

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1080/03081087.2013.873427

http://hdl.handle.net/10251/77725

Taylor & Francis

Defez Candel, E.; Tung ., MM.; Solis Lozano, FJ.; Ibáñez González, JJ. (2015). Numerical
approximations of second-order matrix differential equations using higher-degree splines.
Linear and Multilinear Algebra. 63(3):472-489. doi:10.1080/03081087.2013.873427.

Linear and Multilinear Algebra

Vol. 63, No. 3, January 2015, 472–489

RESEARCH ARTICLE

Numerical approximations of second-order matrix differential

equations using higher-degree splines

Emilio Defeza, Michael M. Tunga∗ Francisco J. Solisb and Javier Ibáñezc

aInstituto de Matemática Multidisciplinar, Universitat Politècnica de València, 46022

Valencia, Spain; bCIMAT, Guanajuato Gto. México 36000, Mexico; cInstituto de

Instrumentación para Imagen Molecular, Universitat Politècnica de València, 46022

Valencia, Spain;

(v2.0 released August 2013)

Many studies of mechanical systems in engineering are based on second-order matrix models.
This work discusses the second-order generalization of previous research on matrix differ-
ential equations dealing with the construction of approximate solutions for non-stiff initial
problems Y ′′(x) = f(x, Y (x), Y ′(x)) using higher-degree matrix splines without any dimen-
sional increase. An estimation of the approximation error for some illustrative examples are
presented by using Mathematica. Several MatLab functions have also been developed, com-
paring, under equal conditions, accuracy and execution times with built-in MatLab functions.
Experimental results show the advantages of solving the above initial problem by using the
implemented MatLab functions.

Keywords: matrix models; second-order matrix differential equations; matrix splines;
approximations for non-stiff initial problems; extended MatLab functions

AMS Subject Classification: 15A99; 65D07; 65F30; 65Y04; 34L99

1. Introduction

Splines are an important tool to solve scalar first-order differential equations [16],
obtaining approximations that, among other advantages, are of class C1 in a given
interval [a, b]. Splines are easy to compute and the associated approximation errors
are only of O(h4). They also have been used in the resolution of other scalar prob-
lems, as discussed in [1, 2, 15], for vector problems [19], linear matrix problems [6]
and for first-order matrix differential equations [7]. Recent work in this field can
be found in Refs. [3, 4, 18]. Recently, numerical schemes with cubic splines were
extended to the resolution of second-order matrix problems without any additional
increase in dimensionality of the problem [22]. To achieve this goal, these schemes
do not require the reduction of the system to a higher dimensional system of lower
order—a common practice in problems of this kind. All spline approximations are
by construction already continuous in the interval under consideration. Some ex-
plicit numerical examples have been used to test the methods and have shown
that errors are only of the order O(hm−1), where m is the degree of the spline. By
adapting the step size h and the degree m of the spline to a particular problem,
in principle, any desired accuracy can be reached. Unfortunately, as detected by

∗Corresponding author. Email: mtung@mat.upv.es

Vol. 63, No. 3, January 2015, 472–489Vol. 63, No. 3, January 2015, 472–489

mike
Text Box
published in:

2

Loscalzo and Talbot, their scalar procedure is divergent when higher-degree spline
functions with m > 3 are used [16, p. 444–445]. They have explicitly shown by
numerical computations that the equation y′ = y, y(0) = 1 contains noticeable
divergences for splines of degree m > 3. For matrix differential equations of first
order, we already presented in Ref. [8] a method which avoids these problems with
divergences for splines S(x) of degree m. Our goal in this work is to extend this
method to second-order matrix equations without increasing the dimension of the
problem, using splines S(x) of degree m but only of differentiability class C2.
With these benefits, it is hoped that our approach provides an alternative method

to existing ones and may open up new avenues to the numerical integration of
second-order models in practical applications.
Throughout this work, we will adopt the notation for norms and matrix cubic

splines as in the previous work [6] and common in matrix calculus. Therefore, Cp×q

will in general denote the set of rectangular p × q complex matrices. For matrix
A ∈ Cr×s its 2-norm is defined by

‖A‖ = sup
z 6=0

‖Az‖
‖z‖ ,

and where for a vector z ∈ Cs the conventional Euclidean norm is ‖z‖ =
(
ztz

) 1

2 .
As in Ref. [11, p. 56] for A = (aij) ∈ Cm×n we assume that

max
ij

|aij | ≤ ‖A‖ ≤ √
s rmax

ij
|aij | . (1)

Then, the Frobenius norm of A is given by

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij |2, (2)

and the 2-norm and Frobenius norm are related in the following manner (see
Ref. [11]):

‖A‖2 ≤ ‖A‖F ≤ √
n ‖A‖2 . (3)

Employing this notation, we define the Kronecker product of A = (aij) ∈ Cm×n

and B ∈ Cr×s, denoted by A⊗B, as the block matrix

A⊗B =



a11B . . . a1nB
...

...
am1B . . . amnB


 .

The column-vector operator on a matrix A ∈ Cm×n is given by

vec(A) =



A•1
...

A•n


 , where A•k =



a1k
...

amk


 .

If Y = (yij) ∈ Cp×q and X = (xij) ∈ Cm×n, then the derivative of a matrix

3

with respect to a matrix is defined by [12, p.62 and 81]:

∂Y

∂X
=




∂Y

∂x11
. . .

∂Y

∂x1n
...

...
∂Y

∂xm1
. . .

∂Y

∂xmn




, where
∂Y

∂xrs
=




∂y11
∂xrs

. . .
∂y1q
∂xrs

...
...

