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Abstract 

Inconsistent performance of Species Distribution Models (SDMs), which may depend on several factors such as the 

initial conditions or the applied modelling technique, is one of the greatest challenges in ecological modelling. To 

overcome this problem, ensemble modelling combines the forecasts of several individual models. A commonly applied 

ensemble modelling technique is the Multi–Layer Perceptron (MLP) Ensemble, which was envisaged in the 1990s. 

However, despite its potential for ecological modelling, it has received little attention in the development of SDMs for 

freshwater fish. Although this approach originally included all the developed MLPs, Genetic Algorithms (GA) now allow 

selection of the optimal subset of MLPs and thus substantial improvement of model performance. In this study, MLP 

Ensembles were used to develop SDMs for the redfin barbel (Barbus haasi; Mertens, 1925) at two different spatial 

scales: the micro–scale and the meso–scale. Finally, the potential of the MLP Ensembles for environmental flow (e–flow) 

assessment was tested by linking model results to a hydraulic model. MLP Ensembles with a candidate selection based 

on GA outperformed the optimal single MLP or the ensemble of the whole set of MLPs. The micro–scale model 

complemented previous studies, showing high suitability of relatively deep areas with coarse substrate and corroborating 

the need for cover and the rheophilic nature of the redfin barbel. The meso–scale model highlighted the advantages of 

using cross–scale variables, since elevation (a macro–scale variable) was selected in the optimal model. Although the 
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meso–scale model also demonstrated that redfin barbel selects deep areas, it partially contradicted the micro–scale model 

because velocity had a clearer positive effect on habitat suitability and redfin barbel showed a preference for fine 

substrate in the meso–scale model. Although the meso–scale model suggested an overall higher habitat suitability of the 

test site, this did not result in a notable higher minimum environmental flow. Our results demonstrate that MLP 

Ensembles are a promising tool in the development of SDMs for freshwater fish species and proficient in e–flow 

assessment. 
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1 INTRODUCTION 

Species distribution models (SDMs) play a significant role in understanding habitat requirements of fish species, 

providing a framework from which spatial and temporal distribution patterns can be predicted (Olden et al., 2008). 

Thereby SDMs are useful tools to select cost–efficient restoration or management actions (Mouton et al., 2010). To date, 

a wide range of SDMs is available, encompassing several modelling techniques. Examples include Generalized Additive 

Models (Fukuda et al., 2013), Fuzzy Rule Base Systems (Mouton et al., 2011), or Artificial Neural Networks (ANNs) – 

most commonly Multi–Layer Perceptrons (MLPs) – (Olaya–Marín et al., 2012). All these techniques are typically 

applied to generate a single monolithic SDM, which often has proven to be sufficient for ecological modelling (Olden et 

al., 2008). The MLP paradigm, for instance, has been widely used due to its high predictive performance and its 

versatility to cope with different kinds of datasets (Olden et al., 2008; Olaya–Marín et al., 2012; Fukuda et al., 2013). 

Therefore, there are successful examples of single MLPs modelling fish habitat requirements at different scales, from the 

micro–scale (Brosse and Lek, 2000; Gevrey et al., 2006; Laffaille et al., 2003) to the macro–scale (Olaya–Marín et al., 

2012) while at the meso–scale some studies have demonstrated that a single MLP can outperform other statistical 

approaches (Baran et al., 1996; Lek et al., 1996). Yet, many real–world problems, like demonstrated for marine 

ecosystems (Meier et al., 2014), are too large and too complex for a single monolithic model (Yao and Xu, 2006). 

Moreover, SDMs may not perform consistently and even provide discrepant predictions, depending on several factors 

such as the initial model conditions or the applied modelling technique (Thuiller et al., 2009; Fukuda et al., 2013). 

To deal with these inconsistencies, ensemble modelling is now an emerging field of research in ecological modelling 

(Araújo and New, 2007). Ensemble modelling is based on the minimization of the error through the integration of several 

models by combining their different predictions into a single forecast. Despite their promising potential for species 

distribution modelling, only few applications of ensemble modelling have been reported, including an example 

combining several different techniques to develop SDMs for fish species (Thuiller et al., 2009). To date, Random Forests 

is the only ensemble modelling technique that could be considered widespread (Mouton et al., 2011; Fukuda et al., 2013; 

Mostafavi et al., 2014). Although the ANN ensemble modelling counterpart, the MLP Ensemble, was conceived more 

than twenty years ago (Hansen and Salamon, 1990) and may have the same potential as Random Forests, it has been 
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rarely applied in fish SDMs so far (e.g. Muñoz-Mas et al., 2014; 2015; 2016). Originally MLP Ensembles included all 

trained MLPs (Hansen and Salamon, 1990) but it was soon demonstrated that active selection of the considered MLPs 

improved the final predictions (Wang and Alhamdoosh, 2013), and that Genetic Algorithms (GA) were appropriate for 

this selection (Soares et al., 2013; Wang and Alhamdoosh, 2013). 

Therefore, the present study developed SDMs for the redfin barbel (Barbus haasi; Mertens, 1925) with GA–optimised 

MLP Ensembles. The redfin barbel is a small rheophilic barbel mainly inhabiting middle–to–upper stream reaches of 

mountainous rivers. Although redfin barbel occurs in the North–East quadrant of the Iberian Peninsula, its distribution 

area has been halved mainly due to pollution and the presence of invasive species (Aparicio, 2002; Perea et al., 2011). 

Thus, it is a particularly suitable target species for development and testing for these models since it is considered 

threatened in the Mediterranean region (Freyhof and Brooks, 2011), but a sustainable extant population is still present in 

our study area. From the ecological viewpoint, the redfin barbel is considered a cover–orientated fish (Grossman and De 

Sostoa, 1994) preferring deep and slow–flowing pools with abundant cover (Aparicio and De Sostoa, 1999). 

In environmental flows (e–flow) assessment the instream habitat has been typically evaluated at the micro–scale (few m
2
 

of the instream area) using data and SDMs concordant with the scale (Conallin et al., 2010). The micro–scale SDMs have 

demonstrated proficient ability to predict fish location (e.g. Muñoz–Mas et al., 2014a) and accordingly, this scale is 

specified in the Spanish norm for hydrological planning as the legal standard in e–flow assessment (MAGRAMA, 2008). 

However, the use of the micro–scale has been criticized for being time–consuming (Parasiewicz, 2001) and for 

emphasizing cross–sectional variation over the longitudinal one (Vezza et al., 2012). Consequently, some studies 

highlighted the benefits of the meso–scale – which typically correspond with Hydro–Morphological Units (HMUs) such 

as pools, riffles or rapids – among the possible spatial scales that can be used to analyse fish habitat requirements (Costa 

et al., 2012; Vezza et al., 2015). Using the meso–scale it is possible to describe the environmental conditions around an 

aquatic organism, even using biotic predictors, and not only limiting the analysis to the point where fish were observed 

(Vezza et al., 2015). Therefore, meso–scale models demonstrated great ability to properly relate the habitat–suitability 

predictions and fish presence (Parasiewicz and Walker, 2007). However, more research is needed to dispel any doubt 

about the advisability of the meso–scale over the micro–scale one and about significant differences in e–flow assessment. 

In this paper, we hypothesized i) that the spatial scale affects the SDMs performance and structure and ii) that these 

differences may lead to differences in the assessed e-flows. We developed models at two different scales; the micro–scale 

and the meso–scale. Once models were developed, a graphical sensitivity analysis was performed to compare our results 

with previous literature. To evaluate the practical applicability of these models, the two SDMs were linked with a 

hydraulic model to infer e–flows. Finally, the merits and demerits of our models and differences in the e–flow assessment 

are briefly discussed. 
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2 METHODS 

2.1 Micro–scale data collection 

The presence of adult redfin barbel (body length > 5 cm) (Aparicio, 2002) 'feeding' or 'holding a feeding position' (i.e. 

active specimens) was observed by snorkelling in the Mijares River (Jucar River Basin District, east of the Iberian 

Peninsula) during the early summer of 2012 (Fig. 1). The survey included the area covered by the hydraulic model (Fig. 

