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 9 
Abstract 10 
 11 
Sonic crystals have been demonstrated to be good candidates to substitute conventional diffusers 12 
in order to overcome the need for extremely deep structures when low frequencies have to be 13 
scattered. In this work, the possibility of optimizing such structures providing better performance 14 
over a large frequency range is explored. For doing so, multiobjective evolutionary algorithms 15 
have been used in combination with a Finite-Difference Time-Domain (FDTD) algorithm that 16 
allow predicting the performance of a sound diffuser. The results provided by the multiobjective 17 
algorithm, show that diffusion can be significantly increased. Additionally the multiobjective 18 
optimization is compared with conventional optimizations in which a single objective quantifies 19 
the performance of sound diffusers. 20 
  21 
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I. INTRODUCTION 22 
 23 
Four decades after the invention of sound diffusers by Schroeder 1 is fairly well demonstrated 24 
their performance in increasing the sound diffuseness, in elimination of flutter echoes or in 25 
reducing coloration phenomena 2. During these years, several authors have suggested alternatives 26 
to the first proposals of Schroeder, using different numerical sequences to design the depth of the 27 
wells 3, changing the classic stepped diffusers by more attractive shapes 4, or replacing the 28 
different depths of the wells by an irregular mesh of reflective or absorptive small areas 5. 29 
 30 
In phase diffusers, defined as diffusers made with a set of wells of different depths, the lowest 31 
frequency at which significant diffusion occurs is determined by the maximum depth of the set. 32 
This means that to be effective in the low frequency range, i.e. 125Hz and 250Hz octave bands, 33 
phase diffusers require a depth of about one meter. To overcome this limitation, new composite 34 
materials, called Sonic Crystals (SC), have been proposed to work as diffusers in the range of 35 
low frequencies without the need for extremely deep structures 6. SC can be defined as periodic 36 
arrays of isotropic scatterers embedded in isotropic elastic backgrounds, being one of them a 37 
fluid 7-8. A frequently used two-dimensional SC is formed by cylindrical rigid scatterers arranged 38 
in square or triangular lattices and surrounded by air. The potential use of SC as diffusers is 39 
closely related to one of their most interesting features, which is the existence of sonic band 40 
gaps, defined as ranges of frequencies where the sound cannot propagate through the SC. The 41 
existence of band gaps is the result of the interference of waves due to a multiple scattering 42 
process within the SC, appearing when the wavelength is of the order of the spatial period of the 43 
SC. The scale of the structure is then determined by the wavelength of the sound wave, and 44 
consequently by the sound frequencies of interest. As a result, size has been for years the main 45 
limitation in the use of SC for audible applications, since extremely large structures are required 46 
to observe effects at audible frequencies. However, in last years the diffusive properties of SC 47 
have been considered 9, and this fact has led to the use of such structures as acoustic scattering 48 
devices with high diffusion coefficient at low frequency ranges 6. 49 
 50 
Evolutionary algorithms have been used as optimization techniques to design technologically 51 
advanced devices based on SC or to increase some structural properties of such materials. Thus 52 
the band gap properties have been increased, using multiobjective evolutionary algorithms, to 53 
design acoustic barriers 10-12. In these optimization processes, two objective functions have been 54 
defined in order to ensure the maximum attenuation in the frequency range analyzed: the mean 55 
acoustic pressure and the mean deviation of the acoustic pressure in the selected point. 56 
Moreover, some authors have used these algorithms, but considering a single-objective function, 57 
to propose the construction of different acoustic lenses generated by inverse design. In this last 58 
case, the objective function optimized has been the acoustic pressure in the focal point 13-14.  59 
 60 
On the other hand, the application of optimization techniques in the field of sound diffusers is 61 
partially unexplored. In 1995 Cox 15 suggested the use of iterative methods as downhill simplex 62 
and quasi-Newton methods to optimize phase diffusers with quite good results. The objective 63 
function used was a parameter to estimate the diffusion, defined as the standard error of the 64 
sound pressure over the measurement positions, averaged over the desired working frequency 65 
range. In order to avoid low performance for particular frequencies within that range, a penalty 66 
was introduced adding the standard error to the frequency averaging.  67 
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 68 
Optimization processes have also been used in the case of the design of commercial diffusers 69 
based on curved surfaces. The basic idea is to optimize the shape of curved surfaces to act as 70 
diffusers, fulfilling the requirements of both visual aesthetics and good acoustic performance. In 71 
the design process, it is necessary to obtain a set of numbers that describe the shape of the curved 72 
surface. These shape parameters can be obtained using different mathematical representations as 73 
