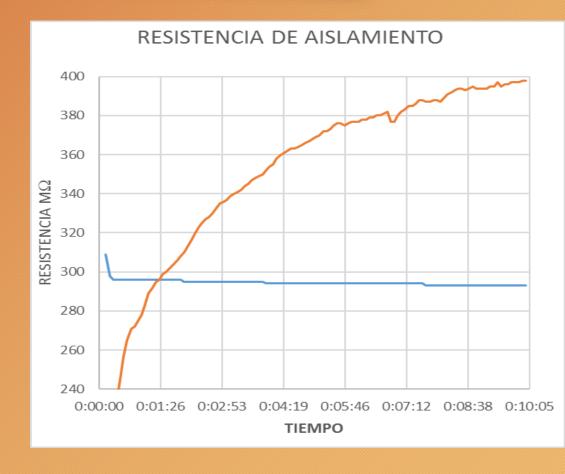

NUMERO DE MOTOR	ESTADO	COLOR GRÁFICA 62
2124655	Con rotor-funcionando	Negro
2124669	Con rotor-funcionando	Azul
2124590	Con rotor-funcionando	Verde
2124610	Rebobinado sin rotor	Café
2124593	Sin rotor bobina rota	Rojo

Motor Siemens Asíncrono 1LA20904AA10

FASE	D.A.R.	Valor DAR	min.	Estado	Conexión	I.P. Motor	Valor Min	I.P.	Estado
Fase u	1,777	1.25		Excelente					
Fase v	1,598	1.25		Excelente	Estrella	2,2148	2,0		Deficiente
Fase w	1,690	1.25		Excelente					
MOTOR AS	SINCRONO 2124	699							
FASE	D.A.R.	Valor DAR	min.	Estado	Conexión	I.P. Motor	Valor Min	I.P.	Estado
Fase u	1,3024	1.25		Bueno			2,0		-
Fase v	1,2005	1.25		Deficiente	Estrella	-			
Fase w	1,3633	1.25		Bueno					
MOTOR AS	SINCRONO 2124	590							
FASE	D.A.R.	Valor DAR	min.	Estado	Conexión	I.P. Motor	Valor Min	I.P.	Estado
Fase u	1,450	1.25		Bueno			2,0	Deficiente	
Fase v	1,386	1.25		Bueno	Estrella	1,31			
Fase w	1,425	1.25		Bueno					
MOTOR AS	SINCRONO 2124	610							
FASE	D.A.R.	Valor DAR	min.	Estado	Conexión	I.P. Motor	Valor Min	I.P.	Estado
Fase u	1.15	1.25		Deficiente					
Fase v	1.19	1.25		Deficiente	Estrella	1,1656	2,0		Deficiente
Fase w	0.98	1.25		Deficiente					
MOTOR AS	SINCRONO 2124	593							
FASE	D.A.R.	Valor DAR	min.	Estado	Conexión	I.P. Motor	Valor Min	I.P.	Estado
Fase u	1,707	1.25		Excelente					
Fase v	1,302	1.25		Bueno	Estrella	1,5504	2,0		Deficiente
Fase w	1,277	1.25		Bueno					

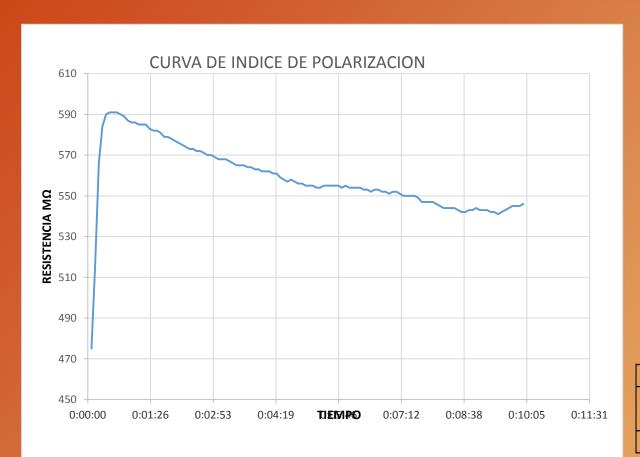


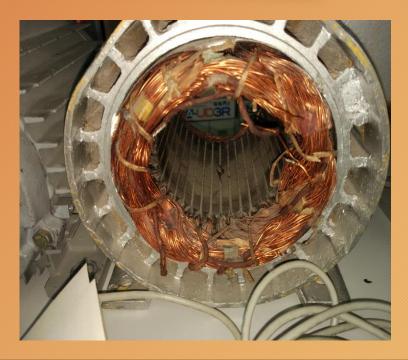
Motores Siemens 1LA7090-4AA10 Y 1LE10011AB422AH4



