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Abstract. A novel seismic isolator is presented to detach the structural behavior from the 

infill effect during earth movements, with the aim of avoiding strong interactions. An 

experimental campaign was carried out to determine the influence of this isolator during the 

early stages of the seismic response of masonry-infilled steel frames, testing different 

configuration schemes to assess their effectiveness in terms of overall isolation, reduction of 

peak loads, strain levels and energy dissipation. The device was found to hinder the formation 

of the damaging diagonal compression struts by absorbing the relative displacements between 

frame and infill. The results achieved show that seismic interaction between infill panels and 

the structural skeleton can be faced from an isolation point of view. 

 

1 INTRODUCTION 

Clay brick or concrete block masonry is used to build walls that provide good thermal and 

sound insulation, and resistant capacities. As it is easy to install and light enough to be carried 

around the building site, it is one of the most frequently used materials for curtain walls in the 

openings between reinforced concrete or steel frames in building construction. 

In this form and without any reinforcement, it is considered as a non-structural element by 

many international Standards [1, 2, 3, 4, 5] and so is ignored in the calculations. This is quite 

realistic when only gravity loads are taken into account, but could be a grave shortcoming 

when dynamic loads are considered, as many research groups have been pointing out for some 

time [6, 7, 8]. Masonry panels stiffen the structure against seismic loads and modify 

building’s strength, damping, hysteretic behavior and deformation capacity. For example, El-

Dakhakhni et al. [8] proposed a strut model for masonry-infilled steel frames in an attempt to 

take into account the important effect of masonry panels in a structure’s seismic response. 

These authors point out the complexity of the problem, since total or partial panel failure may 
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cause the sudden transfer of seismic forces to other parts of the structure, while admitting that 

no realistic analytical models are available. 

 

Recent earthquakes in Spain (Lorca, 2011) [9] and other parts of the world [10] have made 

it clear that non-structural masonry plays an important role in the seismic behavior of framed 

buildings [11, 12, 13] and can help to reduce economic losses and human casualties (Fig. 1). 

References [14, 15, 16, 17] point out this role when study the response of buildings in Lorca 

earthquake. These non-structural elements can induce damage to structural elements under 

seismic loads (ends of beams and columns) leading to failure mechanisms, as has occurred in 

Lorca and many earthquakes. 

 

 
Figure 1: Building failure in Lorca earthquake (Spain, 2011) 

 

There are two main approaches to the problem of masonry infills in building design: [18, 

19, 20] a) consideration, b) isolation. 

 

The former approach takes masonry walls into account in the seismic design, which are 

usually strengthened to consider the interacting structural infill influencing the seismic 

response. Different methods have been used to model the phenomenon, including: elastic 

theory, plastic theory, limit state and equilibrium, finite elements using macro- and micro-

modeling for masonry, experimental formulae, etc., and many references from many years 

ago to present can be found in the scientific literature related to this approach: e.g. tying walls 

[21, 22], concrete jacketing of walls [23], epoxy and cementitious fiber composites [24, 25, 

26, 27, 28, 29], prestressing techniques [30], or design of new units [31, 32]. However, these 

methods and techniques are sometimes rather complex and difficult to replicate without the 

help of precise numerical models able to reproduce a building’s actual behavior. Furthermore, 

the interaction also varies during the course of the seismic action, thus complicating the 

design even further. Nevertheless, the interaction between the building structure and non-

structural masonry is usually studied from the resistance point of view by including the non-

structural panels in the resistant elements. Together with the fact that masonry panels are 
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considered as non-structural elements and can be freely moved around in the architectural 

design, this would invalidate any analytical consideration. For these reasons the authors 

focused on the second approach to the problem of interaction: isolation. 

 

Regarding this second approach, of the different techniques that can be used to isolate a 

masonry panel from the building’s structural skeleton, one of the most obvious is to fill the 

joint between frame and panel with a flexible strip. However, the main drawback to this 

technique is that it is not advisable to have a soft joint at the base of the panel, besides the fact 

that a flexible joint around the frame would reduce the panel’s out-of-plane performance. 

