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Abstract

Biological treatment of hypersaline effluents witigh organic matter concentrations is
difficult to carry out and it can require a lon@$tup phase. This is the case of the
treatment of fermentation brines from the tablevelpackaging (FTOP) industries.

These effluents are characterized by conductiviyues around 90 mS/cm, COD
around 15000 mg/L and total phenols concentratrooired 1000 mg/L. In this work,

FTOP has been treated in two sequencing batchoreg@BRs) operated in parallel. In
each SBR a different start-up strategy has beetedavut. In the SBR-2, biomass was

previously acclimated to high salinity using sinmath wastewater without phenolic
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compounds, meanwhile in the SBR-1, FTOP was adaed the beginning of the start-
up. Results indicated more operational problemthéSBR-2 consisting in a higher
deflocculation that drove to high turbidity valuesthe effluent. Besides, at the end of
the start-up, the SBR-1 reached higher COD remeffi@iencies than SBR-2 (88% and
73%, respectively). In both reactors, an increase-proteobacteria in the microbial
population was observed for increasing conducésitiln addition, phenols were
completely removed in both reactors at the enchefdtart-up, what implied very low

toxicity values in the effluent.

Keywords: Fermentation brines; Hypersaline efflserfPolyphenols biodegradation;

SBR; Table olives; Wastewater treatment.

1. INTRODUCTION

Wastewaters from some industries are charactebyekigh organic matter and salts
concentration. Their treatment by means of biolalgzocesses is always complicated,
especially when the high wastewater conductivitycisnbined with some organic
compounds, as phenolic compounds, that can intiibinass. The main types of
industries that generate high salinity effluente &od processing industry (mainly

pickled vegetables and fish processing industries)neries and petroleum industries

[1].

It is well-known that salinity affects the corrgoerformance of an activated sludge
process. The effects on the sludge have been sur@tian some review papers [1-3].

Salt concentrations above 1-2% may result in pldgssoand loss of activity of cells.
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In addition, the physical properties of the actdhasludge are affected, decreasing their
hydrophobicity, filterability, settlement and bioficulation [4,5]. However, an
acclimation of the microorganisms is possible byanseof a gradual salinity increase.
Acclimation will not be successful if salinity isdreased too rapidly [6], what would
imply the release of cellular material and consatjyean increase in soluble COD. On
the other hand, a sudden decrease of salinitysis @maging for biomass. This also
implies that settling is affected, especially wheaCl concentration is higher than 20

g/L [7].

Some authors have reported the existence of aidgnisalt concentration for the
achievement of an appropriate organic matter remsita an adapted activated sludge
[8]. According to them, the use of halophile miagemisms would be the key to
enhance the process performance. Halophilic migarusms are those that require salt
for their survival and can be classified into maden(3 — 15% NaCl) and extreme (15 —
30% NaCl) halophiles [9]. Other authors report Ilig different NaCl ranges (5 -20%

for moderate and 20-30% for extreme halophiles).[10

One of the hypersaline effluents coming from induss the fermentation brine from
the table olive processing (FTOP). The finalitytable olive processing is to make
edible the olive fruit. This is performed by thdldaving steps: 1) Debittering; treatment
with sodium hydroxide solution (1-2% w/v) to remabe olive natural bitterness (in
this stage, oleuropein is hydrolysed) [11]. 2) Rigscycles for eliminating the alkali
excess. 3) Fermentation; olives are submergedime §4—8% w/v) of sodium chloride
for several months. The wastewater volume geneiatedl stages is about 3.9-7.5 m
per ton of green olives [12]. FTOP contributeshie 80-85% of the global pollution of

wastewater generated during the production in thgses of agro-food industries [13].
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However, it represents only 20% of the total volurii@is is the reason why it is

important to segregate the FTOP to treat it seplgrat

FTOP is characterized by high conductivities (atb@0 mS/cm) combined with high
organic matter content (between 7 and 20 g/L of GD&nd phenols compounds
(between 700 and 1500 mg/L). These features wildiewery high environmental

impacts if these effluents are not correctly madade]. The traditional management
of these effluents consisted in either their digphas lagoons for water evaporation or
their transport to large municipal wastewater trestt plants for their blending with the
municipal wastewater. However, the increasing lagen strictness and environmental

awareness have led to study different alternafimethe management of these effluents.

