GDANSK UNIVERSITY
o OF TECHNOLOGY

FACULTY OF ELECTRONICS, TELECOMMUNICATIONS
AND INFORMATICS

Student’s name and surname: Gor Sahakyan
ID: 164333

First cycle studies

Mode of study: Full-time studies

Field of study: Electronics and
Telecommunications

Specialization: -

BACHELOR'S THESIS

Title of thesis: hardware block for microelectronic system with PLB bus for controlling the audio
amplifier

Title of thesis (in Polish): Blok sprzetowy systemu mikroelektronicznego z interfejsem magistrali PLB
sterujgcy wzmacniaczem akustycznym

Supervisor Head of Department

signature signature

dr inz. Marek Wojcikowski

Date of thesis submission to faculty office:

GDANSK UNIVERSITY .
ol OF TECHNOLOGY

STATEMENT

First name and surname: Gor Sahakyan

Date and place of birth: 22.04.1992, Erevan-Arm

ID: 164333

Faculty: Faculty of Electronics, Telecommunications and Informatics
Field of study: electronics and telecommunications

Cycle of studies: undergraduate studies

Mode of studies: Full-time studies

I, the undersigned, agree/do not agree* that my diploma project entitied: hardware block for
microelectronic system with PLB bus for controlling the audio amplifier
may be used for scientific or didactic purposes.!

signature of the student

Aware of criminal liability for violations of the Act of 4th February 1994 on Copyright and Related
Rights (Journal of Laws 2006, No. 90, item 631) and disciplinary actions set out in the Law on
Higher Education (Journal of Laws 2012, item 572 with later amendments),2 as well as civil
liability, | declare that the submitted diploma project is my own work.

This diploma project has never before been the basis of an official procedure associated with the
awarding of a professional title.

All the information contained in the above diploma project which is derived from written and
electronic sources is documented in a list of relevant literature in accordance with art. 34 of the
Copyright and Related Rights Act.

I confirm that this diploma project is identical to the attached electronic version.

signature of the student
| authorise the Gdansk University of Technology to include an electronic version of the above
diploma project in the open, institutional, digital repository of the Gdansk University of Technology

and for it to be submitted to the processes of verification and protection against misappropriation
of authorship.

signature of the student

*) delete where appropriate

1 Decree of Rector of Gdansk University of Technology No. 34/2009 of 9t November 2009, TUG archive instruction
addendum No. 8.

2 Act of 27th July 2005, Law on Higher Education:
Art. 214, section 4. Should a student be suspected of committing an act which involves the appropriation of the authorship
of a major part or other elements of another person’s work, the rector shall forthwith order an enquiry.

Art. 214 section 6. If the evidence collected during an enquiry confirms that the act referred to in section 4 has been
committed, the rector shall suspend the procedure for the awarding of a professional title pending a judgement of the
disciplinary committee and submit formal notice of the committed offence.