 

A big step towards a practical solution to isolating masonry panels and frames would be 

obtained if it were possible to design a connection able to provide flexibility through the in-

plane behavior and stiffness through the out-of-plane behavior. Although this has already 

been pointed out many times in the scientific literature, as far as the authors are aware, no 

practical commercial systems have as yet been developed to isolate the resisting skeleton from 

the non-structural masonry walls. 

A number of different solutions have been suggested by several research groups in this 

field; e.g. [33, 34] developed a steel sub-frame attached to the steel building frame. Basically, 

this subframe is made of vertical and horizontal steel members and a special piece acting as a 

‘fuse’ separates the infill from the structure in case of large lateral forces. Markulak et al. [35] 

studied the behavior of steel frames infilled with masonry, introducing special perforated 

blocks and lightweight autoclaved aerated concrete blocks that allowed partial separation of 

the masonry from the frame to limit combined frame-infill action. Others have proposed the 

use of different materials, e.g. polymers [36], to avoid structural interaction between frame 

and infill or enhancement properties. 

Other references about base isolation of masonry buildings can be found [37, 38, 39], but 

they are not specifically related to panels’ seismic isolation. In the same sense, the works [40, 

41] can be referenced here. The former introduced a visco-elastic material (lead) between 

beam and the top layer of the masonry wall in an attempt to isolate the restraint introduced by 

the wall on to the columns when these creep in the long term. Beside, these authors performed 

in-plane tests to confirm that the lead layer did not have adverse effects on the specimens. The 

latter work shows tests performed using a ‘frictional sliding fuse’, which is a device 

composed of steel plates that divides the infill into two parts by a horizontal layer, allowing 

sliding in longitudinal direction before infill crushing but restraining transversal movements. 

The device can be regulated to adjust strength and ductility. 

 

Since few references can be found related to seismic isolation of masonry panels, the 

authors decided to carry out some research themselves in this important field. In the following 

sections it is described the result in the form of a new product intended to solve the problems 

that arise when retrofitting masonry panels that have not been seismically isolated. 

 

This paper thus proposes an experimental procedure designed to test a novel seismic 

isolation device conceived to separate the dynamic response of the building from the 

influence of its masonry walls, in an attempt to shed some light on the field of seismic 
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isolation. Experiments were carried out to evaluate the energy dissipation, peak load, 

hysteretic curves and strain levels of isolated infilled frames under small displacements before 

the onset of visual damage to panels and frames. In this way the authors thought it would be 

possible to determine the behavior of the structure during the initial phases, close to the elastic 

range and compare the actual response with the predicted response in the design phase of the 

bare structure, in which the infills are not usually considered. 

 

2 SEISMIC ISOLATOR FOR MASONRY PANELS 

It is clear that one of the main phenomena affecting the seismic response of frame 

buildings infilled with masonry panels is the formation of diagonal compression struts (e.g. 

FEMA 273 [42]. 

 

As a consequence of horizontal displacements, when there is drift between different floors, 

a resisting mechanism known as a ‘diagonal compression strut’ appears to resist the seismic 

loads. This mechanism often causes damage to the ends of beams and columns and to 

masonry panels, as can be observed in the simplified sketch in Fig. 2. This phenomenon also 

occurs in partially infilled frames, in which the panel reduces the effective length of the 

columns, leading to unexpected failures. 

 

 
Figure 2. Formation of diagonal compression struts and damage. 

 

These diagonal compression struts are used to account for the contribution of the masonry 

panel when modeling infilled frames; however the way in which the infill and frame interact 

is not clear, so that it is difficult to explain the complex behavior exhibited by panels under 

seismic movements. 

 

Since no practical models have yet been developed to properly consider the panels in the 

computations, and since infills are considered as non-structural and can be added or removed 

from the structure by the tenants, the present authors opted to aim their efforts towards the 

isolation philosophy. 
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In tests carried out at the Universitat Politècnica de Valéncia, the authors initiated research 

on a novel device and achieved a high degree of structural independence between the seismic 

response of the building structure and the influence of the masonry infill. The purpose of this 

device is to act as a seismic isolator in a way that allows the structural frames to deform 

without being affected by the high stiffness introduced by the masonry panels. 