∂yp1
∂xrs

. . .
∂ypq
∂xrs




.

If X ∈ Cm×n, Y ∈ Cn×v, Z ∈ Cp×q, then the following rule for the derivative of a
matrix product with respect to another matrix applies [12, p.84]:

∂XY

∂Z
=

∂X

∂Z
[Iq ⊗ Y] + [Ip ⊗X]

∂Y

∂Z
, (4)

where Iq and Ip denote the identity matrices of dimensions q and p, respectively.
If X ∈ Cm×n, Y ∈ Cu×v, Z ∈ Cp×q, the following chain rule [12, p.88] is valid:

∂Z

∂X
=

[
∂ [vec(Y)]t

∂X
⊗ Ip

][
In ⊗ ∂Z

∂ [vec(Y)]

]
. (5)

2. Higher-Degree Matrix Splines

Frequent in different fields of physics and engineering are matrix initial value prob-
lems of the form:

Y ′′(x) = f(x, Y (x), Y ′(x))

Y (a) = Y0 , Y ′(a) = Y1



 a ≤ x ≤ b, (6)

Note that Eq. (6) could e.g. be the statement of Newton’s second law of motion for
a coupled mechanical system. Moreover, models of this kind often appear in mole-
cular dynamics, quantum mechanics and for scattering methods, where one solves
scalar or vectorial problems with boundary values conditions [5, 10, 17, 20, 21, 24].

Let us consider the initial matrix value problem Eq. (6) where Y0, Y1, Y (t) ∈
Rr×q, f : [a, b]× Rr×q × Rr×q −→ Rr×q, f ∈ Cs (T), with

T =
{
(x, Y, Z) ; a ≤ x ≤ b , Y, Z ∈ Rr×q

}

and Rr×q will in general denote the set of r × q rectangular real matrices.

The Lipschitz conditions on the function f ,

‖f (x, Y1, Y) − f (x, Y2, Y)‖ ≤ L1 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Rr×q

‖f (x, Y, Y1) − f (x, Y, Y2)‖ ≤ L2 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Rr×q



 ,

(7)
guarantee the existence and uniqueness of the continuously differentiable solution
Y (x) for the set of equations (6), see e.g. [9, p.99].

4

The partition of the interval [a, b] shall be given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n, (8)

where n is a positive integer with the corresponding step size h = (b− a)/n. To be
brief, we will denote Ik = [a+ kh, a+ (k + 1)h)], k = 0, 1, 2, ...

Theorem 2.1 : Let f ∈ Cs(T) and m = s+ 3, then, there exists a matrix spline
S(x) ∈ C2 ([a, b]), S(x) of degree m for each subinterval Ik, k = 0, 1, . . . , n − 1, if
the step size h is chosen as

h <

(√
L2
2m

2 + 4m(m− 1)L1 −mL2

)
/2L1

where L1, L2 are Lipschitz constants defined by Eq. (7).

Proof :
We will construct in each subinterval Ik a matrix spline S(x) of degree m ∈ N

with m = s + 3, where s is the order of the differentiability class of f . This will
approximate the solution of problem (6) so that S(x) ∈ C2 ([a, b]).
In the first interval I0, we define the matrix spline as

S|I0 (x) = Y (a) + Y ′(a)(x− a) +
1

2!
Y ′′(a)(x− a)2 +

1

3!
Y (3)(a)(x− a)3

+ · · ·+ 1

(m− 1)!
Y (m−1)(a)(x− a)m−1 +

1

m!
A0(x− a)m. (9)

Here the matrix coefficient A0 ∈ Rr×q is a parameter still to be deter-
mined. Observe that S|I0 (a) = Y (a) = Y0, S′

|I0 (a) = Y ′(a) = Y1 and

S′′
|I0 (a) = Y ′′(a) = f(a, Y (a), Y ′(a)), and thus equation (6) is fulfilled by the spline

at point x = a.

For the construction of matrix spline (9), we first must find the values of Y (3)(a),
Y (4)(a), . . ., Y (m−1)(a). To compute the third-order derivative Y (3)(x), we consider
the functions h1, h2 and h3 defined by

h1 : [a, b] 7→ [a, b]

h1(x) = x
,

h2 : [a, b] 7→ Cr×q

h2(x) = Y (x)
,

h3 : [a, b] 7→ Cr×q

h3(x) = Z(x)

where Y (x) is the theoretical solution of (6) and Z(x) = Y ′(x). We describe now
f(x, Y (x), Y ′(x)) as a composition of functions f and (h1, h2, h3), that is, let φ :
[a, b] 7→ Cr×q be defined by

φ(x) = [f ◦ (h1, h2, h3)] (x) = f (h1(x), h2(x), h3(x)) = f(x, Y (x), Z(x)) .

Thus, φ is a real variable function of x, and applying theorem 8.9.2 of [12, p.170]
its derivative takes the form:

Dφ = D (f ◦ (h1, h2, h3))
= ((D1f)(h1, h2, h3))·Dh1+((D2f)(h1, h2, h3))·Dh2+((D3f)(h1, h2, h3))·Dh3,

5

where the partial derivatives of f , D1(f), D2(f), D3(f) exist and are continuous
since it is assumed that f ∈ Cs (T). By (6) it is clear that

d (vec Y ′(x))T

dx
=

[
vec f(x, Y (x), Y ′(x))

]T
.