1) and we surveyed complete HMUs classified as: pools, glides, riffles, and rapids, by selecting a similar area of slow 

(pools and glides) and fast (riffles and rapids) HMUs (Alcaraz–Hernández et al., 2011). Four abiotic variables were 

measured in cross–sections randomly distributed over each HMU: mean water velocity (velocity), water depth (depth), 

the substrate composition (substrate) and the presence of several types of cover (cover) because these variables have been 

reported to be the most relevant for fish distribution at the micro–scale (Gibson, 1993). Velocity and depth were 

measured with an electromagnetic flow velocity meter (Valeport
®
, UK) and a wading rod, respectively. Both substrate 

and cover were visually estimated. The substrate was classified in bedrock, boulders, cobbles, gravel, fine gravel, sand, 

silt and macrophytes (Muñoz–Mas et al., 2012), and the percentages of the different substrate types were summarized in 

a single substrate index (Mouton et al., 2011). The considered types of cover were large boulders, undercut banks, woody 

debris, roots, shade (intense) and vegetation, and the number of different cover types present at each location was 

summed to calculate the cover index (e.g. no cover = 0, boulders + undercut banks = 2, etc.) (Table 1). The initial dataset 

included 92 presences, and 341 instances where redfin barbel was absent, resulting in a data prevalence (proportion of 

presence data in the entire dataset) of 0.21. 

 

Table 1. Code, summary, description and units of the variables included in the micro–scale MLP Ensemble. 

Code Min. 1st Qu. Median Mean 3rd Qu. Max. Variable & units 

Velocity 0.00 0.29 0.60 0.59 0.86 2.13 Mean water velocity [m/s] 

Depth 0.09 0.38 0.54 0.60 0.75 2.75 Water depth [m] 

Substrate 1.00 5.00 5.00 5.12 5.56 8.00 Substrate index [–] 

Cover 0.00 0.00 0.00 0.36 1.00 3.00 Cover index [–] 
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Fig. 1. Location of the target river basins in the Iberian Peninsula (upper–right corner) and study sites in the Mijares, 

Palancia and Turia River basins. 

 

2.2 Meso–scale data collection 

Electrofishing surveys for adult redfin barbel were conducted every summer between 2003 and 2006 in the headwaters of 

four rivers in the Jucar River Basin District: the Ebrón River and the Vallanca River (both tributaries of the Turia River), 

the Villahermosa River (a Mijares River tributary) and the Palancia River (Fig. 1). Note that the micro–scale study site 

was not included in the four meso–scale study sites, although it encompassed the segment of the hydraulic model. Four 

study sites per river were surveyed following an adaptation of the Basinwide Visual Estimation Technique (BVET, 

Dolloff et al., 1993); for additional details, see Alcaraz–Hernández et al. (2011) and Mouton et al. (2011). Two HMUs 

per reach, one slow HMU (pool or glide) and one fast HMU (riffle or rapid), were sampled and, in addition to the HMU 

type, 13 abiotic habitat variables were assessed in each HMU: length, mean width, mean depth, maximum depth, the 

percentage of shading, the percentage of embeddedness, the density of woody debris, the substrate index (following the 

aforementioned classification), the cover index, mean flow velocity, the elevation and slope of the reach and the habitat 

variability. Length and mean width were measured with tape. Width was measured three times at cross–sections located 

at ¼, ½, and ¾ of the total HMU length whereas depth was measured with a wading rod in three uniformly distributed 

locations per cross–section. For each HMU, depth measurements were then averaged to obtain mean depth and the 

maximum depth was measured in the corresponding location. The percentage of shading, the percentage of 

embeddedness (i.e. the percentage of the HMU area covered by silt), the number of woody debris particles and the 

substrate classification were visually estimated. The number of woody debris particles was divided by the HMU area to 

obtain the density of woody debris. The cover index was calculated as a weighted aggregation of scores assigned to the 
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presence of undercut banks, shade, large substrate, submerged vegetation and the mean depth (García de Jalón and 

Schmidt, 1995). The river flow at the time of the survey was gauged with an electromagnetic flow velocity meter 

(Valeport
®
, UK) and the mean flow velocity was calculated by dividing the gauged flow by the mean cross–section area. 

Finally, elevation and slope were derived from digital elevation models (National Centre for Geographic Information, 

CNIG) and the habitat variability was estimated by the Shannon–Weaver diversity index, considering the number of 

different HMUs in a 300–m–length stretch surrounding each study site (Table 2). The initial dataset included 39 

presences, and 54 HMUs where redfin barbel was absent, resulting in a prevalence of 0.42. 

 

Table 2. Code, summary, description and units of the variables included in the meso–scale MLP Ensemble. 

Code Min. 1st Qu. Median Mean 3rd Qu. Max. Variable & units 

HMU type 1.00 2.00 3.00 2.95 4.00 4.00 HMU type [#] 

Depth 0.04 0.22 0.32 0.35 0.46 0.79 Mean depth [m] 

M.Depth 0.15 0.43 0.63 0.64 0.83 1.23 Maximum depth [m] 

Length 8.60 19.10 24.36 26.92 31.50 54.70 Length [m] 

Width 1.26 3.43 4.79 4.66 5.83 8.80 Mean width [m] 

Substrate 2.65 4.90 5.20 5.22 5.70 8.00 Substrate index [–] 

W.Debris 0.00 0.00 0.00 0.01 0.00 0.16 Woody debris [pieces/m
2
] 

Elevation 605.00 655.00 743.00 745.80 792.00 968.00 Elevation a.s.l. [m] 

Slope 0.01 0.01 0.01 0.02 0.02 0.04 Slope [m/m] 

Embeddedness 0.00 0.00 15.00 29.35 50.00 100.00 Percentage of embeddedness [%] 

Shade 0.00 20.00 60.00 54.95 85.00 100.00 Percentage of shade [%] 

Cover 1.00 2.75 3.50 3.68 4.25 7.50 Cover index [–] 

Diversity 0.20 0.62 0.70 0.68 0.76 0.99 HMU diversity [–] 

Velocity 0.01 0.09 0.24 0.30 0.42 1.06 Mean flow velocity [m/s] 

 

2.3 Variable selection 

Due to the limited number of variables included in the micro–scale sampling and the assumed relevance of these 

variables for fish distribution (Gibson, 1993), all four variables were included in the micro–scale model. Nevertheless, 

none of these variables appeared significantly correlated (spearman r
2
 < 0.5) or collinear (variable inflation factor; vif < 

5).  

Since the meso–scale surveys resulted in a high number of explanatory variables, for the final meso–scale model, a 

parsimonious suite of variables were selected following the step–forward procedure (May et al., 2011); this procedure 

consists of adding iteratively one variable at a time while the performance is being improved, and stops adding as soon as 

performance decreases. This approach has proved computationally efficient and tends to result in relatively small input 

variable sets (May et al., 2011). During the step–forward procedure, neither correlated (spearman r
2
) nor collinear (vif) 

combinations of input variables were allowed. 

 



7 

 

2.4 Multi–Layer Perceptron (MLP) Ensemble development 

2.4.1 MLP Candidates training 

The overproduce–and–choose approach (Partridge and Yates, 1996) generates the optimal MLP Ensemble by first 

initiating a large number of MLP Candidate classifiers and then selecting the best performing subset of classifiers (Soares 

et al., 2013). Diversity among the selected MLP Candidates is a key factor of a MLP Ensemble (Wang and Alhamdoosh, 

2013) because the diversity among classifiers generally compensates for the increase in error rate of any individual 

classifier (Opitz, 1999). In diverse ensembles, each candidate complements the others, and thus improves the aggregated 

forecast (Akhand et al., 2009). There are several methods to construct a diverse MLP Ensemble (Wang and Alhamdoosh, 

2013). However, bagging has proven better than several of the more sophisticated methods (Akhand et al., 2009) and can 

be easily implemented. Bagging splits the initial dataset in training and a test dataset. First, k training (bag) datasets of 

size m are generated by sampling, with replacement, the initial dataset of size n, with m < n. For each training dataset, the 

test dataset (or the out–of–bag dataset) then consists of the non–sampled instances from the initial dataset. MLP 

Candidates are developed based on these k training datasets and the aggregated forecast is finally obtained by averaging 

the predictions of the individual MLP Candidates. Since the prevalence of the training dataset may affect the result of 

SDMs (Mouton et al., 2009; Fukuda, 2013), m was chosen in accordance to the prevalence of the initial dataset.  

The micro–scale dataset contained a number of absences that exceeded by far the number of presences and therefore, 66 

% of the presences (i.e. 61 instances), and the same number of absences were randomly selected (m=122). The micro–

scale dataset did not allow training all possible combinations with a prevalence of 0.5. Therefore an arbitrary but large 

number of MLP Candidates (k=2000) were trained in order to ensure that every ‘presence’ instance was linked to every 

‘absence’ instance several times. 

To reduce the number of input variables, the optimisation of the MLP Ensemble at the meso–scale was inserted in the 

step–forward variable selection procedure (May et al., 2011). The meso–scale dataset had a more balanced prevalence 

(0.42), therefore instead of the bagging approach the k–fold approach was performed. This approach can be seen as a 

systematic bagging without replacement. Thus, the training datasets consisted of all possible combinations of 66 % of the 

observed cases with varying prevalence (m=61). Thus, sixty three MLP Candidates (k=63) were trained, with each 

combination of input variables in the step–forward procedure. 

