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A phenomenological model that simulates the acoustic attenuation behavior of sonic crystals is
developed in this paper. The input of the model is a set of parameters that characterizes each
experimental setup, and the output is a simulation of the associated attenuation spectrum. The model
consists of a combination of a multiresolution analysis based on wavelet functions and a set of
artificial neural networks. An optimized coupling of these tools allows us to drastically reduce the
experimental data needed, and to obtain a fast computational model that can be used for
technological purposes. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2217127�
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I. INTRODUCTION

Sonic crystals �SCs� are structures formed by a periodic
array of acoustic scatterers embedded in a homogeneous ma-
terial, with strong modulation of the elastic constants be-
tween the scatterers and the surrounding materials. The peri-
odicity in these materials results in the appearance of sonic
band gaps, a range of frequencies for which sound propaga-
tion is forbidden inside the crystal. These stop bands have
induced several application proposals, such as acoustic filters
and shield devices.1–6

In recent years, a great experimental and theoretical ef-
fort has been made in order to improve the knowledge of the
acoustical properties of these systems. Theoretical simulation
programs have been developed to predict the behavior of
such structures. Some of them calculate the acoustic band
structure of infinite crystal using the plane-wave expansion
method.7,8 Other approaches, based on a variational method9

and a Korringa-Khon-Rostoker method,10 have been devel-
oped. Also, finite systems have been studied using the
transfer-matrix method4,11 and multiple scattering theory12–14

�MST�. Experimental measurements, under controlled and
outdoor conditions, have been performed2 in the audible
range.

It has been observed that the acoustic attenuation spectra
produced by SCs depend not only on the lattice constant but
also on the filling factor, type of array, sound incidence
angle, and measure distance. Small variations on them can
produce big changes in the shape and position of the attenu-
ation peaks in the spectrum.9

Moreover, although it has been proved that the simula-
tion programs provide satisfactory results, there is still a gap
between theoretical and experimental spectra. Theoretical
models give us qualitative information about the shape and
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variation of the attenuation peaks, but this information is not
as complete as is required for the technological development
of the SCs. In this sense, it would be interesting to perform
models based on experimental data that have been obtained
in situations that are close to the use of SCs, such as acoustic
filters or shield devices. Our paper presents this type of
model. It is based on the interplay between two well-known
mathematical techniques: Multiresolution analysis
�MRA�,15–17 and artificial neural networks �ANNs�.18–20 Our
procedure consists of a four-step scheme. First, we have to
measure attenuation spectra corresponding to different values
of the parameters defining both the crystal and the experi-
mental conditions of the measurement �SC setups�. Second,
in order to present the experimental information to the ANN
in a compressed and arranged format, we analyze attenuation
spectra with MRA based on wavelet transform. In the third
step, we train a set of neural networks with the experimental
data. The objective is that ANNs correlate pairs formed by a
vector of n parameters, that define the SC setup and the
corresponding experimental attenuation spectrum. This cor-
relation will allow us to simulate attenuation spectra. The
fourth step consists of a test of the model; comparing simu-
lated with experimental spectra specifically preserved as
samples for this purpose.

Note that the conditions under which the model works
consider only SC setups defined by a vector of parameters
whose values lie inside the range of values used in the con-
struction of the model.

We present results of our model for a well-known two-
dimensional SCs configuration, formed by hollow aluminium
cylinders rods arranged in triangular cells embedded in air,9

in order to allow the comparison between the results ob-
tained with our model and the theoretical calculation using

MST.
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II. MATHEMATICAL APPROACH

The core of our model is composed of a set of ANNs
that compute the correlation between vectors of parameters
corresponding to different SC setups and the associated ex-
perimental spectra. To achieve this objective, we perform a
supervised training of networks with pairs formed by a vec-
tor and an associated spectrum. These spectra are defined by
a great number of channels �512, in our case� to obtain a
good resolution. If raw spectra were used, a complex ANN
structure would be needed, and a great number of experimen-
tal samples would be necessary to train it. A natural way to
overcome this problem is to try to characterize the attenua-
tion peaks in spectra by a few number of parameters. We can
try to use classical spectroscopic techniques for a systematic
analysis of peaks, such as, fitting peaks with respect to a
well-known base of functions to obtain a characterization of
them �centroid, width, tail, etc.�. But, as we have mentioned
in Sec. I, the nature of the physical processes involved pro-
duces a great variety of attenuation peak shapes. Conse-
quently, these classical techniques are not appropriate for this
purpose. Therefore, we have decided to use another math-
ematical tool for analyzing attenuation spectra; the MRA
based on the wavelet transform.15 Moreover, the MRA al-
lows us to present experimental spectra to the network in a
very compressed and arranged format, which drastically re-
duces the number of degrees of freedom of our model and
the error associated to the simulated spectra. The MRA uses
the properties of wavelets basis to decompose the signal into
a sequence of different resolution levels. Roughly speaking,
this analysis allows us to distinguish between the spectrum’s
tendencies and fluctuations.16 This property of MRA facili-
tates both data compression—via the deletion of the coeffi-
cients of the nonrelevant levels easily—and also filtering
data—which establishes suitable thresholds for the value of
the coefficients. For these reasons, MRA turns out to be ex-
tremely effective for the systematization of the analysis of
the peaks in acoustic attenuation spectra.