Next, applying the chain rule for matrix functions (4) and then taking the deriva-
tive of a matrix with respect to a matrix, (5), one obtains

Y (3)(x) =
∂f(x, Y (x), Y ′(x))

∂x
+
[[
vec Y ′(x)

]T ⊗ Ir

] ∂f(x, Y (x), Y ′(x))
∂ (vec Y (x))

+
[[
vec f(x, Y (x), Y ′(x))

]T ⊗ Ir

] ∂f(x, Y (x), Y ′(x))
∂ (vec Y ′(x))

= g1
(
x, Y (x), Y ′(x)

)
, (10)

where g1 ∈ Cs−1 (T). Using (10), we are now in position to evaluate Y (3)(a) =
g1 (a, Y (a), Y ′(a)) It is safe to take f ∈ Cs (T) for s ≥ 2. For all higher-order
derivatives Y (4)(x), . . . , Y (m−1)(x), we proceed in a similar way and calculate

Y (4)(x) = g2 (x, Y (x), Y ′(x)) ∈ Cs−2 (T)
...

Y (m−1)(x) = gm−3 (x, Y (x), Y ′(x)) ∈ Cs−(m−3) (T)





. (11)

Apart from the matrix coefficient A0, all other parameters of the spline are
already known. To find A0, we assume that (9) is a solution of equation (6) at
x = a+ h, and thus yields

S′′
|I0 (a+ h) = f

(
a+ h, S|I0 (a+ h), S′

|I0 (a+ h)
)
. (12)

The only unknown parameter A0 is now given by the following implicit matrix
equation obtained from (12):

A0 =
(m− 2)!

hm−2

[
f

(
a+ h, Y (a) + Y ′(a)h+ · · ·+ hm−1

(m− 1)!
Y (m−1)(a) +

hm

m!
A0,

Y ′(a) + Y ′′(a)h+ · · ·+ hm−2

(m− 2)!
Y (m−1)(a) +

hm−1

(m− 1)!
A0

)

− Y ′′(a)− · · · − hm−3

(m− 3)!
Y (m−1)(a)

]
. (13)

The matrix equation (13) has only one solution A0, which we shall see in the fol-
lowing. After finding the solution for A0, the matrix spline (9) is totally determined
within the first interval I0. For the second interval I1 we define

S|I1 (x) = S|I0 (a+ h) + S′
|I0 (a+ h)(x− (a+ h)) + (14)

1
2!Y

′′(a+ h)(x− (a+ h))2 + · · ·+ 1
(m−1)!Y

(m−1)(a+ h)(x− (a+ h))m−1

+ 1
m!A1(x− (a+ h))m,

6

and we use the following shorthand notation

Y ′′(a+ h) = f

(
a+ h, S|I0 (a+ h), S′

|I0 (a+ h)

)
,

Y (3)(a+ h) = g1

(
a+ h, S|I0 (a+ h), S′

|I0 (a+ h)

)
,

...

Y (m−1)(a+ h) = gm−3

(
a+ h, S|I0 (a+ h), S′

|I0 (a+ h)

)
.

(15)

The splines introduced by Loscalzo and Talbot [16] and the ones employed in [22]
were of class Cm−1 (I0 ∪ I1). In contrast, here the matrix spline S(x) defined by (9)
and (14) is of differentiability class C2 (I0 ∪ I1). All of the coefficients in (14) are
completely determined except for the parameter A1 ∈ Rr×q. By definition, spline
(14) satisfies the differential equation (6) at point x = a+ h. To find the value of
A1 we also assume that the spline (14) satisfies (6) at point x = a+ 2h:

S′′
|I1 (a+ 2h) = f

(
a+ 2h, S|I1 (a+ 2h), S′

|I1 (a+ 2h)
)
,

which readily may be recast in the following form to provide a matrix equation for
the only unknown A1:

A1 =
(m− 2)!

hm−2

[
f

(
a+ 2h, S|I0 (a+h)+S′

|I0 (a+h)h+
h2

2!
Y ′′(a+ h)+ · · ·+

+
hm−1

(m− 1)!
Y (m−1)(a+ h) +

hm

m!
A1, S

′
|I0 (a+ h) + Y ′′(a+ h)h+ · · ·

+
hm−2

(m− 2)!
Y (m−1)(a+h) +

hm−1

(m− 1)!
A1

)
− Y ′′(a+ h)

− Y (3)(a+ h)h− · · · − hm−3

(m− 3)!
Y (m−1)(a+ h) (16)

Now we proceed in exactly similar manner as before. Namely, let us assume that
the implicit matrix equation (16) has a unique solution A1, so that the spline is
totally determined in the interval I1. By iteration, we may construct the matrix
spline taking Ik−1 as the last subinterval. For the next subinterval Ik, we define
the corresponding matrix spline as

S|Ik (x) = S|Ik−1

(a+ kh) + S′
|Ik−1

(a+ kh)(x− (a+ kh))

+ 1
2!Y

′′(a+ kh)(x− (a+ kh))2 + · · ·+
1

(m−1)!Y
(m−1)(a+ kh)(x− (a+ kh))m−1 + 1

m!Ak(x− (a+ kh))m, (17)

7

where again

Y ′′(a+ kh) = f

(
a+ kh, S|Ik−1

(a+ kh), S′
|Ik−1

(a+ kh)

)
,

Y (3)(a+ kh) = g1

(
a+ kh, S|Ik−1

(a+ kh), S′
|Ik−1

(a+ kh)

)
,

...

Y (m−1)(a+ kh) = gm−3

(
a+ kh, S|Ik−1

(a+ kh), S′
|Ik−1

(a+ kh)

)
.

