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ABSTRACT	1	

Study Design: Cross-sectional study 2	

Objectives: The main objective of this study was to develop and test 3	

classification algorithms based on machine learning, using accelerometers 4	

to identify the activity type performed by manual wheelchair users with 5	

SCI. 6	

Setting: The study was conducted in the Physical Therapy department and 7	

the Physical Education and Sports department of the University of Valencia. 8	

Methods: Twenty volunteers were asked to perform ten physical activities: 9	

lying down, body transfers, moving items, mopping, working on a 10	

computer, watching TV, arm-ergometer exercises, passive propulsion, slow 11	

propulsion and fast propulsion while fitted with four accelerometers placed 12	

on both wrists, chest and waist. The activities were grouped into five 13	

categories: sedentary, locomotion, housework, body transfers and moderate 14	

physical activity. Different machine learning algorithms were used to 15	

develop individual and group activity classifiers from the acceleration data 16	

for different combinations of number and position of the accelerometers. 17	

Results: We found that although the accuracy of the classifiers for 18	

individual activities was moderate (55-72%), with higher values for a 19	

greater number of accelerometers, grouped-activities were correctly 20	

classified in a high percentage of cases (83.2 - 93.6%). 21	



	2

Conclusions: with only two accelerometers and the quadratic discriminant 22	

analysis algorithm we achieved a reasonably accurate group activity 23	

recognition system (> 90%). Such a system with the minimum of 24	

intervention would be a valuable tool for studying PA in persons with SCI. 25	

Keywords:	physical	activity,	machine	learning,	accelerometer,	spinal	26	

cord	injury	27	

28	
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INTRODUCTION	29	

Physical activity (PA) plays an important role in the health of persons with 30	

spinal cord injury (SCI). PA is a protective factor that reduces the risk of 31	

illnesses such as cardiovascular disease and Type 2 diabetes 1–3 and other 32	

common comorbidities in this population (e.g., pressure ulcers) 4,5. 33	

An appropriate method of quantifying PA levels in persons with SCI during 34	

their daily activities is essential for several reasons 6. Firstly, these methods 35	

may be used in epidemiological studies to establish more precisely the 36	

effects of PA on their health. Secondly, it can be used to monitor the 37	

effectiveness of PA promotion programs in this population. Finally, with the 38	

appropriate hardware and software, those suffering from SCI may carry out 39	

continuous control of their energy expenditure and thereby adjust their 40	

physical and nutritional habits to achieve a healthy lifestyle.  41	

Accelerometers are currently the devices most commonly used to measure 42	

PA although other methods, like heart rate 7,8 and questionnaires 9,10, have 43	

been validated for people with spinal cord injury. Early studies quantified 44	

PA by estimating energy expenditure. However recent works estimate not 45	

only energy expenditure, but also the type of activity being carried out, 46	

according to the acceleration pattern produced11–16, which is important in 47	

studies on the SCI population. The performance of certain activities could 48	

either prevent or aggravate certain health problems (e.g., shoulder pain17,18).  49	
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Although studies have been published that establish the necessary 50	