Biological treatment of olive oil mill wastewatea$ been reported in many research
works [15,16]. These effluents are characterize€®p ranges between 35 to 200 g/L
(around 10% of this organic matter correspondshienplic compounds), and high total
solid content. If olive mill wastewaters (OMW) af@OP are compared, COD of
OMW is higher than COD of the FTOP. However, coriity of the FTOP is
considerably higher than that of the OMW. In fadnductivity values of the FTOP are
around 10 times higher than those reported for OMVirect biological treatment of
the fermentation brines has not yet been reportdtie bibliography. There are only a
few works in which the removal of phenolic composirfitom saline wastewater has
been studied [17,18], but they are performed withutated water. However, there are
several studies that consider the treatment ofrdtide olive packaging effluents; as
the global wastewater [19], the global wastewateclugling fermentation brines
[18,21], the alkaline debittering wastewaters [32aRd olive washing water [24]. In

other papers, FTOP is treated by other technigued) as electro-coagulation [25] or
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the biological treatment is combined with chemical electrochemical processes

[26,27].

The aim of this work is to perform a direct biolcgii treatment of FTOP wastewater
from a table olive packaging industry without pms dilution or physico-chemical
treatment, by a gradual adaptation of activatedgduo high salinity and polyphenols.
Difficulties for the treatment of these wastewatarg® not only focused on high
salinities but also on the eventual inhibitory etfef the polyphenols concentration.
The experiments were performed in two sequenti@bgical reactors (SBRs), and two

different start-up strategies have been compared.

2. MATERIAL AND METHODS.

2.1. Analysis.

For the tests, two different samples from the taidiee packaging industry (FTOP 1
and FTOP 2) were used. The characterization of datation brines included the
analysis of pH, conductivity, soluble COD (filteréal 0.45 pm), total phenols (Folin-
Ciocalteu method), phenolic profile (analysis ompgle phenolic compounds with
UPLC-PDA analysis), sodium, chloride, turbidity,spended solids (SS), volatile
suspended solids (VSS) and total antioxidant a@gt{ViAA). For the characterization of
the SBRs effluents, pH, conductivity, soluble Cdiigred to 0.45 pum), turbidity and
total phenols were monitored. In the last dayshefstart-up, in order to check phenols

degradation, total phenols, phenolic profile, TARdaoxicity were measured. SS, VSS
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and microbial community analysis by fluorescencesiin hybridization (FISH) were

measured to characterize the biomass in SBRs.

pH and conductivity measurements were carried otit pH-Meter GLP 21+ and EC-
Meter GLP 31+ (CRISON), respectively. Turbidity waetermined with a Turbidimeter
D-112 from DINKO INSTRUMENTS. Suspended solids (2®Q volatile suspended
solids (VSS) were measured according to APHA, 2@8%. Sodium and chloride ions
and soluble COD were analyzed using kits and a t8pgwtometer DR600 (HACH

LANGE).

2.1.1. Phenolic compounds and total antioxidant activity.

For phenols measurement, all samples were preyidtesited in order to extract them
according to El-Abbassi et al. [29]. The extractsrevbrought to dryness in a rotary
evaporator (Rotavapor R-114 from BUCHI) at 40°C é&mel residue was dissolved in
methanol. The extracts obtained were used for ftahols and UPLC-PDA analysis.
Total phenols (simple phenolic and polyphenolic poomds) were measured
spectrophotometrically according to the Folin-Cloma method [30]. Results were
expressed as ppm equivalent of tyrosol (mg TY/lherlic profile was measured by
liquid chromatography. UPLC-PDA analysis were @rout on Waters Acquity UPLC

system (Milford, MA, USA) equipped with a binarylgent manager, sample manager,
column compartment, and 2996 PDA detector, condete Waters Masslynx 4.1

software. The separation was carried out using &el&@®8EH C18 column (2.1 x 100
mm, 1.7 um) at 40°C. The optimal chromatographic conditiomsre established:

solvent system, phase A, 1 % formic acid in acétitai and phase B, 1 % formic acid

in water; gradient conditions were as follows: 10B%t O min for 1 min to 55% A in
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25 min, then 100% A at 30 min, held for 5 min, retd to 100% B in 2 min, and
equilibrated for 3 min before the next injectiolmw rate of 0.4 mL min-1 and injection

volume of 5uL. Results were expressed as ppm of phenolic contptasted.