INDEX
1. INTRODUCGTION sttt ittt ettt te et et e eae et s eneesasenseanetnesassnsensernsensesnsrnses 3
1.1 PROJECT AIMS AND OBJECTIVES ..ueeuietieeeeet ettt et estee et et e st e et e eaa s st sebaesanessaesanessnasanens 3
1.2 PREVIOUS NEEDED KNOWLEDGEcuuivuiieueeeuieiieeiieesteeetieesaeesasesaeesnsssiesssnessnessnessnessnsesnnees 3
1.3 APPLICATION «.eveeeeei ettt et e et e ettt e e e e et e it e st e sa e s bt e s e s b e e aa e st eesasssnessaneraneesnansnns 3
2. DESIGN ENVIRONMENT ..ceutitii ittt ettt et et et et e te e et sensesassnssaessneenesnnsenss 3
2.1 XILINX EDK oottt ettt et et e et e e ettt e e st e e et e e eaa e s eaa s e s aaaseenannees 3
T B T AV 1 = S 4
3.1 PMODAMPI SPEAKER/HEADPHONE AMPLIFIER vvvvvveeeeeeeeeeesesesesesseseeeeeeesesesesesessssssssssnennes 4
3.2 PLB BUS ettt et e et e et e ettt e et e e s ab e e et e e e bt et b e et e ra e rra e aaras 5
3.3 SPARTAN 3 STARTER BOARD ..ottt ettt et e e s e b e st e e b e et e eaaesaaneees 6
4. CUSTOM HARDWARE/SOFTWARE BLOCK DESIGNcuviiiiieieeeiieiieeeeeeeeeeeeeeeeeeeeeeeas 6
4.1 START THE BASE MICROELECTRONIC SYSTEM «eivveieeiiitieeieeiieeeieetieesteesieeaaessbesaasesnesanesannenes 6
4.2 (O Y 1Y | =N 8
4.3 TRANSLATION OF MUSIC TO ELECTRONICS ..ouvevuniiteiteeiteeetie et eeieetieesnessnessnsessnessnsesneessneens 11
4.4 CUSTOM SOFTWARE .ottt ettt et e e et e s e et e e st e e e e b e et e eba e s s esaneraaeeanenans 15
4.5 SOFTWARE TO HARDWARE COMMUNICATION....ucevniiiiiiiiiiiieeiieeitieeseesteesnsesiessnessnesnnesannes 17
4.6 OBTAINED SPECIFICATIONS ..ccvnieeeeteeeeeeteeete et eete st e e e ste e st s st e eaasesbeesnsssneesanersneesnenans 18
TR 60]\ [I 0) 10 11 N 19
B. REFERENGCES ..ottt ettt ettt ettt e et et et eb st eea s b s easeansensssnssnssnnees 20
LIST OF FIGUREScooteeeietiit ettt ettt eee e teeseseee s eeeeeetestestes s bt bt bt abebensessens s bbesaesbeseesbeseesrenrens 21
Y IO L S 7Y =1 1 22
APPENDIX A: USER GUIDE......ooiieiiiiitiitieteeiieieeeteveetteeeetteseesteseesreseessestessesssssestsssssssssnssnsonsonsanssnne 23

APPENDIX B €Dttt sttt s s st et s e st er s et st sre s 26

ABSTRACT

This paper covers the developing of a block of Intellectual Property (IP) module
that supports PmodAMP1 Digilent audio amplifier. The project has been done in Xilinx
Platform Studio. The designed block is equipped with the Processor Local Bus (PLB) on
his 4.6 version and connected to a programmable microelectronic system with a
MicroBlaze processor. A sample application has been made to demonstrate the proper
operation of the designed block.

The programming languages used during the realization of this project were
Verilog, VHDL and C/C++. The project has been build on the Spartan-3 Starter Board
Field Programmable Gate Array (FPGA).

To demonstrate the operation of this block, a C code software has been written
to communicate with hardware block and output a song through the audio amplifier.

1. INTRODUCTION

1.1 Project aims and objectives

The following document gathers everything necessary to create a hardware
block for controlling the audio amplifier. This hardware block is based on audio amplifier
PmodAMP1 connected to Spartan 3 Starter Board Field Programmable Gate Array
(FPGA), so through Xilinx Project Studio (XPS), hardware specifications will be built on
the embedded system, followed by the necessary code, written in C, to run a custom
application. Knowledge of Verilog, VHDL and C/C++ languages is necessary for the
proposed aim. The first objective is to create a microelectronic system with a MicroBlaze
processor connected to the Processor Local Bus (PLB) in order to establish
communication between the processor and the devices.

The second objective of this project, once the hardware block is designed,
consists of creating a specific application to demonstrate the correct operation of the
designed block.

1.2 Previous needed knowledge

This project has been done after finishing Microelectronic Programmable
Systems course and learning Xilinx Embedded Development Kit (EDK) system, C/C++ and
Verilog languages are used. The MicroBlaze processor has been created through the
Base System Builder (BSB) wizard using VHDL language, but while creating a custom
Intellectual Property (IP) block, an option to create user logic in Verilog is available. For
proper understanding of this project, a knowledge of Verilog, C/C++ and Xilinx Platform
Studio is needed.

1.3 Application

In order to demonstrate that the design operates properly, an application needs
to be designed. Its purpose is to cover all the functions that the block is designed for and
give the project a task. The basic operation of an audio amplifier is to output an audio
signal, so the designed application will play a song through the audio amplifier. To
perform this task, some little knowledge of music staves or pentagrams is needed and it
will be explained in the following chapters.

2. DESIGN ENVIRONMENT
2.1 Xilinx EDK

Xilinx EDK System is the development package for building embedded processor
systems in Xilinx FPGA’s. This development kit is separated into two different
environments: Software Development Kit (SDK) and XPS.