 

The SISBRICK seismic isolator (Figure 3a) is similar to a normal brick in shape and size 

and is made of a deformable matrix with an elastic modulus a few orders of magnitude 

smaller than commercial bricks, able to allow movements in one direction, and contain a steel 

frame able to withstand forces in the two perpendicular directions. Installed at the corners of 

the frame, it can absorb the relative movements induced by the structure, increasing out of 

plane resistance and hindering the formation of diagonal compression struts. Figure 3b shows 

the compression test performed on the deformable matrix material, with an elastic modulus of 

15 MPa and elastic behavior in a wide range of strain. The material used in the tests is 

polyurethane, but any material accomplishing this mechanical characteristic would be valid 

from a seismic point of view. The steel frame is made of reinforcement bars B500S with 6mm 

diameter, not all of them fully crossing the matrix to allow for deformability. 

 

  
Figure 3. a) Installation of SISBRICK seismic infill; b) Elastic modulus. 

 

Figure 4 shows results of the compression tests performed on both normal and seismic 

isolator bricks in accordance with UNE-EN 772-1 standards. The higher degree of 

deformability of the isolator over normal bricks can be clearly seen. The bricks measure 

329mm x 69mm x 155mm. 
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Figure 4. Compression tests on conventional and the proposed SISBRICK bricks. 

 

The purpose of the tests described below was to compare the performance of this device in 

terms of energy dissipation and the adequacy of different isolation schemes. 

 

3 TEST LAYOUT 

A comprehensive series of experiments were performed to test the effects of the 

SISBRICK seismic isolator in cyclic movements in a number of different configurations. 

Eleven tests (four with the same configuration scheme) were performed on a steel frame. 

The tests were divided into two types: small amplitude cycles and large amplitude cycles. The 

seismic isolator bricks were placed between frame and infill and can be identified by their 

distinctive color. 

 

Tables 1 and 2 summarize these tests: 

 

Bare frame 
 

Conventional infill (MM0) 
 

Layout 1 (MM1) 
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Layout 2 (MM2) Layout 3 (MM3) 

 
Layout 4 (MM4) 

Layout 5 (MM5) 

  

Table 1. Isolation Schemes tested 

 

Infill scheme Small Large 

Bare frame X X  

Conventional infill MM0.1, MM0.2 X X 

Layout 1 MM1 X  

Layout 2 MM2.1, MM2.2 X X 

Layout 3 MM3.1, MM3.2 X X  

Layout 4 MM4 X  

Layout 5 MM5 X  

Table 2. Tests carried out. 

 

The schemes ranged from full isolation (MM5) to minimum isolation at the corners (MM2), 

top (MM3) or sides (MM4). 

All these configurations were tested on a 2960x1750 mm (center line) steel frame, made of 

IPE160 shaped beams in S275 structural steel, clamped at the corners and pinned to ground, 

as can be seen in Figure 5. 
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Figure 5. Steel frame used in the tests (units in mm). 

 

The cyclic load was applied to the top right-hand corner by a hydraulic jack clamped to a 

reaction wall. The jack was able to apply a 1200 kN pushing load and 500 kN pulling load, 

with a total length of 500 mm in cyclic movements. 

 

The specimens were instrumented to record stress paths and deformation in the panel and 

frame to identify the diagonal strut and compare the results with those from the seismic 

isolator. Figure 6 shows the location of the LVDT sensors on the outside of the frame to 

measure deformation. LVDT sensors were also placed on the contact between frame and 

panel to measure the gap between the top beam and column. Seven groups of three LVDT 

sensors were placed at different points on the panel to register deformations in bricks and 

joints. Ten groups of three strain gauges were set to measure deformations in bricks at 

particular points. 

LVDT sensors were also placed on the reacting wall, ground and joints to control possible 

relative movements of the frame. 

 

Six high resolution cameras were set to collect information on the deformation of the 

specimens during the tests. 
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Figure 6. Instrumentation used in the tests (units in mm). 