Total antioxidant activity (TAA) was determined Iblye modified version of ABTS
assay reported by Cassano et al. [31]. Results agreessed in terms of mM trolox

equivalents.

2.1.2. Toxicity

The Microtox® was used for the estimation of thgidiy [32]. The light emission
reduction of microorganismgibrio fischeri in contact with FTOP was measured. The
effective concentration of contaminant (mg/L) whiglduces a 50% of the intensity of
light bacteria emission, after 15 minutes contacthamed EG. The toxicity results
have been expressed in toxicity units (TU). Thisapeeter is the inverse of BLC
multiplied by 100. Emission toxicity limit value®rf industrial wastewater discharges
into the municipal sewer system according to regjiomuthority (EPSAR) are 15
(maximum daily average concentration) and 30 (maxmmnstantaneous concentration)

[33].

2.1.3. Fluorescence in situ hybridization (FISH) and microscopic observation for

quantification Bacteria and Archaea.

Samples were fixed in 4% paraformaldehyde at 40tGGiram-negative organisms and
in 50% ethanol at 4 °C for Gram-positive [34]. Tireed biomass was washed three

times with phosphate-buffered saline (PBS), angusgpended in a 1:1 (v/v) volume of



166

167

168

169

170

171

172

173

174

175

176

177

PBS and absolute ethanol and then stored at -20TP@. fixed samples were
immobilized on gelatin-coated glass slides, aiedriand consecutively dehydrated in
50%, 80% and absolute ethanol. Hybridization buffied probes were applied to the
slide and incubated at 46 °C for 1-3 hours. Expeskes were washed off by heating at
48°C for 15 min in a washing buffer [35]. List digmnucleotide probes [36] applied

and respective formamide (FA) concentrations acsvehin Table 1.

Table 1. List of oligonucleotide probes applied and respective for mamide concentrations

Probe Sequence % FA Organism
EUB338 GCTGCCTCCCGTAGGAGT 35 Most bacteria
EUB338lII GCAGCCACCCGTAGGTGT 35 Planctomycetales
EUB338III GCTGCCACCCGTAGGTGT 35 Verrucomicrobiales
EUB338IV GCAGCCTCCCGTAGGAGT 35 Eubacteria
ALF968 GGTAAGGTTCTGCGCGTT 35 a-Proteobacteria
crxizz3 CCATTGTAGCGTGTGTGTMG 35 Chloroflexi
GNSB941
BET42a GCCTTCCCACTTCGTTT

35 [- Proteobacteria
BET42a competitor | GCCTTCCCACATCGTT

GAM42a GCCTTCCC CATCGTTT

- 35 y- Proteobacteria
GAM42a competitor | GCCTTCCCACTTCGTTT

LGC354a TGGAAGATTCCCTACTGC

LGC354b CGGAAGATTCCCTACTGC 35 Firmicutes
LGC354c¢c CCGAAGATTCCCTACTGC

HGC69a TATAGTTACCACCGCCGT

25 Actinobacteria

HGC69a competitor | TATAGTTACGGCCGCCGT

CF319a TGGTCCGTATCTCAGTAC 35 Cytophaga
ARCH915 GTGCTCCCCCGCCAATTCCT 35 Archaea

Microscopic observation was performed using anlemiéscence microscope (Olympus
BX50 equipped with a CCD camera (Olympus DP12). limum of 20 images of

randomly chosen microscopy fields were taken fahgarobe-hybridized sample. The
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signals detected by FISH were quantified using rmated bacteria guantification
software [37] based on thresholding techniques gudtatlab 7.1. The software-
generated report states the percentage areas edchpihybridized bacteria and the
measurement uncertainty, i.e. the standard dewiatieided by the square root of the

number of fields examined.

2.1.4. |solation and identification of saline tolerant bacteria.