Fourier series or cubic spline algorithms. In all cases, a predetermined number of critical points 74 
of the problem surface, which can vary their position depending on the diffusion performance of 75 
the surface, have to be selected. The optimum set of positions of the different critical points 76 
provide the desired curved surface diffuser. The optimization can be done by using different 77 
single-objective functions, as the diffusion parameter defined above 3. 78 
 79 
Finally, volumetric diffusers based on SC have been designed using evolutionary algorithms 80 
with a single-objective function, the standard diffusion coefficient, along to a two-dimensional 81 
Fourier approximation, creating arrays with a high diffusion performance 9. In all these named 82 
cases the optimization has been carried out by either removing randomly or varying the diameter 83 
of the rigid cylinders that form the different SC. 84 
 85 
As a conclusion, multiobjective evolutionary algorithms have never been used in the field of 86 
acoustic diffusers neither in the case of the phase diffusers nor in the case of those based on SC. 87 
Therefore, the goal of this paper is the design of Optimized Sonic Crystal Sound Diffusers 88 
(OSCSD) to create devices that work properly in the range of low frequencies (octave bands 89 
centered at 125Hz and 250Hz) with a reasonable size, using multiobjective evolutionary 90 
algorithms. Moreover, we provide here a study of the robustness of the solutions obtained, 91 
developing tools that can help to make a decision about the choice of the most appropriated 92 
diffuser. To do that, we will consider as the starting design of the optimization process the Sonic 93 
Crystal Sound Diffuser (SCSD) proposed by Redondo et al. 6, designed to work in the range of 94 
low frequencies. This SCSD is composed by a bi-periodic structure formed by a set of 45x4 95 
cylindrical scatterers with radius equal to 3.5cm, arranged in a square array with alternative 96 
lattice constants a=8.8cm and a=7.2cm. 97 
 98 
The paper is organized as follows: in section 2 we describe the optimization process. The results 99 
are analyzed and discussed in section 3. Section 4 will explore a new possibility for the selection 100 
of optimal individuals. In Section 5, multi-objective optimization is compared to single-objective 101 
optimization. Last section contains the concluding remarks, where the main conclusions are 102 
summarized. 103 
 104 
II. DESCRIPTION OF THE OPTIMIZATION PROCESS 105 
 106 
The starting point of this paper is the Bi-Periodic Sound Diffuser (BPD) based on Sonic Crystals 107 
presented in 6 (see Figure 1a). That device has a high performance in the low frequency range 108 
without the need for large depth. However, it can be largely improved by evolutionary 109 
algorithms. For doing so, a gene codification must be established. The possible candidates will 110 
be encoded by a set of genes that represent in our case a set of 180 normalized cylinders radii. 111 
We have considered here that the radii of the cylinders can take six different values from 0 to 1 112 
with steps of 0.2, where 0 means that the cylinder does not exist and 1 is the maximum radius 113 
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that can be used, which is given by half the lattice constant. So, an individual θ is represented by 114 
a genotype given by a vector of length 180, varying each element from 0 to 1. Figure 1 illustrates 115 
the codification of a portion of the Sonic Crystal. 116 
 117 
A Quantification of the performance of sound diffusers 118 
 119 
Next step is to propose Cost Functions that can be used by an evolutionary algorithm to quantify 120 
the performance of each candidate. There are basically two methods to quantify the performance 121 
of sound diffusers, both standardized by the International Organization for Standardization 122 
(ISO).  123 
 124 
The first method to quantify the performance of sound diffusers (ISO 17497-Part 1) 16 allows the 125 
direct extraction of the so-called scattering coefficient, under the assumption that scattered sound 126 
is incoherent. A test sample is introduced into a reverberant chamber, and several impulse 127 
responses for different sample orientations are obtained. Using synchronous averaging of these 128 
measurements, the diffuse reflected sound is eliminated, and a virtual impulse response is 129 
obtained. A pseudo-absorption-coefficient can be obtained from the virtual impulse response in 130 
an analogous way to the Sabine method 17. Finally, a scattering coefficient is obtained from this 131 
pseudo-absorption coefficient. 132 
 133 
An alternative method is standarized by ISO 17497 – Part 2 18. This standard is based on the 134 
measurement of the reflected sound over a predetermined range of angles, in a similar way than 135 
the directivity measurement of loudspeakers. For this purpose, an impulse response of the sample 136 
must be obtained. To do that, a microphone is moved along a semi-circumference (or over a 137 
hemisphere for full three dimensional evaluation), centered on the middle point of the test 138 
sample. For a complete characterization of the diffuser, the incidence angle is varied from –90º 139 
to 90º. Direct sound should be eliminated by appropriate windowing of the signal. Large 140 
anechoic environments are needed to ensure far field conditions. The parameter measured using 141 
this technique is known as the diffusion coefficient and is defined as follows: 142 
 143 
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మ ቁ
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   (1) 144 

