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Abstract. In this paper we analyse a definition of a product of Banach spaces that
is naturally associated by duality with a space of operators that can be considered as
a generalization of the notion of space of multiplication operators. This dual relation allows
to understand several constructions coming from different fields of functional analysis that
can be seen as instances of the abstract one when a particular product is considered. Some
relevant examples and applications are shown, regarding pointwise products of Banach
function spaces, spaces of integrable functions with respect to vector measures, spaces
of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz
functions.
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1. Introduction and notation

One of the main tools in the theory of operator ideals on Banach spaces is the
so-called representation formula for maximal operator ideals. This result asserts that
if E, F are Banach spaces, F ∗ is the dual of F and U is an operator ideal, we can find
a reasonable tensor norm α such that (E ⊗α F )∗ = U(E,F ∗) (see for example [3],
Chapter II, Section 17, pages 200–222). For the particular case of α = π—the
projective tensor norm—we have the well-known representation of the ideal of linear
and continuous operators,

(E ⊗π F )∗ = L(E,F ∗).

The author acknowledges with thanks the support of the Ministerio de Economía y Com-
petitividad (Spain) MTM2012-36740-C02-02.
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Consider now the following case, which comes from a different setting. Take a cou-
ple of Banach function spaces X(µ) and Y (µ) over a finite measure µ, and consider
the Köthe dual Y (µ)′ of Y (µ)—the elements of the dual space that can be repre-
sented as integrals. Assume also that the so-called product space X(µ)πY (µ) is
again a Banach function space; the saturation requirements on the product for this
to hold are well-known. Then we have that

(X(µ)πY (µ))′ = X(µ)Y (µ)′ ,

where X(µ)Y (µ)′ is the space of multiplication operators from X(µ) to the Köthe
dual Y (µ)′ (see Proposition 2.2 in [4]; see also [2], [9], [13], [17], [18]).
Another example coming in this case from harmonic analysis is given by the

Hadamard product; this case has been investigated in [1] and will be analysed in
Section 3. The duality formulas that are known for the Σ and ∆ constructions com-
ing from the interpolation theory for Banach spaces can be understood in a sense
from the same point of view (see [11], Section 3, and the references therein). These
examples suggest that the general formula would make sense using an abstract defi-
nition of product space and taking into account the associated duality relation and
the corresponding space of linear and continuous operators that fit well with the rest
of the elements. There are much more examples that can be adapted to this general
scheme and are not treated in this paper: for instance, the convolution product on
the class of the Lp-spaces, the pointwise product on C(K) spaces or the composition
product in an abstract Banach algebra. All of them may be adapted to make sense in
our general framework, providing new representations for the corresponding “dual”
spaces.
If E and F are Banach spaces, the projective tensor product E ⊗π F is defined

to be the linear space of all finite combinations of single tensors x⊗ y together with
the norm

π(z) := inf
n
∑

i=1

‖xi‖‖yi‖,

where the infimum is computed over all finite representations of z as
n
∑

i=1

xi ⊗ yi. If

c : E × F → G is a Banach valued bilinear map, the range of its linearization ĉ

from E ⊗π F to G can be used to define a product structure that can be identified
with a subspace of G with a particular norm. Together with some subspaces of
operators that play the role of generalized dual spaces, it allows to establish the
duality formula that is the objective of this work. It must be noted that our aim is
to understand a lot of classical results from a unified point of view and not to prove
a genuine “new” result; the proof of the only theorem of the paper is easy and in

802



a sense standard. How to write results coming from several settings that seem to be
completely different as consequences of a unified principle is what we want to show.
In this paper we consider in a sense linear and continuous operators as general-

ized multiplication operators. This is the reason why we use the usual notation for
multiplication operators, which in a sense is the opposite to the one for maps: if Y
and X are Banach spaces we will write Y X for the space of linear and continuous
operators from Y to X , that is usually denoted by L(Y,X). This classical notation
will be used too, depending on the context.

2. Generalized duality on Banach spaces and

the product duality formula

In this section we introduce the construction that leads to what we call a product
of two Banach spaces and the associated product duality formula in terms of bilinear
maps and “dual” subspaces of operators.

Let us fix some notation. Let c : E × F → G be a bounded bilinear map and let
V ⊆ L(G,X).

⊲ We write ĉ for the linearization of c, i.e., ĉ : E⊗F → G, ĉ(x⊗ y) := c(x, y), x ∈ E,
y ∈ F .

⊲ We write cL—the left linearization of c—for the map cL : E → L(F,G) given by
cL(x)(y) := c(x, y), x ∈ E, y ∈ F .

⊲ We write cR—the right linearization of c—for the map cR : F → L(E,G) given
by cR(y)(x) := c(x, y), x ∈ E, y ∈ F .

