
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi. org/10.1007/s11947-012-0951-1

http://hdl.handle.net/10251/77408

Springer Verlag

Lorente, D.; Blasco Ivars, J.; Serrano López, AJ.; Soria Olivas, E.; Aleixos Borrás, MN.;
Gómez Sanchís, J. (2013). Comparison of ROC Feature Selection Method for the Detection
of Decay in Citrus Fruit Using Hyperspectral Images. Food and Bioprocess Technology.
6(12):3613-3619. doi:10.1007/s11947-011-0737-x.



Comparison of ROC feature selection method for the detection of 1 
decay in citrus fruit using hyperspectral images 2 

D. Lorente1, J. Blasco1, A.J. Serrano2, E. Soria-Olivas2, N. Aleixos3, J. Gómez-3 
Sanchis2* 4 

 5 
1Centro de Agroingeniería. Instituto Valenciano de Investigaciones Agrarias (IVIA).               6 

Cra. Moncada-Náquera km 5, 46113 Moncada (Valencia), España.  7 
2Intelligent Data Analysis Laboratory, IDAL. Electronic Engineering Department. Universitat de 8 

València. Avda. Universitat s/n, 46100 Burjassot (Valencia), España.  9 
3Instituto en Bioingeniería y Tecnología Orientada al Ser Humano. Universitat Politècnica de València. 10 

Camino de Vera s/n, 46022 Valencia, España. 11 

 12 
Abstract 13 

Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus fruit 14 

automatically, instead of doing it manually under dangerous ultraviolet illumination, thus preventing the 15 

fungal infestation of other sound fruit, and consequently, the enormous economical losses generated. 16 

However, these systems present the disadvantage of generating a huge amount of data, which is necessary 17 

to select for achieving some result useful for the sector. There are numerous feature selection methods to 18 

reduce dimensionality of hyperspectral images. This work compares a feature selection method using the 19 

area under the Receiver Operating Characteristic (ROC) curve with other common feature selection 20 

techniques, in order to select an optimal set of wavelengths effective in the detection of decay in citrus 21 

fruit using hyperspectral images. This comparative study is done using images of mandarins with the 22 

pixels labelled in five different classes: two types of healthy skin, two types of decay and scars, obtaining 23 

that the ROC technique generally provides better results than the other methods.  24 

Keywords Computer vision, citrus fruit, decay, non-destructive inspection, hyperspectral imaging, ROC 25 

curve, feature selection. 26 

1. INTRODUCTION 27 

Decay caused by fungi is among the main defects affecting the post-harvest and marketing processes of 28 

citrus fruit. Infected fruit can be neither stored for a long time nor long-term transported during 29 

exportation since a small number of decay fruit can infect a whole consignment. Thus, fungal infections 30 

generate great economic losses to the citrus industry if damaged fruit are not early detected, being 31 

Penicillium sp. the fungi that lead to the most post-harvest loses in citrus packinghouses (Eckert and Eaks 32 

1989). In current packing lines, the detection of decay fruit is made visually by trained operators 33 
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examining the fruit as it passes under ultraviolet (UV) light. Nevertheless, this method is subjective and 34 

potentially dangerous for human skin. The use of automatic machine vision systems is a possible solution 35 

for preventing these drawbacks. 36 

Technology based on colour cameras has spread rapidly for the detection of skin damage of fruit and 37 

vegetables (Zude 2008; Cubero et al. 2011), being a common technique for the inspection of citrus fruit. 38 

For instance, Kondo et al., (2000) studied the possibility of detecting sugar content and acid content of 39 

oranges ‘Iyokan’ using a machine vision system and neural networks. Slaughter et al. (2008) developed a 40 

non-contact method of detecting freeze-damaged oranges based on UV fluorescence, and López-García et 41 

al. (2010) used multivariate image analysis to detect peel diseases in citrus fruit. Nevertheless decay 42 

lesions are difficult to detect using standard artificial vision systems since they are hardly visible to the 43 

human eye and, therefore, by standard colour cameras (figure 1). Blasco et al. (2007) used visible 44 

computer vision to detect different types of damages in citrus fruit including decay by green mould. 45 