 145 
where d’j is the diffusion coefficient for the j-th one-third octave band considered, pij is the sound 146 
pressure of the reflected sound for the j-th one-third octave band at the i-th measurement 147 
position, and n is the number of measurement positions. To normalize this diffusion coefficient 148 
from zero to one, d’j is compared with a flat surface that is considered the worst case. Thus, the 149 
normalized diffusion coefficient, dj, is defined as: 150 
 151 

݀ ൌ
ௗᇱೕିௗೕ,ೝ
ଵିௗೕ,ೝ

         (2) 152 

 153 
where dj is the normalized diffusion coefficient for the j-th one-third octave band, and dj,ref is the 154 
diffusion coefficient of a flat panel for the j-th one-third octave band. As a result, dj is equal to 155 
zero for flat surfaces. 156 
 157 
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Both characterization techniques can be simulated with algorithms based on the two-dimensional 158 
Finite Difference Time Domain (FDTD) method 19-20. However, simulations following the 159 
second characterization method are much faster than the ones carried out following the first one. 160 
So, we have chosen the second standard to simulate all the structures considered in the present 161 
paper. Further details about the FDTD set up used in this paper can be found in 19.  162 
 163 
Next, a set of Cost Functions J(θ) have to be defined to perform the optimization process. Notice 164 
that an optimization process seeks to minimize at least one cost function. Generally speaking, the 165 
number of Cost Functions in an optimization process is not limited, but the computational time 166 
can be greatly enhanced when increasing their number.  167 
 168 
Our target here is to improve the performance of diffusers based on SC for low frequencies, 169 
where the use of conventional diffusers implies high depths of the wells (around 1 m for 100 Hz 170 
one-third octave band) making its use impractical. Therefore, we have focused our attention in 171 
the so-called low frequency range, which includes six one-third octave bands (100Hz, 125Hz, 172 
160Hz, 200Hz, 250Hz and 315 Hz) that in the following will be numbered from one to six. Once 173 
the general target of our optimization process has been fixed, the choice of the specific Cost 174 
Functions represents the key of the success in the obtaining of the optimal solutions. Actually, 175 
there are not global rules about the choice of these Cost Functions but the final choice depends 176 
on the actual problem to be solved by the diffuser. 177 
 178 
To maximize the performance of Sonic Crystals Sound Diffusers in the low frequency range, we 179 
suggest five Cost Functions. All the Cost Functions are defined to be zero for the best case. 180 
Although we have chosen these five functions, we would like to highlight the flexibility of the 181 
approach concerning the target and the frequency content of the acoustic signal, because the final 182 
choice in the optimization process will depend on the particular problem to be solved by the 183 
diffusor. It might be a specific normal mode in recording studio, which should be destroyed by 184 
scattering, while the signal has a broadband frequency spectrum. Or it might be a specific 185 
treatment for a focus in a dome at a given frequency of a narrowband signal.  186 
 187 
The first Cost Function that we suggest corresponds to the overall average of the normalized 188 
diffusion coefficient, namely: 189 
 190 