Saline tolerant bacteria were isolated from SBREdrichment culture were obtained
using salinity wastewater medium (SWM) containingQW (70 g/L). After 48 h
culturing at shaking speed of 130 rpm/min and reemperature incubation, 1 mL from
the SWM was transferred with pipette onto the setium agar [38], containing NacCl
70 g/L, and surfaces of the Petri dishes and ineubr 24-48 h at room temperature.
Purified colonies were obtained by repeated strgpkinto salt medium agar. The salt
tolerant isolates were suspended in glycerol medand stored at -20°C. The 16S
rRNA gene of the isolate was PCR amplified usingté&@al universal primers F27
(5-AGAGTTTGATCMTGGCTCAG-3) [39] and R1492
(5"-TACGGYTACCTTGTTACGACTT-3") [40]. PCR products were purified using
GenElute PCR Clean-Up Kit (Sigma-Aldrich, Saint iuMissouri, USA), and were
sent to IBCMP (Valencia, Spain) for sequencing. TB& rRNA gene was amplified
from genomic DNA, purified and sequenced, and 8 GRNA fragment for H1 was
sequenced and submitted to the National CenteBiotechnology Information for

BLAST analysis [41].
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2.2. Biological reactors.

The experiments were carried out in sequencinghbegactor (SBR). SBR presents
many advantages in pilot-scale work: low constarctiand maintenance cost,
robustness, single basin operation, better cordfoshock loads, and flexibility in
operation. In fact, they have been particularly duder the treatment of saline

wastewater [9,17,42] so it is validated their suility for the purpose of this study.

Two identical laboratory SBRs were operated in lpgraln each SBR, mixing was

carried out by a mechanical stirrer (VELP SCIENTRA). Mixing was connected

during all the reaction phase. Aeration was prayidg a compressor Air 550 R Plus
(SERA PRECISION), air flow rate 550 L/h, throughddfuser on the bottom of the
reactors. An oximeter OXI 49 (CRISON) measured dlkggen concentration in the
reactor and this was regulated automatically betwe® and 2.5 mg/L. According to
the established phase duration, one of the peartsppimps (AIGUAPRES) switched on
either to begin the fill or the drawing phase. Pamspitched off according to the level

indicator. A scheme of the each SBR is illustratefigure 1.

Stirrer

Feed tank Filling pump Q CP Draing pump Efiyent tank

6=

Air compresor SBR

Figure 1. SBR scheme.
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2.2.1. SBRs operation

Both SBRs (SBR-1 and SBR-2) were seeded with mikgabr from a biological
reactor treating landfill leachate (conductivity 122 mS/cm). This activated sludge
presents two advantages over conventional cult@esthe one hand, it was already
acclimated at salinity concentration higher thaat tbf a municipal plant. On the other
hand, leachates contain slowly degradable organaitem and even inhibitory
substances; thereby the biomass was also adaptednfgex organic substances. These
features could make possible a faster biomass atifaptunder conditions of increasing

salinity and phenols.

The strategy of the start-up of the SBR-1 consigtegeding it with FTOP in order to
adapt biomass increasing gradually both salinitg phenolic compounds. However,
the SBR-2 was previously adapted to high salifitye SBR-2 was fed with simulated
wastewater (SWW), whose composition was: 20 g/Lcafein peptone, 2.5 g/L of
glucose, 2.5 g/L of dipotassium hydrogen phosphateydre and 100 g/L de sodium
chloride. The COD of the SWW was around 10000 mglince mixed liquor

conductivity reached 60 mS/cm and the COD of theWsWas removed above 85%
(data not shown), FTOP was fed to the reactor. phesacclimation procedure was
achieved in 45 days. From this moment, the comparssudy of the two strategies for

the start-up in both reactors began.

Table 2 shows the SBRs operation characteristaen(ical operation for both SBRs
once both reactors were fed with FTOP). SBRs wpezaied in 24 hours cycles. Each
cycle consisted of the following steps: fillingaction, sedimentation, draw, and idle.

The duration of each phase through cycle is alssgnted in table 2.
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Table 2. SBRs operation characteristics.

Operation characteristics

Reaction volume 6L
Feed volume 150 mL/d
Temperature 18-20°C
Dissolved oxygen 1.5-25mg/L
Hydraulic retention time 40 days
Daily number of cycles 1
Operation days 108
Cycle characteristics
Phase Time
Filling 2 min
Anoxic reaction 60 h
Aerobic reaction 21h
Sedimentation 15h
Draw 2 min
Idle 26 min

The feed FTOP volume was 150 mL/d in both reactausthe initial conductivity were

12 mS/cm in the SBR-1 and 60 mS/cm in the SBR-28 (tifiference was due to the
biomass pre-acclimation to salinity in SBR-2). Tugh the operation days, the initial
conditions in the mixed liquors were changing. @8afi and phenols concentrations
gradually increased in both reactors. The high &t retention time (40 days) was
necessary in the starting-up period due to the assmnhibition by the high salinity
content and phenolic compounds and due to the G@QD levels. During the SBRs

operation no sludge was withdrawn.
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During the SBRs operation time (108 days), 2 déifei=TOP wastewater samples were
treated. The first sample was fed to the reactors the first day to the day #8vhile
the sample 2 was used from day'4e 108". Table 3 shows their characteristics. The

parameters presented in this table were measurgtghyate.

