

ASSESSMENT OF DISTANCE

MEASUREMENT USING A 3-

AXIS DIGITAL ACCELEROMETER

Guillermo Puchalt Casáns
Miguel Alcañiz Fillol, Rafael Masot

Master's Degree in Sensors for Industrial Applications

School of Design Engineering

1

Contents

Abstract ... 1
1. State of the Art .. 2
2. Materials and Methods ... 5

2.1. Design of the pedometer .. 5
2.1.1. Aspects to be considered .. 5
2.1.2. Block Diagram of Device .. 6
2.1.3. Design of hardware ... 6
2.1.4. Design of firmware .. 11
2.1.5. Design of software .. 16

2.2. Design of the processing algorithms ... 17
2.2.1. Aspects to be considered .. 19
2.2.2. Integrate all the data approach ... 19
2.2.3. Integrate the data in batches approach .. 21
2.2.4. Integrate the data in steps approach .. 21

2.3. Design of the experimental setup ... 25
2.3.1. Other pedometers used for comparison... 25
2.3.2. Protocol Followed ... 25

3. Results and Discussion .. 30
3.1. Aspects to be considered .. 30
3.2. Observations of integrating all the data (R2=0,9710) .. 30
3.3. Observations of integrating the data in batches (R2=0,8513) 34
3.4. Observations of integrating the data based on the steps (R2=0,9835 (XYZ) and
R2=0,9791 (XZ)) .. 34
3.5. Comparison ... 36

4. Conclusions and Improvements .. 37
5. Bibliography .. 38
Annex 1: PIC Firmware implemented ... 40
Annex 2: Commands used between Microcontroller – PC ... 55
Annex 3: Device schematic.. 57
Annex 4: Description of the Computer Interface .. 58

Assessment of distance measurement using a 3-axis digital accelerometer

1

Abstract

This project consisted on evaluating the capability of a triaxial accelerometer as a straight

forward distance measuring pedometer as the current existing ones rely on a user calculated

mean stride for multiplication with the step count. A device was developed for the purpose using

the ADXL345 triaxial accelerometer and the PIC18LF14K22 microcontroller in combination with

MATLAB for data filtering and processing. Three approaches were taken in consideration when

calculating the distance walked by the subject through double integration of the acceleration

(integrating all the data (R2=0,9710), integrating the data in batches (R2=0,8513), integrating the

steps (R2=0,9835) and integrating the steps (only XZ axes) (R2=0,9791)) and results were

contrasted against a mechanical pedometer (R2=0,9947), a smartphone app pedometer

(R2=0,0266) and the real distance walked. From this project it was known that using an

accelerometer and any of the three approaches a distance of at least five meters could be

measured with a coefficient of variation of 4,2278%, although the first approach proved to be

very reliable for distances of twenty meters (Cv=2,5622%).

Keywords: accelerometer, distance, pedometer, double integration

Assessment of distance measurement using a 3-axis digital accelerometer

2

1. State of the Art

A pedometer is a device used to measure daily activity in the form of a step count.

Nowadays pedometers offer other functions, like calorie counter, time exercising, mean speed

and above all, distance traveled. But there is a catch to this function, and is that it does not

measure the truly distance traveled, but it counts the number of steps the user has done and

multiplies it by a mean value of the user’s stride. This method is not reliable for knowing the true

distance the user has traveled because the stride’s length can vary for various reasons:

a) If the user walks at a slow speed, or has a considerably body mass, the steps will not be

counted, consequently, less distance [1].

b) If the user performs longer, or shorter, strides for any particular reason1, the total

distance traveled will be different than the real one is.

c) Any movement done by the body besides walking could increase the step count,

therefore, greater distance will be displayed.

d) If the user has a peculiar gait, the step count will not be consistent, hence the distance

traveled will be different than the real one.

But besides those general problems, there are also some special problems depending on the

type of technology used by the pedometer. On the market there are three types of technology

regarding pedometers [2]:

1) Based on a mechanical system (Figure 1, pg 4)

This type of technology is the cheapest of all three but comes with its own

drawbacks. It is composed of a pendulum that moves vertically up and down when a

step is done, and such movement activates a switch, increasing the step count. Because

of this type of behavior, the pedometer brings some problems, besides those already

mentioned:

a) It must be perpendicular to one of the legs, otherwise it will not count the

steps accordingly. This happens because the pendulum moves due to hip

movement as a consequence of setting the foot down. If the pedometer is

not in line with the movement propagation up the leg, the pendulum will

not work.

b) Every step has to be uniform as any abnormal movement of the legs will not

move appropriately the pendulum and miscount the step, or count more

than once.

c) The return spring that stabilizes the pendulum can wear off over time and

make the pedometer more sensitive to slightly active movements. Although

this is one of the reasons usually found, according to [3], after intensive use

the pedometer will have an error less than 5% in relation with the amount

of steps counted.

1 Like walking up, or down, a hill or stairs

Assessment of distance measurement using a 3-axis digital accelerometer

3

d) Because the pendulum relies on the vertical propagation of the step

movement, if the user is walking up, or down, a hill the pendulum will not

move appropriately either.

2) Based on an acceleration sensor

This type of technology is the most reliable on the market as it detects the

acceleration caused by the movement propagation of the step. Because of its multiple

axes, positioning of the pedometer in the body is not as crucial as the previous type of

technology. Yet, it still has its problems, like those described in general terms

beforehand.

Although the device developed also relies on an accelerometer it differs from

the pedometers using this type of technology that it provides the distance measurement

directly rather than being calculated from the amount of steps.

3) Based on a GPS receiver

This type of technology is the most expensive of all, but can give really good

results. Of course, it will work only if the user is physically moving in space and it receives

a strong GPS signal. Therefore, when walking on a treadmill, or being indoors, or being

in a location with no GPS signal reception, the pedometer will not measure the distance

traveled accurately.

 The objective of this project is to create a low-cost pedometer that measures the distance

traveled, indoors or outdoors, with the aid of acceleration measurements, without knowing

the amount of steps or the mean stride length or relying on other types of position data2. This

way, the true distance traveled will be measured accordingly and independently of the speed of

the user, its stride variation, its gait, where it goes and what it does.

Of course, walking in a treadmill will not be possible either as the device will physically be in

the same region of space rather than moving forward.

2 Based on [16], gyroscope data can be left aside because during gait the rotational components can be
redefined as a function of translational components of acceleration (if it was necessary to now the
rotational components) because such components are large enough to be detected. If, like in aerospace
navigation, the rotational components were small then they could not be a function of translational
components as they will be too small to be detected.

Assessment of distance measurement using a 3-axis digital accelerometer

4

Figure 1: Insides of a pedometer with a mechanical system

Pendulum

Hair – Spring Electric Contact

Assessment of distance measurement using a 3-axis digital accelerometer

5

2. Materials and Methods

2.1. Design of the pedometer

2.1.1. Aspects to be considered

From the read literature, two key features of the device’s characteristics were
established. These features were:

 Sampling frequency of 100 Hz or higher

Despite that the data will be filtered through a low pass filter at
approximately 20 Hz, sampling was carried at 100 Hz. In most of the literature
the sampling frequency was between 60 Hz and 500 Hz, being 100 Hz the most
used sampling frequency.

 Acceleration range of ±2g

Based on the conclusions from [4], the acceleration sensor should have
a range of ±6g. Reviewing the article in depth it was found that when walking
the acceleration amplitudes at the pelvis were of [-0.3 0.8]g in the vertical axis
and ±0.2g in the horizontal axis while walking. Based on this data, a range of ±2g
was selected as the sensor used does not allow for anything smaller.

Each data package that represented one sample of the acceleration profile had the
following structure of 8 bytes:

1) Start byte
2) 6 bytes of data (in pairs of 2 bytes per axis as the data is of 10 bits of length)
3) Checksum

At lab the available wireless circuits were not sufficient for transmitting in real time the

amount of data produced every second and store it in file at the computer3. To solve this issue,
instead of transmitting the data wirelessly, it was stored in a memory chip and later downloaded
to the computer with the help of an UART – USB converter cable.

3 Although the wireless circuit used was capable of a baud rate of 9600 bps (the circuit generated 6400
bits per second), experimentation showed that the computer was not capable of receiving such amount
of data.

Assessment of distance measurement using a 3-axis digital accelerometer

6

2.1.2. Block Diagram of Device

2.1.3. Design of hardware

The device circuit was developed using Proteus 8 Design Suite software, transferred to
a two side PCB (Figure 2, pg 7) through photoengraving, and applied chemical etching.
Consideration was taken for the battery pack placement and fixing4, as well as the sensor fixing
to the PCB5. The latter is a crucial aspect of the device because if the sensor was badly fixed to
the circuit board, it will resonate while the subject walks and it will record its own acceleration
oscillations6.

Due to the communication problem discussed earlier7 a memory chip had to be chosen for

data collection. By recommendation of the directors, it was used a SPI flash memory chip, but
several requirements had to be fulfilled:

A) Memory capacity

The amount of memory required for the gathering of data was

calculated based on a 5-minute time span of data gathering and the amount of
data generated per second in bits:

(3 axes x 2 byte/axis + start byte + checksum byte) x 100 samples/s = 800 bytes/s

800 bytes/s x 5 min x 60 s/min = 240 kB
240 kB x 8 bits/byte = 1.92 Mb

So the memory’s capacity had to be equal or greater than 1.92 Mb.

4 The battery pack was placed in the bottom layer and caution was taken that all of the electronic
components were placed facing up in the top layer so that they do not overlap.
5 The holes used for fixing had to be placed somewhere where they had minimal impact to the paths.
This could not be done for the battery fixing holes as it was fixed in the middle as described earlier.
6 Mechanical Considerations for mounting, pg 28 [5]
7 Aspects to be considered (pg 4)

Assessment of distance measurement using a 3-axis digital accelerometer

7

Holes for the
sensor fixing

Holes for the
sensor fixing

Figure 2: PCB representation with all the components and board dimensions

Assessment of distance measurement using a 3-axis digital accelerometer

8

B) Sequential writing function8

This function is crucial for the device’s operation as it allows for faster writing
procedures of data in the memory chip in comparison with singly byte writing
procedures.

C) Erase all memory command

Of the memory chips searched, some didn’t have this command available.
Instead, the memory chip had to be erased with multiple executions of the erase
command9. For simplification of the firmware design it was preferably that the
memory chip had this function available.

D) Availability in Proteus 8 Design Suite

Although it is not an essential feature to be fulfilled, it will simplify much the
debugging process of the firmware design using Proteus 8 Design Suite. Additionally,
if the memory chip is already in the program’s library it will also have its packaging.

E) Had to be available at Farnell Components preferably

This feature was more of a recommendation from the directors as they were

already about to make a purchase of materials for the department from this
provider.

Using the electronic components search engine Octopart10 and looking over the datasheets

of the obtained results, the 2Mb flash memory chip SST25PF020B (Figure 4, pg 9) was the best
candidate. It met all of the requirements except for one: It was not available in the Proteus 8
Design suite program.

This inconvenience for the hardware design was solved by using a random chip that shared
the same package (SOIC-8) and reassigning the pinout numbers in the same way that the original
memory chip has. In the case of the firmware design process, the problem was solved by
substituting the flash memory chip for an SRAM memory chip (23A256) that was available in the
Proteus 8 libraries.

The behavior between both memory chips is similar regarding for the reading and writing
data sequences. The only important difference between both of them came on the way they
handled the sequential writing instruction sequences. While the SRAM memory only required
at the beginning of the sequence the sequential write command, the Flash memory required at
the beginning the sequential write command and the 3-byte address, and for every two desired
bytes to be written, the sequential write command had to be sent beforehand again.

One final aspect to comment about the flash memory chip is that during testing it was found
out that a decoupling capacitor of 0.1 µF was required for filtering noise from its power supply
pin (Vdd) for proper operation or it wouldn’t work at all.

The accelerometer used in the device was the ADXL345, which is a widely used MEMS

accelerometer. It is integrated in a PCB (Figure 5, pg 10) alongside with a compass, a gyroscope,
a barometer and a thermometer. The most frequent use of this type of sensors is for inertial

8 This function allows writing several bytes continuously without having to write every time the address
to store each byte.
9 Depending on the memory chip, it could be erased by sector of memory of different sizes but nor the
entire memory available.
10 https://octopart.com

Assessment of distance measurement using a 3-axis digital accelerometer

9

Figure 4: Breakoutboard with a similar memory chip used (the difference relies on the
operational temperature range).