Let us introduce now our basic product structure.

Definition 2.1. Consider a pair of normed spaces E and F , and assume that
there is a continuous Banach space valued bilinear map c : E × F → G. Define
a seminorm on E ⊗ F by the formula

πc(z) := inf

{ n
∑

i=1

‖xi‖‖yi‖ : ĉ(z) = ĉ

( n
∑

i=1

xi ⊗ yi

)

=

n
∑

i=1

c(xi, yi)

}

, z ∈ E ⊗ F,

where the infimum is defined for all simple tensors
n
∑

i=1

xi ⊗ yi such that ĉ(z) =

ĉ
( n
∑

i=1

xi ⊗ yi

)

. Note that it is a norm if we construct a quotient by identifying the

equivalence classes of the tensor product E ⊗ F with its range by ĉ in G, i.e., with
the subspace of ĉ(E⊗π F ) ⊆ G. We define the product space E⊗πc F as the normed
space (ĉ(E ⊗ F ), πc).
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The following scheme may help to visualize the construction above: the product
space is a sort of intermediate space in the commutative diagram

E × F
c //

⊗
%%❑

❑❑
❑❑

❑❑
❑❑

❑
E ⊗πc F →֒ G.

E ⊗π F

ĉ

77♦♦♦♦♦♦♦♦♦♦♦

In an abuse of notation, we will consider ĉ having values both in G and in E ⊗πc F

depending on the context.

Remark 2.2. Let V be a Banach subspace of the space of linear and continuous
operators L(G,X). Fix T ∈ V . It defines a diagram as

E ⊗π F
ĉ // E ⊗πc F

�

�

// G
T // X.

Let us define an operator ϕT : E⊗πc F → X by ϕT (ĉ(x⊗ y)) := (T ◦ c)(x, y), x ∈ E,
y ∈ F , and impose its linearity. It actually gives a well-defined continuous operator
from E ⊗πc F to X . To see this, note that for each x ∈ E and y ∈ F ,

‖ϕT (ĉ(x⊗ y))‖ 6 ‖T ‖‖c(x, y)‖,

and so for each finite sum z =
n
∑

i=1

xi ⊗ yi,

‖ϕT (ĉ(z))‖ =

∥

∥

∥

∥

ϕT

( n
∑

i=1

c(xi, yi)

)∥

∥

∥

∥

6

∥

∥

∥

∥

T

( n
∑

i=1

c(xi, yi)

)∥

∥

∥

∥

6 ‖T ‖‖c‖π(z).

Since if
n1
∑

i=1

c(x1
i , y

1
i ) =

n2
∑

i=1

c(x2
i , y

2
i ) we have that

ϕT

(

ĉ

( n1
∑

i=1

x1
i⊗y1i

))

= T

( n1
∑

i=1

c(x1
i ,y

1
i )

)

= T

( n2
∑

i=1

c(x2
i ,y

2
i )

)

= ϕT

(

ĉ

( n2
∑

i=1

x2
i⊗y2i

))

,

we also obtain that
‖ϕT (ĉ(z))‖ 6 ‖T ‖‖c‖πc(z).

This observation is the basis of the next definition.

Definition 2.3. With the notation used above, consider a closed subspace V of
operators from G to X . We define the space V(E ⊗πc F,X) as

V(E ⊗πc F,X) := {ϕT : E ⊗πc F → X ; T ∈ V} ⊆ (E ⊗πc F )X

endowed with the natural norm ‖ϕT ‖ := sup
x∈BE ,y∈BF

‖T (c(x, y))‖X .
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Definition 2.4. With the notation used above, consider a closed subspace V of
operators from G to X . For each T ∈ V define the operator from E to FX by

ST (x)(y) := T (cL(x)(y)) = T (c(x, y)) ∈ X.

We will write V ⊙ cL(E,L(F,X)) for the normed space of operators

V ⊙ cL(E,L(F,X)) := {ST : E → L(F,X) ; T ∈ V} ⊆ E(FX )

endowed with the operator norm of EL(F,X). Clearly, ‖ST ‖ 6 ‖T ‖‖c‖ for all T ∈ V .
Note that an analogous definition can be done by changing cL for cR. Also the

dual version of the following result—the product duality formula with cR instead of
cL—may be obtained.

Theorem 2.5. Let E, F , G and X be Banach spaces, and suppose that a bilinear

map c : E × F → G and a class of operators V from G to X are given. Then

((E ⊗πc F )X ⊇) V(E ⊗πc F,X) = V ⊙ cL(E,L(F,X)) (⊆ E(FX ))

isometrically.