(18)

Thus, the matrix spline S(x) ∈ C2




k⋃

j=0

Ij


 is solution of the differential equation

(6) at point x = a+ kh. In order to find Ak, we impose the additional requirement
that S|Ik (x) satisfies equation (6) at point x = a+ (k + 1)h:

S′′
|Ik (a+ (k + 1)h)=f

(
a+ (k + 1)h, S|Ik (a+ (k + 1)h), S′

|Ik (a+ (k + 1)h)
)
,

which can be rewritten as

Ak = (m−2)!
hm−2

[
f

(
a+ (k + 1)h, S|Ik−1

(a+ kh) + S′
|Ik−1

(a+ kh)h+ · · ·+

+ hm−1

(m−1)!Y
(m−1)(a+ kh) + hm

m!Ak, S
′
|Ik−1

(a+ kh) + Y ′′(a+ kh)h+ · · ·

+ hm−2

(m−2)!Y
(m−1)(a+ kh) + hm−1

(m−1)!Ak

)
− Y ′′(a+ kh)

−Y (3)(a+ kh)h− · · · − hm−3

(m−3)!Y
(m−1)(a+ kh)

]
. (19)

Eqs. (13) and (16) are just a particular case of the final result (19), letting k = 0
and k = 1.
We are now in the position to demonstrate the uniqueness of equation (19) by

using a fixed-point argument. For any choice of step size h and partition number
k, we look at the matrix function g : Rr×q → Rr×q defined by

g(T) = (m−2)!
hm−2

[
f

(
a+ (k + 1)h, S|Ik−1

(a+ kh) + S′
|Ik−1

(a+ kh)h+ · · ·+

+ hm−1

(m−1)!Y
(m−1)(a+ kh) + hm

m! T, S
′
|Ik−1

(a+ kh)+

+Y ′′(a+ kh)h+ · · ·+ hm−2

(m−2)!Y
(m−1)(a+ kh) + hm−1

(m−1)!T
)

−Y ′′(a+ kh)− Y (3)(a+ kh)h− · · · − hm−3

(m−3)!Y
(m−1)(a+ kh)

]
. (20)

Observe that relation (19) holds if and only if Ak = g(Ak), which means that Ak

is a fixed point for function g(T). The definition (20) of g in combination with the
global Lipschitz’s condition (7) for f , implies immediately that

‖g(T1)− g(T2)‖ ≤
(

L1h
2

m(m− 1)
+

L2h

m− 1

)
‖T1 − T2‖ .

8

Selecting h <
(√

L2
2m

2 + 4m(m− 1)L1 −mL2

)
/2L1 gives

(
L1h2

m(m−1) +
L2h
m−1

)
<

1 and the matrix function g is contractive. Therefore, equation (19) has the unique
solutions Ak for each k = 0, 1, . . . , n − 1. Thus, the matrix spline is completely
determined, which concludes this proof. ¤

Remark 1 : Observe that the constructed splines have a global error at least of
order O(hm−1), which follows from an analysis similar to Loscalzo and Talbot’s
work [16]. More precisely, if f ∈ Cs(T) with m = s+ 3, then ‖Y (x)− S(x)‖ is at
least of order O(hm−1) ∀x ∈ [a, b], where Y (x) is the solution of Eq. (6).

Remark 2 : For carrying out the derivatives in (10) and (11), one may make
extensive use of standard symbolic software, such as Mathematica etc.

3. Algorithms and MatLab functions

For solving Equation (6), we consider the initial matrix value problem

Y ′′(x) = f(x, Y (x), Y ′(x))

Y (xk) = Y0 , Y ′(xk) = Y1



 xk ≤ x ≤ xk + h, (21)

where h is the step size, and Y0 and Y1 are the values of Y and Y ′ obtained in the
above step at xk, respectively. If we denote by Sk(x) the spline of degree m in the
interval [xk, xk + h], then

Sk(xk + h) = B
(0)
k +

hm

m!
Ak,

S
′
k(xk + h) = B

(1)
k +

hm−1

(m− 1)!
Ak,

S
′′
i (xk + h) = B

(2)
k +

hm−2

(m− 2)!
Ak,

where

B
(0)
k =

m−1∑

i=0

Y (i)(xk)h
i

i!
, B

(1)
i =

m−1∑

i=1

Y (i)(xk)h
i−1

(i− 1)!
, B

(2)
i =

m−1∑

i=2

Y (i)(xk)h
i−2

(i− 2)!

with all derivatives Y (i) computed by (10) and (11). If we substitute the above
expressions in (21), we obtain

B
(2)
k +

hm−2

(m− 2)!
Ak = f

(
x,B

(0)
k +

hm

m!
Ak, B

(1)
i +

hm−1

(m− 1)!
Ak

)
. (22)

Then matrix Ak can be obtained by solving (22).
The MatLab function splin2order computes the solution of (6) by a fixed-

point method or another method, as for example the Newton method (for online
availability of the software, see Ref. [14]). The function used for solving (22) by the
fixed-point method is

F (Ak) =
(m− 2)!

hm−2

[
f

(
x,B

(0)
k +

hm

m!
Ak, B

(1)
i +

hm−1

(m− 1)!
Ak

)
−B

(2)
k

]
.

9

Hence, the values of Y and Y ′ at xk + h are

Y (xk + h) = B
(0)
k +

hm

m!
Ak,

Y
′
k(xk + h) = B

(1)
k +

hm−1

(m− 1)!
Ak.