Xilinx Platform Studio provides the user of a hardware description environment
to configure and build the hardware specification of the embedded system, this includes

the processor core, the memory-controller, the 1/O peripherals and many other blocks,
so it can convert the designer’s platform specification into a synthesizable Register
Transfer Level (RTL) description (VHDL or Verilog).

The Software Development Kit allows the user to write, compile and debug
C/C++ application for their designed embedded system, in other words, it handles the
software that will be executed on the embedded system.

Also, Xilinx ISE Design Software is used in order to test and simulate the designed
hardware block.

3. DEVICES
3.1 PmodAMP1 Speaker/Headphone amplifier

The selected audio amplifier is the PmodAMP1 module by Digilient. It works with
low power signals and it makes possible driving both, mono and stereo
headphones/speakers [1]. Its features are as following:

1/8 inch stereo headphone jack
1/8 inch mono speaker jack

6-pin header for inputs

Voltage range of operation 3V-5V

VVVYVY

Connectivity to the Spartan 3 board has to be done through a 6 pin cable and its
correspondent header. Because of the use of the expansion connectors described in the
following chapter 3.2, the header connected to the cable needs to get crossed its first
two pins.

O Left | Fiter | L [Speaker
Jack
O . 5
; mplifier

() RO Fier | P

Headphone
<:> R Jack
Q GND_ J3
<:> Vce
J1 L——» > R2

Volume

Fig.1. PmodAMP1 Block diagram [1]

As it is shown in Fig.2, the last two pins, need to be crossed by welding.

= N W R O
= N W B U O

Fig.2. Schematic diagram

So the connection should be done like this:

Fig.3. PmodAmp1 6-pin cable to crossed header

3.2 PLBBus

CoreConnect is a microprocessor bus architecture from IBM System on a Chip
(SoC) designs. Xilinx uses CoreConnect as the infrastructure for all their embedded
designs. In this project, the Processor Local Bus PLB 4.6 is going to be used because it
provides the infrastructure for connecting a different and optional number of Masters
(16) and Slaves into a PLB system. “It consists of a bus control unit, a watchdog timer,
and separate address, write, and read data path units, as well as an optional DCR (Device
Control Register) slave interface to provide access to its bus error status registers” [9].

3.3 Spartan 3 Starter Board

In this project the Spartan 3 Starter board has been used. There are three 40-pin
expansion connectors on this board: Al, A2 and B1, each one providing different
features for some of the pins. Generally, pins for V.. and GND are located in the first two
pins of each connector. Most of the other pins are for general purpose but a few ones
also provide extra features like additional logic on Al connector or Master and Slave
Parallel mode on A2 or B1 connectors [2]. This project does not need this features, so
any of the three expansion connectors is valid, the Al connector has been chosen for
the presented project.

The table 1 describes the organization of the pins [2].

Table 1. Expansion connector A1 first 6 pins [2]

FPGA PIN CONNECTOR FPGAPIN |
GND 1 2 N8
VCCO 3 4 L5 (SRAM)
N7 5 6 N3 (SRAM)
T8 7 8 M4 (SRAM)
R6 9 10 M3 (SRAM)
T5 11 12 L4 (SRAM)

Taking into the consideration this information, the PmodAMP1 needs to be
connected to connector 1 to 6, so the pin for Left output (Speaker Jack) will be T5 and
the pin for the Right output (Headphone Jack) will be T8.

Left TS (pinll)
NC Pin9

Right T8 (pin 7)
NC Pin5

GND VCC (pin 3)
vcC GND (pin 1)

Fig.4. Amplifier to FPGA connections

4. CUSTOM HARDWARE/SOFTWARE BLOCK DESIGN

4.1 Start the base microelectronic system

First of all, it is needed to create the base system, by using the BSB wizard, with
MicroBlaze processor with the following specifications:

- System clock frequency 50 MHz
->0n-Chip Memory 16KB
—>RS232, Push_Buttons_3bit and DIP_Switches_8bit 10 devices selected.