P r o o f. Recall that each element of V(E ⊗πc F,X) is given by the following
expression: if x ∈ E, y ∈ F and T ∈ V ,

ϕT

(

ĉ

( n
∑

i=1

xi ⊗ yi

))

:=

n
∑

i=1

(T ◦ c)(xi, yi).

Clearly, such a continuous operator can also be understood as a continuous linear
map ST : E → L(F,X) that is defined by

ST (x)(y) := (T ◦ c)(x, y) ∈ X

for x ∈ E and y ∈ F . It is continuous since

‖ST (x)(y)‖ = ‖T (c(x, y))‖ 6 ‖T ‖‖c‖‖x‖‖y‖.

Conversely, the definition of an element ST of V ⊙ cL(E,L(F,X)) allows to define
the corresponding ϕT , in this case by the formula

ϕT

(

ĉ

( n
∑

i=1

xi ⊗ yi

))

:=

n
∑

i=1

ST (xi)(yi) = T

( n
∑

i=1

c(xi, yi)

)

,
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where ĉ
( n
∑

i=1

xi ⊗ yi

)

∈ E ⊗πc F . Then

∥

∥

∥

∥

ϕT

(

ĉ

( n
∑

i=1

xi ⊗ yi

))
∥

∥

∥

∥

6 ‖T ‖‖c‖

( n
∑

i=1

‖xi‖‖yi‖

)

.

A computation as in Remark 2.2 shows that in fact

∥

∥

∥

∥

ϕT

(

ĉ

( n
∑

i=1

xi ⊗ yi

))∥

∥

∥

∥

6 ‖T ‖‖c‖πc

( n
∑

i=1

xi ⊗ yi

)

.

Let us show the equality of the norms of ϕT and ST for a fixed T ∈ ν. Consider first

an element z ∈ E ⊗πc F such that πc(z) 6 1. Fix ε > 0 and take a tensor
n
∑

i=1

xi ⊗ yi

such that ĉ
( n
∑

i=1

xi ⊗ yi

)

= z and
n
∑

i=1

‖xi‖‖yi‖ < 1 + ε. Then

‖ϕT (z)‖ =

∥

∥

∥

∥

ϕT

(

ĉ

( n
∑

i=1

xi ⊗ yi

))
∥

∥

∥

∥

=

∥

∥

∥

∥

T

( n
∑

i=1

c(xi, yi)

)
∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

ST (xi)(yi)

∥

∥

∥

∥

6 ‖ST ‖

( n
∑

i=1

‖xi‖‖yi‖

)

6 ‖ST ‖(1 + ε).

Thus, ‖ϕT ‖ 6 ‖ST ‖. For the converse, take ε > 0 and norm one elements x ∈ E and
y ∈ F such that ‖ST ‖ 6 ‖ST (x)(y)‖ + ε. Then

‖ST‖ 6 ‖T (c(x, y))‖+ ε 6 ‖ϕT (ĉ(x⊗ y))‖+ ε

6 ‖ϕT ‖πc(ĉ(x⊗ y)) + ε 6 ‖ϕT ‖‖x‖‖y‖+ ε 6 ‖ϕT ‖+ ε.

This proves that ‖ST ‖ 6 ‖ϕT ‖, and so ‖ST ‖ = ‖ϕT ‖. �

3. Examples and applications

3.1. Some direct examples. Let us show first some classical easy examples in
which the product duality formula appears in a natural way.

Example 3.1. Let us present an elementary example that shows how the topo-
logical dual space F ∗ of a Banach space F can be interpreted in our setting. Let
E = R and F be a Banach space. Let c : R× F → G = F be given by the product
c(r, y) = ry and consider X = R. Let V = FR = F ∗. Then we clearly have that
R⊗πc F = F and

F ∗ = V(R⊗πc F,R) ⊆ (R⊗πc F )R = F ∗.
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On the other hand, RF∗

= F ∗, and so we have the desired equality

V(R⊗πc F,R) = F ∗ = R
F∗

= V ⊙ cL(R, F
∗).

Example 3.2. Let us see that the duality between the dual space of the projective
tensor product E ⊗π F and the space of operators from E to F ∗ is a particular case
of our formula. Consider the bilinear map c = ⊗ : E × F → E ⊗π F and X = R.
Consider the space of all linear and continuous functionals V = L(E ⊗π F,R) =

(E ⊗π F )∗. Then

V(E ⊗πc F,X) = (E ⊗πc F )∗ = EL(F,X) = EF∗

= V ⊙ cL(E,F ∗).