 

To check the performance of the tests, the data acquisition system permitted real-time 

display of the force-displacement cycles and the values recorded in strain gauges and 

transducers. 

 

The loading protocol was based on the recommendations proposed by FEMA 461 [43], 

ACI 374 [44] and ATC 24 [45]. 

A theoretical model was performed for both a bare and conventional infilled frame to 

estimate the ultimate load. A controlled displacement test was preferred, and the drift was 

chosen as the control parameter for the imposed displacements. The yielding drift was 

selected as 75% of the corresponding drift for the ultimate load, according to [44]. 

For the small displacement tests, as the authors wanted the frame to remain within the 

elastic range, 50% of the yielding drift was chosen as maximum value in the loading protocol. 

The increment of the deformation level was established by multiplying the yielding drift by 

certain factors, which were: 0.25, 0.5, 0.75, 1, 1.5, 2.25, 3.38, 4, 6, 8, 10 and 12 for the large 

displacement tests. When the tests were limited to the elastic range, the loading protocol was 

defined as shown in Fig. 7. 
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Figure 7. Loading protocol for bare frame (left) and infilled frame (right). 

 

Some tests (MM0.2, MM2.2, MM3.2, and MM5) had an initial step with small amplitude 

to discard initial errors in the jack and test configuration. 

An appropriate control of the test inputs and actuator parameters was achieved; the 

velocities acquired by the actuator varied from 0.05 to 1 mm/s, making dynamic effects 

negligible. 

All tests were quasi-static and the deformation was incrementally and slowly applied in 

stepwise reversed cycles. Two cycles at each amplitude were completed to know the stiffness 

degradation at the same drift level. 

 

4 EXPERIMENTAL RESULTS 

The load-displacement hysteretic curves can be seen in Fig. 8 for specimens MM0.2 (no 

isolation), MM5 (full isolation), and for the bare frame, which is a straight line for these 

displacement levels. In this general overview, it can be seen that, for the same imposed 

displacement, the applied force is almost 50% higher in the conventional infill than the 

isolated one, validating the initial goal of the paper from the perspective of the isolation 

philosophy. 

 

   
Figure 8. Hysteretic curves between conventional infill (MM0.2 left) and ‘fully’ isolated 

(MM5 right). 

 

For the sake of clarity, only the hysteretic curves for the last step of the small displacement 

series are shown (Step 10), where the influence of each configuration is clearer from the 
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cyclic isolation point of view. This can be seen in Fig. 8 and Table 1, where for the same 

displacement (around 15 mm), the hysteretic curves and the ratios between the maximum 

loads for each configuration compared to the conventional one (MM0.2) are: 

 

Step 10 Mean Peak load (x10
-1 

kN) Ratio to MM0.2 Ratio to Bare 

Bare 37.3   

MM0.2 85.9 0% 230.3% 

MM1 61.0 40.8% 63.5% 

MM2.2 57.4 49.7% 53.9% 

MM3.2 78.4 9.6% 210.2% 

MM4 64.3 33.6% 72.4% 

MM5 57.6 49.1% 54.4% 

Table 1. Ratios between Peak loads for different isolation schemes compared to 

conventional infill. 

 

 
Figure 9. Hysteretic curves for Step 10. 

 

It can be concluded that schemes MM5, MM2.2 and MM1 show a high level of isolation in 

terms of maximum horizontal load, with interesting ratios compared to the bare frame and the 

conventional infill. Scheme MM2.2 seems to catch the essence of the isolation mechanism, 

hindering the formation of the diagonal strut and locating the isolators in particular positions 

to reduce its consumption, becoming as a good candidate for practical purposes. Fig. 9 shows 

this group of three closer to the bare branch. 

 

In terms of energy dissipation, the results were processed to obtain the energy dissipation 

per cycle (each step has two cycles), the cumulative energy dissipation, and the ratio per cycle 

between energy dissipation and energy input, giving the curves shown in Fig. 10: 
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Figure 10. a) Energy dissipation per cycle; b) Cumulative energy dissipation; c) 

Cumulative Energy dissipation and Cumulative Energy input ratio. 