Table 3. FTOP characteristics.

Characteristics FTOP1 FTOP 2

pH 3.9+0.02 4.0 +£0.02
Conductivity (mS/cm) 90.3+0.3 94.2+0.2
COD (mg/L) 14130 + 130 17700 + 95
Nt (mg/L) 270+ 7 365 + 10
Pr (mg/L) 62 +3 757
Suspended solids (mg/L) 1010 + 18 936 + 32
Chloride concentration (mg/L) 47970 + 215 500025 3
Sodium concentration (mg/L) 81500 £ 200 81500 = 185
Total phenols (mg tyrosol/L) 929+8 1109 £ 11
Antioxidant capacity (mM trolox) 13.4+0.3 11.1013

As it can be observed, FTOP is characterized bgi@apH (around 4). Conductivity is
very high (above 90 mS/cm) due mainly to the sodicimoride added for olives
conservation. Suspended solids concentration @ lalgh (around 1000 mg/L), what
implies high turbidity values. Concerning organi@atter, COD values were 14130
mg/L in FTOP-1 and 17700 in FTOP-2. Total phenasoentration was around 1000

mg tyrosol/L.

The necessity of nutrients in wastewater was etaduby the relationship: COD/N/P in
amounts 250/5/1. According table 3, it can obseyad no external nutrient addition

was needed in the experiments.
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3. RESULTSAND DISCUSSION.

3.1. SBR-1performance.

Figure 2 shows the evolution of the COD removaicifhcy, the conductivity and the
turbidity values in the effluent for 108 days ofaceor operation. For this period
(feeding with FTOP 1 and FTOP 2) no nutrients weguired. During this time pH

effluent was between 8.2 and 8.5. Temperatureeoféhctor was between 18 and 20°C.
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Figure 2. COD removal efficiency (%), conductivity (mS/cm) and Turbidity (NTU)

of the effluent from SBR-1.

In figure 2, it can be observed that the condugtirom SBR-1 had changed from 12 to
59 mS/cm after 43 operating days. In spite of tbadactivity increase, the COD
removal efficiency of SBR-1 remained around 90% [Cid the SBR-1 effluent was

around 1700 mg/L). From 54to 80" day, conductivity of the SBR-1 went on



286 increasing up to 83 mS/cm. During this period, C@boval efficiency had been
287  slightly reduced down to 85% because FTOP-2 wadrted 49" day. FTOP-2 COD
288 was higher than FTOP-1 one. Froni"8d 108" day COD removal efficiency increased
289 1o 87.1% + 1.5. This slight increase was due toirilceesase of the MLSS in the reactor
290 (Figure 3), since no sludge withdrawal was carmed. Also, SBR-1 conductivity
291 increased to 91 mS/cm, which is very near the Fi@Btewater conductivity. In this

292 way, it can be stated that the start-up of thetoedwad finished.

= MLSS € MLVSS AF/M

8000 0.30
7000 L 025
[ ] ~
- 6000 = a - g
= . an " =
Z o0 % . 02 &
a A . pA P s,
E 4000 Woy::f“‘ih%%a AAA%A . te o o015 z
I. o [] . - [ ] ’ A
g 3000 o \aad A 010 E
2 A
S 2000 a4 0“,’. o &
1000 0.05
0 0.00
0 20 40 60 80 100
293 Day
294 Figure3. MLSS, MLVSSand therelation F/M in the SBR-1.
295

296  Figure 3 shows the parameters measured of the nicugal samples from the SBR-1:
297 MLSS, MLVSS and the ratio food-to-microorganismMlf/ The F/M was calculated by

298  Eq.1[43]:

COD, - Q

F/M=————
/ Vg - MLVSS Eq.(1)

299
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where COR is the initial COD in FTOP 1 or FTOP 2 (mg/L), Qthe daily wastewater
volume fed to SBR (L/day), Mwas the reaction volume (L) and MLVSS is the mixed

liquor volatile suspended solids in mg/L.