Jlow() = 1 െ ݀̅ ൌ 1 െ ∑ ቚ
ௗೕሺఏሻ


ቚ

ୀଵ         with m=6                (3) 191 

 192 
The danger when using this cost function alone, is that diffusion can be very uneven versus 193 
frequency. In other words, frequencies with very good diffusion may compensate for frequencies 194 
with very poor diffusion. This problem can be easily solved by introducing an additional Cost 195 
Function that evaluates the variability of diffusion over the frequency range of interest. Our 196 
suggestion is to use the standard deviation, i.e.:  197 

 198 

Jvarlow() = ට
∑ ሺௗതିหௗೕሺఏሻหሻమ

ೕసభ

ିଵ
               with m=6          (4) 199 

 200 
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These two Cost Functions are similar to the ones used by Cox in 15. The main objective function 201 
was the standard error of the sound pressure over the measurement positions, averaged over the 202 
desired working frequency range. The second one was the standard error of the first parameter 203 
over the frequency range of optimization. In that work both parameters were added to get a single 204 
Cost Function. We will compare both approaches in section 5, Discussion. 205 

Two additional Cost Functions are defined in order to estimate separately the performance of 206 
candidates in the two octave bands within the low frequency range, i.e., 125Hz and 250 Hz 207 
octave bands. Both octave bands are obtained from the values of the one third octave bands 208 
considered. 209 

J125() = 1 െ ݀ଵଶହതതതതതത ൌ 1 െ ∑ ቚ
ௗೕሺఏሻ

ଷ
ቚଷ

ୀଵ                           (5) 210 

 211 

J250() = 1 െ ݀ଶହതതതതതത ൌ 1 െ ∑ ቚ
ௗೕሺఏሻ

ଷ
ቚ

ୀସ                           (6) 212 

 213 
Finally, to illustrate the case in which high diffusion is needed in a particular narrow frequency 214 
range, we suggest a Cost Function that considers only a particular one third octave band. Without 215 
loss of generality, we will consider in this paper the lowest frequency, i.e. 100 Hz one third 216 
octave band: 217 

J100() = 1 െ ݀ଵ                          (7) 218 
 219 
In the optimization process followed, we have considered three pairs of Cost Functions in order 220 
to consider the problem as a multi-objective optimization: Jlow&Jvarlow; J125&J250; and finally 221 
Jlow&J100. 222 
 223 
 224 
 225 
B. Multi-objective evolutionary algorithm 226 
 227 
Once described the codification and the Cost Functions, in this subsection we will briefly 228 
describe the Evolutionary algorithm used in the present work. A multiobjective optimization 229 
(MO) 21-22 is chosen in order to attain solutions that satisfy several conflicting objectives 230 
simultaneously. In general, when several objectives have to be satisfied, improvements in one of 231 
them produce a degradation of the others. That means there is no an unique solution, and a 232 
general way to solve the proposed problem is to localize the set of optimal solutions known as 233 
Pareto set, which is mapped to the objective space as the Pareto front. The final step in the MO 234 
resolution is to select one of these optimal solution according to designer preferences. 235 
 236 
A general basic multiobjective problem can be formulated as follows: 237 
 238 