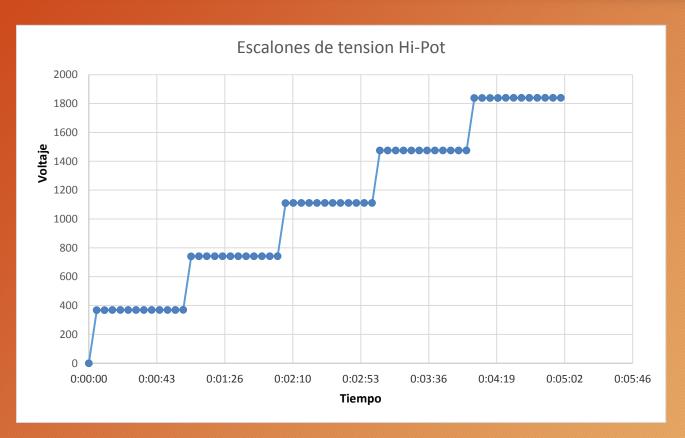
Motores Siemens 1LA7090-4AA10 Y 1LE10011AB422AH4

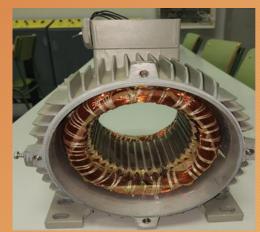
MOTOR ASINCRONO 1LA7090-4AA10							
FASE	D.A.R.	Valor min. DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	0.9970	1.25	Deficiente				
Fase v	0.9971	1.25	Deficiente	Estrella	Estrella 0,99		Deficiente
Fase w	0.9967	1.25	Deficiente				
MOTOR A	SÍNCRONO 1LI	E10011AB422A	.Н4				
FASE	D.A.R.	Valor min. DAR	Estado	Conexión	I.P. Motor	Valor I.P. Min	Estado
Fase u	0.9981	1.25	Deficiente				
Fase v	1,0111	1.25	Deficiente	Estrella	1,21	2,0	Deficiente
Fase w	1,0198	1.25	Deficiente				




Motor Zaldi

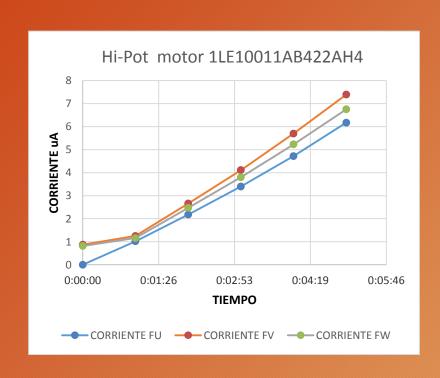
MOTOR GENERAL ELECTRIC FM132MX							
FASE	Resistenci	Resistenci	D.A.R.	Valor min.	Estado		
	a	a		DAR			
	30 s	60 s					
Fase u	744	802	1.0791	1.25	Deficiente		
Fase v	613	635	1.0356	1.25	Deficiente		
Fase w	382	406	1.015	1.25	Deficiente		

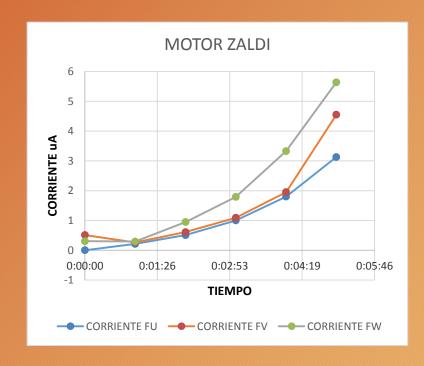

Motor Zaldi

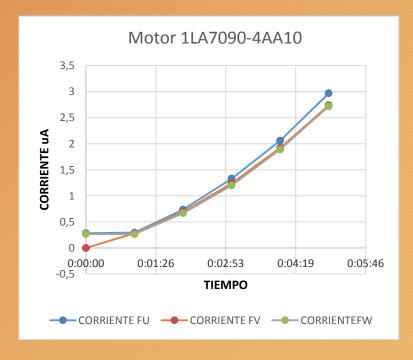


MOTOR ASINCRONO 2124655							
CONEXION	Resistencia Resistencia I.P. Valor min. Estado						
	1 min MΩ	10 min MΩ		I.P.			
Estrella	586	546	1.09	1.5	Deficiente		

Prueba Hi-Pot en motores Zaldi, 1LA7090-4AA10 y 1LE10011AB422AH4.