MLP Candidates were trained with the R (R Core Team, 2015) package monmlp (Cannon, 2012) which optimizes the 

MLP weights using the non–linear minimization (nlm) routine (R Core Team, 2015). The number of neurons 

corresponded to the integer of half the number of variables included in the MLP Ensemble. Hyperbolic tangent and 

logistic transformation functions were used in the hidden and the output layers, respectively. In line with the Habitat 

Suitability Index (Bovee et al., 1998), the model output will hereafter be referred to as suitability index. To assess the 

degree of overfitting of the model results, we compared the performance, quantified by the True Skill Statistic (TSS) [-1, 

1] (see Mouton et al., 2010 for additional details about performance criteria), of each selected MLP Candidate on both 

the bag and the out–of–bag datasets. 
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2.4.2 Selection of candidates – Genetic algorithms 

GAs are search and optimization algorithms based on the process of natural selection (Olden et al., 2008). From the wide 

range of GA approaches to select the optimal subset of MLP Candidates (Wang and Alhamdoosh, 2013; Soares et al., 

2013; Muñoz–Mas et al., 2014), we followed Wang and Alhamdoosh (2013) since satisfactory results were obtained with 

small–sized ensembles. This approach iteratively increases the ensemble size by the stepwise addition of MLPs while in 

every step the GA searches for the best combination of MLPs. That is to say, the GA first finds the best ensemble of two 

MLPs, subsequently it finds the best ensemble of three MLPs and so on. 

We applied the rgenoud package (Mebane Jr and Sekhon, 2011), including nine operators driving the optimization which 

correspond to cloning, uniform mutation, boundary mutation, non–uniform mutation, polytope crossover, simple 

crossover, whole non–uniform mutation, heuristic crossover and local–minimum crossover (Mebane Jr and Sekhon, 

2011). The phenomenon whereby GAs get stuck on local optima is known as premature convergence (Fogel, 1994). To 

avoid this, the population diversity and the selection pressure should be balanced (Pandey et al., 2014). Therefore, the 

cloning operator was restricted (0.25) whereas the operators that increase diversity (i.e. uniform mutation, simple 

crossover and heuristic crossover) were set relatively high (0.6, 0.6 and 0.4). In summary, the whole set of operators were 

set to 0.25, 0.6, 0.05, 0.05, 0.05, 0.6, 0.05, 0.4 and 0 respectively. On the other hand, the population size as well as the 

number of generations varied in accordance with the ensemble size (Enssize). The population size followed 

log1.5·(Enssize)·4000 and log1.5·(Enssize)·2000 in the micro–scale and the meso–scale models respectively whereas the 

number of generations was set to·(Enssize)·10 in both models. The models were optimised based on a multi–objective 

function. Specifically, the GA maximized the TSS while stimulating overprediction (sensitivity > specificity) (Mouton et 

al., 2010) and forcing model outputs to span the whole output range (from 0 to 1) following equation 1, 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑇𝑆𝑆 + min{0, Sensitivity − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦} − min{𝑀𝐿𝑃 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒)} − [1 − max{𝑀𝐿𝑃 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒)}](1) 

 

where MLP Ensemble corresponds to the aggregated forecast based on the different predictions performed by each MLP 

component (i.e. ~𝑓(𝑥)) and Database to the training dataset (i.e. ~𝑥). 

To assess the quality of the MLP Ensembles obtained with the Wang and Alhamdoosh approach (Wang and 

Alhamdoosh, 2013), the performance of three different ensembles was compared: the ensemble containing only the best 

single MLP Candidate (Best MLP Candidate), the ensemble aggregating all MLPs (Complete MLP Ensemble) and the 

GA optimised MLP Ensemble (Optimal MLP Ensemble). 

 

2.5 Graphical sensitivity analysis 

The applied sensitivity analysis uses modified scatter plots to assess the effects of the model inputs on the output – for a 

detailed explanation see Cannon and McKendry (2002) or Appendix A. For each variable Vi, the variation of the model 

output due to variation of Vi (Δi) is calculated and plotted as segments, with the slope of these segments equalling the 

partial derivative of the model output related to Vi. The visualization of the partial derivatives as segments allows the 
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identification of trends and non–linear relationships between each input variable and the output but also provides other 

advantages: 

i. The general trend provides information about the overall impact of Vi on the response variable; 

ii. The variable importance is quantified by the overall vertical range of all the segments;  

iii. The interaction with other variables is described by the spread along the y–axis and thus variables with no 

interaction appear as single lines. 

To avoid that the sensitivity analysis would focus only on the conditions sampled during the data collection, two artificial 

datasets with 1000 instances were generated with the function runif (R Core Team, 2015) and both the training and the 

artificial datasets, were used to perform the sensitivity analysis. 

 

2.6 Experimental application of the SDMs 

Although 2D hydraulic models can be considered the general standard in micro-scale e–flow assessment (e.g. Muñoz-

Mas et al., 2016) it has been demonstrated that the adequate implementation of 1D model can perform similarly, even 

over complex river morphologies such as braided river channels (Jowett and Duncan, 2012). The meso-scale model was 

based on one single value of each input variables per surveyed HMU thus the use of 2D models would have required the 

oversimplification of hydraulics and thus worthless modelling effort. Therefore, to balance the modelling effort and the 

requirements of each scale (the micro–scale and the meso–scale) and following previous studies (Costa et al., 2012), the 

hydraulics were simulated with RHYHABSIM (Clausen et al., 2004) in a Mijares River segment that overlapped only 

with the area surveyed for the micro–scale model (Elevation = 659 m a.s.l) (Fig. 2). RHYHABSIM is a one–dimensional 

hydraulic model based on cross–sections and the water surface elevation. The habitat simulation encompassed a river 

segment of 383.94 m length where 20 cross–sections were placed covering all the significant elements in the river 

channel (mean distance = 20.2 m). The cross–sections were marked so that they could be located for subsequent 

measurements. Detailed topography (mean distance between measurements = 0.58 m) was surveyed over the study site 

and both water surface elevation and water velocity along the cross–section were surveyed twice at two different flow 

rates (0.372 and 1.525 m³/s). Substrate composition and the presence of cover were assessed and an additional survey 

was carried out at a flow rate of 4.21 m³/s to ascertain the stability of the limits of the HMU. We simulated 50 evenly 

distributed flows and for each flow the habitat suitability was simulated using the optimal MLP Ensembles. In addition 

the Weighted Usable Area (WUA) (Bovee et al., 1998) was calculated and to assess the practical applicability of our 

models in e–flow assessment, a minimum e–flow was derived from the WUA–flow curves based on Spanish legislation. 

Specifically, the Spanish norm for hydrologic planning (MAGRAMA, 2008) establishes that the minimum e–flow should 

correspond with 50 % to 80 % of the maximum WUA. If no maximum could be observed in the WUA–Flow curve, the 

inflection point should determine the minimum e–flow. 
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Fig. 2. General view of the model, located in the Mijares River (Elevation = 659 m a.s.l), used to simulate hydraulics at 

the working scales (micro–scale and meso–scale). The figure depicts the plain, lateral and isometric views of the 

topographic data (coloured dots), the wetted perimeter and the water surface elevation for one of the calibration flows 

(0.372 m
3
/s). The data are depicted in meters and local coordinates. 

 

3 RESULTS 

3.1 Training results 

Following the step–forward algorithm, the meso–scale model with the highest performance (Optimal MLP Ensemble) 

contained four variables: elevation, velocity, maximum depth and substrate (in order of selection) (Table 3). For both the 

micro–scale and the meso–scale model, the complexity of the MLPs involved in the Ensemble was low since only two 

nodes were considered for each MLP. 

The GA–optimised MLP Ensemble (Optimal MLP Ensemble) outperformed the Best MLP Candidate and the ensemble 

aggregating the prediction of all candidates (Complete MLP Ensemble) (Table 3). For the micro–scale model, the 

predictions of the absent and present instances strongly overlapped, which revealed lower discriminant (classificatory) 
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capability (Fig. 3 – Top). Nevertheless, the TSS was high (0.62) and the number and values predicted for the present 

instances were higher than the absent instances (i.e. sensitivity > specificity). The meso–scale model showed a stronger 

distinction between the predictions of absent and present instances and consequently it presented higher, almost perfect 

(TSS=0.92), discriminant capability (Fig. 3 – Bottom).  

 

 

Fig. 3. Observations versus predictions for the micro–scale and the meso–scale models. Solid line depicts the regression 

line whereas the dashed line corresponds to the perfect discrimination.  