mathematical models for estimating types of physical activities11–16, few of 51	

them have tackled this problem in subjects with SCI. Specifically, Postma et 52	

al.19 using a total of six accelerometers, were able to identify wheelchair 53	

propulsion from other activities (e.g., lying down, body transfer, doing 54	

dishes…). Their classifier achieved an accuracy of 92%. Later Hiremath et 55	

al.20 classified the type of activity performed by SCI subjects using 56	

accelerometry, galvanic skin response, skin temperature and near-body 57	

temperatures. They were able to distinguish between resting, propulsion, 58	

arm-ergometer and deskwork, with an accuracy of 96.2 % using Quadratic 59	

Discriminant Analysis (QDA). Although 4 types of activities were included 60	

in this latter study, a broader study needed to be carried out in order to 61	

identify a wider range of activities. Therefore, the aims of the present work 62	

were: 63	

1. To develop and test classification algorithms to identify a) 10 64	

individual activities, b) 5 grouped-activities, performed by manual 65	

wheelchair users with SCI equipped with accelerometers. 66	

2. To establish the minimum number of accelerometers needed for a 67	

given accuracy for each application.  68	

 69	

 70	
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MATERIAL AND METHODS 71	

Participants 72	

Twenty subjects took part in the study [40.03 (10.57) years, 75.8 (17.54) kg 73	

and 1.76 (0.09) m]. The researchers recruited participants from two different 74	

institutions: i. Hospital la Fe of Valencia and ii. Asociación Provincial de 75	

Lesionados Medulares y Grandes Discapacitados (ASPAYM). The subjects 76	

had suffered spinal damage between the T2 and L5 vertebrae, and had been 77	

diagnosed at least one year before the start of this study. The level and 78	

completeness of the SCI (Table 1) were determined by a complete 79	

neurological examination conducted by a medical specialist, using the 80	

American Spinal Injury Association Impairment Scale (AIS). Their 81	

independence status expressed as mean (SD) was 65.3 (7.61). This 82	

independence measurement was determined using Spinal Cord 83	

Independence Measure version III (SCIM III) 21. 84	

Table 1 here 85	

The exclusion criteria were: i) history of depressive or cognitive disorders; 86	

ii) posttraumatic cervical myelopathy, motor or sensory impairment of the 87	

upper extremities, ischemic heart disorder, or recent osteoporotic fractures; 88	

iii) Presence of tracheotomy or iv) sacrotuberous ulcers or hypertension.  89	

All the subjects gave written consent to participate in the study, which was 90	

previously approved by the university’s ethical committee. We certify that 91	
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all applicable institutional and governmental regulations concerning the 92	

ethical use of human volunteers were followed during the course of this 93	

research. 94	

Data collection 95	

The subjects were asked to perform ten physical activities (using their own 96	

wheelchair): lying down, body transfers, moving items, mopping, working 97	

on a computer, watching TV, arm-ergometer exercise, passive propulsion, 98	

slow propulsion and fast propulsion. A detailed description of each activity 99	

can be found in a previous study22. Each activity was carried out for 10 100	

minutes with 1-2 minutes’ rest between activities, with only one exception 101	

in the case of body transfers, in which the activity took place for one minute 102	

followed by one minute’s rest for a total of ten minutes to avoid overloading 103	

the shoulder musculoskeletal system. All these measurements have been 104	

supervised by the same researcher to ensure the successful completion of 105	

these activities. 106	

During these activities body forces were monitored by four accelerometers 107	

(Actigraph model GT3X, Actigraph, Pensacola, FL, USA) being the 108	

sampling frequency 30 Hz. A bandpass digital filter between 0.25 and 2.5 109	

Hz was implemented in order to reduce the influence of the static 110	

acceleration and the higher frequency components (manufacturer hardware 111	

characteristic). Then, the accelerations (expressed in counts) were rectified 112	

and integrated in 1-second epochs. The accelerometers were placed one on 113	
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each wrist, one on the non-dominant waist and on the non-dominant side of 114	

the chest (Figure 1). Elastic belts were used in order to minimize 115	

movements of the accelerometers; and the spatial orientation were similar in 116	

all the subjects. 117	

Figure 1 here 118	

Signal processing 119	

The Matlab R2012a (Mathworks Inc, Natick, USA) was used for signals 120	

processing. We worked out fourteen variables for each axis (i.e. X, Y, Z and 121	

resultant vector) at minutes: four, five, six and seven for each activity.  122	

The standard deviation, variance and the 10th, 25th, 50th, 75th and 90th 123	

percentiles, interquartile range and the range between the 10th and 90th 124	

percentiles were calculated in the time domain. The lag-one correlation of 125	

each minute was also worked out as a measure of temporal dynamics 15.  126	

The acceleration signal was analyzed using the two-level wavelet transform, 127	

the mother wavelet being Daubechies 2 23. We calculated the Euclidean 128	

norm of the detail coefficients of the first and second levels of resolution 129	

and the approximation coefficients of the second level (i.e. ND1, ND2, NA2). 130	

The sample entropy was computed for each axis (tolerance=0.3 SD; patter 131	

length=2) 24. Finally, we computed the cross-correlation between the three 132	

orthogonal axes (i.e., x-y, y-z and x-z cross-correlations) 25. The total 133	
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number of variables was 59 for each accelerometer (i.e., 14 variables for the 134	

four axes and three variables for the correlation between axes). 135	

Data Analysis 136	

Classifiers were designed for individual-activities and grouped-activities; 137	

those for individual-activities had ten possible categories (i.e. each activity 138	

performed) and grouped-activities had five (Table 2), established according 139	

to the activity’s objective or function. 140	

Table 2 here 141	

In order to determine the required number of accelerometers to properly 142	

identify the activities or groups of activities, the data from several 143	

accelerometers were combined. The configurations tested were: i) dominant 144	

wrist accelerometer, ii) non-dominant wrist accelerometer, iii) both wrist 145	

accelerometers and iv) all four accelerometers 146	

The first step was to split the database (800 data = 20 subjects*10 PAs*4 147	

min/PA) into two data sets (figure 2). One was used to train and validate the 148	