Prueba Hi-Pot en motores Zaldi, 1LA7090-4AA10 y 1LE10011AB422AH4.

Costos

COSTOS DE ADQUISICIÓN						
Descripción	Cantidad	Precio (€)	Total (€)			
Costo de Megger	1	3500	3500			
Costo de calibración	1	200	200			
Costo de capacitación	3	100	300			
Polímetro profesional	2	100	200			
Costo de ordenador	1	500	500			
	4500					

COSTOS DE MANO DE OBRA							
Descripción	Cantidad	Precio	Tiempox	Numero de	Total (€)		
		(€/h)	máquina (h)	máquinas			
Costo de mano de	2	30	1	12	720		
obra							
Costo de análisis	1	60	1	12	732		
de resultados							
Coste total de manos de obra 1452							

COSTE DE REPARACIÓN MOTORES DE MEDIANA POTENCIA							
Descripción	cripción Potencia (CV) Cantidad Precio Total (€)						
Bobinado	260	1	3200	3200			
Sumergimiento en	200	1	2500	2500			
Resina							
	5700						

Conclusiones

- La pendiente de la curva de resistencia de aislamiento es un parámetro fundamental para poder establecer el estado en el cual se encuentra el sistema aislante en la mayoría de motores, a excepción, de aquellos motores que polarizan rápidamente, como en el caso de motores nuevos que utilizan nuevos materiales y resinas en su aislante dotando a su pendiente de curva una tendencia a 0, pudiendo provocar un diagnóstico erróneo del estado en el cual se encuentra el motor.
- Durante la prueba I.P. resulta conveniente evaluar cada fase de un motor eléctrico por separado, para poder realizar un diagnóstico más fiable. Si se desea conocer de manera general el estado del sistema aislante, se puede recurrir a la conexión estrella entre los bobinados, pero debe tomarse muy en cuenta que cualquier pequeña desviación que pueda presentar en su curva puede traducirse en una falla considerable si se evalúa cada fase por separado.
- La resistencia de aislamiento no desciende únicamente por encontrarse su aislamiento contaminado o húmedo, existen ocasiones en el factor humano juega un papel importante, como es el caso del motor rebobinado, que presenta una curva de resistencia de aislamiento muy baja en comparación con motores similares, producto de un mal proceso de reacondicionamiento.
- La mayoría de los motores Indar presentan un aislamiento que con un I.P. bajo, esto se debe a que son utilizados para fines didácticos, y se realizando sobre ellos una serie de estudios y pruebas sobre ellos que deterioran progresivamente la vida de su sistema aislante, además llevan prestando servicio por más de 30 años jamás se ha realizado un mantenimiento sobre estos motores ya que no se los utiliza en ningún proceso o sistema, ni forman parte crucial de los mismos.
- En la mayoría de los casos, el estado de limpieza y sequedad medido a través del DAR y/o IP en muchos motores es muy mejorable, dado se puede aplicar en ellos un mantenimiento de limpieza interna con el propósito de aumentar las cifras obtenidas.
- Jamás se obtendrán dos curvas idénticas, pero si similares, al realizar una prueba offline, debido a que el aislamiento presenta una serie de impurezas que provoca que el camino que toma la corriente en su interior sea diferente.
- En un ensayo Hi-Pot cualquier variación en la tasa de crecimiento intensidad corriente debe ser revisado meticulosamente para establecer si nos encontramos frente a la tensión de ruptura y no producir daño al motor.
- Si comparamos los valores obtenidos de I.P. como D.A.R. en relación con los presentes en la reforma IEEE 43-2013, el motor Nuevo presentaria unas pésimas condiciones, por lo que esta norma se encuentra obsoleta frente a los nuevos avances en ingeniería de materiales, que hacen que el comportamiento que presenta la curva de resistencia de aislamiento en los nuevos sistemas aislantes sean muy estables.
- En el capítulo dos se describió un gran número de técnicas utilizadas para diagnosticar fallas en motores, pero ninguna de ellas a excepción de las técnicas Off-line permiten tener una idea del estado en el cual se encuentra el aislamiento, salvo que el aislamiento en el motor se encuentre gravemente deteriorado.

PREGUNTAS