Once the process is finished, the Block Diagram of the created system will be
generated, as shown in the following figures Fig.5 and Fig.6:

bram_block
lud braus

Imb_bram_if_cntlr Imb_bram_if_cntir
 ently ilsd entlr

PROCESSOR
microblaze
microblaze 0

DLMB §| ILMB

opLe | 1PLE_

Fig.5. Block diagram |

mdm
dedag module
SLAVES OF mb_plb
xps_gpio xps_gpio xps_gpio
DIP Switches SBit LED 7SECMENT LEDs SBit
A B C
xps_gpio xps_uvartlite
Push_Buttons 3Eit RS232

Fig.6. Block diagram Il

Fig.5 contains the processor MicroBlaze and the BRAM, connections between
them are made trough Local Memory Bus. The connections between the processor and

the 10 devices are done trough Processor Local Bus as shown in Fig.6. The LMB is a fast,
local bus for connecting MicroBlaze instruction and data ports to high-speed
peripherals, primarily on-chip block RAM (BRAM). MicroBlaze uses this dedicated LMB
bus in order to reduce the load on the other buses.

In System Assembly View, the same description but with hierarchical levels is
shown, so the user can adapt the connections between each block to his own
necessities.

While creating the project, the BSB wizard generates MHS (Microprocessor
Hardware Specification) and MSS (Microprocessor Software Specification) files. The
MHS defines the hardware component, in other words, defines the configuration of the
embedded system, including bus architecture, peripherals, processor system
connectivity and address space. On the other hand, the MSS file contains libraries, and
directives for customizing Operating Systems and drivers [8].

4.2 Custom IP

Once the base system has been built, the next step is creating the custom
Intellectual Property block, in other words, user’s designed block. XPS allows to import
or create new peripherals and add them to existing project. In this project, a custom IP
block with 4 registers connected to the PLB bus has been created. While creating it, the
program will give the choice of the desired programming language for the user logic, so
Verilog has been chosen in this project.

This block is responsible to connect to the audio amplifier and output the desired
tones that it will receive from the software, so basically Custom IP acts like a slave device
to the processor.

The peripheral is based on two files, custom_ip.vhd, and user_logic.v. The first
one defines the connectivity between the PLB interface and the peripheral 10 ports and
the second one contains the hardware specification. As it was mentioned before, four
registers have been created so each of them has a dedicated task assigned. Data sent
from the processor to the peripheral device travels through ipif Bus2IP_Data and it is
stored in the desired register, default code generated by XPS includes this operation, so
there is no need to design a way to store data sent by the software to the registers.

CUSTOM_IP

USER_LOGIC

Fig.7. Custom IP diagram

The basic I/0 interface transfers the information from software to hardware, but
some additional ports need to be created in order to enable the hardware block to
output the signal. In this project, two variables have been called left, as the left channel
output, and enable, as the switch that enables Custom IP to start working. Both are
external connections to their respective pins.

Information send to hardware is stored in different registers.

Fig.8 shows code block that works to create the note, it is just a simple clock
divider. The first register of Custom IP is slv_reg0, the software will store in this register
the counter value to create a digital signal with specific frequency, so this is the way to
create all the different musical notes. Verilog does not understand the frequency, but
clock cycles, so the different musical notes have to be traduced from frequencies to time
in seconds and later to clock cycles. This will be explained in detail in section 4.3.

always @(posedge Bus2IP_Clk)

begin
if (Bus2IP_Reset)
Q<=17'b0;
else if (Q == (slv_reg0-1))
Q<=17'b0;
else
Q<=Q+1;
end

always @(posedge Bus2IP_Clk)

begin
if (Bus2IP_Reset)
left_aux<=0;
else if (Q == (slv_reg0-1))
left_aux <= ~left_aux;
else
left_aux <= left_aux;
end

Fig.8. Clock divider Verilog code

10

The part of the code presented in Fig.9 is responsible for capturing the created
signal and outputting it, checking previously, if it has to be sent to the output (enable

and start).

always @(posedge Bus2IP_Clk)

begin
case(slv_reg3 && enable)
1:
begin
if (delay < slv_reg1)
begin
delay <=delay + 1;
left <= left_aux;
slv_reg2 <=1;
end
else
slv_reg2 <=0;
end
0:
delay <=0;
endcase
end

Fig.9. Part of User Logic Verilog code

11

Registers slv_regl and slv_reg3 store delay and start values. Register three
slv_reg2 is a special one, its default code has been edited to allow hardware to write to
it, but not software. So every time that Custom IP finishes outputting a note it writes a
logical one to slv_reg2, so software can know, by reading it, the exact moment when it
has to send the next note to play.