In the first days F/M was around 0.09 kg COD/kg MBS-d. This parameter increased
to 0.14 kg COD/kg MLVSS-d in i5day, because there was a MLVSS drastic
reduction, from 3900 to 2500 mg/L. This phenomenan be explained because floc
disaggregation occurred during the first days & 8BR-1 start-up, due to osmotic
shock. In particular, an increase in the effluanbidity was observed (turbidity reached
39 NTU) due to the presence of biomass in the efluwhich may be caused by cell
lysis and reduction of the populations of protoaoa filamentous organisms required
for proper flocculation [18]. As expected, MLSS aldecreased from 5900 to 3100
mg/L. From 17 day to 47, MLVSS remained around 2300 mg/L and ratio F/M was
between 0.14-0.16 kg COD/kg MLVSS-d. Turbidity rémea between 5 and 10 NTU.
From 47"to 108" day MLSS and MLVSS increased progressively up2@07and 4200
mg/L, respectively. From this period on, ratio FMécreased to 0.10 kg COD/kg
MLVSS-d. This organic load value lies in the ramgenmonly used for the design and
operation of biological reactors treating wastewsafeom agro-industries [43]. Thus, it
can be concluded that COD removal efficiency canabehigh as in non-saline

wastewater.

Other authors [44] reported that COD removal efficies were reduced from around
90% to 63% when influent salinity was higher th&diL. These authors worked with
a SBR treating soaking wastewater from a tannelnysTthe type of wastewater and,

consequently, its characteristics could exert aditiatal influence on the SBR



324 performance. In the case of FTOP wastewater itoeaachieved due to the presence of

325 high concentrations of biodegrabable COD like \vtdairganic acids and glucose.

326

327 3.2. SBR-2performance.

328 Figure 4 shows the evolution of the COD removaicedhcy in the reactor operation
329 and the conductivity and turbidity values of theaater effluent. As in SBR-1, pH
330 effluent was between 8.2 and 8.5. Figure 5 illusgdhe parameters characterizing the

331  mixed liquor from the SBR-2. Reactor temperaturs aaund 20-22 °C.
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332
333 Figure 4. COD removal efficiency (%), conductivity (mS/cm) and Turbidity (NTU)
334 of the effluent from SBR-2.
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Figure5. MLSS, MLVSSand therelation F/M in the SBR-2.

After 20 operating days, SBR-2 conductivity hadrged from 64 to 83 mS/cm and the
COD removal efficiency decreased from 91 to 85% Ci® the SBR-2 effluent was
near 2100 mg/L). The loss @OD removal efficiency was due because in thisogeri
SSLM and MLVSS decreased. This phenomenon can pkiegd by the negative
initial effect of the polyphenols on the biomasswously acclimated to high salinity
conditions. MLSS decreased from 3900 to 2500 marid MLVSS from 2100 to 1200

mg/L. Accordingly, the ratio F/M increased from 2@ 0.29 kg COD/kg MLVSS-d.

From 21" to 60" day biomass was gradually adapted to phenolic camg®and both
SSLM and SSVLM increased to 5500 and 2600, respygtiThe ratio F/M decreased
to 0.14 progressively. Nevertheless COD removaiehcy decreased to 78%, because
the FTOP-2 was fed from %9day, and their COD was higher than FTOP-1. As

expected, COD removal efficiency decreased.
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From 61" to 108" MLSS and MLVSS increased slowly. MLSS increase8360 mg/L
and MLVSS to 3400 mg/L. The ratio F/M was near Gt1%01 kg COD/kg MLVSS-d.

For this period the COD removal efficiency remaiaedund 74.5% + 1.4.

From 20" to the 48 day turbidity increased from 29 to 117 NTU. Unli8BR-1 it was
not associated with a MLSS diminution, but chanigelsiomass population drove to a
release of cellular material, what implied an iasein the effluent turbidity. From %9
to 90" biomass was gradually adapted to phenolic compoand turbidity decreased
down to 30 NTU. COD removal efficiency decreased/486. Afterwards, turbidity
went on decreasing more slowly down to 20 NTU, ®@D removal remained around

75%. At the same time, MLSS increased gradualljougb00 mg/L.