 

From Fig. 10a, it is clear that scheme MM5 dissipates less energy per cycle than the others, 

since it is supposed to be the most isolated one with the closest behavior to the bare elastic 

frame. It thus has a higher capacity to return energy to the system from the isolators, avoiding 

so much friction and damage to the bricks. It is also clear that the more isolated schemes 

(MM5, MM2.2, MM1) dissipate less energy in small cycles, since the displacement is the 

same but more flexible. The MM2.2 scheme validates its capacity as effective and least 
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consuming isolator scheme. This can also be seen in Fig. 10b, where these two schemes 

dissipate the least cumulative energy of all the tests. 

 

The MM0.2 specimen dissipates most energy per cycle in the very early stages, mainly by 

cracking and friction. In Fig. 8 its non-linear behavior at these early low amplitudes can be 

seen, with a change in the slope of the envelope. Something similar also happens in MM5, but 

to a lesser extent. 

The ratio between cumulative energy dissipation and cumulative energy input is shown in 

Fig. 10c. It is interesting to see how schemes MM1 and MM2.2 have a large dissipative ratio 

throughout all the cycles, while MM0.2, MM3 and MM5 seem to decrease. Scheme MM4 

confirms the positive effect of column isolation. 

 

A more comprehensive study about stresses and displacements developed inside the panels 

is currently under development for a future work, together with additional tests. As a first 

approximation, Fig. 11 displays on the top row strains captured by gauges in vertical direction 

on points 4 and 5 (see Fig. 6) for specimens MM0 and MM1, while the bottom row shows 

strains captured by gauges in horizontal direction. By the end of the experiment, reductions in 

the strain levels around 65% and 85% are achieved for GH4 and GH5, while 75% and 85% 

are achieved for GV4 and GV5, respectively (GH means horizontal gauge; GV means vertical 

gauge). This exemplifies the effect of the isolator device on the formation of the diagonal 

strut, reducing the interaction effect between frame and infill. 

 

  

  
Figure 11. Top row: Strains in vertical direction in points 4 (left) and 5 (right). Bottom 

row: Strains in horizontal direction in points 4 (left) and 5 (right). 
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5 CONCLUSIONS 

A novel seismic isolator is proposed to detach the structural behavior from the infill effect 

during earth movements, with the aim of avoiding strong interactions. An experimental 

campaign was carried out to determine the influence of this isolator during the early stages of 

the seismic response of masonry-infilled steel frames. Eleven different tests were carried out 

on the seismic isolator in order to determine its efficiency in terms of overall isolation, 

reduction of peak loads, strain levels and energy dissipation for different configuration 

schemes. Load-displacement curves are presented for the most extreme cases to show the 

validity of the isolation philosophy. A 50% reduction in the imposed horizontal force in some 

configurations was achieved when using the seismic isolator for the same displacement 

compared to the conventional infill. 

All configurations are compared at the final step to know their isolation capacity, and 

MM2.2 scheme becomes as a good candidate for practical purposes. 

In terms of energy dissipation, results are shown for each configuration and step, 

confirming again MM2.2 scheme as a good candidate for isolation. 

Strain measurements on the wall are shown, obtaining reductions between 65% and 85% 

when compared to conventional infill. 

As regards hindering the formation of diagonal struts through isolation, the results confirm 

this point. The isolator allows flexibility in the structure and a seismic response closer to the 

design response, hindering the formation of the damaging diagonal compression struts by 

absorbing the relative displacements between frame and infill. 

Scheme M2.2 was seen to be a good isolation scheme for practical purposes to obtain good 

results with few isolators for the different type of variables studied. 

The results achieved thus show that seismic interaction between infill panels and the 

structural skeleton can be approached from an isolation point of view. Practical solutions can 

thus be designed and put on the market to avoid or reduce damage in columns and panels. 

Further research is needed in this line and experiments are being conducted to go further into 

this field. It is expected that the schemes under study will allow more energy to be dissipated 

at larger amplitudes, since the integrity of the specimen is conserved for more cycles than 

with conventional infill, due to the more close-to-‘elastic’ and flexible behavior in the initial 

stages. 
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