Nº Board Component

1 Accelerometer

2
Mechanical fixing of multi-sensor
board to PCB

3
Power supply and selection
jumper

4 Mechanical fixing of battery pack

5 Decoupling capacitor

6 Microcontroller

7 UART communication port

8 Status LEDs

9 Memory chip

10 Firmware download port

11 Mode selection push button

12 Battery pack (2xAA)

Figure 3: Final product of device with component indication

1

3

5

4

6

2

10

11

7

12

8

9

Assessment of distance measurement using a 3-axis digital accelerometer

10

Compass
Gyroscope

Accelerometer
Pressure and Temperature Sensor

Pins used

Figure 5: GY-80 PCB sensor platform used

Assessment of distance measurement using a 3-axis digital accelerometer

11

measuring equipment for airplane navigation, medical equipment, gaming and pointing devices,
industrial instrumentation and hard disk drive protection [5].

This accelerometer presented the same problem as the flash memory chip with Proteus 8
Design Suite. It was substituted for debugging purposes by the I2C controlled ADC converter
(MCP3424). Three signals were attached to simulate acceleration measurements. Little
difference was found between both of them besides the commands used for communication.
Meanwhile, its package footprint did not present a challenge as it was already integrated in a
PCB and had a 0.1” SIL pinout for interfacing with the device.

The microcontroller used in this project was the PIC18LF14K22 8-bit microcontroller

which is ideal for this master’s degree final project, due to its capacity, cost and flexibility.
Additionally, it was used in different subjects of the Master, so the available tools to work with
it were already available. It was operated with a clock frequency of 16 MHz11.

During design it was evaluated if the device will be powered by a 3xAA (4,5V) or 2xAA
(3V) battery pack. The difference between using each one of them relied on whether using a
3,3V low-dropout linear voltage regulator or not. Because all of the components used could work
at 3V or lower it was decided that with a 2xAA battery pack will be sufficient for the power needs
of the device. Just in case, it was added the possibility of allowing the device being powered by
an external power source so that the batteries were not consumed while debugging.

Furthermore, during the hardware designing stage, it was considered that it was needed
three LEDs for debugging purposes that will act as indicators of mode in which the device is
working (Figure 3, pg 9).

2.1.4. Design of firmware

For the design of the microcontroller firmware, it was used MPLAB X IDE and C

programming language, aided with the Proteus 8 Design Suite software for basic debugging

(Figure 6, pg 12) . As mentioned previously, some hardware components were not available in

Proteus 8 Design Suite and were substituted by components that had certain resemblance with

the originals12. Of course, once the final hardware was created, the debugged firmware had to

be changed to adapt to such hardware and debug again although much less thoroughly.

Besides the debugging adaptation problem, there was a communication problem. As

mentioned previously, it was used SPI and I2C communication simultaneously because the

acceleration sensor cannot communicate through SPI13. So, in order to overcome this problem,

an improvised software based SPI communication system was developed using four GPIO pins

as the clock, input, output and CE̅̅̅̅ pins. The SPI communication sequence worked as follows:

1) CE̅̅̅̅ pin set to zero

2) SCL pin set to cero

3) MOSI pin set to the result of applying an AND mask with the number 0x80 and

shifting to the left seven times

11 It was the fastest clock speed that the internal oscillator of the microcontroller could achieve. This was
the amount of time of capturing the acceleration data and storing it in the memory chip was reduced to
the minimum amount of time.
12 Design of hardware, pg 5
13 Technically speaking, it can communicate through SPI, but the PCB sensor board had the connections
made for I2C communication and they couldn’t be modified.

Assessment of distance measurement using a 3-axis digital accelerometer

12

Figure 6: Diagram of how the device is used during the data capture procedure described in pg 25, Protocol Followed (in red at firmware level and
in blue at procedure level)

Assessment of distance measurement using a 3-axis digital accelerometer

13

4) Input data variable is rewritten with the original variable shifted to the right once.

5) SCL pin is set to one

6) Output data variable is set to be the result of adding the logical value of the MISO

pin and the result of shifting once the output data variable

7) Repeat steps 1-5 another seven times

8) If the RW variable is one (indicating that the function was called for a reading

purpose), return the output data variable.

9) CE̅̅̅̅ pin is set to one

I2C communication was performed using the PIC18F14K22 MSSP peripheral and the I2C

library available.

A function was implemented that combined the software based SPI communication and

the I2C communication systems14. That way, the firmware was simplified as it was required many

times to use one of the communication systems.

When the device is powered up, all the required peripherals15 of the microcontroller are

configured, as well as the memory chip16 and the sensor17, and the microcontroller is set for the

one of its operational modes.

There are 5 different operational modes that run their functions once the external

interrupt is activated by the device’s button. In order to avoid multiple external interrupts

because of the bouncing of the signal of the button, Timer3 was used as a debouncing

mechanism. By using the timer, two conditions (timer and external interrupt activation) had to

be achieved in order to change mode with the button.

These modes are:

a) Standby prior offset calculation (Green LED off, Red LED on, Orange LED on)

This mode is responsible for erasing the memory chip completely so that the

new data does not get mixed with old data. When the device powers up, it starts on

this mode but doesn’t execute its functions as the interrupt handler hasn’t been

called.

b) Offset calculation (Green LED off, Red LED off, Orange LED blinking)

This mode is responsible of calculating the offset of each axis. Once the offset is

calculated, this mode will not allow any recalculation of the offset until the device

µC is powered down18.

14 pg 13 for further details
15 Timer0, Timer1, Timer3, USART, MSSP (for I2C communication for the acceleration sensor), Internal
oscillator, Interrupts configuration and GPIO configuration for the software based SPI system, LEDs, and
button.
16 Disabling overwrite protection
17 Full resolution mode, right data justification, ±2g range (register 0x31 pg 26 [5]), Stream FIFO mode
(register 0x32 pg 27 [5]) and setting the output data rate at 200 Hz (register 0x2C pg 25 [5])
18 A reset command will also work

Assessment of distance measurement using a 3-axis digital accelerometer

14

There is a 10 second delay (with Timer1) prior to executing this function. That

way, if the user doesn’t want to execute an offset calculation process it can press

again the button before the time is up.

Once the delay has elapsed, the device turns on the sensor, resets the offset

variables inside the microcontroller, and captures n samples19 of data at a rate of

100 Hz20. Once the samples were collected, a mean value was calculated for each

axis, divided by the sensitivity of the sensor and multiplied by -120. Because the Z

axis is in an upright position, the offset calculated will have registered the value of

gravity as well. This value was subtracted from the mean value calculated, assuming

perfect sensitivity. As mentioned in the sensor’s datasheet, sensitivity can vary for

different reasons and by so, the Z axis offset result can be different than what should

actually be. Based on the example given in the sensor’s datasheet this aspect can be

discarded as the error due to sensitivity differences is minimal.

c) Standby for capture of data (Green LED off, Red LED on, Orange LED off)

This mode holds the device on standby previous to the capture mode while the

device is set in its final position on the subject. This mode is crucial as offset

calculation is done on a flat surface rather than on the subject.

d) Capture of data (Green LED blinking, Red LED off, Orange LED blinking)

In this mode, the device captures the data relative to the acceleration profile

that the acceleration sensor detects. Before capturing data, the memory chip is

prepared for the sequential writing processes and the sensor is turned on. Once the

preparations are completed, Timer0 is enabled and the capturing process begins.

For every time the Timer0 interrupt activates, the interrupt handler does the

following:

1) Reload of Timer0 registers based on the selected sampling frequency. Turn

the orange LED on and toggle the green LED.

2) Assign the starting value to the checksum byte of the data package.

3) Read the data from the registers that correspond to the axis of interest with

the help of the communication function. Because the function returns the

value as a 16-bit integer, the number has to be fragmented in 2 8-bit

integers. Each individual number is set in its corresponding position in the

data package21.

4) Add to the checksum byte of the data package the two new bytes.

5) Repeats steps 2-4 for the two other axes.

6) Add one to the data package counter variable.

7) Send the data package to the memory chip.

8) Turn off the orange LED.

19 The amount of samples to be taken is specified by the constant samples
20 Following the recommendations given by the sensor’s datasheet ([5] pg 30)
21 The data package sent to the memory chip has 8 bytes has this structure: Start byte – X axis 2nd byte –
X axis 1st byte – Y axis 2nd byte – Y axis 1st byte – Z axis 2nd byte – Z axis 1st byte – Checksum

Assessment of distance measurement using a 3-axis digital accelerometer

15

The LED control is important during the capture mode as indicates that the

capture process is happening (green LED) and allows to measure with an

oscilloscope the duration of the capturing process (orange LED). This is proven

useful when debugging the firmware in order to evaluate if the firmware fulfills the

timing requirements of the sampling frequencies22.

e) Computer communication (Green LED on, Read LED on, Orange LED blinking)23

In this mode the device is under the control of the computer interface. It is used

mainly for transferring the acceleration data to the computer, but it is also used for

debugging purposes (selecting a different sampling frequency, controlling the

memory chip or the sensor, microcontroller reset, etc). Additionally, this mode

disables any chance of writing in the memory chip by accident as well as turn off the

sensor.

Data packages sent and received from the computer interface vary in length. In

the case of data packages received from the PC, this were always 5 bytes long24

whereas the data packages received from the device varied from 3 to 10 bytes,

depending on the data transmitted.

Last but not least, the entire process of capturing and storing data in the memory chip

had to be fast enough in order to accomplish the desired sampling frequencies. To achieve this

goal, two sections of the firmware went through trial and error experimentation to test the time

it took to capture and store data. This amount of time was measured by using the oscilloscope

and testing when the orange led turned on and off. Such sections were:

A) The Timer0 interrupt handler

The interrupt handler had to be as simple as possible. One feature that

is seen in the code is that the checksum function is not used although it

existed. From experimentation it was observed that calculating the

checksum manually made the handler faster.

Additionally, the sequential write process was helpful with this task, as

it only required 3-byte packages consisting of the sequential-write

command and two of the 8 bytes of each data package. The initialization of

such process was carried when the capture mode was selected.

B) The communication function

The communication function proved to be a challenge among all the

programming as it was called up to 15 times per data capture (3 times for

reading data of each axis, and 4 times for every data package sent to the

memory chip). It had to be fast enough so that the sampling frequency

timing requirements could be achieved.

22 See pg 5 for further explanation.
23 See Annex 2: Commands used between Microcontroller – PC for details on the commands used
24 The structure of the data package was: Start Byte – Command Byte – Data component nº1 – Data
component nº2 - Checksum

Assessment of distance measurement using a 3-axis digital accelerometer

16

On the first versions of the firmware, the way to differentiate between

SPI and I2C communication was with the who variable and detecting it if was

positive (representing the I2C addresses) or negative (SPI communication).

From experimentation it was observed that if instead of detecting a negative

value, it was detected a positive value (one higher than the highest I2C

address value), the communication function worked much faster. Also, the

reset of the output variable of the I2C communication part was done only

when such communication was required, hence saving more time.

One aspect of the I2C communication that affected the design of the

function was that two bytes could be read from the sensor. So rather than

setting the output of the function as an unsigned char, it was set as an

integer, so that two bytes of data could be passed out and later the firmware

process the data and separates the number in two independent bytes.

2.1.5. Design of software

The computer interface that will access and control the device was implemented with GUIDE

in MATLAB R2012b. It was designed for basic communication with the device as well as for data

retrieval. Data processing is done through separate scripts as described in the next chapter.

The interface has four buttons at the left side that take care of data recovery, manual

memory erase and sending specific commands. Such commands can be chosen from the drop

down list of pre-established commands but can only be sent if the manual control mode is

enabled in the interface. There are two text boxes for establishing addresses and data to be sent

through the I2C/SPI buses. These text boxes are enabled only when the selected command

requires of such information.

There is another dropdown list for selecting the PC communication port that is connected

to the device25.

Communication from the device to the computer had certain complications as the received

data packages were sometimes incomplete. A command26 was programmed in the firmware so

that in case of such problem it will ask the microcontroller to transmit again the last data package

sent.

All of the received data packages that were related to the device operation contained the

relevant information between the start byte and the checksum and are displayed directly in the

interface. Meanwhile, the data packages that carry the measured acceleration have a different

structure27. This way it is checked if data had been lost during the transfer.

Because the acceleration data is a 10-bit long number per axis, each piece of data has 6

bytes/sample28, and when received at the computer they are converted into three digital

25 In case the computer has multiple available communication ports.
26 Annex 2: Commands used between Microcontroller – PC, command 19.
27 Start byte – 2nd byte of data package number – 1st byte of data package number – Data bytes –
Checksum
28 Where each two bytes represent an acceleration value in one axis.

Assessment of distance measurement using a 3-axis digital accelerometer

17

numbers with the help of function. This function combines each pair of bytes into one number

and because the numbers are in two’s complement, they are converted to regular numbers first.

Once all three numbers are converted from their bytes, they are written into a text file and saved

at the established destination29. The number was not converted into international units in the

data retrieval process because the sensitivity value could be changed between experiments.

They were converted at the processing scripts.

2.2. Design of the processing algorithms

Development of the different processing algorithms was done using MATLAB software once

the data was captured. All of the scripts written had a basic structure:30

1) All of the repetitions of the acceleration data set files are read and converted into

international units (m/s2).