4.3 Translation of music to electronics

In this section explanations of how to take a music stave, analyze and traduce it
to electronics language will be done.

To output a tone, a clock divider will be used, so depending on its frequency the
output signal can produce different tones. For example, the frequency of the musical
note La is 440 Hz in the 4th octave [3], considering that the systems clock frequency is
50 MHz:

processor clocks frequency

counter =
tone frequency

counter for La is 113636, this means that the digital pulse width is 113636 processor
clock cycles.

1 113636

1 clock cycle
<} {> processor clock 50 Mhz

clock divider 440 Hz

Fig.10. Processor clock VS output signal clock for La note

12

Table 2 contains the different musical tones used in this project [3]:

Table 2. Frequency and counter values for musical notes [3]

Musical Tone Frequency (Hz) Counter value
Do octave 4 261,625565 191113
Red4 293,664768 170262
Mid 329,627557 151686
Fad 349,228231 143173
Sol4 391,995436 127552
Lad 440,000000 113636
Sid 493,883301 101238
Do octave 5 523,251131 95556
Re5 587,329536 85131
Mi5 659,255114 75843
Fa5 698,456463 71586
Sol5 783,990872 63776
La5 880,000000 56818

Considering this information, Verilog code is just a counter that creates a signal
and inverts its value every counter value cycles (clock divider), depending on which tone
is outputted.

But for playing a song this is not enough, the program should also know how long
it has to output this signal thus, a delay and an enable signal will be needed. In music
staves, there are many different durations of the notes, but they are represented in
tempos and they have to be traduced to seconds, firstly, and later to clock cycles. The
following table represents the different tempos and how much half notes they contain
per each minute:

Table 3. Tempos [4]

Half notes per minute Italian expression ‘
40-43 Grave
44-47 Largo
48-51 Larghetto
52-54 Adagio
55-65 Andante
66-69 Andantino
70-95 Moderato
96-112 Allegretto

113-120 Allegro
121-140 Vivace
141-175 Presto

176-208 Prestissimo

13

. . . 113
If tempo Allegro is chosen, then each half note duration is o = 0,53 seconds

[4]. The processor clock is 50MHz this means that there are 50 * 10° clock cycles in 1
second, so the duration in tempo and in clock cycles have the values presented in Table
4.

Table 4. Musical note values [5]

Duration Duration (clock
Note | Delay Name
(Tempo) cycles)
-
whole note | 1 53000000
O
-
J half note 1/2 26500000
uarter
J v @ 1/4 13250000
note
'b 7 eighth note | 1/8 6625000

So this information is enough to traduce a stave to electronic language.

14

In this project Lost Woods songs has been chosen to play, its stave is presented

in Fig.11.
Lost Woods
From The Legend of Zelda: Ocarina of Time Koji Kondo
http://www.gamemusicthemes.com/ .
Allegro Transcribed by BLUESCD
T R 2 ~ —
» i g £
2 T T = —= =) Fo—=
Piano mf’
B _ B
: i J:—E E— ! j—i 1 1 1 1 1 1 1 1 1
e ==-== £
' =T 4 <
g5 S5
‘__: : : }__: 1 1 1 1 1 1 1 1 1
O | /“; &
<l y— i H 1
e .o
1 1 1 1 1

an

====—==x

<

¥ 3 F ™
1
14

P z

Repeat Forever

e
- - " £
? : ; F : g 1 1 1 1
—— e—— S N S S——

Fig.11. Lost Woods Piano Stave [3]

15

From the point of view of the C code, tempos are traduced for whole notes as
“r”, half notes as “b” and quarter notes as “n”. The translation of the different notes is
shown in Table 5.

Table 5. Musical notes in C code

Note Name in C file \

Octave 4
Do

Re

Mi

Fa

Sol

La

Si
Octave 5
Do

Re

Mi

Fa

Sol

La

Si

— o MmO X N

O vwo—c<=<=x

4.4 Custom Software

Once the hardware block is created, software can be written as C/C++ code.
Custom IP includes the generated default functions to write and read [8], they are
written in a C file located in:

“project directory”/microblaze_0/libsrc/custom_ip/custom_ip_v1_00_a.