 

The micro-scale model encompassed four MLPs whereas the meso-scale model involved seven MLPs. Consequently, 

four bag and four out–of–bag datasets were involved in the micro–scale MLP Ensemble, and seven by seven in the 

meso–scale counterpart. Cross-evaluation (i.e. the evaluation of every bag and out–of–bag dataset with every selected 

MLP Candidate) rendered similar distributions (i.e. they presented evident overlapping) of the TSS, thus it revealed low 

overfitting to the data. As a consequence both models were considered suitable for further analysis (Fig. 4).  
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Fig. 4. Distribution of the TSS (True Skill Statistic) rendered by each MLP over each bag (dark colour or red in the 

digital version) and out–of–bag (light colour or green in the digital version) datasets involved in the Optimal MLP 

Ensembles (4 × 4 for the micro–scale model and 7 × 7 for the meso–scale). The distributions for both models, with 16 

and 79 data respectively, presented significant overlapping revealing low overfitting to the data. 
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Table 3. Summary of the performance TSS (True Skill Statistic) of developed MLP Ensembles at the micro–scale and the 

meso–scale (Optimal MLP Ensemble) and the counterparts without MLP selection (Complete MLP Ensemble) and 

considering no MLP aggregation (Best MLP Candidate). 

    # MLPs TSS 

Micro–scale 

Best MLP Candidate 1 0.49 

Optimal MLP Ensemble 4 0.62 

Complete MLP Ensemble 2000 0.52 

Meso–scale 

Best MLP Candidate 1 0.71 

Optimal MLP Ensemble 7 0.93 

Complete MLP Ensemble 63 0.69 

 

3.2 Sensitivity analysis – Micro–scale model 

All the input variables presented interactions, as demonstrated by the spread over the ordinate axis (Fig. 5). Although 

differences in variable importance appeared small, depth was the most important variable. Depth demonstrated a 

quadratic relationship with a parabolic trend inflecting around 0.85 m, while velocity appeared negatively linearly related 

to redfin barbel presence. Cover had an asymptotic relationship with a remarkable increment from absence of cover (0) to 

presence of cover (1). Substrate was the least important variable and showed a positive trend. The sensitivity analysis of 

the artificial dataset showed a similar response than the one based on the original dataset. 
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Fig. 5. Micro–scale sensitivity analysis of the original dataset and the artificial dataset; black segments correspond to the 

original dataset and yellow ones to the artificial dataset. The variable importance is indicated in the upper right corner. 

 

3.3 Sensitivity analysis – Meso–scale model  

In the meso–scale model, also all included variables showed interactions (Fig. 6). Elevation showed a clear linear 

negative effect on fish presence and was the most important variable. Velocity showed an asymptotic trend with positive 

effects beyond 0.25 m/s. Substrate presented a small negative trend, in contrast to the micro–scale model. Maximum 

depth was the least important variable and only showed a slightly positive trend. Sensitivity analysis of the artificial 

dataset also matched the one based on the training dataset. 
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Fig. 6. Meso–scale sensitivity analysis of the original dataset and the artificial dataset, black segments correspond to the 

original dataset and yellow ones to the artificial dataset. The variable importance is indicated in the upper right corner. 

M. Depth = Maximum depth.  

 

3.4 Habitat assessment 

The WUA–Flow curves for of the micro–scale and the meso–scale models neither presented an asymptote nor a clear 

optimum (Fig. 7). The smooth.spline function in R (R Core Team, 2015) was used to remove curve irregularities and to 

calculate the inflection points of both curves. The inflection point of the micro–scale WUA–Flow curve appeared at 1.1 

m
3
/s whereas the meso–scale WUA–Flow curve inflection point occurred at 0.7 m

3
/s. 
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Fig. 7. Weighted Usable Area (WUA) – Flow curves derived from the micro–scale and the meso–scale MLP Ensembles 

at the test site. Dashed lines show the smoothed curves whereas dots indicate the inflection points. 

 

Habitat conditions at the minimum simulated flow (0.2 m
3
/s) and at the flows corresponding to the inflection points (1.1 

and 0.7 m
3
/s for the micro–scale and the meso–scale respectively) where then evaluated and visualised for spatially 

explicit inspection (Fig. 8). The habitat assessment at the micro–scale yielded suitable areas all along the hydraulic model 

for the minimum simulated flow and the inflection flow, although habitat suitability was significantly higher at the latter 

flow. Conversely, the meso–scale model assessed most of the low flow with low to middle suitability but a very little 

narrow rapid whereas practically all of the HMUs at the inflection flow were assessed with high or very high suitability. 
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Fig. 8. Assessment of the minimum simulated flow (0.2 m
3
/s) and of the minimum environmental flow corresponding to 

1.1 m
3
/s for the micro–scale SDM and to 0.7 m

3
/s for the meso–scale SDM. Black lines indicate the cross–sections. 

 



18 

 

4 DISCUSSION 

4.1 General prospect 

The approach employed by Wang and Alhamdoosh (2013) proved proficient to develop optimal MLP Ensembles since it 

provided small sized ensembles, and the Optimal MLP Ensembles outperformed the corresponding Best MLP Candidate 

and the Complete MLP Ensemble. The sensitivity analysis indicated that the effects of the artificial dataset matched the 

effects derived from the training datasets, emphasizing the reliability of the two SDMs. The outputs of both models also 

covered the whole feasible range (from 0 to 1), which facilitates the interpretation by inexperienced readers, but 

especially by stakeholders and managers. Furthermore, the output span allows its treatment as probabilistic–like outputs 

and its comparison with previous physical habitat modelling studies (Bovee et al., 1998) as being analogous to the 

outputs rendered by the more traditional univariate Habitat Suitability Curves (HSCs) (Muñoz–Mas et al., 2012). 

Altogether should encourage the use of MLP Ensembles in e–flow assessment studies (e.g. Muñoz-Mas et al., 2016). 

 

4.2 Micro–scale model 

The micro–scale model achieved a TSS similar to previous studies that used ensemble techniques at this scale (i.e. 

Random Forests) (Fukuda et al., 2013) and it showed a good trade–off between specificity and sensitivity, regardless of 

the prevalence of the original training dataset. However, it achieved the lowest TSS between the two models. 

Nevertheless, the results were considered satisfactory because it achieved high values of TSS in comparison with 

previous studies (Fukuda et al., 2013; Muñoz–Mas et al., 2014a). MLP Ensembles are sensitive to prevalence like other 

techniques (Fukuda, 2013), but training the MLP Candidates with 0.5 prevalence datasets contributed to our objectives, 

which included maximising TSS, obtaining a sensitivity higher than the specificity and overlapping bag and out–of–bag 

TSS distributions. Therefore, we strongly recommend this approach in the development of micro–scale suitability models 

with MLP Ensembles. 

The habitat suitability for the redfin barbel was optimal from 0.5 m to 1 m depth and where cover and medium–to–coarse 

substrate were present; on the other hand, flow velocity presented a general negative influence on fish presence, although 

positive effects were found all along the surveyed range even at the maximum surveyed velocity (2.13 m/s). The 

differences in variable importance were small, although we consider the ranking coherent with the prior knowledge about 

the species (Grossman and De Sostoa, 1994; Aparicio, 2002). The redfin barbel certainly should be categorized within 

the group of rheophilic barbels (Aparicio, 2002) because our results modelled high velocity as suitable. Interestingly, this 

result contrasts with previous HSCs for this species that suggest a more limnophilic nature (Sostoa et al., 2005), although 

our results on depth agree with those of the aforementioned study. These differences could have been influenced by 

circumstances at the time when data were collected (Copp, 2008) or the kind of available microhabitats (Ayllón et al., 

2009). Unfortunately the reasons for such differences cannot be revealed based on the available information. Literature 

disagrees on substrate suitability, either suggesting a preference for algae and organic matter (Grossman and De Sostoa, 

1994) or the opposite, for coarse substrates (Sostoa et al., 2005). This discrepancy probably originates from the fact that 

those previous studies have joined some substrate and cover types rather than providing a clear preference for any of 

them. Yet, substrate appeared to be of lesser importance within our micro–scale model. Finally, the results agreed with 
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previous studies demonstrating that the redfin barbel is a cover–orientated species (Grossman and De Sostoa, 1994), 

based on the influence of cover on fish presence. Consequently, the micro–scale model combines novel insights and 

information from previous studies, and thus it improves the knowledge about redfin barbel’s habitat preferences at the 

micro–scale. 