2) Each repetition has its own structured variable associated, where any processing of the

repetition is stored. Because the sensor recorded the moments in which the device’s

button is pressed, the scripts cuts away the first 5 seconds of data and the last 1531.

3) Absolute acceleration values are calculated in case of being needed, as well the gravity

value measured, the time vector, the frequency vector and its name32.

4) Double filtering processing of each repetition of the data set.

5) Data processing.

6) At the end of the script, a table is created showing calculated distance walked, standard

deviation, 1st harmonic, number of steps and time taken to walk the distance33.

Consideration was taken on if data of all three axes had to be used or not. Based on [6], the

reference plane parallel to the ground will be recording the foot down and heel up event

acceleration responses. Such data doesn’t represent at all the inertial movement of the body

and excluding it could make the data processing much easier.

But because the reference planes are tilted, the acceleration component due to body

movement is distributed along all the axes and hence elimination of one of them will omit part

of valuable data. Still, an attempt was carried in one of the algorithms to process the data by

removing the data of the axis that represented the most of such unwanted acceleration data,

whereas in the other algorithms the absolute magnitude of acceleration was used.

Within each algorithm there is a pseudo-algorithm responsible for counting steps. This

pseudo-algorithm is independent of the data processing algorithms but it does use both filtering

29 In this Project, the files were named following a specific structure: Distance walked – Repetition
number – Location in the body – if it had offset
30 Following more or less the guidelines established at [14]
31 Further explained on 2.3.2 Protocol Followed pg 18
32 Except for the frequency vector, each aspect of each repetition of the acceleration data set is slightly
different to the others. That is why the time vectors and gravity values were calculated for each
repetition.
33 All other numerical values of interest were displayed through the command window in MATLAB.

Assessment of distance measurement using a 3-axis digital accelerometer

18

Figure 7: First data set for 30m distance

Assessment of distance measurement using a 3-axis digital accelerometer

19

stages. It was used for comparison of the data from the device with the data obtained from the

other pedometers34.

2.2.1. Aspects to be considered

Although most of the development were based on the different approaches, the filtering

portion of the algorithms was based partially on the literature used. For instance, on most of the

literature, part of the filtering process consisted on applying a low pass filter with a cut-off

frequency below the 20 Hz mark so that unwanted noise got eliminated.

In some cases [7], it was recommended to apply a high pass filter at very low frequencies

(<2 Hz) so that the gravity component of the data could be attenuated as much as possible.

Although this turned up to be true, it did produce an unwanted response on the data in the form

of ringing. This is believed to happen because any offset in the data due to the gravity

component was interpreted as a step function and filtering of such signal caused such response.

The way this problem was solved was subtracting this offset due to the gravity component,

rather than filtering it out35. Of course, such component was calculated from the data itself as

the acceleration sensor can’t make an exact measure of gravity and subtracting its theoretical

value will still bring the same problem again.

This bandpass filtering is considered the first stage of filtering process of every data set.
The second stage of filtering consists of a low-pass filter with a cut-off frequency at the first
harmonic36 of the acceleration data. This harmonic is believed to correspond to the subject’s
speed in terms of steps/s so any data at higher frequencies is just a harmonic multiple or
acceleration due to other forces. But from trial and error it was observed that a cut-off frequency
at the first harmonic was too strong, so the cut-off frequency was changed to the second
harmonic of the data set.

The frequency value of the second harmonic was not obtained through FFT analysis as
it had been done with the first harmonic, but rather calculated as a multiple of the first
harmonic. This was done as so because the harmonic detection procedure based itself on search
for peaks of power in the FFT analysis results and it was not always found the second harmonic
as the true second harmonic. What happened was that in some occasions the true second
harmonic peak had less power in comparison with other harmonic power peaks.

Testing also showed that using higher harmonics only added noise to the data set and
increased variance in the final results.

2.2.2. Integrate all the data approach

This approach is the simplest of all the ones tried. Basically it integrates all of the
acceleration data after applying both filtering stages to obtain the speed of the subject, and it is
integrated again to obtain the distance traveled. See Graph 1 (pg 20) for an example.

.

34 Other pedometers used for comparison (pg 18)
35 A similar method was used on [12], as one of the algorithms studied in such work was similar to the
basic ideas (filtering, absolute magnitude of acceleration and gravity subtraction) used in the tested
algorithms of this project
36 Found through FFT analysis of each data set.

Assessment of distance measurement using a 3-axis digital accelerometer

20

Graph 1: Graphical representation of results for 30m, integrating all the data

Assessment of distance measurement using a 3-axis digital accelerometer

21

2.2.3. Integrate the data in batches approach

In this approach, the valid acceleration data set was first filtered and then cut in portions
of approximately five seconds in length. Each data portion was subsequently integrated twice.
When integrating speed, it was taken into consideration the final value of the previous data
portion integration as the initial value for the next data portion integration. The same was done
when integrating the speed results into distance. See Graph 2 (pg 22) for an example.

2.2.4. Integrate the data in steps approach

This approach is similar to the previous one but rather than slicing in sections of time,
each portion is limited by each step the subject performs. This way each step is considered as
independent from the rest. According to [6], a step consists on 4 different stages, which consists
of:

1) Stance (heel and toe on the ground)
2) Push-off (heel off the ground, toe on the ground)
3) Swing (heel and toe off the ground)
4) Foot down (heel on the ground, toe off the ground)

Based on [6], the acceleration spikes represent the fourth stage of each step as the heel

touches the ground. Because the device is located at the lower back, each spike represented the
heel strike of each foot rather than from one foot, as reflected in Figure 9. These spikes were
used as markers that delimited each step of interest3738.

Now that each step has its beginning and end point, they are considered as independent

entities and processed each one of them in the same way as done in the previous approaches3940.

There is a difference in the integration stage between this approach and the previous

regarding the initial values for the integration of speed. In the previous approach, each time the
data portion was integrated from speed values to distance, the final speed value of the previous
data portion was considered as the initial value for the next portion. In this approach such
consideration was not taken and each step was treated as if done separately from the previous
one.

Additionally, this algorithm had two different cases in which their difference relied on
using either the acceleration data of the XYZ axes or the acceleration data of the XZ axes. This
way, the acceleration data that represents the most part of the foot down stage is eliminated
and it was tested if such elimination provided any improvements over the results.

37 The first step performed only has one marker (the final heel spike) so it was assumed that the first
step lasted approximately five seconds.
38 See Graph 3, pg 21 for an example of how the acceleration data was treated.
39 The FFT analysis was done over the entire data set as each independent step did not have enough
information to figure out the harmonics of the data.
40 See Graph 4: Graphical representation of the acceleration data, the velocity and distance walked for
every step taken into consideration in the first data set of the 30m session., pg 21, for an example of
how the acceleration data got converted in one of the data sets.

Assessment of distance measurement using a 3-axis digital accelerometer

22

Graph 2: Graphical representation of results for 30m, integrating the data in batches (each batch is
delimited by stars

Assessment of distance measurement using a 3-axis digital accelerometer

23

Figure 8: Graphical representation of the gait cycle (1: Stance, 2: Push-off, 3:Swing, 4:Foot down)

Figure 9: Graphical representation of the acceleration modulus and the 4 stages of a step (Extracted from [6])

4

1

1

2

3

Assessment of distance measurement using a 3-axis digital accelerometer

24

Graph 4: Graphical representation of the acceleration data, the velocity and distance walked for every step taken into
consideration in the first data set of the 30m session.

Graph 3: Graphical representation of the acceleration data used as representation of the different steps performed by one of the
legs (solid line), overlaid over the absolute acceleration measured (dotted line) in the 30m session.

Assessment of distance measurement using a 3-axis digital accelerometer

25

2.3. Design of the experimental setup

In order to evaluate the effectivity of the device and the algorithms, data had to be acquired

of a subject walking in a straight line as steadily as possible. Making turns around a corner or

walking up/down the stairs was not considered in this project as it will have added additional

acceleration data to the Y-axis and the Z-axis respectively. Certain aspects had to be taken in

consideration.

2.3.1. Other pedometers used for comparison

Effectivity of the device was compared against two other pedometers such as a

pendulum based pedometer (Zippy841) and a cellphone app (Noom Walk). According to [2],

there are two more types of pedometers (using a GPS system and using an accelerometer), but

both of them are quite expensive and weren’t used in the experiences carried. Data of steps

counted by both systems was recorded and in the case of the pendulum based pedometer, the

distance traveled indicates in its screen too.

2.3.2. Protocol Followed

In order to evaluate the effectivity of the designed pedometer, a subject walked several

measured distances and repeated each walking session four times. On one hand, the subject

carried the designed pedometer on the lower part of its back, more specifically at the height of

the sacrum (Figure 12, pg 29), as such location is closest to the center of gravity of the human

body42. An alternative position could be in the ankle and hence the device could measure also

distances at low speeds [8]. But from evaluation of [8] where it was placed a similar device on

the waist and in the ankle is concluded that it will register greater variances of acceleration

values and it is more prone to measure activities that are not related to walking43.

Before being used, its offset was calibrated placing our device such as in the figure. Once

the offset adjustment was set, the device was ready to be used for measuring walked distances.

From experience gathered on processing data, and as mentioned in [6], the last step performed

is usually weaker than the rest. This last weak step could not be detected with the different

algorithms, so the subject had to do the final step with the same force as with the other steps

in order to avoid such problem.

On the other hand, the pendulum pedometer was clipped to the belt of the subject at

its right side. Such pedometer required certain calibration, based on the subject physiology like

his weight and the mean distance of a single step. The mean distance of a single step was

calculated by making the subject walk 10 steps, measure the walked distance and calculate the

mean distance of a single step44.

41 Figure 10, pg 24
42 See Figure 13, pg 26, for a picture of the device placement in the subject and Figure 12, pg 26, for a
representation of the axes orientation of the accelerometer.
43 For example, heel tapping or leg swinging
44 0,7793 meters

Assessment of distance measurement using a 3-axis digital accelerometer

26

Figure 10: Pendulum based pedometer used for comparison against the
device and the cellphone app

Assessment of distance measurement using a 3-axis digital accelerometer

27

Finally, the app-based pedometer didn’t required calibration at all, so the subject placed

the cellphone into his right pocket on his pants.

For every set of data collected, before and after each walk, a pause of 10-20 seconds was

performed for two special reasons:

1) The pause at the beginning (10 seconds) allows the accelerometer to stabilize once the

device has been activated on capture of data mode and hence allow easy removal of

any unwanted data recording the movement of the body when starting the device.

Additionally, this data was used to assure that offset had been calibrated correctly and

that the value of sensitivity was the right one by calculating the magnitude of gravity in

such moment, from the acceleration values of the three axes.

2) The pause at the end of the walked distance (20 seconds) follows the same idea of easy

removal of unwanted data when changing from capture of data mode to computer

communication mode. Additionally, when processing the data, it was observed that

there was a certain delay (Figure 11, pg 28) on the stabilization of the signal, so this

additional time helped for this stabilization45.

Distances were measured using a tape ruler and covering a distance up to 30 meters,

creating marks every 5 meters. The subject started at distance 0m and walked until the mark

corresponding the desired distance to be calculated. The procedure used for every distance

walked was the following:

1) Subject is set at the zero distance mark, the pendulums’ previous pedometer distance

measure is set to zero and note was taken of the number of steps counted by the app.

2) Subject sets the device in recording mode and waits 10 seconds before starting walking.

3) Subject walks the desired distance to be measured, with a steady pace.

4) Once the distance desired is reached, subject must immediately stop and wait 20

seconds before stopping the device from recording data.

5) When the waiting period has elapsed, the device is stopped from capture of data mode

and note must be taken from the steps counted by the pendulum based and the app

based pedometers, as well as the distance traveled displayed by the pendulum based

pedometer.

6) Download the acceleration data gathered by the device into the computer and give the

file the appropriate name.

7) Repeat steps 1 through 5 three more times for the same desired distance.

45 There could be two possible causes for this delay

Assessment of distance measurement using a 3-axis digital accelerometer

28

Figure 11: Absolute acceleration data after first filtering stage of the first data set of 30m. The delay is highlighted
in the green box.

Assessment of distance measurement using a 3-axis digital accelerometer

29

Figure 12: Representation of the axes of reference of the acceleration in the body

X

Y

Z

Figure 13: Picture of device placement on subject

Assessment of distance measurement using a 3-axis digital accelerometer

30

3. Results and Discussion

3.1. Aspects to be considered

The results gathered from processing the acceleration data for each distance walked was
studied applying simple linear regression to every set of results and using the coefficient of
determination as a measure of the algorithms reliability. Additionally, for every simple linear
regression, the fitted line will be represented and interpreted as a calibration curve between the
data processed with a specific algorithm and the real distance walked.