These two functions are:

—>void CUSTOM_IP_mWriteSlaveReg“number of register 0,1,2...”(Xuint32
BaseAddress, unsigned RegOffset, Xuint32 Value).

—>Xuint32 CUSTOM_IP_mReadSlaveReg“number of register 0,1,2...”(Xuint32
BaseAddress, unsigned RegOffset).

Xuint32 BaseAddress, from mentioned functions is the base address of Custom
IP block, there are two options: the use of numeric address or to use of the macro that
is representing it. This can be checked in xparameters.h library file located in
microblaze_0/includes directory. Depending on the situation base address could change
so it’s recommended to use the macro. Unsigned RegOffset is the slave register offset,
in this case, it’s 0, and finally, Xuint32Value, for write function, is the desired value to be
written to the register.

16

Musical notes and tempos are traduced, as shown in Table 5 and stored in two
different variables. The program will take the information of those variables and
translate them to the values of counter and delay. For example, if the first musical note
of the stave is “Octave 4 La”, it should be stored as “H”, in this way the program can
know through a switch statement which counter value corresponds to this musical note.
The same happens with the delay.

char note[]={
IFI’IHIIIJIIIFIIIHIIIJIIIFIIIHII -
|7

char tempo[]={
'n"'n','b','n','n','b','n','n', -

|5

Fig.12. Stored notes

The code is not independent of the hardware; this means that checking the
status of played notes is necessary in order to know when to send the following ones.
As mentioned before, this information will be obtained from slv_reg2, and checking has
to be done through a loop, so the software will wait until the hardware finishes.

for (i=0; i<N; i++){

play (noteli],tempoli],1);
while (readReg2() == 1){}
next ();

}

Fig.13. Main loop

The loop in Fig.13 will run until there are no more notes to be played, so variable
“N” contains the total number of notes. Counter values are known by a “switch
statement” as shown in Fig.14.

ﬂvitch (note){ /¥*OCATAVA 4%

case 'Z": counter=191113; /¥DO*/
break;

case 'X': counter=170262; /*RE*/
break;

case 'C": counter=151686; /¥*MI*/
break;

\default : counter=0; } /

Fig.14. Selection of the counter values depending on the
selected note

17

4.5 Software to Hardware communication

Read and write functions described in custom_ip.h (the header file that contains
high-level functions for Custom IP) are based on other functions that the system has
included: xbasic_types.h, xstatus.h and xio.h.

Device drivers are computer programs working with operating systems or
applications and hardware devices, so the software does not communicate directly with
the hardware but it invokes a routine in the driver and this one communicates with the
hardware. The main purpose of a driver is enabling access from software to hardware
without knowing details of it. Communication with driver is usually made trough the bus
it is connected to, the PLB in this case. Drivers are also capable of invoking routines in
the software if they get this request from software [10].

Read and write functions are high-level functions, and when they are called, they
invoke other low-level functions. A “.mdd” file is a microprocessor device description
file, every device is required to have such file. An example of “.mdd” file is shown in
Fig.14.

OPTION psf wversion = 2.1.0;

EEGIN DRIVER custom ip
OPTION supported peripherals = (custom ip):
OPTION depends = (common vl 00 a);
OPTION copyfiles = all:;

END DRIVER

Fig.15. Custom IP MDD

Option “supported_peripherals” indicates which devices are supported by this
driver, obviously, this one is Custom IP. “Option depends” specifies that the driver
depends on the sources of a directory named “common_v1l_00_a”, this directory
contains all the needed low-level functions that high-level ones will invoke to read from
or write to the registers.

4.6 Obtained Specifications

18

The Tables 6 and 7 contain the obtained specifications of this project.

Table 6. Logic Utilization

Logic Utilization

Total Number Slice Registers 1,600 out of 3,840

Number used as Flip Flops: 1,599
Number used as Latches: 1
Number of 4 input LUTs: 2,107 out of 3,840

(41%)

(54%)

Logic Utilization describes the resources that the Synthesis tool uses to build
the combinatorial functions. These resources (Flip-Flops (FF), Latches, Look-Up
Tables(LUTs)) will get placed in slices, so there are multiple resources in a slice. Total
number of slices indicates how much slices have at least one element used in them.
Synthesis also estimates, how the design will be packed and placed in the target

device.