 

4.3 Meso–scale model 

The meso–scale model proved the competence of the GA–optimised MLP Ensembles because it yielded a similar 

performance to previous studies that modelled the presence–absence of freshwater fish species with Random Forests 

(Mouton et al., 2011; Vezza et al., 2015). Some studies indicated that models based on multiple spatial scales usually 

outperform single–scale analyses (Olden et al., 2006) mainly because environmental variables rarely act at a single 

spatial scale (Boulangeat et al., 2012). The optimal meso–scale model included not only three purely meso–scale 

variables (velocity, substrate and maximum depth) but elevation as one meso–to–macro scale variable. The selected 

variables significantly interacted, thus modifying the predicted effects positively or negatively. However, despite the 

higher performance, the step–forward algorithm for selecting variables may have been conditioned by the first selected 

variable (elevation), which could lead the algorithm to get stuck in a local minimum (May et al., 2011). There are 

examples of the use of GAs in variable selection procedures (May et al., 2011; Olden et al., 2008) and in MLP 

candidates’ selection (Soares et al., 2013; Wang and Alhamdoosh, 2013). Therefore, further research should be 

performed in order to inspect the capabilities of GAs to simultaneously undertake the selection of the variables and the 

MLP Candidates. 

Elevation had a linear and negative effect on redfin barbel presence. This variable is broadly accepted as a proximal 

predictor of water temperature (Elith and Leathwick, 2009). In the Iberian Peninsula, cyprinids increase their dominance 

in fish assemblages in the lower river segments (Santos et al., 2004) thus we considered such a pattern reliable. However 

elevation may also partially explain the effect of slope and the fact that the upper segments had very low flow and thus 

shallow HMUs. In contrast with the micro–scale model, velocity had purely a positive effect on redfin barbel’s presence, 

which agrees with its rheophilic classification (Aparicio, 2002). Nevertheless, the meso–scale model involved data from 

several years in contrast to the micro–scale study, which was performed in one single campaign, and thus we cannot 

discard that such discrepancy is not reflecting differences on the sampled running flows. In a previous study that involved 

the redfin barbel’s meso–scale dataset (Muñoz-Mas et al., 2015) the influence of the study site and sampling year, which 

can be univocally related to the running flow at the time of the sampling, was ruled out. However, flow significantly 

varied among years thus some of the uppermost river stretches became completely dried up during two sampling 

campaigns. The redfin barbel have demonstrated a strong site–fidelity, which is only contravened when the habitat 

suitability significantly degrades (e.g. by noticeable reductions on the available water depth) (Aparicio and De Sostoa, 

1999). In such situation the redfin barbel undertakes the largest displacements in search of suitable habitats, typically 

moving towards extant lowland pools (Aparicio and De Sostoa, 1999). Consequently, the patterns observed for flow 

velocity could be depicting such type of migrations toward suitable habitats, which in our study area would be associated 

with higher flows and, given the slope or the study sites, also with higher flow velocity. Maximum depth surprisingly 

was the least important variable, in contrast to depth being the most important variable in the micro–scale model. 
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However, the deepest surveyed HMUs were predicted to be most suitable for redfin barbell, which matches the 

aforementioned studies that considered the redfin barbel a pool dweller (Aparicio and De Sostoa, 1999). The meso–scale 

analysis for substrate indicated an inverse pattern compared to the micro–scale model. Such discrepancy in the response 

across scales has been reported previously (Gosselin et al., 2010). However it is remarkable that the meso–scale results 

are not necessarily different from the micro–scale model because the substrate index is calculated as the average value of 

the different types of substrate present. Therefore, the micro–scale model depicts the substrate observed at fish locations 

and due to the small sampled area around the fish, it is unlikely to encompass a heterogeneous group of substrates. 

Conversely, the meso–scale model depicts the mean value for the patches appearing at the sampled HMUs and they may 

encompass multiple types of substrate, as this patchy distribution is common at the meso–habitat scale (e.g. Inoue and 

Nunokawa, 2002). Substrate heterogeneity has previously been considered in the study of the redfin barbel (Aparicio and 

De Sostoa, 1999) and it certainly could clarify these apparent discrepancies, although given the accuracy of the 

developed model it was considered unnecessary. Nevertheless, the values of maximum depth in the meso–scale data 

corresponded to the median depth in the micro–scale model, and, in contrast to the micro–scale study, the meso–scale 

survey assessed several rivers. Therefore, comparison between them should be taken cautiously in broad terms; the 

meso–scale model might be considered a regional model focusing on broader scale aspects and the microscale model was 

more specific for the Mijares River.  

 

4.4 Habitat assessment and implications of developed SDMs 

Previous comparisons of micro– and meso–scale models also yielded differences in the assessed suitability (Parasiewicz 

and Walker, 2007). The sampling methods have been identified as potential sources of bias in the development of SDMs, 

since no method can ensure that all fish are detected (Mcmanamay et al., 2014). At the micro–scale, snorkelling has been 

proved preferable over electrofishing (Brosse et al., 2001); while every HMU was netted off before carrying out any 

survey at the meso–scale. Moreover, the use of presence/absence data rather than abundance data can be a cost–effective 

and accurate approach to monitor aquatic species (Joseph et al., 2006). Consequently, we considered the effect of the 

sampling method negligible and assumed the observed differences mainly occurred due to ecological and mathematical 

aspects. The micro–scale model could be assumed to represent 'feeding' or 'holding a feeding position' behaviour because 

it is assumed that such positions are the most energetically profitable (Rincón and Lobón-Cerviá, 1993) and hiding and/or 

disturbed fish observations were ruled out. However, the redfin barbel was observed several times in multi–species 

shoals mainly composed by cyprinids (e.g. Squalius valentinus; Doadrio y Carmona, 2006), with which the redfin barbel 

has shown evident affinity (Muñoz-Mas et al., 2015), and these observations were included in the ultimate dataset. These 

shoals were wandering nearby elements of cover (e.g. logs and woody debris) with some individuals foraging on the 

debris and substrate. There are no specific studies on the redfin barbel’s diet (Verdiell-Cubedo, 2011), although it has 

been suggested its preference for drifting invertebrates such as Chironomidae, Ephemeroptera and Trichoptera (Miranda 

et al., 2005). Other akin Iberian species (Gante et al., 2015) (i.e. Barbus spp. and Lucioababus spp.) typically ingest a 

great variety of items without any clear preference (omnivory, eurifagy), even presenting significant proportions of the 

diet composed by vegetation (Collares-Pereira et al., 1996; Magalhães, 1993). In accordance with these generalist feeding 

behaviour we considered our choice adequate, although based on previous studies about the diel dynamics of habitat use 
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of the European barbel (Barbus barbus; Linnaeus, 1758) (Baras and Nindaba, 1999) our dataset could be including a 

mixture of activities. Then, despite of a great uncertainty, these data could be depicting the so-called activity centre or the 

daily activity area, which can be roughly estimated as the HMU encompassing the residence and the feeding area (Baras, 

1997).  

Conversely, the meso–scale model is based on fish catches in HMUs where the fish develop any of the diel activities 

such as ‘feeding’ but, in this case, it surely encompassed also 'hiding' or 'resting' individuals as long as electrofishing 

does not allow the differentiation of the activity undertaken by fish captures. Therefore, in the meso–scale model, the 

training data considered all the fish in the HMU without any distinction of activity and assuming that any potential 

migration occurred in spring, before sampling (Aparicio and De Sostoa, 1999). Significant changes in habitat use have 

been demonstrated for the European barbel depending on the time of the day and the season (Baras and Nindaba, 1999). 

Therefore, these two SDMs could represent different habitat needs. 

Despite the potential ecological differences between models and the ranges of the sampled input variables, the patterns of 

the two WUA curves were similar. However, the micro–scale approach assessed the hydraulics in a very detailed way 

(every cell can be assessed differently) whereas the meso–scale approach presented a coarser resolution, and thus as soon 

as it considered an HMU suitable it added the entire HMU area to the WUA. Consequently, there is a difference in 

magnitude between both WUA flow rating curves, which would principally be caused by the discrepant resolution used 

in the habitat assessment (i.e. the mean size of the assessed cells were larger in the meso-scale model). The use of a 

density–based suitability index could provide more gradual information on species habitat selection in the meso–scale 

model (Fukuda et al., 2011) and may thus lead to more similar WUA–flow curves, although it should be corroborated by 

dedicated studies. 

Compared to the traditional micro–scale evaluation the meso–scale approach permitted the survey of longer river 

segments, involving a wider range of habitat variables that could consider diverse fish behaviour at larger spatial scales 

(Vezza et al., 2012). Indeed, by sacrificing some detail it is possible to reveal larger spatial and temporal ecological 

patterns (Jewitt et al., 2001). Consequently, in this study a hydraulic model developed on a longer river segment may 

enable a more thorough and varied meso–scale assessment. However, this issue was already partially dealt with by 

simulating water depth and flow velocity for unmeasured discharge conditions (following RHYHABSIM) in contrast to 

some other approaches, which are based in a finite number of observations (MesoHABSIM; Vezza et al., 2012). Taking 

into account that no habitat time series analysis has been performed (Milhous et al., 1990), the differences in the 

magnitude of the WUA–Flow curves did not result in notable differences in the minimum legal e–flow (1.1 m
3
/s and 0.7 

m
3
/s). Nevertheless, the micro–scale models, which is the scale specified in the Spanish norm for hydrological planning 

for e–flow assessment (MAGRAMA, 2008), remained on the conservative side because it has determined a slightly 

higher e–flow. 