Example 3.3. Let us show an example involving p-th powers of Banach function
spaces (see Section 2.2 in [12], see also [10], page 51). We need to introduce first
some basic notions on Banach function spaces. Let (Ω,Σ, µ) be a complete finite
measure space. We follow the definition of Banach function space given in [10],
Definition 1.b.17, page 28. A real Banach space X(µ) of (equivalence classes of)
µ-measurable functions is a Banach function space over µ—also called a Köthe func-
tion space—if X(µ) ⊂ L1(µ) and contains all the simple functions and, if ‖·‖X(µ) is
the norm of the space, g ∈ X(µ) and f is a measurable function such that |f | 6 |g|

µ-a.e., then f ∈ X(µ) and ‖f‖X(µ) 6 ‖g‖X(µ). The relations L∞(µ) ⊂ X(µ) ⊂ L1(µ)

with continuous inclusions always hold. A Banach function space X is order con-
tinuous if decreasing positive sequences converging µ-a.e. to 0 converge also in the
norm. If X(µ) and Y (µ) are Banach function spaces and X(µ) ⊆ Y (µ), we define the
space of multiplication operators X(µ)Y (µ) as the space of (classes of) measurable
functions defining operators from X(µ) to Y (µ) by pointwise multiplication. The
operator norm is considered for this space; then X(µ)Y (µ) is also a Banach function
space over µ. The Köthe dual of X(µ) is defined by the real functionals obtained by
integrating the evaluation of the elements of X(µ)L

1(µ); i.e., each g ∈ X(µ)′ can be
identified with a continuous functional on X(µ) via the integral of the multiplication
operator f ∈ X(µ) 7→ fg ∈ L1(µ). If X(µ) is order continuous, then X(µ)′ = X(µ)∗

isometrically.

Let us define now the notion of p-th power of a Banach function space X(µ). Let
0 < p 6 1. The p-th power of X(µ) is defined as the set of functions

X[p] := {f ∈ L0(µ) : |f |1/p ∈ X(µ)},

that is, a Banach function space over µ with the norm ‖f‖X(µ)[p] := ‖|f |1/p‖pX(µ),
f ∈ X(µ)[p]. For example, L1[0, 1][1/2] = L2[0, 1].
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Let X(µ) be an order continuous Banach function space over a finite measure µ.
Consider the case E = X(µ)[1/p], F = X(µ)[1/p′], G = X(µ) and X = R. Let
c : X(µ)[1/p] × X(µ)[1/p′] → X(µ) be given by the pointwise product c(f, g) = fg.
Then it is well-known that X(µ) can be written as the (pointwise) product space
X(µ)[1/p] X(µ)[1/p′] endowed with a norm given by the expression

‖f‖ := inf ‖g‖X(µ)[1/p] ‖h‖X(µ)[1/p′]
= inf ‖|g|p‖

1/p
X(µ) ‖|h|

p′

‖
1/p′

X(µ),

where the infimum is computed over all decompositions of |f | as |f | = |g||h|, g ∈

X(µ)[1/p], h ∈ X(µ)[1/p′] (to see this, use for example Proposition 1.d.2 in [10]).
Take V = X(µ)′, and consider the space of multiplication operatorsM(X(µ)[1/p],

(X(µ)[1/p′])
′) defined by all the functions Sj from X(µ)[1/p] to (X(µ)[1/p′])

′ that are
given by the expression

Sj(g)(f) :=

∫

jgh dµ, h ∈ X(µ)[1/p′],

for each j ∈ X(µ)′. The operator norm is considered for this space. A direct
identification shows that this is a description of the space

V ⊙ cL(X(µ)[1/p],L(X(µ)[1/p′],R))

for this particular case.
An application of the product duality formula of Theorem 2.5 gives that

X(µ)′ = (X(µ)[1/p] X(µ)[1/p′])
′ = V(X(µ)[1/p] ⊗πc X(µ)[1/p′],R)

= V ⊙ cL(X(µ)[1/p], (X(µ)[1/p′])
′) = M(X(µ)[1/p], (X(µ)[1/p′])

′)

⊆ (X(µ)[1/p])
(X(µ)[1/p′])

′

.

Therefore, we have found that for each 1 6 p, the space of multiplication operators
defined by elements ofX(µ)′,M(X(µ)[1/p], (X(µ)[1/p′])

′) coincides in fact withX(µ)′

isometrically.

Example 3.4. Another example that provides some information on duality in
vector valued function spaces is the one given by the tensor product bilinear map
c = ⊗ from Lp(µ)×E on Lp(µ,E)—the space of Bochner p-integrable functions—for
1 < p < ∞, and µ being a finite measure. Suppose also that E∗ has the Radon-
Nikodým property with respect to µ, and take V as the dual of the space Lp(µ,E),
given by Lp′

(µ,E∗); that is, X = R. We have that

Lp(µ) ⊗πc E = Lp(µ)⊗π E.
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On the other hand,

V ⊙ cL(L
p(µ),L(E,R)) =

{

Sg : Lp(µ) → E∗ : there is g ∈ Lp′

(µ,E∗) such that

Sg(f)(x) =

∫

f〈x, g(w)〉dµ(w), f ∈ Lp(µ), x ∈ E

}

.