Every algorithm has been compared with the data obtained from the pendulum based

pedometer as it has proven to be quite reliable when measuring the distance traveled
(R2=0.9947). This observation should be handled with care because of the limitation of the
pedometer in measuring distances in miles rather than on meters. As seen in Table 2: Statistical
data relative to the distance data gathered from the cellphone app and the pedometer, the
statistical data relative to distance measured by the pedometer is null and this happened
because the pedometers’ sensitivity was not high enough.

The cellphone app data has not been used for comparison as the data gathered was not
consistent during the experimental procedure. As seen in Graph 5Graph 5: Comparison between
simple linear regression of step data gathered by device, pedometer and cellphone app and
Table 1: Statistical data gathered from the cellphone app, pedometer, counted steps and pseudo
algorithm used for counting steps with the device, the data gathered from the cellphone app in
relation with the amount of steps performed was barely consistent (R2=0,0266).

In Table 1: Statistical data gathered from the cellphone app, pedometer, counted steps and

pseudo algorithm used for counting steps with the device, mean values for data points, standard
deviation and minimum and maximum values obtained from every algorithm. Same statistical
data is present in Table 1: Statistical data gathered from the cellphone app, pedometer, counted
steps and pseudo algorithm used for counting steps with the device for the cellphone app and
the pedometer.

Excluding the third algorithm, it is generally observed that the velocity profile has a

sinusoidal behavior. According to [9], this is normal due to forward and backward movement of
the body during conversion of kinetic energy (moving forward) to potential energy (raising the
leg for the next step) and vice versa.

3.2. Observations of integrating all the data (R2=0,9710)

Using this algorithm, the calculated distances followed certain lineal tendency except for the
data point corresponding to 30m walked, as seen in Graph 6: Comparison between pedometer
and device (using the algorithm of integrating all the data) vs the ideal situation. It is observed
that until 25m walked there is a relationship between true distance walked and distance
measured of 0.5. It has been tried to correct the 30m data point by modifying the filtering
procedure but results were worst.

There could be several reasons why this algorithm has problems with the 30m data point,
which include:

a) It could be that due to integration error, this algorithm might not measure further than
30m of walking.

b) Maybe beyond 30m of walking the algorithm still has a linear relationship between
distance measured and true distance walked but with a different calibration curve.

Assessment of distance measurement using a 3-axis digital accelerometer

31

Steps

Cellphone Pedometer

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 6,5000 2,3805 36,6227 5,0000 10,0000 39,0000 1,4142 3,6262 37,0000 40,0000

25 99,0000 184,7052 186,5709 4,0000 376,0000 31,2500 1,2583 4,0266 30,0000 33,0000

20 3,5000 2,5166 71,9032 0,0000 6,0000 25,2500 0,5000 1,9802 25,0000 26,0000

15 112,5000 216,3647 192,3241 0,0000 437,0000 18,7500 0,9574 5,1063 18,0000 20,0000

10 9,2500 7,3655 79,6266 0,0000 18,0000 13,2500 0,5000 3,7736 13,0000 14,0000

5 3,0000 3,8297 127,6569 0,0000 8,0000 7,2500 0,5000 6,8966 7,0000 8,0000

Algorithms Counted

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 38,0000 1,4142 3,7216 36,0000 39,0000 38,0000 1,4142 3,7216 36,0000 39,0000

25 30,7500 0,5000 1,6260 30,0000 31,0000 30,7500 0,5000 1,6260 30,0000 31,0000

20 25,2500 0,5000 1,9802 25,0000 26,0000 25,2500 0,5000 1,9802 25,0000 26,0000

15 19,5000 0,5774 2,9608 19,0000 20,0000 19,7500 0,5000 2,5316 19,0000 20,0000

10 14,0000 0,0000 0,0000 14,0000 14,0000 14,0000 0,0000 0,0000 14,0000 14,0000

5 8,0000 0,0000 0,0000 8,0000 8,0000 8,0000 0,0000 0,0000 8,0000 8,0000

Table 2

Steps

Cellphone Pedometer

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 6,5000 2,3805 36,6227 5,0000 10,0000 39,0000 1,4142 3,6262 37,0000 40,0000

25 99,0000 184,7052 186,5709 4,0000 376,0000 31,2500 1,2583 4,0266 30,0000 33,0000

Table 1: Statistical data gathered from the cellphone app, pedometer, counted steps and pseudo algorithm used for counting
steps with the device

y = 0,9987x + 0,0703
R² = 0,9999

y = 0,9376x + 1,5678
R² = 0,9991

y = 0,0345x + 21,279
R² = 0,0266

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120

St
ep

s
C

o
u

n
te

d

Steps detected

Steps: Counted vs Detected

Device Pedometer Cellphone

Graph 5: Comparison between simple linear regression of step data gathered by device, pedometer and cellphone
app

Assessment of distance measurement using a 3-axis digital accelerometer

32

Data from other devices

Cellphone Pedometer

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 6,5000 2,3805 36,6227 5,0000 10,0000 29,3705 1,5408 5,2462 27,3589 30,5775

25 99,0000 184,7052 186,5709 4,0000 376,0000 22,9332 0,8047 3,5088 22,5308 24,1402

20 3,5000 2,5166 71,9032 0,0000 6,0000 19,7145 0,8047 4,0816 19,3121 20,9215

15 112,5000 216,3647 192,3241 0,0000 437,0000 13,6794 0,9292 6,7924 12,8748 14,4841

10 9,2500 7,3655 79,6266 0,0000 18,0000 9,6561 0,0000 0,0000 9,6561 9,6561

5 3,0000 3,8297 127,6569 0,0000 8,0000 4,8280 0,0000 0,0000 4,8280 4,8280

Table 4: Statistical data relative to the distance data gathered from the cellphone app and the pedometer

All the data aproach Data in batches

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 40,2951 5,9229 14,6987 35,7213 48,5986 26,9292 3,6522 13,5624 23,1838 31,7735

25 37,9262 4,3336 11,4265 32,4085 41,6714 23,4878 2,0022 8,5246 21,1265 25,9435

20 30,6803 0,7861 2,5622 29,8952 31,5400 20,4674 3,4355 16,7854 15,5904 23,3015

15 23,8373 5,1239 21,4955 20,0339 31,3394 21,9909 5,5401 25,1927 17,7690 30,1261

10 12,9265 1,6825 13,0158 10,8623 14,6789 13,1467 1,6220 12,3378 11,1208 14,6570

5 4,4238 0,1870 4,2278 4,1678 4,6024 4,4806 0,2018 4,5048 4,1836 4,6348

Step Approach

XYZ Axes XZ Axes

True
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

Mean
Distance

(m)

Standard
Deviation

(m)

Coefficient
of variation

(%)

Mininum
Distance

(m)

Maximum
Distance

(m)

30 2,4915 0,3522 14,1360 2,0648 2,9274 4,4727 0,5921 13,2377 3,5863 4,8035

25 1,8927 0,1850 9,7764 1,6425 2,0568 3,5356 0,2183 6,1733 3,2656 3,7442

20 1,5360 0,0906 5,9017 1,4094 1,6192 2,5893 0,2599 10,0378 2,3542 2,9586

15 1,2614 0,1368 10,8449 1,0879 1,4128 1,8633 0,2799 15,0213 1,5136 2,1299

10 0,9101 0,0442 4,8534 0,8477 0,9418 1,4938 0,1061 7,1060 1,3418 1,5764

5 0,5833 0,0602 10,3253 0,5476 0,6734 0,8194 0,0940 11,4768 0,6835 0,8968

Table 4: Statistical data gathered from data processing through the different algorithms of distance calculation

Assessment of distance measurement using a 3-axis digital accelerometer

33

y = 1,0325x + 0,2598
R² = 0,9947

y = 0,6505x + 1,2271
R² = 0,971

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Tr
u

e
D

is
ta

n
ce

 (
m

)

Measured Distance (m)

True Distance vs Measured Distance

Pedometer Device - Integrating all the data Ideal

y = 1,0325x + 0,2598
R² = 0,9947

y = 1,051x - 1,8572
R² = 0,8513

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Tr
u

e
D

is
ta

n
ce

 (
m

)

Measured Distance (m)

True Distance vs Measured Distance

Pedometer Device - Integrating the data in batches Ideal

Graph 6: Comparison between pedometer and device (using the algorithm of integrating all the data) vs the ideal situation

Graph 7: Comparison between pedometer and device (using the algorithm of integrating the data in batches) vs the ideal
situation

Assessment of distance measurement using a 3-axis digital accelerometer

34

c) It could be that the data gathered had some inconsistences as it is observed great
variations (σ=5,9229 m) of distances calculated.

Furthermore, it is observed that the 20m data point has the smallest coefficient of variation

(2,5622 %) of all the data points of all the algorithms.

3.3. Observations of integrating the data in batches (R2=0,8513)

This algorithm proved to be much better than the previous one as it has a closer 1:1
relationship between true distance walked and distance measured. It is also very similar to the
pedometer simple linear regression, but as observed in Graph 7 the data point corresponding to
15m is off the calibration curve with the widest variation of data (σ=5,5401 m).

There could be several reason why this algorithm has problems with the 15m data point,
which include:

a) As mentioned previously it could be that maybe beyond 15m of distance the relationship
between measured and true distance is still linear but with another calibration curve.
This possibility is a long shot as the 20m data point is placed over the
right of the 15m data point before it starts to show again a linear regression. This will
mean that there is no way to measure distances between 15m and 20m.

b) It could be that the data gathered was not consistent between the various data sets,
hence producing such wide variation and moving the data point to the left.

c) It could be that due to integration error, this algorithm is not suited for measuring
distances further than 15m of walking.

3.4. Observations of integrating the data based on the steps (R2=0,9835 (XYZ)
and R2=0,9791 (XZ))

This algorithm showed very different results when compared with the results obtained

through the other two algorithms and the pedometer. As seen in Graph 8, the calibration curves
show the highest coefficients of determination (R2=0,9835 when using the XYZ data and
R2=0.9791 when using the XZ data) obtained from all three algorithms but the calibration curves
have steep slopes.

On one hand, it is observed that not taking into consideration the acceleration data from

the Y axis causes a slight reduction in data quality46, hence is less trustworthy when compared
with the case in which the Y axis data was taken in consideration.

On the other hand, a possible explanation for such high relationships could be because of
the way the steps are considered in the algorithm. As mentioned earlier47, each step is treated
independently from the others and they are integrated considering that the step starts with null
velocity. This could have led to not take into account the overall gained velocity of the subject,
which could represent the missing distance.

46 The coefficient of determination is slightly lower and the coefficients of variation in 4 out of 6 data
points increase.
47 2.2.4 Integrate the data in steps approach (pg 18)

Assessment of distance measurement using a 3-axis digital accelerometer

35

y = 1,0325x + 0,2598
R² = 0,9947

y = 13,485x - 1,9977
R² = 0,9835

y = 6,8213x + 0,7036
R² = 0,9791

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Tr
u

e
D

is
ta

n
ce

 (
m

)

Measured Distance (m)

True Distance vs Measured Distance

Pedometer Ideal

Device - Integrating the data based on steps (XYZ) Device - Integrating the data based on steps (XZ)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Tr
u

e
D

is
ta

n
ce

 (
m

)

Measured Distance (m)

True Distance vs Measured Distance

Pedometer Device - Integrating all the data

Device - Integrating the data in batches Device - Integrating the data based on steps (XYZ)

Device - Integrating the data based on steps (XZ) IdealGraph 9: Comparison between pedometer data and device data processed with the different algorithms

Graph 8: Comparison between pedometer and device (using the algorithm of integrating that data by steps) vs the ideal situation

Assessment of distance measurement using a 3-axis digital accelerometer

36

3.5. Comparison

One first aspect to compare is the capacity of counting steps between the device and the

pedometer (Graph 5Graph 5: Comparison between simple linear regression of step data

gathered by device, pedometer and cellphone app). Both systems show a perfect correlation

between the amount of steps detected (R2=0.9999 for the device and R2=0.991 for the

pedometer).

The device will have had a perfect coefficient of determination if it had not been for one of
the data sets48 in which the last step was done softer than expected and the pseudo-algorithm
could not detect it.

One second aspect to compare is between the devices’ data processed by the first and

second algorithm and the pedometers’ data is that the 5m data points are the more exact than

any other data points, as seen in Graph 949. These similarities could be happening because the

5m data sets where the shortest ones to be recorded, hence the different processing algorithms

cannot reflect appreciable differences.

This reasoning could also be applied to the 10m and 15m data points of the first two

algorithms as they barely reflect a difference between them despite been processed by different

algorithms. Such kind of differentiation is appreciated starting at the 20m data point.

Surprisingly enough, these similarities between the first two algorithms are shared even

with the standard deviations and maximum and minimum values for the 5m, 10m and 15m data

points.