While the success in other defects was high, the detection of decay was lower than 60% because the 46 

damages caused for this disease in the citrus skin are not clearly visible before sporulation. On the other 47 

hand, following the fluorescence technique used in the industry to detect decay by humans, Kurita et al. 48 

(2009) tried to detect decay in citrus using two lighting systems (visible and UV) changing between them 49 

while the fruit is under the view of the camera.  50 

 51 
Figure 1: Sound orange (left) and the same fruit showing decay caused by P. digitatum (right) 52 

Hyperspectral sensors have been used successfully as an alternative to detect non visible damages on fruit 53 

(Lorente et al. 2012). In the particular case of citrus fruit, different works have been carried out to detect 54 

decay lesions (Qin et al. 2009 & 2012; Gómez-Sanchis et al. 2012). A hyperspectral image consists of a 55 

large number of consecutive monochromatic images of the same scene in each wavelength becoming very 56 

important to select only those bands with the most relevant information, while discarding those that do 57 

not contribute in any significant way to improve the results, containing redundant information or 58 
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exhibiting a high degree of correlation. There are numerous feature selection methods to reduce 59 

dimensionality that retain most of the original information in fewer bands.  60 

For example, Gómez-Sanchis et al. (2008) evaluated four feature selection methods with the aim of 61 

selecting an optimal set of wavelengths in the range 460-1020 nm for detecting decay in citrus fruit. Xing 62 

et al. (2005) used Principal Component Analysis (PCA) to reduce data from a hyperspectral imaging 63 

system (400-1000 nm) for detecting bruises on ‘Golden Delicious’ apples. PCA was also used by Liu et 64 

al. (2005) to obtain spectral features for the detection of chilling injury in cucumbers imaged using a 65 

hyperspectral system (447-951 nm). More recently, Li et al. (2011) have used PCA to select most 66 

discriminant wavelengths in the range 400-1000 nm for detecting various common skin defects on 67 

oranges. Partial Least Squares (PLS) or Artificial Neural Networks (ANN) are another techniques 68 

commonly used for feature selection purposes. ElMasry et al. (2008) determined some important 69 

wavelengths for detecting bruises in ‘McIntosh’ apples using PLS on hyperspectral images in the range 70 

400-1000 nm and ElMasry et al. (2009) used ANN to classify apples into injured and normal classes, and 71 

to detect changes in firmness due to chilling injury by selecting optimal wavelengths.  72 

2. OBJECTIVE 73 

The method used by Lorente et al. (2011) to select most spectral relevant features for detecting decay in 74 

citrus fruit was based on the area under the Receiver Operating Characteristic (ROC) curve, which is a 75 

promising method to measure the quality of a binary classifier. A novel approach was presented to extend 76 

its use to multiclass problems, as is the automatic discrimination of decay lesions in citrus fruits, which is 77 

a problem still under research and very important from the agricultural point of view since the damages 78 

caused by fungi are hardly visible to the naked human eye and standard vision systems, and can be 79 

quickly spread to other sound fruits during storage. This work aims to compare our novel approach of the 80 

ROC feature selection method with other common feature selection techniques for agricultural multiclass 81 

classification problems. We use the detection of decay in citrus fruits using hyperspectral imaging as a 82 

benchmark problem by selecting an optimal set of wavelengths effective in the discrimination between 83 

common defects and decay lesions in citrus fruit. The comparison of different feature selection techniques 84 

is aimed at knowing if the ROC method is a promising technique in multiclass classification problems 85 

relative to other commonly used methods in terms of classification accuracy.   86 

3. MATERIAL AND METHODS 87 
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3.1. Image acquisition 88 

The hyperspectral imaging system used was based on liquid crystal tunable filters (LCTF; e.g. Lorente et 89 

al., 2011). The system consists of a monochrome camera (CoolSNAP ES, Photometrics, Tucson, USA), a 90 

lens providing a uniform focus in the working range (Xenoplan 1.4/17MM, Jos. Schneider Optische 91 

Werke GmbH, Bad Kreuznach, Germany), and two LCTF (CRI Varispec VIS07 and NIR07, United 92 