Table 7. Logic Distribution

Logic Distribution

Number of occupied Slices: 1,381 out of 1,920
Number of Slices containing only 1,381 out of 1,381
related logic

Number of Slices containing unrelated 0 out of 1,381
logic

Total Number of 4 input LUTs 2,242 out of 3,840
Number used as logic 1,697

Number used as a route-thru 135

Number used for Dual Port RAMs 256

(Two LUTs used per Dual Port RAM)
Number used as Shift registers 154

(71%)
(100%)

(8%)

(58%)

19

5. CONCLUSIONS

The final implicit aim of the study is to learn how to create and customize
hardware blocks, how to communicate with them, understand how the drivers work,
etc. The difficult task is understanding the default files provided from the beginning by
XPS and using this information for creating the required new blocks.

Future users can try to achieve also the keyboard to play notes through the
hardware; this can be done by two different ways, firstly, using UartLite and
Hyperterminal, so written characters will be translated, by software, to notes and
outputted by hardware, or secondly, using the PS/2 port from Spartan 3 Board to
connect keyboard and program a new hardware block to communicate with it and
interpret the sent information.

20

6. REFERENCES

[1]. PmodAMP1 Speaker/Headphone Amplifier reference manual :
http://store.digilentinc.com/pmodampl-speaker-headphone-amplifier-retired/.

[2]. Spartan-3 Starter Kit Board user guide:
http://www.xilinx.com/support/documentation/boards and kits/ug130.pdf.

[3]. Frequencies of musical notes:
http://latecladeescape.com/h/2015/08/frecuencia-de-las-notas-musicales.

[4]. Wikipedia: https://es.wikipedia.org/wiki/Tempo.

[5]. Wikipedia: https://en.wikipedia.org/wiki/Note value.

[6]. J.Ganssle, The Art of Designing Embedded Systems, Elsevier, 2008.
[7]. J. Catsoulis, Designing Embedded Hardware, O’Reilly Media, 2005.

[8]. Xilinx Community Forums: https://forums.xilinx.com/

[9]. Xilinx Processor Local Bus product specification:
http://www.xilinx.com/support/documentation/ip documentation/plb v46.pdf.

[10]. Wikipedia: https://en.wikipedia.org/wiki/Device driver.

21

LIST OF FIGURES

Fig.1. PmMOdAMPL BIOCK diagramcccceeciieieiieiene e e en s 3
Fig.2. SChematic diagrami......ccic ittt se e 4
Fig.3. PmodAmpl 6-pin cable to crossed header.........ccocvveieieieinininininncnecneee e 4
Fig.4. Amplifier t0 FPGA CONNECLIONS. ...ccciiriiiieiieeietieiiereetest st ere e ee e saesre st st e s 5
Fig.5. BIOCK dIiagram L..c.cceieee ettt st s e s 6
Fig.6. BIOCK dIiagram [l....ccooeieee ettt st st st st s e 6
Fig.7. CUSTOM IP di@gram.....ccocieieieieeeee ettt ettt st s st st sae e e 8
Fig.8. Clock divider Verilog COUE......uoviiiiiiiiiieiietrtet sttt st st st s e 9
Fig.9. Part of User LOgiC Verilog COUE.......coviiiiiiiicieiertrt et 9
Fig.10. Processor clock VS output signal clock for La note.........cccecuvvvivincnenecneeneenen. 10
Fig.11. LOoSt W0OdS Pian0 StaVe......ccocceieieiese st 13
Fig.12. StOred NOTES....v ittt st st e e e e e s en e en s en e e 15
Fig.13. IMaiN l00P it cuiie ittt sttt et b et er st st e se s e e e eaeenesaesaesb eee 15
Fig.14. Selection of the counter values depending on the selected note................. 16

Fig.15. CUSTOM IP IMIDD ...ttt 16

22

LIST OF TABLES

Table 1. Expansion connector AL first 6 PiNS.....ccccceiveeievieneneneseses e 5
Table 2. Frequency and counter values for musical Notes........ccceceeveceeveriecrecceecee. 11
LT (=0 T8 =T '] oY 1 OO OO STR 11
Table 4. MUSICal NOLE VAIUES ..ottt st et s 12
Table 5. Musical NOtes iN € COUE.......iiiiiiririeeece ettt e 14
Table 6. Logic UtiliZation........ccveuieceee ettt st r e 17

Table 7. Logic DistribUtioN.......c.uccueeeee et 17

23

APPENDIX A: Custom IP Block User Guide

Introduction

This document describes the specifications for
the Custom IP core attached to PLBv4.6. It has
been created in order to control an audio
amplifier with digital input. The core has been
tested with PmodAmp1 Digilent audio amplifier
connected to Spartan-3 Starter Kit Board.