The computer storage required for the MatLab function implies the use of seven
internal matrices. However, it can be further optimized for some special classes of
second-order differential equations. Consider, for example, the following second-
order linear differential system

Y ′′(t) +A1 Y
′(t) +A0Y (t) = 0, t ∈ [a, b], (23)

where A0, A1 ∈ Rn×n are constant matrix coefficients. In this case, the MatLab
function which solves the above equation is called splin2linear (and available
online [14]). If (23) is incomplete, i.e. A1 = 0, the computational costs can be cut
down considerably. We have also developed the MatLab function spline2lineari,
which is an optimized version of spline2linear for the incomplete differential linear
equation Y ′′(t)+A0Y (t) = 0. In both cases, the successive derivatives are computed
within the corresponding function. The memory requirements for these functions
are eleven and ten matrices, respectively.

4. Numerical Examples

The goal of this section is to show the effectiveness of our method by testing Mat-
Lab and symbolic implementations of it. We will use some standard benchmarks
examples to compare its numerical estimates with those obtained from higher-
degree splines constructed by the method proposed in [22]. It is important to
remark that our method is not only a viable alternative to existing approaches,
but has been applied successfully in several other practical examples.
The MatLab benchmark tests have been carried out on an Intel Core 2 Duo

T5600 with 2GB main memory and using Mathematica version 7.0. and Mat-
Lab version 7.9. We test the MatLab implementations for each of our proposed
spline methods with problems where the exact solution is known. The symbolic
implementations employ the Symbolic Math Toolbox of MatLab for calculating
derivatives of functions, such that the derivatives are provided by a function which
calculates their values. In particular, these new implementations based on our pro-
posed methods have been compared with the results produced by MatLab solver
functions with RelTol and AbsTol parameters equal to 10−14. Table 1 lists all Mat-
Lab functions used in these tests. The functions are based on adaptive methods
to solve non-stiff, ordinary differential equations of the type

{
y′ = f(x, y), x ∈ [a, b],

y(a) = y0,

where y ∈ Rr.
We have also implemented specific MatLab functions in order to solve Eq. (6)

with fixed step size based on classical methods: Nyström of order 4 [13, p. 284],
an extrapolation method [13, p. 294] and an explicit Störmer method [13, p. 462],
but we only provide the results of the first one, because it gives much better

10

results than the others. The implemented function based on this method is named
nystrom2order. Throughout the calculations for the numerical error estimates
the 2-norm has been used, except for Table 2 of Subsection 4.2 where the Frobenius
norm is employed.

4.1. A non-linear vector system

Consider the following non-linear vector differential system

y′′1(x) = 1− cos (x) + sin (y′2(x)) + cos (y′2(x))

y′′2(x) =
1

4+y1(x)2
− 1

5−sin2(x)

y1(0) = 1, y2(0) = 0,

y′1(0) = 0, y′2(0) = π





0 ≤ x ≤ 1. (24)

with exact solution y1(x) = cos (x), y2(x) = πx. The system Eq. (24) can be written
in the more compact form

Y ′′(x) = F
(
x, Y, Y ′) , Y (x) =

(
y1(x)
y2(x)

)
, Y (0) =

(
1
0

)
, Y ′(0) =

(
0
π

)
,

(25)
where

F (x, Y, Y ′) =
(
1− cos (x) + sin (y′2(x)) + cos (y′2(x))

1
4+y1(x)2

− 1
5−sin2(x)

)
. (26)

It is easy to check that F (x, Y, Y ′) satisfies the global Lipschitz conditions:

‖F (x, Y1, Y) − F (x, Y2, Y)‖ ≤ ‖Y1 − Y2‖

‖F (x, Y, Y1) − F (x, Y, Y2)‖ ≤ 2 ‖Y1 − Y2‖



 , 0 ≤ x ≤ 1 , Y, Y1, Y2 ∈ R2. (27)

It is not difficult to evaluate Y ′′(0) using (25), thus Y ′′(0) = F (0, Y (0), Y ′(0)) =(−1
0

)
. We can calculate Y (3)(0) using (10). This will illustrate how the calculation

of (10) can be done. In this case, one gets

vec Y (x) = Y (x), vec Y ′(x) =
(
y′1(x)
y′2(x)

)
,
∂F (x, Y (x), Y ′(x))

∂x
=




sin (x)

−2 sin (x) cos (x)

(5−sin2(x))2


 .

11

On the other hand, we have

∂F (x, Y (x), Y ′(x))
∂ (vec Y (x))

=




∂F (x,Y (x),Y ′(x))
∂y1(x)

∂F (x,Y (x),Y ′(x))
∂y2(x)


 =




0
−2y1(x)

(4+y2
1(x))

2

0
0




,

∂F (x, Y (x), Y ′(x))
∂ (vec Y ′(x))

=




∂F (x,Y (x),Y ′(x))
∂y′

1(x)

∂F (x,Y (x),Y ′(x))
∂y′

2(x)


 =




0
0

cos (y′2(x))− sin (y′2(x))
0


 ,

and, if we denote by A = 1 − cos (x) + sin (y′2(x)) + cos (y′2(x)) and B =
1/

(
4 + y1(x)

2
)− 1/

(
5− sin2(x)

)
, one obtains

[
vec Y ′(x)

]T ⊗ I2 =

(
y′1(x) 0 y′2(x) 0
0 y′1(x) 0 y′2(x)

)
,

[
vec f(x, Y (x), Y ′(x))

]T ⊗ I2 =

(
A 0 B 0
0 A 0 B

)
.