classifiers (n=640) and the other to test them (n=160). We checked that 149	

there were no statistically significant differences in the computed variables 150	

between data sets by means of the Wilcoxon rank sum test (p>0.05) and that 151	

the percentage of cases of each activity was the same in both data sets. 152	

A principal component analysis was then applied to reduce the dimensions 153	

of the data matrix parameters. This analysis was applied to the training set 154	
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of the above-cited four combinations of accelerometers. These databases 155	

were reduced from 59, 59, 118 and 236 variables respectively to 22, 22, 41 156	

and 78 principal components (99% of the variance was maintained). The 157	

coefficients of this analysis of the training set were applied to the test set, so 158	

as to obtain the principal components of these data. The principal 159	

components of the two data sets were used as inputs in the subsequent 160	

analysis.  161	

Figure 2 here 162	

We used three different machine-learning algorithms to design the 163	

classifiers 26: linear discriminant analysis (LDA), quadratic discriminant 164	

analysis (QDA) and support vector machines (SVM). The classifiers were 165	

designed and validated using a 10-fold stratified cross-validation, which was 166	

performed twenty times to reduce the randomization effect. The optimal 167	

combination of variables was determined using a forward sequential feature 168	

selection algorithm that included only those variables that significantly 169	

improved classifier accuracy. The feature selection algorithm stopped when 170	

the addition of any new variable did not improve classifier accuracy by 171	

0.5%. Once the classifiers were designed with the training set, we applied 172	

them to the test set and computed the classification accuracy:  173	

Accuracy
TruePositivesTrueNegatives

TruePositivesTrueNegatives FalsePositives FalseNegatives
174	

 175	
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RESULTS 176	

Table 3 shows the accuracy of the different classifiers implemented in the 177	

test set, using the information from the different accelerometer 178	

configurations to distinguish each of the 10 individual activity types. As 179	

expected, it can be seen that in general the accuracy of the classifier 180	

improves as the number of accelerometers increases. However, the accuracy 181	

obtained is always less than 75%, regardless of the number/position of the 182	

accelerometer and the classification algorithm used. 183	

Table 3 here 184	

Figure 3 shows the accuracy of the individual activity classifiers in each of 185	

the 10 categories. It can be observed that in many activities accuracy values 186	

near or above 90% are achieved, particularly when two or four 187	

accelerometers are used. However, some activities (e.g. PC work or passive 188	

propulsion), which could be confused with each other, have particularly low 189	

accuracy values, giving a slightly low overall accuracy value for the 190	

classifier. 191	

Figure 3 here 192	

On the other hand, the grouped-activity classifiers showed good accuracy in 193	

all cases (between 83.2% and 93.6%) (Table 4). Again, it can be seen that in 194	

general, the higher the number of accelerometers, the higher the 195	

classification accuracy. In contrast, the classification algorithm does not 196	
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seem to significantly influence the prediction capability. It is noteworthy 197	

that there are three classifiers with accuracy values above 90%: i) two wrists 198	

with QDA, ii) all with QDA and iii) all with SVM. 199	

Table 4 here 200	

The accuracy of the classifiers for each category is shown in Figure 4. It can 201	

be observed that those with the lowest values are body transfers and 202	

locomotion. It is also noteworthy that the accuracies of the body transfer 203	

and housework categories seem to be the most dependent on the number of 204	

accelerometers used, whereas the accuracy of the other three categories is 205	

fairly stable, regardless of the number of accelerometers and algorithms 206	

used. 207	

Figure 4 here 208	

Finally, Table 5 shows the confusion matrix of the QDA classifier for 209	

grouped-activities, which uses information from the accelerometers on both 210	

wrists. As shown, the rate of properly classified sedentary activities is very 211	

high (93.75-100%) and only 6.25% of the cases of working with computers 212	

or passive propulsion are misclassified. The classification error in the 213	

locomotion category is mainly due to the fact that the slow propulsion 214	

activity is misclassified as housework in 39.34% of cases. In the housework 215	

category, high accuracy values are observed for both activities. 90.56% of 216	

the moving items cases and 85.94% of the mopping cases were properly 217	
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classified. 14.41% of the transferring activity cases were misclassified as 218	