3.3. Comparison of the performance of thereactors.

The behavior of the two reactors related to pHateon was the same. It can seem
surprising that pH above 8 is maintained in thet@a when they are fed with FTOP,
whose pH is 4. This low pH is due to the organidscformic and acetic acid, which
are produced in high concentrations in the fermemtgrocess. In addition, the action
of lactobacters convert olives sugars into lactic acid, which atsmtributes to pH
decrease [45]. They were degraded in the biologixatess and pH consequently

increases [46].

The ratio F/M was different in both reactors foe first 40 days of operation. However,
from that day on, the ratio F/M resulted similar tlre two reactors (as it can be
observed in figures 3 and 5), reaching 0.14 + @HZOD/kg MLVSS-d in SBR-1 and

0.15 +0.01 kg COD/kg MLVSS-d in SBR-2.
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When COD removal efficiencies are compared in e#ttors, it can be observed that
SBR-1 performance hardly diminished with the operatime, meanwhile the pre-
adapted to salinity SBR-2 yielded lower COD remoeticiencies than SBR-1. The
extremely high conductivity values (near 100 mS/amj the different start-up strategy
drove to reactor performance reduction. At the efdhe start-up COD removal

efficiencies were near 74.5% + 1.4 in SBR-2 and %+ 1.5 in SBR-1.

In figure 6 the relationship MLVSS/MLSS in both céars is presented. It can be seen

that the ratio MLVSS/MLSS in the first days in SBRvas 0.81.
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Figure6. MLVSS/M LSS from SBR-1 and SBR-2.

From 4" to 43" day the ratio MLVSS/MLSS decreased to 0.60. Thididates

accumulation of inorganic compounds inside the atii@l flocs when salinity increased
[47] (conductivity changed from 12 to 59 mS/cm a#8 operating days). In SBR-2,
initial ratio MLVSS/MLSS was around 0.51, and coatikity was 58.7 mS/cm. This
value of MLVSS/MLSS is similar to that achievedSBR-1 for the same conductivity.

This can explain that COD removal efficiency waghter in SBR-1 than in SBR-2 since
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the amount of microorganisms that potentially codéyrade the organic matter was
higher in SBR-1. From 4%day the values of MLVSS/MLSS were similar in both
reactors, and remained around 0.59 + 0.03 in SB&d,0.53 + 0.04 in SBR-2. These
low values can be explained by the high sludgentiete time, what enhances the cell
endogenous respiration, that is, bacteria oxiche& own cellular material. It has to be
pointed out that the sludge retention time in SBR&S higher than in SBR-1 since
sludge came from the pre-adaptation period. lifjastthe lower volatile percentage of

the mixed liquor in SBR-2 in comparison with thag¢asured in SBR-1.

3.4. Phenolic compoundsremoval, TAA and toxicity of the effluents.

As explained in the materials and method sectiatiffe2rent FTOP samples were used
as feed for the SBRs. In both samples only hydsowgol (HTY) and tyrosol (TY)
were identified, that is, no other polyphenols comds were detected. This agrees
with Brenes et al. [48] and Fendri et al. [49]. $&authors reported that some phenolic
compounds such as caffeic acid and p-cumaric dasapdear during the fermentation
stage, however, HTY and TY concentrations remaactwrally constant. HTY is the
main product of the hidrolysis of oleuropein therefits concentration is predominant
in FTOP wastewater [48,50]. Table 4 shows the cainagons of total phenols, HTY
and TY, TAA and toxicity of both FTOP samples ahd SBRs effluents (SBR-1 and

SBR-2) in the last days of the start-up (1@fay).
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Table 4. Total phenols, HTY and TY concentration, TAA and toxicity.

FTOP1 FTOP 2 SBR-1 SBR-2
Total phenols (mg TY/L) 929+8 1109 £ 11 24 £2 833

HTY (mg HTY/L) 553+37 61325 n.d n.d

TY (mg TY/L) 82 + 6 76+ 7 nd 0.77+0.1
TAA (MM trolox) 134+0.3 11.1+03 1.8+0.04 9k 0.01
Toxicity (UT) 38.8+0.2 400+0.8 3.6+02 3.1+0.3

n.d. = not detected

It can be stated that phenols were removed in B&Rs. In fact, 97.8% and 97.0%
were the total phenols removal efficiencies reacaethe end of the start-up in the
SBR-1 and the SBR-2, respectively. This was corddroy the HTY and TY by UPLC-

PDA analysis. In Table 4 it can be observed thatpitesence of HTY and TY was not

detected. In the same way, the TAA was removedhalaextent (80 %).