Thus, using (10) we have

Y (3)(x) =




sin (x)

−2 sin (x) cos (x)

(5−sin2(x))2


+

(
y′1(x) 0 y′2(x) 0
0 y′1(x) 0 y′2(x)

)



0
−2y1(x)

(4+y2
1(x))

2

0
0




+

(
A 0 B 0
0 A 0 B

)



0
0

cos (y′2(x))− sin (y′2(x))
0




=




sin (x) + (cos (y′2(x))− sin (y′2(x)))
(

1
4+y2

1(x)
− 1

5−sin2(x)

)

−2 sin (x) cos (x)

(5−sin2(x))2
− 2y1(x)y′

1(x)

(4+y2
1(x))

2


 . (28)

Taking into account that y1(0) = 1, y2(0) = 0, y′1(0) = 0, y′2(0) = π, and evaluating

Y (3)(x) when x = 0 from (28), finally one concludes that Y (3)(0) =

(
0
0

)
.

If we consider matrix splines of degree m = 6, Theorem 2.1 requires to take
h < 2.12404, and thus we select h = 0.1. In Table 2, we provide the numerical
estimates, which have been rounded to the fourth relevant digit. We also give the
Frobenius norm of the difference between the estimates of our numerical approach
and the exact solution. Their maximum errors are shown also in the first column.
Note that as we increase the degree of the spline using the same technique as in
[22], we obtain the results given in Table 3, where in the last two intervals the
maximum error increases dramatically.
For another test, the MatLab function splin2order was used. Figure 1 displays

the approximation behavior for splines of degree m = 6 with different step sizes

12

h = 0.1, h = 0.01 and h = 0.001, respectively. Table 4 compares splin2order
(spline of degree m = 9) with the other MatLab functions, taking h = 0.1 and
b = 5. The second column indicates the execution time in seconds and the third
column the relative errors. For the fixed-step codes, we have chosen the optimal
step size, i.e., the step size giving the lowest error possible with the best execution
time.
In conclusion, Table 5 illustrates the behaviour of the global error (using the

2-norm) produced by the function splin2order with varying step sizes and spline
degrees m = 3, 4, 5. As expected, the global error decreases with smaller step size
and with higher order for the splines. Also note that the actual global errors are
well below the theoretically predicted error bounds.

4.2. Linear second-order differential matrix equations

Linear second-order differential matrix equations present another interesting test-
ing ground for efficient matrix spline algorithms. In fact, it is possible to de-
velop efficient algorithms for solving this type of problems. The MatLab func-
tion spline2linear is an implementation of the method described in the previous
section.
We consider the problem (23) with the following matrix coefficients

A1 =

(−1 1
0 −2

)
, A0 =

(
0 0
0 1

)
,

and the initial conditions

Y (0) = Y ′(0) =
(
1 0
0 1

)
.

The analytical solution is known to be

Y (t) =

(
et −1 + et − ett
0 et

)
, t ∈ [0, b]. (29)

In this case, it is f(t, Y, Z) = −A0Y −A1Z, and therefore

‖f (t, Y1, Z) − f (t, Y2, Z)‖2 ≤ ‖Y1 − Y2‖2
‖f (t, Y, Z1) − f (t, Y, Z2)‖2 ≤ 2.28825 ‖Z1 − Z2‖2



 . (30)

If we consider again matrix splines of degree m = 6, we must take the step size

given by the constraint h <
(√

36L2
2 + 120L1 − 6L2

)
/2L1 = 1.91732. In this case,

the errors are increasing up to a value of [0, 1.77112× 10−8], but they remain well
within the error bounds fixed by Theorem 2.1. If we compare these results with
those given by a sixth-degree spline using the same technique as in Ref. [22], we
obtain comparable results for the first five intervals. However, our method truly
improves the results in the last five intervals. Table 6 shows the results obtained
in the last four intervals with the method from Ref. [22].
Figure 2 depicts the approximation behavior for splines of degree m = 6 with

different step sizes h = 0.1, h = 0.01 and h = 0.001, respectively. Table 7 shows
the results of spline2linear (spline of degree m = 10) and the other MatLab

13

functions for h = 0.1 and b = 5. The second column gives the execution time in
seconds and the third column the relative errors.

4.3. Incomplete linear second-order differential matrix equations

As a second example, we study

Y ′′(t) +AY (t) = 0, (31)

where

A =

(
1 0
2 1

)
, Y (0) =

(
0 0
0 0

)
and Y ′(0) =

(
1 0
1 1

)
, t ∈ [0, b]. (32)

with the known analytical solution

Y (t) = cos
(√

At
)
Y (0) +

(√
A
)−1

sin
(√

At
)
Y ′(0). (33)

As usual,
√
A denotes the square root of the non-singular matrix A (see [11]).

In this example, we choose L2 = 0 and L1 ≈ 2.82843 as suggested in [22]. If we
consider b = 1 and matrix splines of degree m = 6, according to Theorem 2.1, we
need to take h < 3.25678 as in Ref. [23], so we selected h = 0.1. Table 8 provides
all numerical results (rounded to the third relevant digit) for the maximum error
in each interval.
If we consider high-degree splines, for example with m = 6, and if we use the

same technique as in [22], we obtain essentially the same results for the error in
the first six intervals. For the last four intervals, the error increases considerably
(see Table 9), showing a bad performance for this method.
In the following test we consider b = 5. Figure 3 depicts the approximation

behavior for splines of sixth degree with different step sizes h = 0.1, h = 0.01
and h = 0.001, respectively. Table 10 shows the results of function splin2lineari
(spline of degree m = 10) compared to the results produced by the other functions,
taking h = 0.1. The second column indicates the execution time in seconds and
the third column the relative errors.