Previous research already demonstrated that a lower e–flow is derived from a WUA–Flow curve that presented larger 

values of the WUA (Muñoz–Mas et al., 2012), which suggests that a revision of these legal specifications may be 

appropriate. The capability to simulate large numbers of flows has risen along the decade and thus the WUA–Flow 

curves nowadays present smooth transitions from flow to flow. In this case the inflection point is determined by a very 

little difference and could vary by reducing the number of simulated flows. Further, the Mijares River is subject to severe 
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droughts, with one of the calibration flows being 0.372 m
3
/s. The species naturally occurs in this river segment and its 

adaptation to droughts has been confirmed (Aparicio and De Sostoa, 1998; 1999). Therefore, it can be concluded that the 

minimum legal e–flow derived from both SDMs would not eventually pose any threat to the species.  

 

4.5 Conclusions 

The MLP Ensembles appeared efficient to develop SDMs, and the Wang and Alhamdoosh (2013) approach provided 

accurate small–sized models. Thereby the meso–scale model presented almost a perfect accuracy (TSS = 0.93) with four 

variables. The final models confirmed previous studies and complemented existing knowledge on the habitat preferences 

of redfin barbel (Sostoa et al., 2005; Aparicio and De Sostoa, 1999; Aparicio, 2002; Grossman and De Sostoa, 1994). 

Since modelling results may strongly depend on the training dataset, future research should compare the MLP Ensembles 

developed following the Wang and Alhamdoosh (2013) approach with some benchmarking techniques (e.g. Random 

Forests). However, MLP Ensembles should be considered a suitable technique to develop SDMs since they provided 

competent results at both spatial scales. The habitat assessment demonstrated the value of MLP Ensembles in e–flow 

assessment because both SDMs suggested a similar minimum legal e–flow based on the methodology for the analysis of 

the WUA–flow curves described in the Spanish norm for hydrological planning (MAGRAMA, 2008). This legal norm 

stated that studies on e–flow assessment must be performed at the microscale, which eventually predicted a slightly 

higher e–flow. Therefore, from the legal viewpoint, this scale can be at least equally adequate as the meso–scale in e–

flow assessment studies. Although additional comparison between modelling scales would be advisable it can be 

concluded that the MLP Ensemble should be taken into consideration in future e–flow assessments. 

 

ACKNOWLEDGEMENTS 

This study was funded by the Spanish Ministry of Economy and Competitiveness with the projects SCARCE 

(Consolider–Ingenio 2010 CSD2009–00065). We thank to Confederación Hidrográfica del Júcar (Spanish Ministry of 

Agriculture, Food and Environment), especially to the Office for Water Planning and Teodoro Estrela for the data 

provided to develop the SDMs. Finally we would like to that TECNOMA S.A. for the development of the hydraulic 

model in the Mijares River and all the people that participated in the field data collection. 

  



23 

 

REFERENCES 

Akhand, M.A.H., Islam, M.M. and Murase, K., 2009. A comparative study of data sampling techniques for constructing 

neural network ensembles. Int. J. Neural. Syst. 19 (2), 67–89. http://dx.doi.org/10.1142/S0129065709001859. 

Alcaraz–Hernández, J.D., Martínez–Capel, F., Peredo, M. and Hernández–Mascarell, A., 2011. Mesohabitat 

heterogeneity in four mediterranean streams of the Jucar river basin (Eastern Spain). Limnetica 30 (2), 15–363.  

Aparicio, E., 2002. Ecologia del barb cua–roig (Barbus haasi) i avaluació del seu estat de conservació a Catalunya. 

Programa de Doctorat de Biologia Animal I – Zoologia – Bienni 1991–1993, 173. (In Catalan) 

Aparicio, E. and De Sostoa, A., 1998. Reproduction and growth of Barbus haasi in a small stream in the N.E. of the 

Iberian peninsula. Arch. Hydrobiol. 142 (1), 95–110.  

Aparicio, E. and De Sostoa, A., 1999. Pattern of movements of adult Barbus haasi in a small Mediterranean stream. J. 

Fish Biol. 55 (5), 1086–1095. http://dx.doi.org/10.1006/jfbi.1999.1109. 

Araújo, M.B. and New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22 (1), 42–47. 

http://dx.doi.org/10.1016/j.tree.2006.09.010. 

Ayllón, D., Almodóvar, A., Nicola, G.G. and Elvira, B., 2009. Interactive effects of cover and hydraulics on brown trout 

habitat selection patterns. River Res. Appl. 25 (8), 1051–1065. http://dx.doi.org/10.1002/rra.1215. 

Baran, P., Lek, S., Delacoste, M. and Belaud, A., 1996. Stochastic models that predict trout population density or 

biomass on a mesohabitat scale. Hydrobiologia 337 (1–3), 1–9. http://dx.doi.org/10.1007/BF00028502. 

Baras, E., 1997. Environmental determinants of residence area selection by Barbus barbus in the River Ourthe. Aquat. 

Living Resour. 10 (4), 195–206. http://dx.doi.org/10.1051/alr:1997021. 

Baras, E. and Nindaba, J., 1999. Diel dynamics of habitat use by riverine young–of–the–year Barbus barbus and 

Chondrostoma nasus (Cyprinidae). Arch. Hydrobiol. 146 (4), 431–448.  

Boulangeat, I., Gravel, D. and Thuiller, W., 2012. Accounting for dispersal and biotic interactions to disentangle the 

drivers of species distributions and their abundances. Ecol. Lett. 15 (6), 584–593. http://dx.doi.org/10.1111/j.1461–

0248.2012.01772.x. 

Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J. and Henriksen, J., 1998. Stream habitat analysis 

using the instream flow incremental methodology Geological Survey – Information and Technology Report 1998–0004, 

Fort Collins, CO (USA). 

Brosse, S., Laffaille, P., Gabas, S. and Lek, S., 2001. Is scuba sampling a relevant method to study fish microhabitat in 

lakes? Examples and comparisons for three European species. Ecol. Freshw. Fish 10 (3), 138–146. 

http://dx.doi.org/10.1034/j.1600–0633.2001.100303.x. 

Brosse, S. and Lek, S., 2000. Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. 

Freshwater Biol. 44 (3), 441–452. http://dx.doi.org/10.1046/j.1365–2427.2000.00580.x. 

Cannon, A.J., 2012. monmlp: Monotone multi–layer perceptron neural network. R package version 1.1.2. 

Cannon, A.J. and McKendry, I.G., 2002. A graphical sensitivity analysis for statistical climate models: Application to 

Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. Int. J. Climatol. 

22 (13), 1687–1708. http://dx.doi.org/10.1002/joc.811. 

http://dx.doi.org/10.1142/S0129065709001859
http://dx.doi.org/10.1006/jfbi.1999.1109
http://dx.doi.org/10.1016/j.tree.2006.09.010
http://dx.doi.org/10.1002/rra.1215
http://dx.doi.org/10.1007/BF00028502
http://dx.doi.org/10.1051/alr:1997021
http://dx.doi.org/10.1111/j.1461-0248.2012.01772.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01772.x
http://dx.doi.org/10.1034/j.1600-0633.2001.100303.x
http://dx.doi.org/10.1046/j.1365-2427.2000.00580.x
http://dx.doi.org/10.1002/joc.811


24 

 

Clausen, B., Jowett, I.G., Biggs, B.J.F. and Moeslund, B., 2004. Stream ecology and flow management. In: Tallaksen, 

L.M. and Van Lanen, H.A.J. (ed.), Developments in Water Science 48. Elsevier, Amsterdam (Netherlands), pp. 313–356. 

Collares-Pereira, M.J., Martins, M.J., Pires, A.M., Geraldes, A.M. and Coelho, M.M., 1996. Feeding behaviour of Barbus 

bocagei assessed under a spatio-temporal approach. Folia Zool. 45 (1), 65–76. 

Conallin, J., Boegh, E. and Jensen, J.K., 2010. Instream physical habitat modelling types: An analysis as stream 

hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Manag. 8 (1), 93–107. 

http://dx.doi.org/10.1080/15715121003715123. 

Copp, G.H., 2008. Putting multi–dimensionality back into niche: Diel vs. day–only niche breadth separation in stream 

fishes. Fundam. Appl. Limnol. 170 (4), 273–280. http://dx.doi.org/10.1127/1863–9135/2008/0170–0273. 