By the product duality formula, we have that

(Lp(µ)⊗π E)∗ ⊇ V(Lp(µ)⊗π E,R) = V ⊙ cL(L
p(µ),L(E,R)) ⊆ (Lp(µ))E

∗

.

This equality means that the dual of the Bochner space Lp(µ,E) generates a subspace
of linear and continuous functions Lp(µ) → E∗ that is isometrically isomorphic
to a space included in the dual of the projective tensor product of Lp(µ) and E.
Moreover, for a function g ∈ Lp′

(µ,E∗),

‖ϕg‖ = ‖Sg‖(Lp)E∗ = sup
f∈BLp(µ), x∈BE

∣

∣

∣

∣

∫

f〈x, g(w)〉dµ(w)

∣

∣

∣

∣

= sup
x∈BE

‖〈x, g〉‖Lp′(µ),

that is, the p′-Pettis norm for the function g.

3.2. Multiplication operators on Banach function spaces. Let us show
now another application of our theorem that proves a well-known formula of the
theory of Banach lattices of functions regarding the authentic space of multiplication
operators. It can be essentially found in [2], [4]; the same result with different
notation is given in [17], and more examples of the duality formula in the case of
multiplication operators can be found in [13]. Consider a pair of saturated Banach
function spaces X(µ) and Y (µ) over a finite measure µ (in the sense that has been
explained in Example 3.3) such that X(µ) ⊆ Y (µ)′, where Y (µ)′ denotes the Köthe
dual of Y (µ). Then the π-product space X(µ)πY (µ) can be defined as in [4] and
is again a Banach function space over µ with X(µ)πY (µ) ⊆ L1(µ). The definition
of this π-product and its norm is similar to the one of “product” that we give here.
However, note that in [4] the product norm in defined for infinite sums, although in
other versions only finite decompositions are considered (see [17]). Completeness of
the resulting product space is the advantage of considering infinite sums; this is not
relevant here, since our product formula concerns the dual of the space, which is the
same for the normed space and for its completion. In order to avoid confusion, we
write X(µ)π0Y (µ) for the normed space of linear combinations of single product of
functions with the norm computed by means of finite sums.
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In Proposition 2.2 (ii) of [4], the following product duality formula is proved:

(X(µ)πY (µ))′ = X(µ)Y (µ)′ .

Consider the bilinear map c : X(µ)×Y (µ) → X(µ)π0Y (µ) given by the pointwise
product c(f, g) := fg. Let us define X = R and V = (X(µ)π0Y (µ))L

1(µ). A simple
computation just taking into account the definition of the elements of each space
shows that it coincides with (X(µ)πY (µ))′, the Köthe dual of the true π-product
space. We take G = X(µ)π0Y (µ) that coincides with X(µ) ⊗πc Y (µ) by the con-
struction of this space. Then Theorem 2.5 proves the product duality formula given
above,

(X(µ)πY (µ))′ = V(X(µ)⊗πc Y (µ),R) = V ⊙ cL(X(µ),L(Y (µ),R)) = X(µ)Y (µ)′ .

3.3. Multipliers on Banach spaces of analytic functions. Let us show now
another application of the duality formula given in a completely different context.
We follow the ideas published in [1] (see also the references therein). Let S denote the

space of all formal series f =
∞
∑

j=0

f̂(j)zj with complex valued coefficients. We endow

this space with the topology given by the seminorms pj(f) := f̂(j), j = 1, . . . ,∞.
If g is another series like this, the Hadamard product ∗ is defined as

f ∗ g =
∞
∑

j=0

f̂(j)ĝ(j)zj.

Take a pair of spaces X and Y of analytic functions on the unit disk D such that each
of them contains the polynomials and X,Y ⊆ S with continuous inclusions; following
the definition given in the paper quoted, we say that the spaces are S-admissible.
We consider now two relevant spaces.

⊲ The space that plays the role of product; as in the previous case and following
our construction, we use finite sums in the following definitions of the space and
the norm. In the original paper, infinite sums are considered, and then the cor-
responding space is complete. We consider the space X⊗̄Y defined by functions

satisfying the condition that they can be written as f =
k
∑

n=0
gn ∗ hn, with gn ∈ X ,

hn ∈ Y and
k
∑

n=0
‖gn‖‖hn‖ < ∞; the infimum in this expression for all decompo-

sitions of f gives the natural norm for the space. We use the symbol ⊗̄ instead
of ⊗ used by the authors for the sake of clarity, since in our case only finite sums
are considered and so we cannot expect completeness. We show in what follows
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that the formula also works for finite sums decompositions, as is written when the
product duality formula is involved.