5. Conclusions

One goal of this study was to presented a generalized method for the numerical
treatment of second-order differential matrix systems. Our approach is a general-
ization of previously developed methods employing matrix-cubic splines. A second
goal was to provide techniques to get reliable algorithms that are straightforward
to implement.
All spline solutions are by construction already continuous in the interval under

consideration. Several benchmark examples have been used to test our proposed
method producing errors only of the order O(hm−1), where m is the degree of the
spline. By adjusting the step size h and selecting a corresponding higher-degree
spline, one can achieve a reliable estimate with high accuracy for any practical
problem. Our method also makes clear the great precaution which is required when
approximating second-order models in realistic applications.
Our method is well-suited for implementation on numerical and/or symbolical

computer systems (Mathematica, MatLab, etc). Three MatLab implementa-

14

tions have been developed based on the spline method developed in this paper.
In order to assert the advantages of these implementations, extensive stress tests
were made in three case studies by comparing these implementations under equal
conditions with built-into MatLab functions and an implementation of a Nyström
method of fourth order. The results clearly demonstrated that the relative errors of
our MatLab implementations are lower than relative errors of the other, standard
functions, and have in general lower execution times.

Acknowledgements

The authors wish to thank for financial support by the Universidad Politécnica de
Valencia under grant PAID-06-11-2020. We also appreciate the valuable comments
made by the anonymous referee to improve the original manuscript.

References

[1] E.A. Al-Said, The use of cubic splines in the numerical solution of a system of second-order boundary
value problems, Comput. Math. Appl. 42 (2001), pp. 861–869.

[2] E.A. Al-Said and M.A. Noor, Cubic splines method for a system of third-order boundary value prob-
lems, Appl. Math. Comput. 142 (2003), pp. 195–204.

[3] U. Ascher, S. Pruess, and R.D. Russell, On spline basis selection for solving differential equations,
SIAM J. Numer. Anal. 20 (1983), pp. 121–142.

[4] H. Brunner, On the divergence of collocation solutions in smooth piecewise polynomial spaces for
volterra integral equations, BIT Numerical Mathematics 44 (2004), pp. 631–650.

[5] J.R. Claeyssen, G. Canahualpa, and C. Jung, A direct approach to second-order matrix non-classical
vibrating equations, Appl. Numer. Math. 30 (1999), pp. 65–78.

[6] E. Defez, L. Soler, A. Hervás, and C. Santamaŕıa, Numerical solutions of matrix differential models
using cubic matrix splines, Comput. Math. Appl. 50 (2005), pp. 693–699.

[7] E. Defez, L. Soler, A. Hervás, and M.M. Tung, Numerical solutions of matrix differential models
using cubic matrix splines II, Mathematical and Computer Modelling 46 (2007), pp. 657–669.

[8] E. Defez, M.M. Tung, J. Ibáñez, and J. Sastre, Approximating and computing nonlinear matrix
differential models, Math. Comput. Model. 55 (2012), pp. 2012–2022.

[9] T.M. Flett, Differential Analysis, Cambridge University Press, Cambridge, UK, 1980.
[10] C. Froese, Numerical solutions of the hartree-fock equations, Can. J. Phys. 41 (1963), pp. 1895–1910.
[11] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins University Press,

Baltimore, MD, USA, 1989.
[12] A. Graham, Kronecker products and matrix calculus with applications, John Wiley & Sons, New York,

USA, 1981.
[13] E. Hairer, S.P. Nørsett, and G. Wanner, Springer, Berlin 2000.
[14] J. Ibáñez, MatLab Implementation for Matrix Splines (mims), URL

http://personales.upv.es/jjibanez/MIMS.html.
[15] M.K. Kadalbajoo and K.C. Patidar, Numerical solution of singularly perturbed two-point boundary

value problems by spline in tension, Appl. Math. Comput. 131 (2002), pp. 299–320.
[16] F.R. Loscalzo and T.D. Talbot, Spline function approximations for solutions of ordinary differential

equations, SIAM J. Numer. Anal. 4 (1967), pp. 433–445.
[17] P. Marzulli, Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math.

34 (1991), pp. 233–241.
[18] G. Micula, Approximate solutions of the differential equation y′′ = f(x, y) with spline functions,

Math. Comp. 27 (1973), pp. 807–816.
[19] G. Micula and A. Revnic, An implicit numerical spline method for systems for ode’s, Appl. Math.

Comput. 111 (2000), pp. 121–132.
[20] J.M. Ortega, Numerical Analysis: A Second Course, Academic Press, New York, 1972.
[21] B.W. Shore, Comparison of matrix methods to the radii schrödinger eigenvalue equation: The morse

potential, J. Chemical Physics 59 (1971), pp. 6450–6463.
[22] M.M. Tung, E. Defez, and J. Sastre, Numerical solutions of second-order matrix models using cubic-

matrix splines, Comput. Math. Appl. 56 (2008), pp. 2561–2571.
[23] M.M. Tung, L. Soler, E. Defez, and A. Hervás, Cubic-matrix splines and second-order matrix model,

in The 14th European Conference on Mathematics for Industry (ECMI 2006), Springer Verlag, Uni-
versidad Carlos III de Madrid, Spain, 2006.

[24] J.F. Zhang, Optimal control for mechanical vibration systems based on second-order matrix equations,
Mechanical Systems and Signal Processing 16 (2002), pp. 61–67.

15

Table 1. MatLab solvers used in the tests.