One last aspect to compare is about the third algorithm and its two variations (XYZ and XZ).

On one side, in Graph 8 is seen that excluding the data of the Y-axis ended in a relationship

between true and measured distances closer to the ideal situation. On the other side, the third

algorithm has the highest coefficient of correlation of all three algorithms (the XYZ variation

highest than the XZ variation).

48 3rd repetition of the 20m data set
49 Although the 5m data point of the third algorithm is different from the 5m data point of the other two
algorithms, it is very similar between the two variations of such algorithm.

Assessment of distance measurement using a 3-axis digital accelerometer

37

4. Conclusions and Improvements

Based on the work done it can be concluded that the device can measure distances of at

least five meters with a deviation of 4,2278 % if the first algorithm is used. The second

algorithm could also be considered as reliable for the purpose but has a slightly higher

coefficient of variation (4,5048 %). It could be extended to the 10m and 15m mark but their

respective coefficients of variation are higher than 5%, no matter the algorithm used. Another

alternative could be using the first algorithm for combinations of distances of 20m and 5m as

for distances of 20m there is the smallest variation in the measured distances (Cv=2,5622 %).

The cellphone app data probably gave the random results because of misuse of the app.

It has to be stated that the third algorithm is not viable, despite its high coefficients of

correlation (R2=0,9835 (XYZ variation) and R2=0,9791 (XZ variation)), because it has coefficients

of variation higher than 5% in the data point of interest (5m and 20m).Moreover, it has proven

that the device is a very reliable system to count steps (R2=0,9999) with very little variation50.

Although counting steps was not the objective of this project, it does shed light on the possibility

of using the step counting features with the inertial measurements. Acceleration data can be

collected and processed with the algorithm once the amount of steps corresponding to 5m is

reached and add the distance calculated to the previous distance measured.

Even though the device showed positive results, improvements can be done for verifying

the conclusions and check on the discrepancies of the observations done over the results

obtained from the different algorithms, for example, only one subject was used for the data

collection. An increase in number of subjects over a variety of conditions51 will produce enough

data about different types of gait and test if the conclusions are true.

Additionally, other improvements could be done to verify the conclusions presented. For

instance, the procedure could be changed in a way that the subject has a pause every 5m. That

way, the data is integrated in sequences of 5m rather than altogether. Furthermore, a

pedometer with a higher sensitivity will produce better results for small distances, hence having

a better comparison at statistical level.

Other improvements could be done to check the third algorithm more thoroughly. As

mentioned previously, one cause that the third algorithm produced results that are far away

from the ideal ones could be because the overall gained velocity is not taken into consideration.

One way to prove if this is true is to collect data again but making a pause for every step made,

hence avoiding that the subject gains a stable speed.

Finally, on the observations it is mentioned multiple times that the algorithms may not be
able to measure beyond certain distances. A way to check if this is happening or is just
integration error is to gather data of a higher variety of distances and more repetitions of each
data set52.

50 The coefficients of variation for the steps counted with the device were normally the same as those
calculated for the steps that were counted manually.
51 Weight, height and age
52 That way any data set in which the subjects gait has a certain peculiarity gets shadowed by the other
data sets.

Assessment of distance measurement using a 3-axis digital accelerometer

38

5. Bibliography

[1] C. G. Ryan, P. M. Grant, W. W. Tigbe and M. H. Grant, "The validity and reliability of a
novel activity monitor as a measure of walking," British Journal of Sports Medicine, vol.
40, pp. 779-784, 2006.

[2] eBay, "How to Buy Pedometers on eBay," eBay, 3 Marzo 2016. [Online]. Available:
http://www.ebay.co.uk/gds/H. [Accessed 4 Abril 2016].

[3] S. D. Vincent and C. L. Sidman, "Determining Measurement Error in Digital Pedometers,"
Measurement in Physical Education and Exercise Science, vol. 7, pp. 19-24, 2003.

[4] C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde and J. D. Janssen, "A Triaxial
Accelerometer and Portable Data Processing Unit for the Assesment of Daily Physical
Activity," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 44, pp. 136-147, 1997.

[5] A. Devices, "ADXL345 Datasheet and Product Info | Analog Devices," 2013. [Online].
Available: http://www.analog.com/en/products/mems/mems-
accelerometers/adxl345.html. [Accessed 15 May 2015].

[6] A. B. F. &. B. H. Willemsen, "Automatic stance-swing phase detection from accelerometer
data for peroneal nerve stimulation," IEEE Transactions On Biomedical Engineering, vol.
37, pp. 1201-1208, 1990.

[7] E. J. Van Someren, R. H. Lazeron, B. F. Vonk, M. Mirmiran and D. F. Swaab, "Gravitational
artefact in frequency spectra of movement acceleration: implications for actigraphy in
young and elderly subjects," Journal of Neuroscience Methods, pp. 55-62, 1996.

[8] M. Karabulut, S. E. Crouter and D. R. Bassett, "Comparison of two waist-mounted and
two ankle-mounted electronic pedometers," European Journal of Applied Physiology, vol.
95, pp. 335-343, 2005.

[9] R. M. J. &. P. J. Waters, "Translational motion of the head and trunk during normal
walking," Journal Of Biomechanics, vol. 6, pp. 167-172, 1973.

[10] T. W. J. M. H. &. W. R. Wong, "Portable Accelerometer Device for Measuring Human
Energy Expenditure," IEEE Transactions On Biomedical Engineering, vol. 28, pp. 467-471,
1981.

[11] P. B. H. d. V. W. M. W. &. V. L. R. Veltink, "Detection of static and dynamic activities using
uniaxial accelerometers," IEEE Transactions On Rehabilitation Engineering, vol. 4, pp.
375-385, 1996.

[12] V. G. L. D. L. E. E. M. P. M. &. T. S. e. a. van Hees, "Separating Movement and Gravity
Components in an Acceleration Signal and Implications for the Assessment of Human
Daily Physical Activity," Plos ONE, vol. 8, 2013.

[13] G. A. J. &. J. R. Smidt, "Accelerographic Analysis of Several Types of Walking," American
Journal Of Physical Medicine, vol. 50, pp. 285-300, 1972.

[14] K. &. C. O. Seifert, "Implementing Positioning Algorithms Using Accelerometers,"
FreeScale Semiconductor, 2007.

[15] D. &. H. F. Redmond, "Observations on the design and specification of a wrist-worn
human activity monitoring system," Behavior Research Methods, Instruments, &
Computers, vol. 17, pp. 659-699, 1985.

[16] J. Morris, "Accelerometry technique for the measurement of human body movements,"
Journal Of Biomechanics, vol. 6, pp. 729-736, 1973.

[17] H. W. R. S. S. E. A. W. J. &. N. F. Montoye, "Estimation of energy expenditure by a
portable accelerometer," Medicine & Science In Sports & Exercise, vol. 15, pp. 403-407,
1983.

Assessment of distance measurement using a 3-axis digital accelerometer

39

[18] M. T. Inc., "SST25PF020B - Memory," 2012. [Online]. Available:
http://www.microchip.com/wwwproducts/en/SST25PF020B. [Accessed 18 November
2015].

[19] J. V. P. K. F. R. V. &. S. H. Bussmann, "Ambulatory Monitoring of Mobility-Related
Activities: the Initial Phase of the Development of an Activity Monitor," European Journal
Of Physical Medicine Rehabilitation, vol. 5, pp. 2-7, 1995.

[20] C. S. A. V. M. &. J. J. Bouten, "Effects of placement and orientation of body-fixed
accelerometers on the assessment of energy expenditure during walking," Medical &
Biological Engineering & Computing, vol. 35, pp. 50-56, 1997.

[21] C. W. K. V. M. &. J. J. Bouten, "Assessment of energy expenditure for physical activity
using a triaxial accelerometer," Medicine & Science In Sports & Exercise, vol. 26, pp. 1516-
1523, 1994.

[22] A. O. K. C. A. O. G. &. N. J. Bourke, "Optimum gravity vector and vertical acceleration
estimation using a tri-axial accelerometer for falls and normal activities," 2011 Annual
International Conference Of The IEEE Engineering In Medicine And Biology Society, pp.
7896-7899, 2011.

[23] A. M. E. S. E. &. G. J. Bhattacharya, "Body acceleration distribution and O2 uptake in
humans during running and jumping," Applied Physiology, Respiratory, Environmental
And Exercise Physiology, vol. 49, pp. 881-887, 1980.

Assessment of distance measurement using a 3-axis digital accelerometer

40

Annex 1: PIC Firmware implemented

/* La trama a mandar via UART es (8 bytes + 2 de trama [hiciste el cÃ¡lculo y salen 31250 tramas]): 1
 inicio-nº trama_H-nº trama_L-aX_H-aX_L-aY_H-aY_L-aZ_H-aZ_L-chekcsum 2
 3
 La trama a GUARDAR en memoria es (8 bytes): 4
 inicio-aX_H-aX_L-aY_H-aY_L-aZ_H-aZ_L-chekcsum 5
 */ 6
//A 16 MHz para que el tiempo de capturar dato y guardar sea el minimo posible 7
/* El tiempo minimo de espera entre byte y byte es de 10 us, asi que hay que comprobar el registro de 8
 * estado para saber cuando poder volver a escribir*/ 9
//24-2-2016, tiempo de captura y guardado de señal=1.9 ms 10
 11
#include <p18f14k22.h> 12
#include <stdlib.h> 13
#include <stdio.h> 14
#include <i2c.h> 15
#include <math.h> 16
 17
//Valores del resgistro del timer0 (de ms, para 16MHz y preescalar de 64) 18
#define registroH25 0xFF //2.5 ms 19
#define registroL25 0x64 //2.5 ms 20
#define registroH5 0xFE 21
#define registroL5 0xC7 22
#define registroH10 0xFD 23
#define registroL10 0x8F 24
#define registroH100 0xE7 25
#define registroL100 0x96 26
#define registroH1000 0x0B 27
#define registroL1000 0xDC 28
 29
//Estructuras de inicio de paquete 30
#define inicio 0x30 //48 en decimal (caracter cero) 31
//#define final 0x31 //49 en decimal (caracter 1) 32
 33
//Configuraciones comodas I2C 34
#define sensor 0xA6 //Direccion sensor 35
#define START SSPCON2bits.SEN 36
#define STOP SSPCON2bits.PEN 37
#define RESTART SSPCON2bits.RSEN 38
#define ACK SSPCON2bits.ACKSTAT 39
#define NAK SSPCON2bits.ACKEN 40
 41
//Limite de cantidad de bytes posibles para guardar (que son 4096 tramas de 8 bytes) 42
#define limite 0x7A12 43
 44
//Configuracion para el ajuste de offset 45
//Ciclos de espera de 0.1 segundos del Timer1 para decidir si se quiere hacer un reajuste de offset 46
#define transicion 100 47
#define muestras 200 //No puede ser mayor de 255 (si no nunca dejará de tomar valores) 48
#define offsetH 0x3C 49
#define offsetL 0xB0 50
#define sensibilidad 4 51
 52
//Declaracion de los pines del modulo software SPI (EN FUNCIÃ“N DE LA MEMORIA) 53
#define CE LATCbits.LATC5 54
#define CEConfig TRISCbits.TRISC5 55

