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Abstract 21 

We previously showed that the movement protein (MP) gene of Alfalfa mosaic virus 22 

(AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding 23 

genes of Tobacco mosaic virus, Brome mosaic virus, Prunus necrotic ringspot virus, 24 

Cucumber mosaic virus and Cowpea mosaic virus. We have analyzed the capacity of 25 

the heterologous MPs to systemically transport the corresponding chimeric AMV 26 

genome. All MPs were competent for the systemic transport but required the fusion at 27 

their C-terminus of the coat protein-interacting C-terminal 44 amino acids (A44) of 28 

AMV MP. The A44 region was also required to reach vascular tissue. Except for the 29 

TMV MP, the presence of the hybrid virus in systemic leaves correlated with the 30 

capacity to move locally, suggesting a cell-to-cell threshold transport. These results 31 

suggest that all the MPs assigned to the 30K superfamily are exchangeable not only for 32 

the local virus movement but also for the systemic transport. 33 

34 
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To establish a systemic infection, plant viruses must invade the adjacent cells via 35 

the cell wall connections known as plasmodesmata (PD), the so-called cell-to-cell 36 

transport (Fernandez-Calvino et al., 2011), and reach distal parts of the plant through 37 

the vascular tissue, a process denominated systemic transport (Ueki and Citovsky, 2007; 38 

(Pallás et al., 2011). For this purpose, part of the reduced viral genome is addressed to 39 

express one or a few movement protein(s) (MPs) to support virus transport which can 40 

determine host specificity (Waigmann et al., 2007) and, in some instances, can influence 41 

on viral pathogenicity (Pallás & García, 2011). Viral MPs facilitate the virus cell-to-cell 42 

transport by different mechanisms, permitting the transport of  ribonucleoprotein 43 

complexes, between MP and viral RNA (e.g. Tobacco mosaic virus,TMV; Waigmann et 44 

al., 2007), plus the CP (Cucumber mosaic virus –CMV- or Alfalfa mosaic virus –AMV-45 

) or virions particles (Ritzenthaler & Hofmann, 2007). In spite of the clear differences 46 

observed among the three transport mechanisms, a large number of these MPs has been 47 

assigned to the 30K superfamily, a group of MPs of viruses belonging to eighteen 48 

different genera that express a unique MP that are similar to the TMV MP of 30 kDa. 49 

Systemic transport implies the entry into and the exit from the vascular tissue 50 

and, consequently, the infection of different cell types associated with it (see Ueki & 51 

Citovsky, 2007 and Pallás et al., 2011, for recent reviews). In addition to the MP, the 52 

capacity of plant viruses to reach vascular tissue implies the use of other viral proteins 53 

that can be related to the inhibition of plant defenses (e.g. silencing suppressors), 54 

protein translation (e.g. VPg) (Rajamaki & Valkonen, 2002), viral RNA-dependent 55 

RNA replication –RdRp- (Traynor et al., 1991) or the CP, probably through to the 56 

stabilization of virion complexes (Ueki & Citovsky, 2007; Bol, 2008). AMV is the type 57 

member of the genus Alfamovirus which virus particles are required for systemic 58 

transport (Herranz et al., 2012; Sánchez-Navarro & Bol, 2001; Tenllado & Bol, 2000). 59 
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In addition, we reported that the MP of AMV is functionally exchangeable by different 60 

MPs assigned to the 30K superfamily, allowing the cell-to-cell transport of the 61 

corresponding chimera constructs (Sánchez-Navarro et al., 2006; 2010; Sánchez-62 

Navarro & Bol, 2001). Except for the TMV MP, the remaining heterologous MPs 63 

require the fusion at its C terminus of the C-terminal 44 amino acids of the AMV MP 64 

(A44), responsible to interact with the cognate CP (Sánchez-Navarro et al., 2006). The 65 

present work analyzes the capacity of several MPs of the 30K superfamily to support 66 

the systemic transport of chimeric AMV RNA3, including representative members that 67 

were reported to transport virus particles (e.g. CPMV or Brome mosaic virus, BMV), 68 

ribonucleoprotein complexes with only the MP (e.g. TMV) or with both the MP and the 69 