min J(θ) = min[J1(θ), J2(θ), . . . , Js(θ)]   (8) 239 
subject to:     240 

             θli ≤θi ≤θui, (1≤i≤L)                            (9) 241 
      242 
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where Ji(θ), i ∈ B := [1...s] are the objectives to be minimized, θ is a solution inside the L-243 
dimensional solution space D ⊆ RL, and θli and θui are the lower and the upper constraints that 244 
defined the solution space D. 245 
 246 
The basic concept to obtain the Pareto set is known as Pareto dominance and it is defined as 247 
follows: a solution θ1 dominates another solution θ2, denoted by θ1 ≺ θ2, if ∀i ∈ B, Ji(θ1) ≤ 248 
Ji(θ2) ∧ ∃k ∈ B : Jk(θ1) < Jk(θ2). 249 
 250 
The Pareto set ΘP is composed by all the non-dominated solutions, and the associated Pareto 251 
front is denoted as J(ΘP). Usually, Pareto set has infinite solutions and it is very difficult to reach 252 
the exact set. Multiobjective optimization algorithm tries to obtain a well-distributed 253 
approximation ΘP*. In this work an elitist multi-objective evolutionary algorithm is used. This 254 
algorithm is based on the concept of ε-dominance 23, named ev-MOGA 12. Algorithm 1 shows 255 
the pseudocode of ev-MOGA. The algorithm uses three sets of solutions called populations in 256 
the context of evolutionary algorithms: At (to store the Pareto approximation), Pt (main 257 
population), and Gt (auxiliary population from evolutive operations).  258 
         259 

1. t := 0; 260 
2. At := ∅; 261 
3. Pt := ini_random(D); 262 
4. eval(Pt); 263 
5. At := store(Pt, At);  264 
while t < tmax do 265 

6. Gt := create(Pt, At); 266 
7. eval(Gt) 267 
8. At+1 := store(Gt, At);  268 
9. Pt+1 := update(Gt,Pt);  269 
10. t := t + 1;      270 