Costa, R.M.S., Martínez–Capel, F., Muñoz–Mas, R., Alcaraz–Hernández, J.D. and Garófano–Gómez, V., 2012. Habitat 

suitability modelling at mesohabitat scale and effects of dam operation on the endangered Júcar nase, Parachondrostoma 

arrigonis (River Cabriel, Spain). River Res. Appl. 28 (6), 740–752. http://dx.doi.org/10.1002/rra.1598. 

Doadrio, I. and Carmona, J.A., 2006. Phylogenetic overview of the genus Squalius (Actinopterygii, Cyprinidae) in the 

Iberian Peninsula, with description of two new species. Cybium 30 (3), 199–214. 

Dolloff, C.A., Hankin, D.G. and Reeves, G.H., 1993. Basinwide Estimation of Habitat and Fish Populations in Streams 

Gen. Tech. Rep. SE–83., Southeastern Forest Experiment Station, Asheville, NC (USA). 

Elith, J. and Leathwick, J.R., 2009. Species distribution models: Ecological explanation and prediction across space and 

time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697. http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159. 

Fogel, D.B., 1994. Introduction to simulated evolutionary optimization. IEEE T. Neural. Networ. 5 (1), 3–14. 

http://dx.doi.org/10.1109/72.265956. 

Freyhof, J. and Brooks, E., 2011. European Red List of Freshwater Fishes Luxembourg (Luxembourg). 

Fukuda, S., 2013. Effects of data prevalence on species distribution modelling using a genetic takagi–sugeno fuzzy 

system. IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), Singapore, 21–27. 

Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J. and Mouton, A.M., 2013. Habitat prediction and knowledge 

extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. 

Environ. Modell. Softw. 47, 1–6. http://dx.doi.org/10.1016/j.envsoft.2013.04.005. 

Fukuda, S., Mouton, A.M. and De Baets, B., 2011. Abundance versus presence/absence data for modelling fish habitat 

preference with a genetic Takagi–Sugeno fuzzy system. Environ. Monit. Assess. 184 (10), 6159–6171. 

http://dx.doi.org/10.1007/s10661–011–2410–2. 

Gante, H.F., Doadrio, I., Alves, M.J. and Dowling, T.E., 2015. Semi-permeable species boundaries in Iberian barbels 

(Barbus and Luciobarbus, Cyprinidae). BMC Evol. Biol. 15 (1), 111. http://dx.doi.org/10.1186/s12862-015-0392-3. 

García de Jalón, D. and Schmidt, G., 1995. Manual práctico para la gestión sostenible de la pesca fluvial. Madrid, 

(Spain). (In Spanish) 

Gevrey, M., Dimopoulos, I. and Lek, S., 2006. Two–way interaction of input variables in the sensitivity analysis of 

neural network models. Ecol. Model. 195 (1–2), 43–50. http://dx.doi.org/10.1016/j.ecolmodel.2005.11.008. 

Gibson, R.J., 1993. The Atlantic salmon in fresh water: spawning, rearing and production. Rev. Fish Biol. Fisher. 3 (1), 

39–73. http://dx.doi.org/10.1007/bf00043297. 

http://dx.doi.org/10.1080/15715121003715123
http://dx.doi.org/10.1127/1863-9135/2008/0170-0273
http://dx.doi.org/10.1002/rra.1598
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1109/72.265956
http://dx.doi.org/10.1016/j.envsoft.2013.04.005
http://dx.doi.org/10.1007/s10661-011-2410-2
http://dx.doi.org/10.1186/s12862-015-0392-3
http://dx.doi.org/10.1016/j.ecolmodel.2005.11.008
http://dx.doi.org/10.1007/bf00043297


25 

 

Gosselin, M.P., Petts, G.E. and Maddock, I.P., 2010. Mesohabitat use by bullhead (Cottus gobio). Hydrobiologia 652 (1), 

299–310. http://dx.doi.org/10.1007/s10750–010–0363–z. 

Grossman, G.D. and De Sostoa, A., 1994. Microhabit use by fish in the upper Rio Matarrana, Spain, 1984–1987. Ecol. 

Freshwat. Fish 3 (4), 141–152. http://dx.doi.org/10.1111/j.1600–0633.1994.tb00016.x. 

Hansen, L.K. and Salamon, P., 1990. Neural network ensembles. IEEE T. Pattern Anal. 12 (10), 993–1001. 

http://dx.doi.org/10.1109/34.58871. 

Inoue, M. and Nunokawa, M., 2002. Effects of longitudinal variations in stream habitat structure on fish abundance: an 

analysis based on subunit-scale habitat classification. Freshw. Biol. 47 (9), 1594–1607. http://dx.doi.org/10.1046/j.1365-

2427.2002.00898.x.  

Jewitt, G.P.W., Weeks, D.C., Heritage, G.L. and Gorgens, A.H.M., 2001. Modelling abiotic–biotic links in the rivers of 

the Kruger National Park, Mpumulanga, South Africa. Proceedings of an International Workshop (HW2) Held During 

the IUGG 99, the XXII General Assembly of the IUGG, Birmingham (UK), 77–90. 

Joseph, L.N., Field, S.A., Wilcox, C. and Possingham, H.P., 2006. Presence–absence versus abundance data for 

monitoring threatened species. Conserv. Biol. 20 (6), 1679–1687. http://dx.doi.org/10.1111/j.1523–1739.2006.00529.x. 

Jowett, I.G. and Duncan, M.J., 2012. Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a 

braided river. Ecol. Eng. 48, 92–100. http://dx.doi.org/10.1016/j.ecoleng.2011.06.036.  

Laffaille, P., Feunteun, E., Baisez, A., Robinet, T., Acou, A., Legault, A., et al, 2003. Spatial organisation of European 

eel (Anguilla anguilla L.) in a small catchment. Ecol. Freshwat. Fish 12 (4), 254–264. http://dx.doi.org/10.1046/j.1600–

0633.2003.00021.x. 

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. and Aulagnier, S., 1996. Application of neural networks to 

modelling nonlinear relationships in ecology. Ecol. Model. 90 (1), 39–52. http://dx.doi.org/10.1016/0304–

3800(95)00142–5. 

Magalhães, M.F., 1993. Feeding of an Iberian stream cyprinid assemblage: seasonality of resource use in a highly 

variable environment. Oecologia 96 (2), 253–260. http://dx.doi.org/10.1007/BF00317739.  

MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente), 2008. Orden ARM/2656/2008, de 10 de 

septiembre, por la que se aprueba la instrucción de planificación hidrológica. (In Spanish) 

May, R., Dandy, G. and Maier, H., 2011. Review of Input Variable Selection Methods for Artificial Neural Networks. In: 

Suzuki, K. (ed.), Artificial Neural Networks – Methodological Advances and Biomedical Applications. InTech., pp. 362. 

Mcmanamay, R.A., Orth, D.J. and Jager, H.I., 2014. Accounting for variation in species detection in fish community 

monitoring. Fish. Manage. Ecol. 21 (2), 96–112. http://dx.doi.org/10.1111/fme.12056. 

Mebane Jr, W.R. and Sekhon, J.S., 2011. Genetic optimization using derivatives: The rgenoud package for R. J. Stat. 

Softw. 42 (11), 1–26.  

Meier, H.E.M., Andersson, H.C., Arheimer, B., Donnelly, C., Eilola, K., Gustafsson, B.G., et al, 2014. Ensemble 

modeling of the Baltic Sea ecosystem to provide scenarios for management. Ambio 43 (1), 37–48. 

http://dx.doi.org/10.1007/s13280–013–0475–6. 

Milhous, R.T., Bartholow, J.M., Updike, M.A. and A.R., M., 1990. Reference manual for generation and analysis of 

Habitat Time Series - Version II Biological Report 90; 27, Washington DC, (USA), pp. 249. 

http://dx.doi.org/10.1007/s10750-010-0363-z
http://dx.doi.org/10.1111/j.1600-0633.1994.tb00016.x
http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1046/j.1365-2427.2002.00898.x
http://dx.doi.org/10.1046/j.1365-2427.2002.00898.x
http://dx.doi.org/10.1111/j.1523-1739.2006.00529.x
http://dx.doi.org/10.1016/j.ecoleng.2011.06.036
http://dx.doi.org/10.1046/j.1600-0633.2003.00021.x
http://dx.doi.org/10.1046/j.1600-0633.2003.00021.x
http://dx.doi.org/10.1016/0304-3800(95)00142-5
http://dx.doi.org/10.1016/0304-3800(95)00142-5
http://dx.doi.org/10.1007/BF00317739
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.magrama.gob.es%2Fca%2F&ei=hL6pVLi4FoOtUYn1gJgL&usg=AFQjCNEkJY66H_KcwSA7UsrgYciHkRqFaw&bvm=bv.82001339,d.d24
http://dx.doi.org/10.1111/fme.12056
http://dx.doi.org/10.1007/s13280-013-0475-6


26 

 

Miranda, R., Leunda, P.M., Escala, C. and Oscoz, J., 2005. Threatened fishes of the world: Barbus haasi (Mertens 1925) 

(Cyprinidae). Environ. Biol. Fishes 72 (3), 282. http://dx.doi.org/10.1007/s10641-004-4229-y. 