An ANN is composed of many simple nonlinear compu-
tational elements; operating in parallel and densely intercon-
nected. Several interconnected neurons organized in layers
can form an ANN. In this work, we have used a feedforward
network topology, where the data processing can extend over
multiple layers of neurons but no feedback connections are
present �connections extending from outputs of neurons to
inputs of neurons in the same layer or previous layers�.

In order to set up the ANN for a specific use, a training
process and a learning process are needed. The training pro-
cess consists of feeding the ANN with teaching patterns, and
letting it change its weights and bias according to some
learning rule. The algorithm used in this work for training is
the Levenberg-Marquardt optimization algorithm.20 The
learning rules are methods of deriving the next changes that
might be made in a network. In our case, we use the learning
function Gradient descent with momentum weight and bias.19

III. DEVELOPMENT OF THE MODEL

As we have just mentioned, our model is constructed

following a four-step procedure indicated in Fig. 1.
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A. Experimental data set

The first step consists of obtaining a significant set of
experimental data corresponding to a region of the param-
eters space where we want to use the model.

The experiments have been performed in an anechoic
chamber of 8�6�3 m3. We use a sound source with a
speaker placed at the focus of a parabolic reflector to obtain
a plane wave. However, since the dimension of the chamber
is not much larger than the SC size, sound waves are not full
plane waves when the wavefronts reach the SC. The SCs are
built up by hanging cylindrical rods on a frame with trian-
gular symmetry. The frame can rotate around the vertical
axis, so one can explore any direction of the wave vector
perpendicular to the cylinder axis. Here, we use 1 m length
hollow aluminium rods. The points of measurements are al-
ways placed on the axis defined by the center of the SC and
the source. In these points, the continuous white noise emit-
ted by the source is recorded by a microphone with and
without SC �insertion loss�. The attenuation spectrum is ob-
tained from the difference between the two signals. A dual-
channel signal analyzer �type B&K 2148� has been used
throughout all experiments. The analyzer makes the fast Fou-
rier transform �FFT� of the data and produces the corre-
sponding spectrum with a resolution of 8 Hz. A range from
800 to 4888 Hz is analyzed, and a total of 512 channels have
been taken to generate a spectrum.

We have assigned a vector of five parameters �input vec-
tor� to every SC setup. These parameters are: Incidence
angle, cylinders radii, lattice spacing, distance from the point
of measurement to the center of the structure, and number of
rows of the SC.

The incidence angle ���, calculated between the direc-
tion of the wave vector �k� �see Fig. 2� and the symmetry
axis of the crystal, ranges from 0° to 30° �5° step�. The
values of the radii of used scatterers �r� are: 0.8, 1, 1.25, 1.5,

FIG. 1. Diagram of procedure for building the model.
FIG. 2. Definition of parameters used for characterizing every SC setup.
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1.75, and 2 cm. The lattice constant �a� can take two values:
6.35 and 12.7 cm. The distance between the center of the
structure and the point of measurement �d1� has been chosen
from 1 m to 4 m �0.5 m step�. The number of rows �Nr�
varies from 3 to 9. Finally, the number of columns �Nc� of
every SC is fixed to 10, and the distance between the source
and the center of the structure �d� is also fixed to 1.35 m.

By means of a random procedure, we have defined a set
of 151 combinations of these parameters that produce 151
input vectors. Next, the corresponding experimental spec-
trum is measured for every vector. We have selected a
sample of 145 of these pair vector-spectrum for ANNs learn-
ing process, and the remaining 6 pairs have been preserved
to check the accuracy of the model �test�.