end 271 
 272 

Algorithm 1: Pseudocode of ev-MOGA. 273 
 274 
Initially the At population is empty and the main population Pt is created randomly (uniform 275 
distribution). The value of the objectives for each member of the populations is calculated 276 
(“eval” function) and it is used for further dominance test. The actualization of At is performed 277 
with the “store” function (based on ε-dominance concept). In each iteration (evolution step) the 278 
auxiliary population Gt is obtained with individuals of At and Pt randomly selected, crossover 279 
and mutation operators are applied to obtain the final composition of Gt. At and Pt are updated 280 
with the values of Gt (applying ε-dominance and dominance respectively). When the finalization 281 
condition is achieved, the solution is Pareto set is available at At.  282 
 283 
 284 
III. RESULTS  285 
 286 
The combination of the evolutive algorithm ev-MOGA and the FDTD scheme allow us to obtain 287 
devices with high performance. However, this implies a large computational cost. Each 288 
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simulation using the FDTD takes about 26 seconds in an IntelCore i7 2.8GHz. The number of 289 
calculations in an optimization process can be estimated as the number of generations multiplied 290 
by the number of new individuals at each generation plus the number of initial individuals. We 291 
have used a population of 2000 individuals for Pt and 12 new individuals are considered in each 292 
generation in Gt. tmax=600 generations, taking around 3 days of execution. After one 293 
optimization procedure, the approximated Pareto set is used as part of the initial population for 294 
the next optimization process. This iterative process is stopped when no improvements are 295 
detected at the Pareto front approximation (3 iterations have been required). The computational 296 
time for the complete process is around 9 days. 297 
 298 
Figure 2 illustrates all the Pareto fronts including as well the reference cases of a flat panel and 299 
the BPD 6 for better comparison. It can be seen that the performance is largely increased by the 300 
optimization, regardless of the particular pair of Cost Functions used. The only exception is the 301 
case of the Cost Function Jvarlow for which the flat panel has a value of 0. This is due to the fact 302 
that the standard deviation of the diffusion coefficient for a flat surface is 0. However it is not a 303 
good candidate because the average of that normalized diffusion coefficient is as well 1.  304 
 305 
As a representative case, we will show here in detail only the results for the Cost Functions 306 
Jlow&Jvarlow. Results are illustrated in Figure 3. On the left hand side the Pareto front is plotted. 307 
The two extreme points marked with a square and a star correspond to the best individuals in the 308 
Pareto front with best performance for Jlow(square) and Jvarlow (star). Both individuals are 309 
represented in the central part of Figure 3. The diffusion coefficient vs frequency is plotted on 310 
the right hand side. The dashed line shows a better average performance in the low frequency 311 
range, while the continuous one shows a more homogeneous performance in that range. For 312 
frequency bands over the considered range, starting at the octave band centered in 500 Hz, a 313 
deep notch is observed. 314 
 315 
Figure 4 compares the performance of all the Pareto front individuals obtained by means of 316 
optimization analyzed under all the pairs of Cost Functions that have been considered. Each 317 
color corresponds to the individuals optimized following a particular pair of Cost Functions. 318 
There is a case that is quite remarkable. Some of the individuals of the Pareto front optimized 319 
under J125&J250 (marked with circles) are dominant if compare with the ones obtained with 320 
Jlow&Jvarlow (marked with stars) from the standpoint of this last pair of Cost Functions (left hand 321 
side plot). This make us think that the use of Jlow and Jvarlow has a tendency to provide optimal 322 
individuals without high average values of the diffusion coefficient, i.e., small values of Jlow, 323 
because the algorithm loses time trying to find individuals with more homogenous diffusion 324 
coefficients through the frequency range of interest. In the rest of considered cases the 325 
dominance is fulfill by the individuals obtained with the corresponding pair of cost functions. 326 
 327 
 328 
IV. SELECTION OF OPTIMAL INDIVIDUALS: ROBUSTNESS 329 
 330 
In order to choose the best individual we suggest the addition of an additional criterion: 331 
robustness. This parameter measures the degree in which the values of the cost functions are 332 
affected by small changes in the cylinders that conforms the diffuser. Small changes of the 333 
values of the cylinders’ radius due to mistakes in the process of manufacturing a sonic crystal, 334 
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can affect to its performance, and it is very inadequate to choose one that is too sensitive to these 335 
small changes. Figure 5 illustrates this fact representing a vector in each of the Pareto front 336 
points. To create these graphs, each point of the Pareto front has been reevaluated 200 times with 337 
small random changes. Approximately 5% of the cylinders are modified (increased or decreased 338 
in radius) to simulate a defect of manufacturing. In doing so, one obtain a scattered plot. The 339 
cloud of points is averaged to a single point. Then, a vector is plotted with its origin in the 340 
considered Pareto point, and pointing to the averaged point representing the modified 341 
individuals. In all the cases, the following rule of thumb applies: The bigger the vector, the less 342 
robust the particular point is. Additionally, the decomposition of the vectors in the two 343 
components, illustrates which objective function is more likely to be deteriorated by the 344 
perturbation. For instance, it is easy to see that when optimizing with Jlow&J100, the last Cost 345 
Function is more sensitive to small variations from the original design in the manufacturing. 346 
Concerning Jlow&Jvarlow and J125&J250 optimizations, one can see that the vectors are always, more 347 
or less, perpendicular to the imaginary line that runs through the Pareto front. This means that the 348 
Cost Function with better performance is usually the less robust one. 349 
 350 
Finally, these plots can be used to choose between the individuals in the Pareto front. The idea is 351 
to choose the individuals with better robustness, which should correspond to the ones with 352 
smaller vectors. In all the plots in Figure 5 it is easy to find points that have smaller vector than 353 
the rest of candidates. Next section concerns the selection of optimal individuals using 354 
robustness as an additional criterion. 355 
 356 
 357 
V. DISCUSSION 358 
 359 
Traditionally, the use of several criteria in a mono-objective optimization process was achieved 360 
by averaging all the criteria to be considered. For instance in 15 two different cost functions were 361 
use, one to estimate the diffusion of a given surface averaged over the optimization frequency 362 
range, and another to avoid large variations of the diffusion in that range. In our case, this is 363 
equivalent to add the two Cost Functions so that J=Jlow + Jvarlow. In doing so, we are assigning the 364 
same relevance to both criteria Jlow and Jvarlow. A more general approach is to define a combined 365 
Cost Function with different ponderations for each of the Cost Functions, i.e.: 366 
 367 