Assessment of distance measurement using a 3-axis digital accelerometer

41

#define MOSI PORTCbits.RC0 56
#define MOSIConfig TRISCbits.TRISC0 57
#define SCL PORTCbits.RC1 58
#define SCLConfig TRISCbits.TRISC1 59
#define MISO PORTCbits.RC6 //Esto es una entrada 60
#define MISOConfig TRISCbits.TRISC6 61
 62
//Declaracion de los pines UART (para cuando se salte de un micro a otro) 63
#define pinTX TRISBbits.TRISB7 64
#define pinRX TRISBbits.TRISB5 65
 66
//Declaracion de los pines de los LED 67
#define ROJO LATCbits.LATC3 68
#define ROJOConfig TRISCbits.TRISC3 69
#define VERDE LATCbits.LATC4 70
#define VERDEConfig TRISCbits.TRISC4 71
#define AMARILLO LATCbits.LATC2 72
#define AMARILLOConfig TRISCbits.TRISC2 73
 74
void RT_Int_Alta (void); // Declaracion de la rutina de tratamiento de las interr. de alta 75
prioridad 76
unsigned char checksum(unsigned char x[], char n); //Funcion de calculo de checksum 77
int com(char quien, char RW,char dato); //Funcion de comunicaciones SPI e I2C 78
 79
// Bits de configuracion (para el P18F14K22) 80
#pragma config FOSC = IRC //Oscilador interno 81
#pragma config PWRTEN=OFF //Power-up Timer Enable bit 82
#pragma config BOREN=SBORDIS //Brown-out Reset Enable bits 83
#pragma config BORV=19 //Brown out reset voltage bits 84
#pragma config WDTEN= OFF //Se desactiva el WatchDog 85
#pragma config MCLRE=ON //MCLR Pin Enable bit 86
#pragma config STVREN=ON //Stack Full/Underflow Reset Enable bit 87
#pragma config LVP=OFF //Single-Supply ICSP Enable bit 88
 89
//Parametros para hacer funcionar el sensor 90
//Secuencia de arranque (direccionens primera fila, datos segunda) 91
unsigned char datS[2][3]={{0x31,0x38,0x2C},{0x08,0x80,0x0B}}; 92
//Secuencia de arranque (direccionens primera fila, datos segunda) 93
//unsigned char datS[2][3]={{0x31,0x38,0x2C},{0x00,0x80,0x0D}}; 94
unsigned char toma[3]={0x32,0x34,0x36}; 95
//Parametros memoria 96
unsigned char iniM[4]={0x50,0x01,0x00,0x00};//Instrucciones y datos de configuracion de arranque 97
//unsigned char 98
dM[2][6]={{0xAD,0x00,0x00,0x00,0x00,0x00},{0x03,0x00,0x00,0x00,0x00,0x00}};//dM[0][x] 99
//es para escribir y dM[1][x] para leer 100
//Declaracion de variables 101
unsigned char checksumM=0,checksumRX=0;//Para comprobar los checksum 102
unsigned char envioM[8]={inicio,0,0,0,0,0,0,0};//Trama a memoria 103
unsigned char envioT[10]={inicio,0,0,1,2,3,4,5,6,7};//Trama a mandar por UART 104
unsigned char BufferR[5];//Trama a recibir por UART 105
unsigned char rec[8]; 106
unsigned int contadorP=0,contadorT=0,capturado; 107
unsigned char k,i,iM=0,estado=0; 108
unsigned char longitud=10; 109
unsigned char bloqueo=0,rT=2; 110

Assessment of distance measurement using a 3-axis digital accelerometer

42

unsigned char 111
registroT[2][5]={{registroH1000,registroH100,registroH10,registroH5,registroH25},{registroL1000,registr112
oL100,registroL10,registroL5,registroL25}};//Registros H y L del Timer0 113
/*Esto permite saltarse la recalibración del sensor una vez se ha hecho una primera calibración (se 114
pone a cero el offset quitando la alimentacion y a cero esta variable con un reset)*/ 115
unsigned char calibrado=0; 116
//Para el numero de trama 117
unsigned int trama=0; //Solo hacen falta dos bytes para las tramas que se envien a ordenador 118
//Para el calculo de offset 119
unsigned char situacion=0,espera=0; 120
//int offset[3]={0,0,0}; //Esto ha de ser char a secas para tener el signo 121
float offset[3]={0,0,0}; 122
int capturado2=0; 123
 124
// Vectorizacion interrupciones de alta prioridad 125
#pragma code Vec_Int_Alta = 0x08 // Vectorizaci?n de las interrupciones de alta prioridad 126
void Cod_Int_Alta (void) 127
{ 128
 _asm goto RT_Int_Alta _endasm 129
} 130
#pragma code 131
 132
#pragma interrupt RT_Int_Alta 133
 134
void RT_Int_Alta (void) // Rutina de tratamiento de las interrupciones de alta prioridad 135
{ 136
 //La transmision de los datos 137
 if(PIR1bits.TXIF&&PIE1bits.TXIE) // Se comprueba si la interrupci?n es por transmisi?n 138
 { 139
 PIR1bits.TXIF=0;//Se borra el flag de la interrupcion 140
 if(iM==longitud)//Cantidad de bytes 141
 { 142
 iM=0; 143
 if(bloqueo) 144
 { 145
 bloqueo=0; 146
 trama=0; 147
 CE=1; 148
 //Por el comando 19 149
 PIE1bits.TMR1IE=0; 150
 VERDE=1; 151
 } 152
 PIE1bits.TXIE=0; 153
 return; 154
 } 155
 if(iM<longitud) 156
 { 157
 TXREG=envioT[iM];//Envio del siguiente dato 158
 iM++; 159
 AMARILLO=!AMARILLO; 160
 } 161
 } 162
 else if(PIR1bits.RCIF) 163
 { 164
 PIR1bits.RCIF=0;//Se limpia el flag de la interrupcion 165
 BufferR[iM]=RCREG; 166
 //Aunque se reciban comandos, hasta que no se acabe la transmision no se puede recibir nada 167

Assessment of distance measurement using a 3-axis digital accelerometer

43

 if(BufferR[0]==48) 168
 { 169
 iM++; 170
 } 171
 if(iM==5) 172
 { 173
 iM=0; 174
 checksumRX=checksum(&BufferR,4); 175
 if(BufferR[4]==checksumRX) 176
 { 177
 if(estado==4) 178
 { 179
 AMARILLO=!AMARILLO; 180
 //Si se ha llegado hasta aqui, se ha recibido correctamente una instruccion desde el PC 181
 switch(BufferR[1]) 182
 { 183
 case 0: 184
 //Leer un byte del sensor por I2C y devolver por UART 185
 Nop(); 186
 case 1: 187
 //Leer dos bytes del sensor por I2C y devolver por UART 188
 capturado=com(BufferR[2],BufferR[1]+1,BufferR[3]); 189
 envioT[1]=capturado/256; 190
 envioT[1+BufferR[1]]=capturado%256; 191
 envioT[2+BufferR[1]]=checksum(&envioT,2+BufferR[1]); 192
 longitud=3+BufferR[1]; 193
 PIE1bits.TXIE=1; 194
 break; 195
 case 2: 196
 //Leer dos bytes de la memoria por SPI y devolver por UART 197
 envioT[2]=com(58,1,0); 198
 case 3: 199
 //Leer un byte de la memoria por SPI y devolver por UART 200
 envioT[1]=com(58,1,0); 201
 envioT[2+3-BufferR[1]]=checksum(&envioT,2+3-BufferR[1]); 202
 longitud=3+3-BufferR[1]; 203
 PIE1bits.TXIE=1; 204
 break; 205
 case 4: 206
 //Inicio/Fin de secuencia SPI 207
 CE=BufferR[2]; 208
 break; 209
 case 5: 210
 //Escribir un byte BufferR[3] en la memoria por SPI 211
 com(58,0,BufferR[2]); 212
 break; 213
 case 6: 214
 //Seria para borrar memoria 215
 CE=0; 216
 com(58,0,0x06);//Se manda un write enable 217
 CE=1; 218
 CE=0; 219
 com(58,0,0x60);//Se manda la instruccion de borrado de chip 220
 CE=1; 221
 VERDE=!VERDE; 222
 CE=0; 223
 com(58,0,0x05);//Se manda instruccion de leida continuada del registro de estado 224

Assessment of distance measurement using a 3-axis digital accelerometer

44

 do{ 225
 capturado=com(58,1,0); 226
 /*Hasta que el bit BUSY no pase a 0, no se sale de ahi (que sería cuando la 227
 * memoria se hubiera borrado del todo)*/ 228
 }while(capturado&0x0001); 229
 CE=1; 230
 trama=0; 231
 //Esto se hace para asegurar visualmente que se ha borrado la memoria 232
 VERDE=!VERDE; 233
 break; 234
 case 7: 235
 //Seria para recoger los datos desde PC (nada desde boton) 236
 CE=0;//Se selecciona la memoria para configurarla y no se suelta 237
 com(58,0,0x03);//Instruccion de lectura 238
 for(k=0;k<5;k++,com(58,0,0));//Primera direccion y primer byte vacio 239
 //for(i=0;i<6;,com(58,0,dM[1][i])); 240
 longitud=10; 241
 trama=0; 242
 bloqueo=0; 243
 break; 244
 //La interrupcion de transmision se activa en el 17 245
 case 8: 246
 //Esto es para asegurarse que las comunicaciones funcionan 247
 Nop(); 248
 break; 249
 case 10: 250
 //Lectura del JEDEC (BF 25 8C) 251
 CE=0; 252
 com(58,0,0x9F); 253
 envioT[1]=com(58,1,0); 254
 envioT[2]=com(58,1,0); 255
 envioT[3]=com(58,1,0); 256
 CE=1; 257
 envioT[4]=checksum(&envioT,4); 258
 longitud=5; 259
 PIE1bits.TXIE=1; 260
 break; 261
 case 11: 262
 //Lectura del ID (8C BF) 263
 CE=0; 264
 com(58,0,0x90); 265
 com(58,0,0x00); 266
 com(58,0,0x00); 267
 com(58,0,0x01); 268
 envioT[1]=com(58,1,0); 269
 envioT[2]=com(58,1,0); 270
 CE=1; 271
 envioT[3]=checksum(&envioT,3); 272
 longitud=4; 273
 PIE1bits.TXIE=1; 274
 break; 275
 case 12: 276
 //Esto es para probar una escritura y lectura controlada (3 secuencias) 277
 //Primero hay que desbloquear la memoria 278
 CE=0; 279
 com(58,0,0x50);//Se habilita la escritura en registro 280
 CE=1; 281

Assessment of distance measurement using a 3-axis digital accelerometer

45

 CE=0; 282
 com(58,0,0x01); 283
 com(58,0,0x00);//Se desbloquea la memoria 284
 CE=1; 285
 //Se habilita la escritura 286
 CE=0; 287
 com(58,0,0x06); 288
 CE=1; 289
 /*Ahora se empieza con una primera secuencia que establece escritura continuada*/ 290
 CE=0; 291
 com(58,0,0xAD); 292
 /*Con este for se establece la direccion 0x00 0x00 0x00 y los bytes 0x00 0x00 293
 porque hay que mandar la trama en parejas de dos bytes (afortunadamente son 8) 294
 y mandar una trama partida es mÃ¡s complicado para las siguientes tramas*/ 295
 for(i=0;i<5;i++) 296
 { 297
 //Esta es la direccion de inicio donde se hara la escritura y los dos bytes vacios 298
 com(58,0,0x00); 299
 } 300
 CE=1; 301
 //Tramas a mandar (3 con bytes numericos mas la primera de antes vacia) 302
 for(k=0,contadorP=0;k<5;k++,contadorP++) 303
 { 304
 for(i=0;i<3;i++) 305
 { 306
 capturado=0xABCD; 307
 envioM[2*i+1]=capturado/256; 308
 envioM[2*i+2]=capturado%256; 309
 } 310
 envioM[7]=checksum(&envioM,7); 311
 for(i=0;i<4;i++) 312
 { 313
 CE=0; 314
 com(58,0,0xAD); 315
 com(58,0,envioM[2*i]); 316
 com(58,0,envioM[2*i+1]); 317
 CE=1; 318
 } 319
 } 320
 /*Ahora ya se ha acabado de escribir y hay que mandar la instruccion de 321
 * deshabilitacion de escritua*/ 322
 CE=0; 323
 com(58,0,0x04); 324
 CE=1; 325
 //Ahora hay que proceder a la lectura. 326
 longitud=10; 327
 //Primero hay que indicar que se va a leer y desde la direccion 0x00 0x00 0x00 328
 CE=0; 329
 com(58,0,0x03);//Instruccion de lectura 330
 //Direccion desde donde empezar la lectura continuada 331
 com(58,0,0x00); 332
 com(58,0,0x00); 333
 com(58,0,0x00); 334
 /*Hay que leer los dos primeros bytes, porque estos estan vacios y romperían la 335
 estructura de las tramas leidas*/ 336
 com(58,0,0); 337
 com(58,0,0); 338

Assessment of distance measurement using a 3-axis digital accelerometer

46

 bloqueo=0; 339
 //La interrupcion por transmision se activa en el 17 340
 break; 341
 case 13: 342
 //Escribir un byte por I2C 343
 com(BufferR[2],0,BufferR[3]); 344
 break; 345
 case 14: 346
 //Deshabilitar/Habilitar boton 347
 ANSELbits.ANS2=!ANSELbits.ANS2; 348
 break; 349
 case 16: 350
 //Con esta intruccion se cambia de tiempo de muestro por software 351
 rT=BufferR[2]; 352
 break; 353
 case 17: 354
 //Instruccion de recepcion por parte de MATLAB de mandar la siguiente trama 355
 if(trama<contadorT||trama<contadorP) 356
 { 357
 //Se recoge la secuencia de 8 bytes 358
 for(k=0;k<8;k++) 359
 { 360
 rec[k]=com(58,1,0); 361
 } 362
 checksumM=checksum(&rec,7); 363
 for(k=0;k<6;k++) 364
 { 365
 if(rec[7]==checksumM) 366
 { 367
 //Si los datos recuperados son buenos, se ponen en la trama 368
 envioT[3+k]=rec[1+k]; 369
 } 370
 else 371
 { 372
 //Si los datos recuperados NO son buenos, se ponen ceros 373
 envioT[3+k]=4; 374
 } 375
 } 376
 //Se establece el numero trama 377
 envioT[1]=trama/256; 378
 envioT[2]=trama%256; 379
 trama++; 380
 //El checksum 381
 envioT[9]=checksum(&envioT,9); 382
 } 383
 else 384
 { 385
 //Se envia una trama corta indicando que se han acabado los datos a enviar 386
 envioT[1]=18; 387
 for(i=2;i<9;envioT[i]=0,i++); 388
 /*for(i=0;i<3;i++) 389
 { 390
 envioT[2*(i+1)]=((int)(offset[i]))%256; 391
 envioT[2*(i+1)+1]=((int)(offset[i]))/256; 392
 }*/ 393
 /*for(i=0;i<3;i++) 394
 { 395