B. MRA of the experimental spectra

Once we have obtained the experimental data, and be-
fore presenting them to ANNs, an adequate treatment is
needed in order to simplify the information contained in
them. As we have explained above, the mathematical tool
chosen for doing that has been the MRA that allows us to:
Divide the information contained in each spectrum into dif-
ferent resolution levels, filter each of these levels indepen-
dently in order to delete noise, and compress all the informa-
tion contained using a number of coefficients as smaller as
possible to characterize the spectrum.

Attending to the shape of the peaks in the attenuation
spectra, we have selected Daubechies 2 as the most conve-
nient wavelet basis to perform the MRA analysis, since it
allows one to represent attenuation peaks in a very accurate
way with a very small set of coefficients. This can be seen in
Fig. 3.

Now, we can perform the MRA of each spectrum up to
the 9th wavelet level.

Once we have divided the information contained in each
spectrum in different resolution levels, we can perform a
filtering process which sets an independent threshold value
for each level.

The final step is the reduction of the number of coeffi-
cients �compression of the information�. To do that, we de-
lete the two most detailed wavelet resolution levels. This
does not affect the shape of the spectrum, although they rep-
resent a large number of coefficients �75% of the total�. To
illustrate this, Fig. 4 shows the reconstruction of a spectrum
computing the inverse wavelet transform with only the re-
maining coefficients �25% of the total�. As the reader can
see, there is a remarkable coincidence between the recon-
structed spectrum and the original one. In this sense, we
obtain a high rate of compression of the spectra. For the
MRA and the inverse wavelet transform, we have used the
Wavelet MATLAB toolbox.22

C. Design and training of the ANN

In our model, we have considered eight neural networks,
one for each resolution level of the MRA analysis of experi-
mental spectra, that work independently. The input in each of
them is the parameter vector that determines the SC setup

�input vector�, and the output is a real-valued vector that
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gives us the wavelet coefficients of the simulated spectrum
for the corresponding resolution level. Consequently, the
main mathematical assumption is that every resolution level
can be computed independently.

Due to the small size of the set of experimental spectra

FIG. 3. Reconstruction of a typical experimental spectrum of 512 channels
using �a� 5, �b� 10, �c� 30, and �d� 100 wavelet coefficients, respectively. The
y axis represents the pressure attenuation in dB. The dashed line represents
the reconstructed spectrum; and the continuous line, the original one.
chosen, a simple neural network architecture is proposed: A
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two-layer feedforward backpropagation network type. The
first layer contains five neurons �the number of parameters
that define the SC setup� with an tansin21 activation function,
and the second layer contains as many neurons as coeffi-
cients that have to be predicted with a linear activation func-
tion. This number varies depending on the MRA resolution
level simulated by the neural network.

For the learning procedure, we feed the 8 networks with
the experimental set of 146 inputs/outputs, and an optimiza-
tion procedure of connection weights and bias is performed.
At the very end, we have a final and optimal set of weights
and bias for all networks. Then, the model is ready for simu-
lating spectra: Giving to each neural network the same vector
of parameters as input, they will return the wavelet coeffi-
cients corresponding to the MRA level assigned to each one.
Computing the inverse wavelet transform of all of these co-
efficients together �all levels�, we obtain the simulated spec-
trum associated with the SC setup encoded with this vector
of parameters. For the effective computation of the model,
we have used the Neural Network MATLAB toolbox.21

D. Test and results of the model

Once the ANNs have been trained, a test of the model
must be performed. For this purpose, we have preserved six
experimental spectra that have not been used for the training.
In Fig. 5, we compare experimental and simulated spectra
associated with three test SC setups.

The parameters corresponding to the simulated spectra
are: Fig. 5�a�: Incidence angle 5° cylinders radii 0.02 m, lat-
tice spacing 0.0635 m, distance from the point of measure-
ment to the center of the structure 4 m, and a number of rows
7; Fig. 5�b�: Incidence angle 20°, cylinders radii 0.02 m,
lattice spacing 0.0635 m, distance from the point of mea-
surement to the center of the structure 2 m, and number of
rows 6; and Fig. 5�c�: Incidence angle 5° cylinders radii
0.0175 m, lattice spacing 0.0635 m, distance from the point
of measurement to the center of the structure 4 m, and num-

FIG. 4. Experimental spectrum versus its compressed version. It can be seen
that the compressed versions cannot be distinguished from the original.
ber of rows 9.
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A very good agreement between simulation and experi-
ment can be observed. Practically all simulated peaks in the
whole spectrum have a correct centroid, width, and tail, i.e.,
the shape of the simulated spectrum is very similar to the

FIG. 5. Results of the test of the model for three of the test samples:
Experimental spectra �continuous line�, simulated spectra using our model
�dashed line�, and simulated spectra using MST �dotted line�.
experimental one. The simulated attenuation level is also in
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good agreement with experimental data. There are no spuri-
ous peaks, that is, peaks that appear in the simulated spectra
but are absent in the experimental ones.