housework. Finally, it is noteworthy that 100% accuracy is reached in 219	

moderate physical activity  220	

Table 5 here 221	

DISCUSSION 222	

In the present work we designed and implemented several classifiers using 223	

only recordings from accelerometers in SCI patients to distinguish a) 10 224	

individual activities and b) 5 categories of grouped-activities according to 225	

the activity's aim or function. None of the classifiers obtained an overall 226	

accuracy over 73% in identifying the 10 activities, regardless of the number 227	

of accelerometers and the algorithm used. The relatively low values are 228	

most likely due to the fact that some of the activities shared similar patterns, 229	

e.g. watching television, working with a PC or passive propulsion. 230	

Additional information would be needed to overcome this limitation.  231	

When the activities were grouped by their aim or function, promising results 232	

were obtained. In general it has been observed that the more accelerometers 233	

used, the higher the classifier accuracy. Three classifiers were obtained with 234	

an average accuracy above 90%: i) two wrists with QDA, ii) all with QDA 235	

and iii) all with SVM. In configurations ii) and iii), the use of four 236	

accelerometers did not provide a significant increase in the accuracy of the 237	

classifier using the QDA algorithm. Compared with configuration iii), 238	
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classifier i) has the advantage that the QDA algorithm is computationally 239	

much more efficient and could be easily implemented in a real-time system. 240	

Moreover, using only two accelerometers greatly simplifies the recording 241	

protocol and also improves patient comfort during recording. This suggests 242	

that the optimal setting of the classifier to distinguish the 5 categories of 243	

SCI activities tested was obtained with the QDA algorithm and the 244	

accelerometers on both wrists.  245	

Sedentary activities and moderately intensive physical activities obtained 246	

good rates of correct classification (always above 93.75%). These results are 247	

comparable with those of other authors, who obtained 92% accuracy in 248	

distinguishing different activities in SCI patients19. However, in this latter 249	

study six accelerometers were used and only two categories were classified: 250	

two types of wheelchair propulsion versus other activities:	 lying down, body 251	

transfer, doing dishes19. The accuracy values obtained in the present work 252	

are similar to those obtained by other authors20: obtained 96.2% in 253	

identifying 4 types of activities (rest, deskwork, arm-ergometer and 254	

propulsion). Unlike other authors, who used input variables of acceleration, 255	

galvanic skin response, skin temperature and near body20, in the present 256	

work only acceleration data (from the two wrists) was used.  257	

On the other hand, the accuracy values obtained for the activity recognition 258	

systems in SCI patients compare favorably with those published regarding 259	

the able-bodied population. Trost et al.16 obtained 88.4% accuracy in 260	
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classifying activities clustered into the following categories: sedentary, light 261	

household activities and games, household activities and moderate-to-high-262	

intensity sports, walking and running. Also in this context Khan et al.12 263	

reached 97.9% of properly classified recording time in the following 264	

activities: lying, standing, walking and running. Liu et al.13 combined 265	

several sensors (two accelerometers and a flow meter) and achieved 84.7% 266	

correct classification in 13 different activities. Therefore, the activity 267	

recognition systems proposed in the present study show similar accuracy to 268	

those in other populations when considering groups of similar activities. 269	

It is remarkable that the grouped-activities classifier, employing the 270	

recordings from 2 accelerometers with the QDA algorithm, often identified 271	

some locomotion activities, such as housework. In spite of the fact that rapid 272	

propulsion was correctly distinguished from other household chores, 273	

probably due to the greater magnitude of the accelerations, slow propulsion 274	

was misclassified as housework in 39.34% of cases. This may be because 275	

while performing household tasks (mopping or moving objects) the subjects 276	

had to propel the wheelchair at a slow speed (similar to slow propulsion). 277	

The inclusion of additional parameters that take into account the temporal 278	

structure of the data or the variation of the spectral parameters over time 279	

could help to improve accuracy in these cases.  280	

Finally, this study has some limitations. Firstly, it would be advisable to 281	

expand the database in terms of the numbers of both subjects and activities. 282	



	15

Secondly, although some extent of variability has been included in the data 283	

used to design the classifiers since participants used their own wheelchair 284	

which could have different dynamic responses for each of the movements, 285	

the physical activities were carried out in a controlled environment, 286	

following the instructions of a supervisor, with a break between activities so 287	

as to minimize fatigue. Future studies should confirm the good results 288	

obtained in this work in conditions closer to everyday life. In such 289	

conditions events such as transitions between activities, the type or 290	

inclination of the surfaces, etc. could worsen classification accuracy. In 291	

summary, we believe that this work provides the basis for a minimally 292	

intrusive expert system that would monitor daily physical activity in SCI 293	

subjects, for whom monitoring is of great significance. 294	

In short, the highest accuracy values (83.2 - 93.6%) were those obtained on 295	

activities grouped according to objective or function. Classifiers of 296	

individual activities showed lower classification accuracy (55 – 72.5%). The 297	

best performance was obtained from four accelerometers and QDA or SVM 298	

algorithms. However, an activity recognition system with good accuracy (> 299	

90%) was also achieved with only two accelerometers and the QDA 300	

algorithm. Due to the fact that 2 accelerometers are less stressful for the 301	

subject, it would be useful to implement this system in future studies to 302	

identify activities in subjects with spinal cord injuries. 303	

304	
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TITLES AND LEGENDS TO FIGURES 