Kingdom) sensitive to the visible (400 nm - 720 nm) and NIR (650 nm - 1100 nm), respectively. The 93 

scene was illuminated by halogen lamps placed inside an aluminium hemispherical domo.   94 

For hyperspectral images, a total of 240 'Clemenules' mandarins (Citrus clementina Hort. ex Tanaka) 95 

collected from a local producer company were used, including 60 without visible damages, 60 presenting 96 

external scars, 60 inoculated with spores of P. digitatum and 60 inoculated with spores of P. italicum. The 97 

inoculation was performed using a suspension of spores with a concentration of 106 spores/ml for both 98 

fungi, which is sufficient to cause infestation in laboratory conditions (Palou et al., 2001). The images 99 

were acquired by presenting manually the damage on the fruit to the camera. A total of 240 hyperspectral 100 

images were taken in the range of 460 nm - 1,020 nm, with a 10 nm spectral resolution. Each sample 101 

pattern in the labelled set consisted of 74 spectral features associated to each pixel (reflectance level for 102 

each acquired band –grey level in each monochromatic image– and several spectral indexes) and a class 103 

label assigned manually by a human expert. Five different classes were considered in this work: green 104 

sound skin (GS), orange sound skin (OS), defective skin by scars (SC), decay caused by P. digitatum 105 

(PD) and decay caused by P. italicum (PI). 106 

3.2. Feature selection methods 107 

The performance of the method based on the area under the ROC curve is compared with other common 108 

feature selection methods. The methods included in this comparative study are: Correlation Analysis 109 

(CA) (Rodgers and Nicewander 1988), Mutual Information (MI) (Bonnlander and Weigend 1994), 110 

Fisher’s Discriminant Analysis (FDA) (Venables and Ripley 2002), T-Test (TT) (Li et al. 2006), Wilks’ 111 

Lambda (WL) (Ouardighi et al. 2007), Bhattacharyya Distance (BD) (Choi and Lee 2003), Minimum 112 

Redundancy Maximum Relevance difference criterion (MRMRd) (Ponsa and López 2007), Minimum 113 

Redundancy Maximum Relevance quotient criterion (MRMRq) (Peng et al. 2005) and Kullback-Leibler 114 

Divergence (KLD) (Kullback 1987; Abe et al. 2000). These feature selection techniques have been 115 

chosen because they are commonly applied to the analysis of hyperspectral imaging in the fields of 116 

4 
 



pattern recognition and remote sensing although they have not been used before for automatic fruit or 117 

vegetable inspection using computer vision. Therefore it will also be studied if they are suitable and 118 

accurate methods for this kind of problems. 119 

In order to get a feature selection for each method, two steps were followed: 1) to obtain a ranking of 120 

features ordered according to the discriminant relevance of the features, and 2) the selection of an optimal 121 

number of features from the feature ranking. The feature selection methods and the classification 122 

procedure used in this work were implemented using Matlab 7.9 (The Mathworks, Inc., Natick, USA).  123 

Step I: Obtainment of a feature ranking 124 

The obtainment of a feature ranking for each class is the initial step to follow. The feature selection 125 

techniques studied are intended for binary classification problems but this work deals with problems with 126 

more than two classes. Therefore, the one vs. all approach (Rifkin and Klautau 2004) is employed to 127 

obtain a feature ranking for each class, which maximizes the separation between that class and the others. 128 

The second step consists in obtaining a single global feature ranking for each method that is achieved 129 

from the relevance values corresponding to the partial rankings for each class. These relevance values are 130 

weighted in proportion to the relative importance of the class in the problem, and combined using Eq.1.  131 

 

(1) 

where jr  is the global relevance of feature jx ; N  is the number of different classes; jkr  is the relevance 132 

value of feature jx  from the partial ranking for the k -th class; and kw  is the weight for the k -th class.  133 

After obtaining the global relevance of each feature, each input feature is ranked. 134 