1. Comparison with MST

The reason for choosing the SCs setup mentioned above
is that it allows us to compare our model with the MST. In
Fig. 5 �dotted line�, we can see that—although MST provides
a general representation of the tendencies of the experimental
spectra—it does not perform a good prediction of the shape
of the spectrum.

In order to quantify the accuracy of each model, we
define a quadratic error by

�2 =
�i=1

512
�ptheo�f i� − pexp�f i��2

512
, �1�

where we divide by the total number of channels �512�. The
results for the tests spectra are shown in Table I. The average
errors are 6.11 dB for MST, and 3.97 dB for our model
�35% smaller�. As can be seen, our model reproduces the
shape of the experimental spectrum and has an associated
error smaller than the MST in all cases.

2. Dependence of the model on the training samples

To complete the test of the model, we analyze its depen-
dence on the number of training samples. To do so, we have
trained the ANNs with populations of 40, 80, and 146 spec-
tra. In each case, we have obtained different weights for the
ANNs connections, which produce different predicted spec-
tra. In Fig. 6, we show the comparison between these predic-
tions and the associated experimental spectra for one of the
test spectra.

Looking at these results, and assuming that we want to
work with simulated spectra with a correct shape and an
error associated at least smaller than the one associated with
MST, we are encouraged to use more than 100 training
samples to build our model. But taking into account that we
want to use a number of training samples, as small as pos-
sible in order to reduce the effort in the experimental mea-
surements, we have arrived at a compromise of 146 training
samples.

IV. CONCLUSIONS

In this paper, we have obtained a general procedure to

TABLE I. Quadratic error values associated with the test spectra. In the
second column, we show the errors associated with the MST predictions.
The third column shows the errors associated with our model.

Test spectrum �MST �ANNs

1 2.54 1.96
2 4.42 4.24
3 6.28 4.71
4 7.22 4.45
5 8.48 5.08
6 7.7 3.4
simulate attenuation spectra generated by SCs exclusively
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based on experimental data, i.e., we have developed a phe-
nomenological model of the behavior of SCs.

It is a general procedure that produces specific models,
which effectively include the experimental conditions of

FIG. 6. Test spectrum obtained using a different number of training
samples: �a� 40 training samples, �b� 80 training samples, and �c� 146 train-
ing samples.
measurements. This is an interesting property for technologi-
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cal purposes. In this sense, the closer the experimental data
to the technological situation where we want to use the SC,
the more reliable the simulation.

In this case, we have used a simple experimental situa-
tion, where the MST applies, in order to compare it with our
model. However, we want to remark that our model has the
advantage of easy use in experimental situations, where other
models cannot be used. For example, it can be used in the
case of SCs with scatterers of complex geometry, or com-
posed by materials of unknown acoustic impedance, or for
any frequency range �ultrasound�.

The training and learning of ANNs take a short time �a
few minutes� and every simulation takes only a few seconds
in a standard Pentium IV personal computer platform. Our
procedure is extremely fast in comparison with other proce-
dures based, for example, in multiple scattering. Once
trained, it is very useful when combined with optimization
technics �genetics algorithms�.

The use of MRA based on wavelets, and the selection of
an adequate basis, allows us to optimize the representation of
the spectra via a small set of wavelet coefficients. We have
been able to reduce 75% of the initial coefficients that char-
acterize each spectrum without losing the main details.

Moreover, the combination of wavelet codification and a
neural network structure allows us to construct a parallel
computation model. The splitting of the signal into different
resolution levels, that can be computed independently, makes
it possible to divide a complex ANN that computes all spec-
tra at the same time into eight simpler ANNs—all computing
only one resolution level.

As a result of these two features mentioned above, a
drastic reduction in experimental data needed for the training
processes is possible. The fewer connections the ANNs have,
the fewer experimental data are needed to adjust weights and
bias.

We want to emphasize that this procedure can be used
for other experimental goals that have an experimental spec-
trum associated as an output, such as the design of sound and
ultrasound lenses, barriers, photonic crystals, and any filter
device in general.
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