⊲ The space that plays the role of a multiplication operators space. A series λ ∈ S

is said to be a (coefficient) multiplier from X to Y if λ ∗ f ∈ Y for each f ∈ X .
We denote the set of all multipliers from X to Y by (X,Y ) and define

‖λ‖(X,Y ) := sup{‖λ ∗ f‖Y : ‖f‖X 6 1}.

The following result is proved in [1], Theorem 2.3. Let X , Y , Z be S-admissible
Banach spaces. Then

(X ⊗ Y, Z) = (X, (Y, Z)).

It can be understood again as a particular case of our product duality formula. The
bilinear map ∗ : X × Y → X⊗̄Y plays the role of c, G := X⊗̄Y and V := (X⊗̄Y, Z),
the space of multipliers from the product to Z. Thus, V(X⊗πcY, Z) = (X⊗̄Y, Z) and
V ⊙ cL(X,L(Y, Z)) := (X, (Y, Z)). Writing our product duality formula, we obtain

(X⊗̄Y, Z) = V(X ⊗πc Y, Z) = V ⊙ cL(X,L(Y, Z)) = (X, (Y, Z)),

a version of the result that was proved in [1] for the norm defined for infinite sums.

3.4. The product duality formula for the case of spaces of molecules

associated to the linearization of Lipschitz bi-forms. Let us show the product
duality formula for the case of the spaces of molecules, which appear in the standard
techniques for linearizing Lipschitz operators. An operator T from a metric space
(A, dA) on a Banach space Z is said to be Lipschitz if there is a constant K > 0 such
that for any pair of points x1, x2 ∈ A, we have

‖T (x1)− T (x2)‖ 6 Kd(x1, x2).

The additional requirement T (0) = 0 for a distinguished point 0 ∈ A is also assumed.
The space of molecules ÆA for the metric space (A, dA) is given by the linear span of
all the functions A → R that can be written as differences of characteristic functions
of each point, i.e.,

mx1,x2(w) := χ{x1}(w)− χ{x2}(w), w, x1, x2 ∈ A.

The norm for this space is given by the formula

LA(z) := inf

n
∑

i=1

|λi|d(x
1
i , x

2
i ), λi ∈ R,
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where the infimum is computed over all representations of z as

z =

n
∑

i=1

λi(χ{x1
i }
(w) − χ{x2

i}
(w)).

A Lipschitz map T : A → Z always satisfies a factorization scheme through the space
of molecules as

A
T //

j
!!❇

❇❇
❇❇

❇❇
❇ Z

ÆA

TL

==⑤⑤⑤⑤⑤⑤⑤⑤

where j is the Lipschitz isometry j(x) := mx,0 for x ∈ A and TL is the linearization
of T through the space of molecules.
Let us consider the notion of Lipschitz bi-form defined as follows. If (A, dA) and

(D, dD) are metric spaces, we say that a map T : A×D → R is a Lipschitz bi-form
if there is a constant K > 0 such that for each x1, x2 ∈ A and y1, y2 ∈ D,

|T (x1, y1)− T (x1, y2)− T (x2, y1) + T (x2, y2)| 6 KdA(x
1, x2) · dD(y1, y2).

Additionally, T (x, 0) = T (0, y) = 0 for all x ∈ A and y ∈ D. If (mx1,x2 ,my1,y2) ∈

ÆA ×ÆD, we define the bilinearization TB of T as

TB(mx1,x2,my1,y2) := T (x1, y1)− T (x1, y2)− T (x2, y1) + T (x2, y2),

in the way that allows T to be factored through TB in the natural manner,

A×D
T //

j×j
&&▼

▼▼
▼▼

▼▼
▼▼

▼ R.

ÆA ×ÆD

TB

::tttttttttt

We write B(ÆA × ÆD) for the space of all the Lipschitz bi-forms which can be
bilinearized in this way.
Since TB can also be factored through the tensor product ÆA⊗πÆD, the following

construction makes sense. Take G := ÆA ⊙π ÆD, the space defined by functions
u : A×D → R that are linear combinations of pointwise products of functions of ÆA

and ÆD. Define a norm for this space as

‖u‖⊙ := inf

{ n
∑

i=1

‖fi‖ÆA
‖gi‖ÆD

: u =

n
∑

i=1

figi

}

,
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where the infimum is computed over all suitable decompositions of u as the one
written in the formula. Clearly, an isometric isomorphism can be defined between
this space and the tensor product ÆA⊗πÆD. Note that this norm can be computed
also with the formula

πc(u) := inf

{ n
∑

i=1

|λi|dA(x
1
i , x

2
i )dD(y1i , y

2
i ) : u =

n
∑

i=1

λimx1
i ,x

2
i
my1

i ,y
2
i

}

.