Assessment of distance measurement using a 3-axis digital accelerometer

47

 envioT[i+1]=(char)offset[i]; 396
 }*/ 397
 envioT[9]=checksum(&envioT,9); 398
 longitud=10; 399
 bloqueo=1; 400
 } 401
 PIE1bits.TXIE=1; 402
 break; 403
 case 19: 404
 //Se remanda la ultima trama (como no se ha modificado nada, se manda lo mismo) 405
 PIE1bits.TXIE=1; 406
 break; 407
 case 20: 408
 //Para saber la cantidad de paquetes guardados en memoria 409
 envioT[1]=20; 410
 envioT[2]=contadorT/256; 411
 envioT[3]=contadorT%256; 412
 for(i=0;i<3;envioT[4+i]=offset[i],i++); 413
 envioT[7]=checksum(&envioT,7); 414
 longitud=8; 415
 PIE1bits.TXIE=1; 416
 break; 417
 } 418
 } 419
 //Para pasar de un estado a otro desde PC, activando la interrupcion manualmente 420
 if(BufferR[1]==15) 421
 { 422
 estado=BufferR[2];//Estado previo al que se quiere pasar 423
 INTCON3bits.INT2IF=1;//Se activa el flag de la interrupcion manualmente 424
 } 425
 if(BufferR[1]==9) 426
 { 427
 Reset();//Para forzar un reset del PIC 428
 } 429
 } 430
 } 431
 } 432
 //Se comprueba si la interrupcion es por desbordamiento del temp. 0 433
 else if (INTCONbits.TMR0IF&&INTCONbits.TMR0IE) 434
 { 435
 AMARILLO=1;//Para medir con el osciloscopio cuanto tarda todo esto 436
 VERDE=!VERDE;//Se alterna el estado del LED verde 437
 INTCONbits.TMR0IF=0; // Se pone a 0 el flag de desbordamiento del temp. 0 438
 TMR0H=registroT[0][rT]; // Se carga el valor de TMR0H y TMR0L para uno de los intervalos 439
 TMR0L=registroT[1][rT]; 440
 //Esto es lo más rápido posible 441
 for(k=0,envioM[7]=inicio;k<3;k++) 442
 { 443
 capturado=com(toma[k],2,0);//Se obtiene el dato del eje correspondiente 444
 //capturado=0x4F23; //79 y 35 en decimal, es decir, es lo que tendra que aparecer en los datos 445
 envioM[2*k+1]=capturado/256; 446
 envioM[2*k+2]=capturado%256; 447
 envioM[7]=envioM[7]+envioM[2*k+1]+envioM[2*k+2]; 448
 } 449
 contadorT++; 450
 //Forma de crear las direcciones mas rapida (comprobado con la calculadora) 451
 for(k=0;k<8;k=k+2) 452

Assessment of distance measurement using a 3-axis digital accelerometer

48

 { 453
 CE=0; 454
 com(58,0,0xAD); 455
 com(58,0,envioM[k]); 456
 com(58,0,envioM[k+1]); 457
 CE=1; 458
 } 459
 /*Esto es para controlar que no se sobreescribe sobre los primeros datos. En el chip final hay 460
 * una función que evita tener que usar esto*/ 461
 if(contadorT>=limite) 462
 { 463
 INTCONbits.TMR0IE=0;//Se deshabilita el timer0 y se deja de tomar datos 464
 VERDE=1;//Se deja el LED fijo para indicar que ya esta la memoria llena 465
 } 466
 AMARILLO=0;//Mirar al principio de este else if 467
 } 468
 else if(PIR1bits.TMR1IF&&PIE1bits.TMR1IE) 469
 { 470
 //Ejecucion de la secuencia de cálculo de offset (con el sensor apoyado en una superficie plana) 471
 PIR1bits.TMR1IF=0;//Se resetea el flag de interrupcion 472
 TMR1H=offsetH; 473
 TMR1L=offsetL; 474
 /*En el caso de que no se desee hacer un ajuste de offset, se ha de pasar de modo de calculo 475
 * de offset a modo standby-despues-de-offset antes del tiempo indicado por "transicion"*/ 476
 if(!calibrado) 477
 { 478
 if(espera<transicion) 479
 { 480
 if(espera%5==0) 481
 { 482
 AMARILLO=!AMARILLO;//Para que parpadee primero a intervalos de 1 segundo 483
 } 484
 espera++; 485
 } 486
 else //Ha pasado el tiempo determinado por "transicion" 487
 { 488
 situacion++; 489
 //El parpadeo es mas rapido (0.1 segundos, indicando que se esta calibrando el offset) 490
 AMARILLO=!AMARILLO; 491
 if(situacion<2)//Primero hay que activar el sensor (y esperar [10+1/F] segundos) 492
 { 493
 com(0x2D,0,0x08);//encendido del sensor (sirve la configuracion estandar ya escrita) 494
 for(k=0;k<3;offset[k]=0,k++);//Primero hay que borrar los offsets anteriores 495
 } 496
 else if(situacion<muestras+2)//Hay que recoger al menos 100 muestras(o el doble) 497
 { 498
 for(k=0;k<3;k++) 499
 { 500
 capturado2=com(toma[k],2,0); 501
 offset[k]+=capturado2; 502
 } 503
 } 504
 else 505
 { 506
 /*Una vez recogidas todas las muestras, se calcula la media y se envia a los registros 507
 * de offset de cada eje*/ 508
 //Ahora se adaptan los valores a complemento de 2 509

Assessment of distance measurement using a 3-axis digital accelerometer

49

 /*No es necesario adaptar los valores a complemento de 2, porque el numero negativo 510
 * en la variable es ya un complemento a 2 a nivel de bit*/ 511
 //Ahora se mandan los valores a los registros de offset del sensor 512
 offset[0]=offset[0]/(sensibilidad*muestras); 513
 offset[1]=offset[1]/(sensibilidad*muestras); 514
 offset[2]=((offset[2]/muestras)-256)/sensibilidad; 515
 516
 for(i=0;i<3;i++) 517
 { 518
 if(fabs(floor(offset[i])-offset[i])>fabs(ceil(offset[i])-offset[i])) 519
 { 520
 offset[i]=-ceil(offset[i]); 521
 } 522
 else 523
 { 524
 offset[i]=-floor(offset[i]); 525
 } 526
 } 527
 com(0x1E,0,offset[0]);//Offset eje X 528
 com(0x1F,0,offset[1]);//Offset eje Y 529
 com(0x20,0,offset[2]);//Offset eje Z 530
// com(0x1E,0,-offset[0]/(sensibilidad*muestras));//Offset eje X 531
// com(0x1F,0,-offset[1]/(sensibilidad*muestras));//Offset eje Y 532
// com(0x20,0,-((offset[2]/muestras)-256)/sensibilidad);//Offset eje Z 533
 com(0x2D,0,0x00);//Se deja el sensor como estaba (apagado) 534
 //PIE1bits.TMR1IE=0;//Se deshabilita el Timer1 535
 calibrado=1; 536
 INTCON3bits.INT2IF=1;//Se activa el flag del boton para cambiar de estado 537
 } 538
 } 539
 } 540
 else 541
 { 542
 INTCON3bits.INT2IF=1;//Se salta directamente al siguiente modo 543
 } 544
 } 545
 else if (INTCON3bits.INT2IF) 546
 { 547
 INTCON3bits.INT2IF=0; //Se pone a 0 el flag de la interrupcion 548
 if(PIR2bits.TMR3IF) 549
 { 550
 PIR2bits.TMR3IF=0; 551
 TMR3H=offsetH; 552
 TMR3L=offsetL; 553
 //En caso de que se quiera saltar del estado de ajuste de offset a otro, hay que deshabilitar el 554
Timer1 555
 if(estado!=0) 556
 { 557
 PIE1bits.TMR1IE=0; 558
 espera=0; 559
 situacion=0; 560
 } 561
 switch(estado) 562
 { 563
 case 0: 564
 estado=1;//Estado de calculo de offset (con espera) 565
 ROJO=0; 566

Assessment of distance measurement using a 3-axis digital accelerometer

50

 VERDE=0; 567
 AMARILLO=0; 568
 //espera=0; 569
 //situacion=0; 570
 PIE1bits.TMR1IE=1;//Se habilita el Timer1 571
 break; 572
 case 1: 573
 estado=2;//Estado de standby post offset 574
 PIE1bits.TMR1IE=0;//Se deshabilita el Timer1 575
 ROJO=1; 576
 VERDE=0; 577
 AMARILLO=0; 578
 break; 579
 case 2: 580
 estado=3;//Estado de captura y guardado de datos 581
 //Se activa el sistema 582
 //Se manda la accion y direccion de memoria a escribir 583
 CE=0;//CE a nivel bajo 584
 com(58,0,0x06);//Instruccion de habilitacion de escritura 585
 CE=1;//CE a nivel alto 586
 /*Hay que hacer una primera escritura en la direccion 0x00 0x00 0x00 para que luego en 587
 el bucle principal solo sea 0xAD y los dos bytes*/ 588
 CE=0; 589
 com(58,0,0xAD); 590
 for(i=0;i<5;i++)//Primera pareja de bytes a mandar a la direccion 0x00 0x00 0x00 591
 { 592
 com(58,0,0x00); 593
 } 594
 CE=1; 595
 com(0x2D,0,0x08);//Para encender el sensor 596
 INTCONbits.TMR0IE=1; 597
 ROJO=0;//Led rojo OFF 598
 VERDE=1;//Led verde ON 599
 contadorT=0; 600
 break; 601
 case 3: 602
 estado=4;//Estado de PC 603
 //Hay que deshabilitar primero la escritura continuada 604
 CE=0; 605
 com(58,0,0x04); 606
 CE=1; 607
 com(0x2D,0,0x00);//Para apagar el sensor 608
 ROJO=1; 609
 VERDE=1; 610
 //Se detiene el sistema 611
 INTCONbits.TMR0IE=0; 612
 break; 613
 case 4: 614
 estado=0;//Estado de Standby pre-offset 615
 //Se borra primero la memoria para poder escribir de nuevo nuevos datos 616
 CE=0; 617
 com(58,0,0x06);//Se manda un write enable 618
 CE=1; 619
 CE=0; 620
 com(58,0,0x60);//Se manda la instruccion de borrado de chip 621
 CE=1; 622
 AMARILLO=0; 623

Assessment of distance measurement using a 3-axis digital accelerometer

51

 CE=0; 624
 com(58,0,0x05);//Se manda instruccion de leida continuada del registro de estado 625
 /*Hasta que el bit BUSY no pase a 0, no se sale de ahi (cuando la memoria se hubiera 626
 * borrado del todo)*/ 627
 do{ 628
 capturado=com(58,1,0); 629
 }while(capturado&0x0001); 630
 CE=1; 631
 trama=0; 632
 //Esto se hace para asegurar visualmente que se ha borrado la memoria 633
 AMARILLO=1; 634
 ROJO=1; 635
 VERDE=0; 636
 break; 637
 } 638
 } 639
 } 640
} 641
 642
void main(void) 643
{ 644
 //16 MHz (en el PIC18f14k22, en el PIC18F4520 son 8 MHz) 645
 OSCCONbits.IRCF0=1; //(este a cero = 8 MHz en el PIC18f14k22 y 4 MHz en el PIC18F4520) 646
 OSCCONbits.IRCF1=1; 647
 OSCCONbits.IRCF2=1; 648
 /*A 16MHz se consigue una duracion de la rutina de captura de datos y guardado en memoria 649
 de 2.6 ms (1/2/2016). Esto abre la posibilidad de que se pueda muestrear a mas de 100 Hz.*/ 650
 651
 //Configuracion pines de los LEDS e INT2 652
 ROJOConfig=0; 653
 VERDEConfig=0; 654
 AMARILLOConfig=0; 655
 ANSEL=0x00; 656
 ANSELHbits.ANS11=0; 657
 ANSELHbits.ANS10=0; 658
 ANSELHbits.ANS8=0; 659
 660
 //Configuracion comunicaciones UART 661
 pinTX=0; // Se configura la línea RC6/TX como salida 662
 pinRX=1; // Se configura la línea RC7/RX como entrada 663
 /*Se inicializa la transmision con 8 bits ,en modo asincrono, sin envio del BREAK y con velocidad de 664
 * comunicación alta (BRGH='1')*/ 665
 TXSTA=0x20; 666
 RCSTA=0x90; // Se inicializa la recepción con 8 bits y se configuran RC6 y RC7 como pines TX y RX 667
 SPBRG=25; // para 9600, 5.5 a 4MHz, 12 a 8MHz, 25 a 16MHz 668
 669
 //Configuracion comunicaciones SPI software (1=entrada 0=salida) 670
 CEConfig=0;//Pin de seleccion de la memoria 671
 MISOConfig=1; 672
 SCLConfig=0; 673
 MOSIConfig=0; 674
 CE=1;//Estado inicial al que poner el pin de seleccion de la memoria 675
 //Configuracion comunicaciones I2C 676
 //Hay que poner la opcion SLEW_ON al usar la velocidad máxima de 400 kHz 677
 OpenI2C(MASTER,SLEW_ON); 678
 //Esto configura el reloj del I2C (que ha de ser de 400 kHz (limitando la captura a 800 Hz) 679
 SSPADD=9; 680