Features

* Connects as a 32-bit slave on PLBv4.6.
* Digital output

Functional description

Core Specifics

Supported Device Spartan-3 Starter
Board
Version of core v1.00a
Used Resources
Slices 1381
FFs 1599
LUTs 2242
Block RAMs 8
Provided with Core

Documentation Product Specification
Design File Formats Verilog, VHDL

Design Tool Requirements
Xilinx Xilinx Platform Studio
Implementation
Tools
Synthesis XST

The designed core consists of 4 registers, containing different data needed to control the
audio amplifier. The contents of this registers are counter, delay, next and start as shown in

the following table:

Table 1. Registers

Register description
Counter
Delay
Next
Start

Register name
slv_reg0
slv_regl
slv_reg2
slv_reg3

The registers counter and delay must contain a value expressed in clock cycles. A clock divider
will run creating a signal depending on counter value. This digital signal is the output tone, so
core will work only if the selected amplifier accepts digital inputs. The output duration is
determined by delay value and output will happen only if the content of start register is a
logical “1”. Next register is a closed one, this means that only the core is allowed to write on
it if a determined tone has already finished being outputted, next will show it by writing a
logical “1”, if not, its content will be a logical “0”. There exist also an external enable input
allowing the core to run only if its value is a logical “1”. As shown in the following Fig.1, the

digital output signal is left.

Kit

24

PLB BUS

Custom IP block

Bus2IP_Clk

Bus2IP_Reset . left
P
Bus2IP_Data . enable
[
N Bus2IP_Data >
E Bus2IP_RdCE N User Logic
PLB ﬁ R "
Interface C Bus2|P_WrCe N
Module g [P2Bus _Data
2 :IPZBus_RdAck
c
T =IPZBus_WrAck
=IPZBus_Error
Fig.1. Custom IP diagram block
Signal Name 1/0 Description
Bus2IP_Clk Input System clock
Bus2IP_Reset Input External system reset
Bus2IP_Data Input Bus to IP data bus
Bus2IP_RdCE Input Read Chip Enable
Bus2IP_WrCE Input Write Chip Enable
IP2Bus_Data Output IP to bus data bus
IP2Bus_RdAck Output Read Acknowledgement
IP2Bus_WrAck Output Write Acknowledgement
IP2Bus_Error Output Error Response
left Output Output signal
enable Input External system enable

Table 2. /0 Signals

Data from Bus2IP_Data will be stored in the register if its correspondent write chip
enable, Bus2IP_WHrCE is activated. The registers are selected depending on Bus2IP_WrCE
value, it consists of an 8-bit variable, each bit selects one register, so, for example if data
needs to be stored in register slv_reg0, Bus2IP_WrCE should contain “0001000”. Exactly
the same happens with read operation, “10000000” value in Bus2IP_RdCE, for example,
indicates that register “slv_reg3” is going to be read. IP2Bus_RdAck and IP2Bus_WTrAck
provide signals to the bus to inform when data from IP2Bus_Data is ready to be read or

25

written. Enable and left are external signals, if enable value is logical “1” it will send to
output left signal, if it is not, output will be 0.

If the core is programmed to work with software, there are provided two functions to
write or read the registers:

—>void CUSTOM_IP_mWriteSlaveReg“number of register 0,1,2...”(Xuint32
BaseAddress, unsigned RegOffset, Xuint32 Value).

—>Xuint32 CUSTOM_IP_mReadSlaveReg“number of register 0,1,2...”(Xuint32
BaseAddress, unsigned RegOffset).

Where “Xuint32 BaseAddress”, from mentioned functions, is the base address of
Custom IP block, “Unsigned RegOffset” is the slave register offset to, in this case, it’s 0,
and finally, “Xuint32Value”, for write function, is the desired value to write to the
register. These functions header file can be found in the directory:
microblaze_0/libsrc/custom_ip_v1_00_a/src/custom_ip.h

26

APPENDIX B: CD
A CD containing all the necessary files to run properly this project is
attached to it.