Take the Banach space X in our abstract construction of the duality as X := R,
and consider the bilinear map c : ÆA ×ÆD → ÆA ⊙π ÆD given by the pointwise
product c(f, g) := fg. Take also V = (ÆA ⊗πÆD)∗. Then, the πc norm is the usual
projective norm that coincides with ‖ · ‖⊙. Therefore, the product space is

ÆA ⊗πc ÆD :=

{

u =

n
∑

i=1

λimx1
i ,x

2
i
·my1

i ,y
2
i
: λi ∈ R, x1

i , x
2
i ∈ A, y1i , y

2
i ∈ D

}

.

Using Example 3.2 for the duality of the projective tensor product (ÆA ⊗π ÆD)∗ =

(ÆA)
Æ∗

D , we obtain that the class B(ÆA×ÆD) of maps from the Cartesian product
of metric spaces can be identified with the real maps that factor through ÆA ⊗πc

ÆD. The product duality gives the equality with all the linear and continuous maps
from ÆA to Æ∗

D, that is,

B(ÆA ×ÆD) = (ÆA)
Æ∗

D .

3.5. The product induced by the integration map in spaces of p-inte-

grable functions with respect to a vector measure. Let us give first some
necessary definitions related to vector measure integration and the corresponding
spaces of functions. If (Ω,Σ) is a measurable space, let m : Σ → X be a Banach
space valued countably additive vector measure. Its semivariation is defined by
‖m‖(A) := sup

x∗∈BY ∗

|〈m,x∗〉|(A), A ∈ Σ, where 〈m,x∗〉 is the scalar measure given by

〈m,x∗〉(A) := 〈m(A), x∗〉. Then there exists x∗ ∈ X∗ such that m(A) = 0 whenever
|〈m(A), x∗〉| = 0, which implies that it is equivalent to m (same null sets). Such
a measure 〈m,x∗〉 defined by the composition of m with a functional of X∗ is called
a Rybakov measure for m; there always exists at least one ([5], Chapter IX). If
1 6 p < ∞, a (scalar) measurable function f is said to be p-integrable with respect
to m if |f |p is integrable with respect to all measures |〈m,x∗〉| and for each A ∈ Σ

there exists an element
∫

A |f |p dm ∈ X such that
〈 ∫

A |f |p dm,x∗
〉

=
∫

A |f |p d〈m,x∗〉,
x∗ ∈ X∗ (see [12], Chapter 3). The space Lp(m) is defined by all the equivalence
classes (with respect to any Rybakov measure) of measurable real functions defined
on Ω that are p-integrable with respect to m. If p = ∞, the space L∞(m) is defined
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as the space of bounded 1-integrable functions with respect to m that coincides with
L∞(µ) for any Rybakov measure µ for m; the natural L∞-norm is considered for the
space. If 1 6 p < ∞, Lp(m) is a p-convex order continuous Banach function space
over any fixed Rybakov measure for m when the a.e. order and the norm

‖f‖Lp(m) :=

(

sup
x∗∈BX∗

∫

Ω

|f |p d|〈m,x∗〉|

)1/p

, f ∈ Lp(m),

are considered (see [6], Proposition 5, [12] and [15], Chapter 3). It must be pointed
out that fg ∈ L1(m) for any f ∈ Lp(m) and g ∈ Lp′

(m), 1 = 1/p + 1/p′, and for
each f ∈ Lp(m)

‖f‖Lp(m) = sup
g∈B

Lp′ (m)

∥

∥

∥

∥

∫

Ω

fg dm

∥

∥

∥

∥

.

Thus, Lp(m) is defined as the 1/p-th power of L1(m).
Consider the bilinear map c : Lp(m) × Lp′

(m) → L1(m) given by the pointwise
product c(f, g) := fg and the class V of operators L1(m) → X given by T (h) :=
∫

hh0 dm for h0 ∈ L∞(m). Then it can be easily seen that

πc(h) = ‖h‖L1(m), h ∈ L1(m),

as in the case of p-th powers of Banach function spaces, and E ⊗πc F = L1(m). We
have that

V(E ⊗πc F,X) =

{

vImh0
; h0 ∈ L∞(m), vImh0

(f, g) =

∫

h0fg dm ∈ X,

f ∈ Lp(m), g ∈ Lp′

(m)

}

and

‖vImh0
‖ = sup

f∈BLp(m),g∈B
Lp′ (m)

∥

∥

∥

∥

∫

h0fg dm

∥

∥

∥

∥

= ‖h0‖L∞(m).