 

Figure 1. Location of the accelerometers 
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Figure 2. Schematic overview of the process to obtain the individual activity classifiers. The process is the same for individual 
and grouped-activity classifiers. 



	20

 

Figure 3. Accuracy of the classifiers for individual activities with the algorithms: Top- linear discriminant analysis, Middle-

quadratic discriminant analysis and bottom-support vector machines. 
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Figure 4. Accuracy of the classifiers for grouped activities with the algorithms: Top- linear discriminant analysis, Middle-

quadratic discriminant analysis and bottom-support vector machines. 
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Table 1. Subject’s characteristics. 

Subject 
Neurological 

level 
AIS Score 

Time of 
injury 

Aetiology 

1 T4 B 229 Trauma 

2 T11-12 A 264 Trauma 

3 T4 A 88 Trauma 

4 T7 A 81 Trauma 

5 T5 A 24 Trauma 

6 T4 A 236 Tumour 

7 T4 A 34 Trauma 

8 L5-S1 B 59 Surgery 

9 T10-11 A 233 Trauma 

10 T5 A 359 Trauma 

11 T4-5 A 153 Trauma 

12 T12 A 401 
Congenital 
sclerosis 

13 T4 A 90 Trauma 

14 T5 A 290 Trauma 

15 T5 A 122 Trauma 

16 T5-6 A 79 Tumour 

17 T7 A 67 Trauma 

18 T12 A 19 
Multiple 
sclerosis 

19 T12-L1 B 435 Trauma 

20 T5 A 193 Trauma 

Time of injury is expressed in months. AIS = American Spinal Injury 
Association Impairment Scale. 
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Table 2. Accuracy of the individual-activities classifiers 
 

 Dominant 
Non-

Dominant 
Two wrists All 

LDA 61.4 63.3 62.9 69.3 
QDA 55 63 67.8 72.5 
SVM 59.1 61.5 68.9 65.9 
 
Data are expressed as a percentage of total cases that belong to that 
category. LDA = Linear Discriminant Analysis; QDA = Quadratic 
Discriminant Analysis; SVM = Support Vector Machines. 

 

Table 3. Accuracy of the grouped-activities classifiers 
 

 
 

Dominant 
Non-

Dominant 
Two wrists All 

LDA 85.9 83.9 87.1 89.4 
QDA 84.5 86.7 90.4 90.7 
SVM 83.2 87 86.8 93.6 
 
Data are expressed as a percentage of total cases that belong to that 
category. LDA = Linear Discriminant Analysis; QDA =Quadratic 
Discriminant Analysis; SVM = Support Vector Machines. 
	



	27

Table 4. Confusion matrix of the QDA classifier, implemented using 
information from two accelerometers placed in both wrists, for grouped-
activities. 
 

   QDA grouped-activities classifier 

   Sedentary 
Locomotio

n 
Housewor

k 

Body 
transfer

s 
MPA 

R
ea

l t
yp

e 
of

 a
ct

iv
it

y 

Se
de

nt
ar

y 

Lying down 100 0 0 0 0 

PC work 93.75 0 6.25 0 0 

Watching 
TV 

100 0 0 0 0 

Passive 
propulsión 

93.75 0 0.09 6.16 0 

Lo
co

m
ot

io
n Slow 

propulsion 
0 60.66 39.34 0 0 

Fast 
propulsion 

0 93.75 6.25 0 0 

H
ou

se
w

or
k Moving 

ítems 
0 0 90.56 9.44 0 

Mooping 0 7.25 85.94 6.81 0 

B
od

y 
tr

an
sf

er
s 

Transferrin
g  

0 0 14.41 85.59 0 

M
P

A
 

Arm-
ergometer 

0 0 0 0 100 

 
Data are expressed as a percentage of total cases that belong to that category. MPA 
= Moderate Physical Activity, QDA =Quadratic Discriminant Analysis 
 

 