MatLab Solver Problem Method

ode45 non-stiff differential equations Runge-Kutta

ode45 non-stiff differential equations Runge-Kutta

ode23 non-stiff differential equations Runge-Kutta

ode113 non-stiff differential equations Adams

Table 2. Approximation for the test problem of Subsection 4.1 in the interval [0, 1] with step size h = 0.1 and matrix

splines of order m = 6. The maximum error is calculated by using the Frobenius norm.

interval spline
max. error

[0, 0.1]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)

2.14828× 10−13

[0.1, 0.2]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)

2.01417× 10−12

[0.2, 0.3]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)

8.15548× 10−12

[0.3, 0.4]

(
1.− 0.5x2 + 0.0417x4 − 0.0001x5 − 0.0013x6

3.1416x

)

2.13535× 10−11

[0.4, 0.5]

(
1.− 0.5x2 − 0.0001x3 + 0.0418x4 − 0.0002x5 − 0.0013x6

3.1416x

)

4.42526× 10−11

[0.5, 0.6]

(
1.− 0.4999x2 − 0.0002x3 + 0.042x4 − 0.0004x5 − 0.0012x6

3.1416x

)

7.94035× 10−11

[0.6, 0.7]

(
1.− 0.4998x2 − 0.0005x3 + 0.0424x4 − 0.0006x5 − 0.0011x6

3.1416x

)

1.29235× 10−10

[0.7, 0.8]

(
1.− 0.0001x− 0.4996x2 − 0.001x3 + 0.043x4 − 0.001x5 − 0.0010x6

3.1416x

)

1.96032× 10−10

[0.8, 0.9]

(
1.− 0.0003x− 0.4990x2 − 0.0019x3 + 0.0438x4 − 0.0014x5 − 0.0009x6

3.1416x

)

2.81915× 10−10

[0.9, 1]

(
1.0001− 0.0006x− 0.4981x2 − 0.0033x3 + 0.0451x4 − 0.002x5 − 0.0008x6

3.1416x

)

3.88818× 10−10

Table 3. Maximum 2-norm error using method [22] with m = 6 for the the test problem of Subsection 4.1.

interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4]

max. error 2.14828× 10−13 1.16367× 10−11 7.7013× 10−11 8.46736× 10−10

interval [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8]

max. error 8.23407× 10−9 8.17369× 10−8 8.08793× 10−7 8.0067× 10−6

interval [0.8, 0.9] [0.9, 1]

max. error 0.0000792582 0.0014899

16

Table 4. Relative errors for the test problem of Subsection 4.1 for

b = 5.

MatLab function Time [s] Error

splin2order (m = 9, h = 0.1) 0.091408 3.457835·10−16

nystrom2order (h = 2 · 10−3) 0.246637 3.622907·10−14

ode45 0.090288 1.289173·10−15

ode23 6.683251 2.280581·10−15

ode113 0.014599 9.203065·10−16

Table 5. List of 2-norm errors for the function splin2order used in nu-

merical example 4.1, varying the step size h and the degree m of the

spline.

m = 3 m = 4 m = 5

h = 0.1 3.051299 · 10−5 3.054623 · 10−7 3.054663 · 10−9

h = 0.01 4.652307 · 10−6 4.657409 · 10−9 4.623465 · 10−12

h = 0.001 8.471262 · 10−9 7.555910 · 10−13 5.520485 · 10−14

Table 6. Maximum 2-norm error using method [22] with m = 6 for the test

problem of Subsection 4.2.

interval [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

max. error 0.00014554 0.00140688 0.0136004 0.131485

Table 7. Relative errors for the test problem of Subsection 4.2 for

b = 5.

Method Time [s] Error

splin2linear (m = 10, h = 0.1) 0.003051 5.320190·10−15

nystrom2order (h = 5 · 10−4) 0.246637 2.891663·10−14

ode45 0.175877 6.800561·10−15

ode23 9.808279 5.398916·10−14

ode113 0.017892 1.101141·10−14

Table 8. Maximum approximation error for the test problem of Subsection 4.2 in the interval [0, 1] with

step size h = 0.1 and splines of order m = 6.

interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4]

max. error 5.66188× 10−11 3.09994× 10−10 7.54205× 10−10 1.37841× 10−9

interval [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8]

max. error 2.16706× 10−9 3.10015× 10−9 4.15361× 10−9 5.29975× 10−9

interval [0.8, 0.9] [0.9, 1]

max. error 6.50774× 10−9 7.74422× 10−9

Table 9. Maximum 2-norm error using method [22] for m = 6 for the incomplete

second-order differential system Eq. (31).

interval [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

max. error 0.000189424 0.00187658 0.0185907 0.184173

17

Table 10. Relative errors for the test problem of Subsection 4.3.

MatLab function Time [s] Error

splin2lineari (m = 10) 0.002224 7.707535·10−15

nystrom2order (h = 1 · 10−3) 0.502466 5.538301·10−14

ode45 0.197101 1.836483·10−14

ode23 11.563673 7.383291·10−14

ode113 0.019096 2.026853·10−15

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or

Interval

h=0.1
h=0.01

h=0.001

Figure 1. Relative errors for the test problem of Subsection 4.1 with fourth-order splines (m = 6), using
MatLab function splin2order with h = 0.1, h = 0.01 and h = 0.001, respectively.

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or

Interval

h=0.1
h=0.01

h=0.001

Figure 2. Relative errors for the test problem of Subsection 4.2 with fifth-order splines (m = 6), using
MatLab function with splin2linear h = 0.1, h = 0.01 and h = 0.001, respectively.

18

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or

Interval

h=0.1
h=0.01

h=0.001

Figure 3. Relative errors for the test problem of Subsection 4.3 with fourth-order splines (m = 6) , using
MatLab function splin2lineari with h = 0.1, h = 0.01 and h = 0.001, respectively.