CP (e.g. AMV or CMV).  70 

First of all, we quantified the cell-to-cell transport of the AMV RNA3 chimera 71 

carrying the previously described heterologous MPs (Sánchez-Navarro et al., 2006). To 72 

do this, T7 transcripts from the AMV RNA 3 chimera constructs carrying the green 73 

fluorescent gene and the corresponding MP gene of PNRSV (PNRSV:A44), CMV 74 

(CMV:A44), CPMV, (CPMV:A44), BMV (BMV:A44), BMV with the A44 fused 75 

before its C-terminal 48 amino acids (BMV:A44:B48) and the TMV with (TMV:A44) 76 

or without (TMV) the A44 fragment, were inoculated on transgenic tobacco plants 77 

constitutively expressing the AMV P1 and P2 protein (P12 plants; Taschner et al., 78 

1991). Figure 1 shows the size average of 50 infection foci at 2 days post inoculation, 79 

which is the best time when greater differences are observed between individual 80 

infection foci. The results grouped constructs into three clusters with an infection foci 81 

size of around 800 µm (AMV, CMV:A44, CPMV:A44 and TMV:A44), 600 µm 82 

(PNRSV:A44 and BMV:A44) and 400 µm (BMV:A44:B48 and TMV). Interestingly, 83 

the absence of the A44 fragment (TMV construct) or its location inside the heterologous 84 
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MP (BMV:A44:B48) negatively affects the cell-to-cell transport (compare TMV:A44 vs 85 

TMV in Figure 1).  86 

In the next step, we analyzed the capacity of the heterologous MPs to support the 87 

systemic transport of the AMV RNA 3. For this purpose, we used a wild-type AMV 88 

RNA 3 since the RNA 3 derivatives carrying the GFP reporter gene do not move 89 

systemically in P12 tobacco plants (Sánchez-Navarro et al., 2001). All the heterologous 90 

MPs were introduced into the AMV RNA 3 (plasmid pAL3NcoP3 in van der Vossen et 91 

al., 1993) by exchanging the NcoI-PstI fragment. RNA accumulation levels of the 92 

different AMV RNA 3 hybrids were first analyzed in P12 protoplasts as described 93 

previously (Sánchez-Navarro et al., 2010). Chimeric RNA 3 and 4 accumulated at 94 

comparable levels of AMV wild-type RNA (lanes 2-6 in Figure 2b) except for the RNA 95 

3 of the AMV constructs carrying the MP of TMV, either fused or not to the A44 96 

fragment, which was significantly reduced (10%, lanes 7 and 8 in Figure 2b). The 97 

accumulation of all the RNA 3 derivatives was then analyzed in inoculated and systemic 98 

infected P12 plants leaves by tissue printing of petioles, as described previously (Mas & 99 

Pallás, 1995;Sánchez-Navarro et al., 2010). The tissue printing results (Figure 2c) allow 100 

us to discern three different patterns according to the detection of a positive 101 

hybridization signal in: i) all the inoculated and systemic leaves (AMV, PNRSV:A44, 102 

CMV:A44 and CPMV:A44), ii) in the inoculated leaves and some systemic leaves 103 

(BMV:A44 and TMV:A44) and iii) only in the inoculated leaves (BMV:A44:B48 and 104 

TMV). The accumulation of viral RNAs in the petioles of inoculated (not shown) and 105 

systemic leaves showing positive hybridization signal by tissue printing was later 106 

confirmed by northern-blot analysis (Figure 2d). The results shown in Figure 2 revealed 107 

that all the analyzed MPs  are able to support the systemic transport of the AMV RNA3. 108 

We also observed that the lack of the A44 fragment (TMV construct) or its location 109 
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inside the heterologous MP (BMV:A44:B48) completely abolished systemic transport. 110 

Except for the TMV construct, all the AMV RNA 3 chimeras showing large infection 111 

foci on the inoculated leaves were able to infect all the systemic leaves (CMV, CPMV 112 

and AMV). This result strongly suggests that reaching the vascular tissue at early time 113 

of the infection gives an advantage to the pathogen that could counteract the plant 114 

defense mechanisms (e.g. silencing). Indeed, in some well characterized plant-virus 115 

interactions, the capacity to reach systemic tissue has been associated with a successful 116 

blockage of the RNA silencing-mediated plant defense barriers (Cao et al., 2010; 117 

Hamilton et al., 2002; Schwach et al., 2005; Wintermantel et al., 1997; Yelina et al., 118 