On the other hand,

V ⊙ cL(L
p(m),L(Lp′

(m), X)) =

{

SImh0
: Lp(m) → L(Lp′

(m), X) ;

SImh0
(f)(·) =

∫

h0f(·) dm, h0 ∈ L∞(m)

}

and

‖SImh0
‖ = sup

f∈BLp(m)

(

sup
g∈B

Lp′ (m)

∥

∥

∥

∥

∫

h0fg dm

∥

∥

∥

∥

)

= ‖vImh0
‖ = ‖h0‖L∞(m).
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Consequently,

V(Lp(m)⊗πc L
p′

(m), X) = V ⊙ cL(L
p(m),L(Lp′

(m), X)) = L∞(m).

This formula concerns the vector measure duality between spaces of p-integrable
functions, which was first studied in [14], [15] (see also [7], [8], [16] and the references
therein). Roughly speaking, in particular it asserts that the “vector dual” space of
L1(m) of the vector measurem—i.e., the dual space that appears when the duality is
defined by the bilinear operator induced by the integration map—is always L∞(m),
since the usual dual space of L1(m) does not coincide with this space in the general
case.

3.6. An application to spaces of integrable functions with respect to

a vector measure. Let m : Σ → Z be a Banach space valued countably additive
vector measure and let 1 < p < ∞. Consider the space of p-integrable functions with
respect to a vector measure Lp(m) and take it as the space E of our general setting.
Consider for each element z∗ ∈ Z∗ the scalar measure 〈m, z∗〉(A) := 〈m(A), z∗〉,
A ∈ Σ. Fix a Rybakov measure µ = |〈m, z∗0〉| and consider the linear space of the
Radon-Nikodým derivatives

RN (m) :=

{

h =
d〈m, z∗〉

dµ
, z∗ ∈ Z∗

}

⊆ (L1(m))′

endowed with the norm of (L1(m))′; take it as F .
In recent years, some effort has been made in order to find how the set RN (m)

can be used to find a description of the dual space of the spaces Lp(m). In [7], [14],
such a description has been found, although some requirements are needed; the main
application of this representation is to give a useful description of the weak topology
in this space, which was finally done in [8] (see also [16]).
In what follows we show how we can use the product construction to clarify this

problem. Let G := (Lp′

(m))′ and consider the Cartesian product Lp(m) ×RN (m)

and the bilinear map

c : Lp(m)×RN (m) → (Lp′

(m))′

given by the pointwise product c(f, h) = fh ∈ (Lp′

(m))′. It is well defined, since for
all g ∈ Lp′

(m) and f ∈ Lp(m), fg ∈ L1(m) and so

∫

fhg dµ =

∫

(fg)h dµ 6 ‖fg‖L1(m)‖h‖(L1(m))′

6 ‖f‖Lp(m)‖g‖Lp′(m)‖h‖(L1(m))′ , h ∈ RN (m).
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For all the elements w in the linear space generated by c(Lp(m)×RN (m)), define

πc(w) := inf
n
∑

i=1

‖fi‖Lp(m)‖hi‖(L1(m))′ ,

where the infimum is computed over all decompositions of w as
n
∑

i=1

fihi, fi ∈ Lp(m)

and hi ∈ RN (m) ⊆ (L1(m))′. Take G as the space of all such w with the norm πc.
Consider now the space Lp′

(m) and take V as the space of real functionals from
(Lp′

(m))′ defined by the elements of Lp′

(m); we have taken X := R.
Let us write what is obtained by applying the product duality formula.

V(Lp(m)⊗πc RN (m),R) = V ⊙ cL(L
p(m),L(RN (m),R))

=

{

Sh : Lp(m) → RN (m)∗ ; h ∈ Lp′

(m), Sh(f)(·) :=

∫

hf dµ

}

= Lp′

(m) ⊆ Lp(m)RN (m)∗ ,

where Lp′

(m) is endowed with its own norm. Therefore, by using the basic properties
of the norm of the spaces Lp(m) and the corresponding spaces of multiplication
operators that can be found in [12], Chapter 3, it can be easily seen that the first
equality in

Lp′

(m) = V(Lp(m)⊗πc RN (m),R) ⊆ (Lp(m)⊗πc RN (m))R

holds isometrically. In other words, Lp(m)⊗πc RN (m) is a sort of predual space of
Lp′

(m), in the sense that this space can be identified with the linear functional φh

from Lp(m)⊗πc RN (m) that factors as

Lp(m)⊗πc RN (m)
φh //

i
((◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

R

(Lp′

(m))′

∫
h dµ

;;✇✇✇✇✇✇✇✇✇

for h ∈ Lp′

(m).
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