Step II: Selection of an optimal number of features 135 

Once the global feature ranking has been obtained, a minimum number of features leading to a saturation 136 

trend in the success rate of classification is chosen for each method. The success rate is calculated using 137 

the first features in the ranking, then successive features are added in an iterative process until the 138 

increment of the success rate is lower than a certain threshold (1%). The n features that satisfy this 139 

condition are then selected.  140 
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The ROC curve is a graphical plot of the true positive rate vs. false positive rate for a binary classifier, as 142 

its discrimination threshold is varied, this value being defined as that from which a positive class 143 

prediction is made (Fawcett 2006). The area under a ROC curve (AUC) is used as a global measure of 144 

classifier performance that is invariant to the classifier discrimination threshold and the class distribution 145 

(Bradley 1997). Maximum classification accuracy corresponds to an AUC value of 1, while a random 146 

guess separation involves an AUC value of 0.5. Basically, the ROC feature selection method for binary 147 

classification problems consists in calculating a z  statistic from the discriminant relevance of each 148 

feature jx , defined as the difference between the AUC of a classifier using all the features ( 0AUC ) and 149 

the AUC of a classifier without taking into account the effect of feature jx  ( jAUC ) (Serrano et al. 2010).  150 

3.3. Classifier 151 

The classifier used in this comparative study is a multilayer perceptron (MLP) with a single hidden layer, 152 

being a type of ANN (Plaza et al. 2009). MLP can use a wide range of learning techniques for 153 

determining the network parameters, the most commonly used being backpropagation. In these classical 154 

learning methods, the parameters of the ANN are usually tuned iteratively, thus entailing several 155 

disadvantages, such a high computational complexity and convergence to local minima (Shih 2010). To 156 

avoid this the MLP used in this work avoids these problems by being trained using Extreme Learning 157 

Machine (ELM; Huang et al. 2006), in the same way as that used in Lorente et al. (2011), which is a new 158 

learning algorithm that determines the MLP parameters analytically in a faster way instead of tuning them 159 

iteratively providing a good generalization performance at an extremely fast learning speed.  160 

3.4. Approaches to the problem of decay detection 161 

In this work, it is considered three different approaches to the problem of the decay detection in 162 

mandarins, depending on the number of classes implicated and the importance of each class (Lorente et 163 

al. 2011). The approach I involves the five classes described in the labelled set, all of them having equal 164 

importance or weight. Therefore, the weights of all the classes were considered to be equal when 165 

obtaining the global relevance.  166 

It is, however, realistic to assume that the classes belonging to decaying skin should be more important 167 

for decay detection. Hence, approach II gives more importance to decay classes (wPD = wPI = 15), 168 

medium to the scar class )5( =SCw  and less to sound classes )1( == OSGS ww . Furthermore, since the 169 

actual objective of a potential inspection system would be to detect decay, it is also important to study the 170 
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detection of just infected fruit, leading to a binary problem: the separation between infected or not 171 

infected fruit (approach III). 172 

3.5. Methodology of comparison 173 

Two different tests were carried out in order to compare the different selection techniques with the ROC 174 

feature selection method. The comparison, in both tests, is based on the performance evaluation of the 175 

classifier using the different sets of features provided by the methods. The first test (test I) consists in 176 

selecting an optimum number of features for each method and for each approach. Therefore, for each 177 

method will be obtained a different number of features that maximises the classification. A different way 178 

to make the comparison is using a fixed number of features for all methods (test II). For this test, we have 179 

chosen the number of features obtained for the ROC method for each approach.  180 

4. RESULTS AND DISCUSSION 181 

The classification obtained using the ROC method is in general better than the obtained for the other 182 

methods in all cases but MRMRd and MRMRq using the third approach. These results could be expected 183 

since the MRMR criterion is recognised as one of the most powerful techniques for feature selection 184 