2002). To date, no RNA silencing suppressor has been identified for AMV. This 119 

observation permits argue about the possibility that the virus would counteract the RNA 120 

silencing mechanism by moving faster than the putative systemic silencing RNA signal. 121 

However, it was not possible to apply this idea to the TMV:A44 construct since the 122 

infection foci, observed on the inoculated leaves, were similar to those AMV chimeras 123 

infecting all systemic leaves. This result clearly reveals that the MP of TMV is very 124 

efficient in supporting the cell-to-cell transport of the AMV RNA 3 chimera, but very 125 

inefficient in invading vascular tissue. The observation that the TMV construct is also 126 

competent for the cell-to-cell transport indicates that the MP transports viral RNA 127 

without any interaction with the AMV CP. In this scenario, it is tempting to speculate 128 

that the TMV:A44 MP mainly transports non-encapsidated  viral RNA, which allows 129 

very efficient local transport, but most inefficient systemic movement for which AMV 130 

virus particles are critical. The group of AMV constructs showing medium infection 131 

foci on inoculated leaves (600 µm; BMV:A44 and PNRSV:A44) rendered two different 132 

systemic infection patterns which were differentiated in terms of their capacity to reach 133 

all the systemic leaves (PNRSV:A44; Figure 2c, line 6) or only part of them 134 
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(BMV:A44; Figure 2c, line 2). This result clearly indicates that AMV chimeras with 135 

reduced cell-to-cell transport  are still able to infect all the systemic leaves. The 136 

differences observed between both constructs can be attributed to the greater 137 

compatibility between the PNRSV and AMV viruses. In this sense, PNRSV is 138 

phylogenetically more related to AMV than to BMV (Codoñer et al., 2005;Sánchez-139 

Navarro & Pallás, 1997), and its CP is fully exchangeable for the AMV CP for 140 

encapsidation, RNA replication and differential accumulation of positive viral RNAs 141 

(Aparicio et al., 2003; Sánchez-Navarro et al., 1997). 142 

To further characterize the AMV constructs that are affected in the systemic 143 

transport we decided to perform a more precise tissue printing analysis by checking not 144 

only the petiole, but also the stem just above and below of the corresponding petiole 145 

(Figure 3). For the AMV wild-type, we observed positive hybridization signals in all the 146 

stem sections, covering the full ring and indicating the presence of viral RNA in all 147 

phloem tissue. However, the constructs that moved only to some of the systemic leaves 148 

(BMV:A44 and TMV:A44; lines 2 and 7) rendered a strong stem hybridization signal 149 

close to inoculated leaves that decreased at the upper part of the plant, where the 150 

hybridization signal was observed in only part of the cross-section (Figure 3b, the St 151 

between systemic leaves S3 and S4). This result indicates that both constructs are able 152 

to reach the vascular tissue but do so less efficiently than the AMV wild-type. Poorer 153 

efficiency would allow the virus to reach the uppermost leaves, which already 154 

underwent the sink-source transition, as shown in other virus-host interactions (Cheng 155 

et al., 2000; Mas & Pallás, 1996). For the constructs that do not move systemically, we 156 

observe two different patterns on the stem sections. First, the BMV255:A44:B48 157 

chimera shows a clear hybridization signal only in the stem sections around the 158 

inoculated leaf (Figure 3b, line 4) and second, the TMV construct with no hybridization 159 
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signal at all in the stem (Figure 3b, line 8). Regarding the hybridization signal observed 160 

with the BMV255:A44:B48 construct on the border of the stem section, we can 161 

conclude that this construct is competent enough to reach vascular tissue, but that it is 162 

quite likely that the delay involved in reaching it does not allow to establish a systemic 163 

infection. For TMV, we observed the opposite situation in which the lack of the A44 164 

fragment compromises the accession of the virus to the phloem. In line with this, we 165 

have recently reported that virus particles and the A44 fragment are essential for the 166 

systemic transport of an AMV chimera carrying the MP of Cauliflower mosaic virus 167 

(Sánchez-Navarro et al., 2010). Regarding the TMV construct it is tempting to speculate 168 

that the loading of the virus particles on the phloem is affected by the absence of the 169 

critical A44 region required for a compatible interaction with the virions. 170 

In summary, we show that all the MPs analyzed in the present work are 171 

competent enough to systemically transport the AMV chimera constructs to the distal 172 

parts of the plant when the last 44 aa of the AMV MP were fused at their C-terminus. 173 