ܬ ൌ ଵܬ	ߙ  ሺ1 െ  ଶ  (10) 368ܬ	ሻߙ
 369 
In a conventional one-objective optimization using a weighted combination of Cost Functions, 370 
the relative relevance of each of the objectives has to be fixed before running the process (by 371 
means of ߙ). On the contrary, in a multi-objective optimization, the relative relevance is 372 
stablished after the optimization process, during the decision making, when one of the 373 
individuals of the Pareto front is selected. Let us consider the extreme cases: if after the J1&J2 374 
optimization we choose an individual on the top left of the plot of the Pareto front as the best 375 
candidate, we are prioritizing J1 over J2, while if we select an individual on the bottom right of 376 
the plot, J2 will be more important than J1. Apparently, a multiobjective optimization is 377 
equivalent to perform a multiple set of one-objective optimization with all the possible values 378 
for	ߙ. However, in doing so, not all the individuals of a Pareto Front can be found (i.e. those 379 
points are in not convex areas of the Pareto front), and eventually, these points can have 380 
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additional properties, like robustness. Figure 6 illustrates this fact. All the individuals in the 381 
Pareto Fronts have been numbered from left to right and the ones that are the best candidates 382 
attending to its robustness and the average performance following equation 10 are represented. 383 
The best individual attending to its robustness is selected finding the minimum value of the 384 
Euclidian Length of the robustness vector taking into account that the two components have to 385 
be weighted with  and (1-). In our particular case there are no coincidence, in other words, the 386 
best candidate attending to its robustness could never be found in a single objective optimization 387 
for whatever value of . 388 
 389 
 390 
VI. CONCLUSIONS 391 
 392 
Along this paper a multiobjective optimization approach has been presented to design sound 393 
diffusers based on sonic crystals. As far as we know only single-objective has been used for 394 
diffusers design. The multiobjective approach gives the designer the possibility to consider 395 
several properties at the same time, without the need for a priori evaluations of the relevance of 396 
each criteria. Multiobjective tools give the possibility to explore different sets of solutions and 397 
help to show the trade-off between them. 398 
 399 
Several cost functions have been used to illustrate, in the one hand, the different approaches to 400 
the problem and, in the other hand, the flexibility of multiobjective optimizations. 401 
 402 
Additionally, we present a tool to help during the “decision making” process, based on the 403 
robustness of solutions.  404 
 405 
Finally we have discuss the advantages of using multi-objective optimization in comparison to 406 
single-objective optimization showing that generally speaking the best individual attending to it 407 
robustness could rarely be found by single objective optimization. 408 
 409 
 410 
 411 
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FIGURE CAPTIONS 488 
 489 
Figure 1: a) Schematic configuration of the Bi-Periodic sonic crystal sound diffuser (BPD); b) 490 
Example of genetic codification 491 
 492 
Figure 2. (COLOR ONLINE) Pareto fronts for the three pairs of Cost Functions (BPD and flat 493 
panel are as well plotted for comparison). a) Jlow&Jvarlow; b) J125&J250; c) Jlow&J100. 494 
 495 
Figure 3. (COLOR ONLINE) a) Pareto front for the Cost Functions Jlow&Jvarlow. b): The 496 
optimized sonic crystal corresponding to the two extreme values of the Pareto front (Best 497 
individual for Jvarlow marked with a star. Best individual for Jlow marked with a square). c): 498 
Diffusion coefficient of both individuals.  499 
 500 
Figure 4. (COLOR ONLINE) Detailed view of Figure 3 adding the Pareto fronts of all the pairs 501 
of Cost Functions. a) Jlow&Jvarlow; b) J125&J250; c) Jlow&J100. 502 
 503 
Figure 5. Pareto fronts with the Robustness vectors for the three pairs of Cost Functions 504 
considered. a) Jlow&Jvarlow; b) J125&J250; c) Jlow&J100. 505 
 506 
Figure 6. Best individuals as a function of  (See eq. 10), attending to: Weighted average, solid 507 
line; Robustness, dotted line. From left to right: Jlow & Jvarlow, J125 & J250 and Jlow & J100. 508 




