(Peng et al. 2005; Ponsa and López 2007). The success of ROC approach is similar to that obtained using 185 

the rest of the methods tested. The differences are not significant and therefore we can´t say that our 186 

approach is better than the others in terms of decay detection accuracy. It is, however, important to 187 

highlight that the best results are achieved using the ROC method for all tests and all approaches. This 188 

result should to be taken into account because it is probably due to the fact that this method not only 189 

evaluates the features selection but also optimises the performance of the classifier. Therefore, having 190 

similar results, ROC method can achieve slightly better scores. 191 

Table 1 shows the results of the classifier performance evaluation using the different sets of features 192 

provided by the feature selection methods, described above, corresponding to the test I. The accuracy, 193 

achieved with the ROC method, is higher than that obtained with the other methods, except for MRMR in 194 

approach III. However, on one hand minimal redundancy methods try to extract the features with a high 195 

degree of relevance, avoiding those features with redundant information. On the other hand, ROC is a 196 

method that provides those bands that used in a classification problem get fit a classifier in much robust 197 

way in terms of accuracy and significance of the model.  198 
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Table 1. Results of the classifier performance evaluation using the features selected by the different 199 
methods for each approach, but being possible a different number of features for each case (test I)  200 
Selection 
method 

Approach I  Approach II  Approach III 
Success 
rate (%) 

Selected 
features 

 Success 
rate (%) 

Selected 
features 

 Success 
rate (%) 

Selected 
features 

CA 85.94 5  82.44 3  95.02 2 
MI 85.53 5  84.87 4  93.08 4 
FDA 86.65 5  82.21 3  95.02 2 
TT 85.67 5  79.43 2  95.00 2 
WL 85.96 5  82.43 3  95.03 2 
BD 83.61 3  81.59 4  94.34 3 
MRMRd 85.69 5  85.58 5  96.06 2 
MRMRq 85.39 4  88.30 7  95.86 3 
KLD 85.55 5  87.48 7  95.43 4 
ROC 87.46 6  89.07 7  95.52 4 
 201 

In general, the rest of the methods saturate the criterion of success with fewer bands than those selected 202 

by the ROC. This, in theory, means that to reach more approximate results than ROC, the number of 203 

bands needed by these methods should be higher. Therefore, the test II was used In order to check the 204 

performance of the ROC method using the same number of bands, being six for the first approach, seven 205 

for the second approach and four for the third one. As shown in Table 2, the ROC feature method 206 

provides higher scores than most of the feature selection methods used in this study. As it happens in test 207 

I, the only two methods surpassing the ROC are MRMRd and MRMRq for the third approach. This fact 208 

shows that, in the most pessimistic scenario for ROC method (permitting an increase of the number of 209 

features for the rest of the methods), it obtains better results than the others except in the case of MRMR 210 

methods in approach III. Even though the differences with the other methods are small since all of them 211 

are good feature selection methods, in the case of the approach II, which is probably the most realistic 212 

scenario in the real-world, the ROC method is clearly the one that obtains better accuracy. 213 

Table 2 Results of the classifier performance evaluation using the features selected by the different 214 
methods for each approach, but always employing the same number of features for each method (test II) 215 
Selection method Approach I (%)  

(6 features) 
Approach II (%)  
(7 features) 

Approach III (%)  
(4 features) 

CA 86.48 83.39 95.09 
MI 85.88 87.50 93.08 
FDA 86.78 84.12 95.10 
TT 85.72 82.92 95.10 
WL 86.56 83.39 95.11 
BD 85.18 83.59 94.93 
MRMRd 86.72 86.37 97.18 
MRMRq 86.53 88.30 96.42 
KLD 85.77 87.48 95.43 
ROC 87.46 89.07 95.52 
 216 

5. CONCLUSIONS 217 
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In the first test, the classification average success rate obtained using the ROC method is greater than that 218 

obtained for the other methods in almost every case, except for MRMRd and MRMRq using the third 219 

approach.  220 

When we use the same number of features for all the methods, the ROC feature method provides 221 

generally better results than most of the feature selection methods used in this comparative study, being 222 

the average success rate for ROC almost always greater than that obtained for the other methods, only 223 

being surpassed by the MRMR methods for the third approach. 224 

Therefore, the ROC feature selection method is a suitable feature selection technique that can be applied 225 

with success to multiclass classification problems with a huge amount of features such as the  226 

segmentation of hyperspectral images to detect decay in citrus fruit, having at least similar results than 227 

other recognized feature selection methods but with the advantage of to optimise, by its nature, the 228 

performance of the classifier. 229 
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