This result allow us to argue the idea that probably all the MPs of the 30K family are 174 

functionally exchangeable for both the local and systemic transports of AMV, 175 

irrespectively of the virus, the model described for the local transport (e.g., MP of TMV 176 

or CPMV) or the pathway used to reach the plasmodesmata (e.g., MP of TMV or 177 

Grapevine fanleaf virus;Sánchez-Navarro et al., 2010). In addition, this work also 178 

shows that inefficient cell-to-cell transport compromises systemic invasion, permitting 179 

to postulate the idea of minimal cell-to-cell speediness being required to reach the upper 180 

part of the plant as formerly reported for other viruses (Deom et al., 1994). 181 

 182 

 183 

 184 
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Figure 1 185 

Analysis of the cell-to-cell transport of the hybrid AMV RNA3 in which its movement 186 

protein (MP) gene was exchanged by the corresponding genes of different movement 187 

protein. (a), Schematic representation shows the GFP/AMV/CP AMV RNA 3 derivative 188 

(1). Reading frames encoding the GFP, MP and coat protein (CP) are represented by 189 

green, red and yellow boxes, respectively. The MPs analyzed correspond to Brome 190 

mosaic virus (BMV)(2, 4), Cucumber mosaic virus (CMV)(3), Cowpea mosaic virus 191 

(CPMV)(5), Prunus necrotic ringsport virus (PNRSV)(6) and Tobacco mosaic virus 192 

(TMV)(7, 8). The C-terminal 44 and 48 amino acids of the AMV and BMV MP are 193 

indicated as ‘A44’ and ‘B48’, respectively. The numbers in the boxes represent the total 194 

amino acids residues of corresponding  MP. The NcoI and NheI restriction sites used to 195 

exchange the MP gene are indicated. Images at the right of the scheme correspond to 196 

representative pictures of the size of infection foci observed in inoculated P12 leaves. 197 

(b), Graphics showing the average of the size of 50 independent infection foci 198 

developed by the inoculated transcripts originated from the constructs shown in (a). 199 

Fluorescence was monitored with a confocal laser scanning microscope 2 days post-200 

inoculation of plants. Bar represents 200 μm. 201 

 202 

Figure 2 203 

Analysis of the replication and systemic transport of the AMV RNA 3 hybrids. (a), 204 

Schematic representation shows the AMV RNA 3 wild-type (1). Reading frames 205 

encoding the MP and CP are represented by red and yellow boxes, respectively. The 206 

MP genes exchanged in the AMV RNA 3 are as indicated in figure 1. (b), Northern blot 207 

analysis of the accumulation of the AMV RNA 3 and 4 chimeras in P12 protoplasts. (c) 208 

Tissue printing analysis of P12 plants inoculated with the AMV RNA 3 derivatives. 209 
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Plants were analyzed at 14 dpi by printing the transversal section of the corresponding 210 

petiole from inoculated (I) and systemic (S) leaves. The position of each leaf is 211 

indicated by numbers which correspond to the position of the leaves in the plant from 212 

the lower to the upper part. (d), Northern blot analysis of a mixture of total RNA 213 

extracted from the S2, S3 and S4 systemic leaves. M, mock inoculated plant. Numbers 214 

at the top of each membrane correspond to the constructs represented in (a). In all cases, 215 

the blots were hybridized with an AMV probe complementary to the 3’-untranslated 216 

region. The positions of the RNA3 and RNA4 chimeras are indicated in the left margin 217 

of the pictures b) and d). 218 

 219 

Figure 3 220 

Tissue printing analysis of AMV RNA 3 derivatives affected in the systemic transport. 221 

P12 plants were inoculated with transcripts of AMV RNA 3 wild-type (1) or hybrids 222 

carrying the MP gene of BMV (2 and 4) and TMV (7 and 8) represented in Figure 2 (a). 223 

(a) Schematic representation of the localization of all the analyzed leaves and the 224 

distribution of the transversal sections of petioles (P) and stems (St). (b) Tissue printing 225 

analysis of the P12 plants at 14 dpi by printing transversal sections of all petioles and 226 

the stem around them. ‘I’ and ‘S’ are referred to inoculated and systemic leaves, 227 

respectively. The hybridization was performed as described in Figure 2. 228 
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