However, in a complex wastewater and with no paedsial cultures it is not possible
to confirm that polyphenols have been degraded tetelp to carbon dioxide and
water. Although phenols have been hardly detecteétie SBRs effluents, formation of
other compounds as quinones could also occur. Tpxoalyses help confirming that
no dangerous intermediate products have been foriftes toxicity of FTOP 1 and
FTOP 2 were 38.8 and 40.0 TU, respectively. Afteidgical treatment, the effluent

toxicity decreased to 3.6 Tid SBR-1 and 3.1 Tlh SBR-2.



432  3.5. Microbial community analysis.

433  Figure 7, 8 and 9 show the evolution of the baatarid archaea population during the

434 tests (48, 66" and 108, respectively) from the active biomass in the SBRAd the

435  SBR-2.
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437 Figure 7. Quantification Bacteria and Archaea from 46" day;
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441 Figure 8. Quantification Bacteria and Archaea from 66" day;
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Figure 9. Quantification Bacteria and Archaea from 108" day;

SBR-1|(89.3 mS/cm), SBR-2 (98.5 mS/cm)

In these figures, the percentages and their unobrtaf the bacteria phyla and archaea
isolated from the total population are represenidte conductivity values of every

sample can be observed in the corresponding ficapéon.

It can be observed th&roteboacteria are dominant in both reactors with the subclass
gamma {) playing the main role. These results agree whiths¢ obtained by other
authors for saline waters [51,52]. Thus, Park €itdl] reported that 47% of the bacteria
in Korean solar saltern were affiliated wighProteobacteria. At the end of start-up,
there were 33% and 44% pProteobacteria in the SBR-1 and the SBR-2, respectively.
The amount of-Proteobacteria increased with the reactor salinity, though thieyhdly
decreased in SBR-2 when conductivity was near 180cm .There is a non-negligible
presence of Gram-positive bacteifd.micutes andActinobacteria phylla were variable
but in both reactors reached a maximum around 1&%haea population was not
relevant. The amount d&hylum Chloroflexi decreased with the reactor salinity in the

SBR-1 (from 6 to 1%), meanwhile it remained constanthe SBR-2 (around 2%).
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Finally, it has to be commented that the averagegmage oPhylum Cytophaga also
decreased slightly in the SBR-1 (from 10 to 7%)anwehile it increased in SBR-2

(from 5 to 12%).

As y-Proteobacteria was the predominant microorganisms, the followistep
consisted in identifying the most important stramong them. Thus, the salt-tolerant
strain (H1) was obtained. It can survive in thensigl up to 7%. Alignment of the strain

indicated that the partial 16S rRNA sequence oi4H9% identical t&alinicola sp.

4. CONCLUSIONS

FTOP biological treatment is very complicated beeasalinity shocks cause physical
and biochemical changes of the activated sludgepéwetiolic compounds can inhibit
biomass, primarily by bactericidal effect. To asleiea successful treatment of this kind

of effluents, a gradual acclimation of the biomigs®quired.

The two studied start-up strategies led to somger@ifices in reactors performance.
Thus, COD removal efficiencies were slightly lowerthe SBR with a biomass pre-
adapted to salinity (SBR-2) than in SBR-1. Besidieflocculation occurred at a higher
extent. Therefore, according to this study, the beplementation strategy is one that
performs the simultaneous adaptation to the presehsalt and phenolic compounds.
After 108 days of SBRs operation, COD removal éficies were 88% in the SBR-1
and 75% in the SBR-2, and phenols were almost catelgl removed in spite of the
high salinity (between 90 and 100 mS/cm), what ietplery low toxicity values in the
effluent. Concerning biomass population, an in@ea&s y-proteobacteria in the

microbial population for increasing conductivitiess observed in both reactors.yA
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Proteobacteria strain, a salt-tolerant one, was obtained and &digd 16S rRNA

sequence was 99% identicalSalinicola sp.

In view of these results, the augmentation of #ain has been achieved without pre-
adaptation to salinity. Then, for a full-scale stgy of this type of reactors, a

simultaneous adaptation to salinity and phenolsdgemmendable.

Although further research has to be carried outetiuce the HRT in the reactor, the
process could be economically feasible since FT¥@Rsnes are not very high and they
depend on the season; thereby reactors with apptemizes could be implemented in

spite of the high HRTSs.
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