Assessment of distance measurement using a 3-axis digital accelerometer

52

 //Configuracion inicial SPI software 681
 MISO=0; 682
 MOSI=0; 683
 SCL=1; 684
 685
 //Configuracion timer0 686
 // Timer 0 modo temp. de 16 bits. Prescalar on de 64 para 16MHz y de 32 para 8MHz. TIMER OFF 687
 T0CON=0b10000101; 688
 // Se carga el valor de TMR0H y TMR0L para un intervalo a escoger (1s, 100ms o 10ms) 689
 TMR0H=registroT[0][rT]; 690
 TMR0L=registroT[1][rT]; 691
 692
 //Configuracion timer1 693
 //Timer 1 en modo temporizador de 16 bits. Preescalar de 8 para 16 MHz (4 para 8 MHz y sucesivo) 694
 T1CON=0b10111001; 695
 TMR1H=offsetH; 696
 TMR1L=offsetL; 697
 698
 //Configuracion timer2 699
 //Timer3 en modo temporizador de 16 bits. Preescalar de 8 para 16 MHz(4 para 8 MHz y sucesivo) 700
 T3CON=0b10110101; 701
 TMR3H=offsetH; 702
 TMR3L=offsetL; 703
 704
 //Se habilitan las interrumpciones 705
 INTCONbits.GIE_GIEH = 1; // Se activan las interrupciones a nivel global 706
 INTCONbits.GIE=1; 707
 INTCONbits.GIEH=1; 708
 INTCONbits.PEIE_GIEL = 1; // Se activan las interrupciones de perifericos a nivel global 709
 PIE1bits.RCIE=1; // Se habilita la interrupcion de recepcion del canal serie 710
 INTCONbits.TMR0IE=0; // Se deshabilita la interrupcion del Timer0 711
 PIE1bits.TMR1IE=0;//Se deshabilita la interrupcion del Timer1 712
 PIE2bits.TMR3IE=1;//Se deshabilita la interrupcion del Timer3 713
 //Configuracion INT2 del boton 714
 INTCON2bits.INTEDG2=0;//Salta con el flanco de subida 715
 INTCON3bits.INT2IE=1;//Se habilita la interrupcion 716
 717
 //Secuencia de arranque (solo para la memoria) 718
 CE=0;//Se escoge activar la memoria 719
 com(58,0,iniM[0]); 720
 CE=1; 721
 CE=0; 722
 for(k=1;k<4;k++) 723
 { 724
 com(58,0,iniM[k]);//La secuencia de configuracion de la memoria a arrancar 725
 } 726
 //Configuracion del sensor 727
 for(k=0;k<3;k++) 728
 { 729
 com(datS[0][k],0,datS[1][k]); 730
 } 731
 CE=1;//Se deselecciona todo 732
 VERDE=0; 733
 AMARILLO=1; 734
 ROJO=1; 735
 for(k=0;k<3;offset[k]=0,k++);//Primero hay que borrar los offsets anteriores 736
 while(1) 737

Assessment of distance measurement using a 3-axis digital accelerometer

53

 { 738
 }; 739
} 740
unsigned char checksum(unsigned char x[], char n)//Todos los elementos excepto el propio checksum 741
{ 742
 unsigned char j,r; 743
 for(j=0,r=0;j<n;j++) 744
 { 745
 r=r+x[j]; 746
 } 747
 return r; 748
} 749
int com(char quien, char RW, char dato) 750
{ 751
 unsigned char i,bufferI2C[2]; 752
 int y=0; 753
 if(quien>57)//SPI 754
 { 755
 /*El dato de entrada se convierte en una secuencia de 1 y 0 en un array porque hacer 756
 * desplazamiento de registro ocupa mas tiempo cuando mayor es el desplazamiento*/ 757
 //Esto es lo más rápido que hay 758
 for(i=0;i<8;i++) 759
 { 760
 SCL=0; 761
 MOSI=(dato&0x80)>>7; 762
 dato=dato<<1;//Se hacen 8 desplazamientos no 7! (5040) 763
 SCL=1; 764
 y=(y<<1)+MISO; 765
 } 766
 //Hay que poner todo a cero para tener unas condiciones inciciales identicas en cada ciclo 767
 SCL=0; 768
 MISO=0; 769
 MOSI=0; 770
 if(RW)//Si se ha esogido leer datos del bus SPI, se procedera, si no, se salta 771
 { 772
 return y; 773
 } 774
 } 775
 else//I2C 776
 { 777
 //De esta forma, solo cuando se usa la modalidad I2C, se resetea la variable 778
 bufferI2C[1]=0; 779
 bufferI2C[0]=0; 780
 if(RW>0)//Lectura 781
 { 782
 //Proceso de comunicaciones (en base a la secuencia establecida por el "sensor") 783
 StartI2C(); 784
 while(START); 785
 WriteI2C(sensor); 786
 WriteI2C(quien); 787
 RestartI2C(); 788
 while(RESTART); 789
 WriteI2C(sensor+1); 790
 bufferI2C[0]=ReadI2C();//Esto es el primer byte (DAT_0) 791
 if(RW==2) 792
 { 793
 AckI2C(); 794

Assessment of distance measurement using a 3-axis digital accelerometer

54

 while(ACK); 795
 bufferI2C[1]=ReadI2C();//Esto es el segundo byte(DAT_1) 796
 } 797
 NotAckI2C(); 798
 while(NAK); 799
 StopI2C(); 800
 while(STOP); 801
 //Transformacion de los dos bytes a un numero 802
 y=bufferI2C[1]*256+bufferI2C[0];//Esto es lo mas rapido que se puede ir 803
 return y; 804
 } 805
 else//Escritura 806
 { 807
 StartI2C(); 808
 while(START); 809
 WriteI2C(sensor); 810
 WriteI2C(quien); 811
 WriteI2C(dato); 812
 StopI2C(); 813
 while(STOP); 814
 } 815
 } 816
}817

Assessment of distance measurement using a 3-axis digital accelerometer

55

Annex 2: Commands used between Microcontroller – PC

For any of the following commands to work (except for commands 15 and 9), the device
must be set in computer controlled mode. Additionally, every command received will cause the
orange LED to blink. Except commands 7, 17, 18 and 19, all the others were used for debugging
purposes.

Commands Description

0, 1

These commands are responsible for manual communication (reading) with
the sensor through I2C from the computer. The first one will indicate that just
one byte is expected to be read, whereas the second one indicates two bytes
to be expected.
Instruction 0 is also used by the computer interface to retrieve on address 0x00
the ID code of the sensor. By doing this the I2C communication path is checked
for proper operation.
It will read the data from the address specified in the third byte of the data
stream received from the computer interface.

2, 3

These commands are responsible for manual communication with the memory
chip through SPI from the computer. The first one will indicate that just one
byte is expected to be read, whereas the second one indicates two bytes to be
expected. Due to the nature of SPI communication, commands 4 and 5 have to
be used too.

4

This command is responsible of controlling the chip enable pin of the manual
SPI communication process. It will set the logic value of the pin based on the
value (0 or 1) passed by the third byte of the data stream received from the
computer interface.

5
This command is responsible of sending a single byte to the memory chip
though SPI. This byte is passed by the third byte of the data stream received
from the computer interface.

6
This command is responsible for the manual activation of the erase process of
the memory chip. The green LED will change state before starting the erasing
and again once it finishes.

7, 17, 18,
19

These three commands are responsible for the process of data recovery from
the memory chip.
Instruction 7 is used to start the process. It prepares the memory chip for the
sequential reading process.
Instruction 17 is sent by the computer interface asking for the next data
package. The device ensures that there is a valid package available and sends
it back to the computer interface. If there were no more packages available,
the device sends command 18 to the computer interface.
Instruction 19 asks the device to send back the last data package sent. This is
done when the data package received by the computer interface is not valid.

8
This command has no other purpose but to assure that communication
between the computer interface and the device is working properly. This is
checked thanks to the blink of the orange LED.

9
This command will cause a software reset process on the µC. It is outside the
PC-mode check just in case there are any problems in any mode.

10, 11
These commands are used to obtain from the memory chip its JEDEC and ID
codes respectively.

Assessment of distance measurement using a 3-axis digital accelerometer

56

On one hand, the JEDEC code is retrieved just to assure that the SPI
communication path is working properly. On the other hand, the ID code is
retrieved for debugging purposes as the process to retrieve such code is
identical to the sequential memory reading process, and quite similar to the
writing memory process.

12
This function was used for debugging purposes of the entire writing, reading
and sending processes. All three process were included in the execution of this
command and adapted to a scenario of capturing 2 bytes (0xABCD).

13

This command is responsible for manual communication (writing) with the
sensor through I2C from the computer. Only one byte can be written at the
time as all writable register addresses were just one byte of length.
The address and data to be written are passed by the third and fourth byte
respectively of the data stream received from the computer interface.

14
This command is responsible of toggling the functionality of the button of the
device. When the device powers up, this button is enabled.

15

This command allows to change to any of the modes the device can operate
based on the third byte received from the data stream from the computer
interface. The external interrupt that activates the change of the device mode
is software activated.

16
This command allows to change the sampling frequency (1 Hz, 10 Hz, 100 Hz,
200 Hz, 400 Hz) of the data, based on the third byte received from the data
stream from the computer interface.

20
This command allows to retrieve the amount packages that have been stored
in the memory chip.

Table 5: Summary of commands used during communication with PC

Assessment of distance measurement using a 3-axis digital accelerometer

57

Annex 3: Device schematic

Although it was thought to include an external oscillator in the design of the device (as

seen in Figure 2, pg 7) it was not included at the end as the internal oscillator of the
microcontroller ended up to be sufficient for this project.

Assessment of distance measurement using a 3-axis digital accelerometer

58

Annex 4: Description of the Computer Interface

1) Checkbox that enables/disables all aspects of the interface except for the recovery of
data button (A), the button for establishing the directory where the data will be saved
(C), the memory erase button (D) and COM port selection list (4). All the other aspects
are disabled because they are used mainly for debugging purposes.

2) Control buttons for multiple purposes:

A. Recover data from the device
B. Send instruction selected from the preconfigured command list (5) (and send

with the command the required data if the command needs it)
C. Establish the directory where the acceleration data file will be saved
D. Erase the data in the memory chip

3) Input fields for SPI/I2C address and data to be sent (if required by the command) and
the result received (if the situation required so).

4) COM port selection list, just in case there are multiple COM ports available in the
computer being used.

5) Preconfigured command selection list. All these commands between the computer
and the device are already established inside the interface and the user only has to
select the one of his interest and send it to the device via button B.

1

5

3

4

2

A

B

C

D

	Abstract
	1. State of the Art
	2. Materials and Methods
	2.1. Design of the pedometer
	2.1.1. Aspects to be considered
	2.1.2. Block Diagram of Device
	2.1.3. Design of hardware
	2.1.4. Design of firmware
	2.1.5. Design of software

	2.2. Design of the processing algorithms
	2.2.1. Aspects to be considered
	2.2.2. Integrate all the data approach
	2.2.3. Integrate the data in batches approach
	2.2.4. Integrate the data in steps approach

	2.3. Design of the experimental setup
	2.3.1. Other pedometers used for comparison
	2.3.2. Protocol Followed

	3. Results and Discussion
	3.1. Aspects to be considered
	3.2. Observations of integrating all the data (R2=0,9710)
	3.3. Observations of integrating the data in batches (R2=0,8513)
	3.4. Observations of integrating the data based on the steps (R2=0,9835 (XYZ) and R2=0,9791 (XZ))
	3.5. Comparison

	4. Conclusions and Improvements
	5. Bibliography
	Annex 1: PIC Firmware implemented
	Annex 2: Commands used between Microcontroller – PC
	Annex 3: Device schematic
	Annex 4: Description of the Computer Interface