Mostafavi, H., Pletterbauer, F., Coad, B.W., Mahini, A.S., Schinegger, R., Unfer, G., et al, 2014. Predicting presence and 

absence of trout (Salmo trutta) in Iran. Limnologica 46, 1–8. http://dx.doi.org/10.1016/j.limno.2013.12.001. 

Mouton, A.M., Alcaraz–Hernández, J.D., De Baets, B., Goethals, P.L.M. and Martínez–Capel, F., 2011. Data–driven 

fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environ. Modell. Softw. 26 (5), 615–

622. http://dx.doi.org/10.1016/j.envsoft.2010.12.001. 

Mouton, A.M., De Baets, B. and Goethals, P.L.M., 2010. Ecological relevance of performance criteria for species 

distribution models. Ecol. Model. 221 (16), 1995–2002. http://dx.doi.org/10.1016/j.ecolmodel.2010.04.017. 

Mouton, A.M., Jowett, I., Goethals, P.L.M. and De Baets, B., 2009. Prevalence–adjusted optimisation of fuzzy habitat 

suitability models for aquatic invertebrate and fish species in New Zealand. Ecol. Inform. 4 (4), 215–225. 

http://dx.doi.org/10.1016/j.ecoinf.2009.07.006. 

Muñoz–Mas, R., Alcaraz–Hernández, J.D. and Martínez–Capel, F., 2014. Multilayer Perceptron Ensembles (MLP 

Ensembles) in modelling microhabitat suitability for freshwater fish. XVII Congreso Español sobre Tecnologías y Lógica 

Fuzzy (ESTYLF 2014), Zaragoza (Spain), 609–614. 

Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F. and Pulido-Velazquez, M., 2016. Shifts in the suitable habitat 

available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Sci. Total Environ. 544, 686–700. 

http://dx.doi.org/10.1016/j.scitotenv.2015.11.147. 

Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J.D. and Mouton, A.M., 2015. Can multilayer perceptron 

ensembles model the ecological niche of freshwater fish species? Ecol. Modell. 309–310, 72–81. 

http://dx.doi.org/10.1016/j.ecolmodel.2015.04.025. 

Muñoz–Mas, R., Martínez–Capel, F., Garófano–Gómez, V. and Mouton, A.M., 2014a. Application of Probabilistic 

Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environ. 

Modell. Softw. 59 (0), 30–43. http://dx.doi.org/10.1016/j.envsoft.2014.05.003. 

Muñoz–Mas, R., Martínez–Capel, F., Schneider, M. and Mouton, A.M., 2012. Assessment of brown trout habitat 

suitability in the Jucar River Basin (SPAIN): Comparison of data–driven approaches with fuzzy–logic models and 

univariate suitability curves. Sci. Total Environ. 440 123–131. http://dx.doi.org/10.1016/j.scitotenv.2012.07.074. 

Olaya–Marín, E.J., Martínez–Capel, F., Soares Costa, R.M. and Alcaraz–Hernández, J.D., 2012. Modelling native fish 

richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain). Sci.Total 

Environ. 440 95–105. http://dx.doi.org/10.1016/j.scitotenv.2012.07.093. 

Olden, J.D., Lawler, J.J. and Poff, N.L., 2008. Machine learning methods without tears: A primer for ecologists. Q. Rev. 

Biol. 83 (2), 171–193. http://dx.doi.org/10.1086/587826. 

Olden, J.D., Poff, N.L. and Bledsoe, B.P., 2006. Incorporating ecological knowledge into ecoinformatics: An example of 

modeling hierarchically structured aquatic communities with neural networks. Ecol. Inform. 1 (1), 33–42. 

http://dx.doi.org/10.1016/j.ecoinf.2005.08.003. 

Opitz, D.W., 1999. Feature selection for ensembles. Proceedings of the 1999 16th National Conference on Artificial 

Intelligence (AAAI–99), 11th Innovative Applications of Artificial Intelligence Conference (IAAI–99), Orlando, FL, 

(USA), 379–384. 

Pandey, H.M., Chaudhary, A. and Mehrotra, D., 2014. A comparative review of approaches to prevent premature 

convergence in GA. Appl. Soft Comput. J. 24, 1047–1077. http://dx.doi.org/10.1016/j.asoc.2014.08.025. 

http://dx.doi.org/10.1007/s10641-004-4229-y
http://dx.doi.org/10.1016/j.limno.2013.12.001
http://dx.doi.org/10.1016/j.envsoft.2010.12.001
http://dx.doi.org/10.1016/j.ecolmodel.2010.04.017
http://dx.doi.org/10.1016/j.ecoinf.2009.07.006
http://dx.doi.org/10.1016/j.scitotenv.2015.11.147
http://dx.doi.org/10.1016/j.ecolmodel.2015.04.025
http://dx.doi.org/10.1016/j.envsoft.2014.05.003
http://dx.doi.org/10.1016/j.scitotenv.2012.07.074
http://dx.doi.org/10.1016/j.scitotenv.2012.07.093
http://dx.doi.org/10.1086/587826
http://dx.doi.org/10.1016/j.ecoinf.2005.08.003
http://dx.doi.org/10.1016/j.asoc.2014.08.025


27 

 

Parasiewicz, P., 2001. MesoHABSIM: A concept for application of instream flow models in river restoration planning. 

Fisheries 26 (9), 6–13. http://dx.doi.org/10.1577/1548-8446(2001)026<0006:M>2.0.CO;2. 

Parasiewicz, P. and Walker, J.D., 2007. Arena: Comparison of Mesohabsim with two microhabitat models (PHABSIM 

and HARPHA). River Res. Appl. 23 (8), 904–923. http://dx.doi.org/10.1002/rra.1043. 

Partridge, D. and Yates, W.B., 1996. Engineering Multiversion Neural–Net Systems. Neural Comp. 8 (4), 869–893. 

http://dx.doi.org/10.1162/neco.1996.8.4.869. 

Perea, S., Garzón, P., González, J.L., Almada, V.C., Pereira, A. and Doadrio, I., 2011. New distribution data on Spanish 

autochthonous species of freshwater fish. Graellsia 67 (1), 91–102. http://dx.doi.org/10.3989/graellsia.2011.v67.032. 

R Core Team, 2015. R: A language and environment for statistical computing.  

Rincón, P.A. and Lobón–Cerviá, J., 1993. Microhabitat use by stream–resident brown trout: bioenergetic consequences. 

T. Am. Fish. Soc. 122 (4), 575–587. http://dx.doi.org/10.1577/1548–8659(1993)1222.3.CO;2. 

Santos, J.M., Godinho, F., Ferreira, M.T. and Cortes, R., 2004. The organisation of fish assemblages in the regulated 

Lima basin, Northern Portugal. Limnologica 34 (3), 224–235. http://dx.doi.org/10.1016/S0075–9511(04)80047–1. 

Soares, S., Antunes, C.H. and Araújo, R., 2013. Comparison of a genetic algorithm and simulated annealing for 

automatic neural network ensemble development. Neurocomputing 121 498–511. 

http://dx.doi.org/10.1016/j.neucom.2013.05.024. 

Sostoa, A., Vinyoles, D., Caiola, N.M., Sánchez, R. and Franch, C., 2005. Relaciones entre los indicadores 

hidromorfológicos y los biológicos en el río matarraña. Régimen hidrológico y fauna ictiológica. Barcelona, Catalunya 

(Spain). (In Spanish) 

Thuiller, W., Lafourcade, B., Engler, R. and Araújo, M.B., 2009. BIOMOD – a platform for ensemble forecasting of 

species distributions. Ecography 32 (3), 369–373. http://dx.doi.org/10.1111/j.1600–0587.2008.05742.x. 

Verdiell-Cubedo, D., 2011. Barbo colirrojo – Barbus haasi Mertens, 1925. In: Salvador, A., Elvira, B. (ed.), Enciclopedia 

Virtual de Los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid (Spain). (In Spanish) 

Vezza, P., Muñoz-Mas, R., Martínez-Capel, F. and Mouton, A.M., 2015. Random forests to evaluate biotic interactions 

in fish distribution models. Environ. Model. Softw. 67, 173–183. http://dx.doi.org/10.1016/j.envsoft.2015.01.005.  

Vezza, P., Parasiewicz, P., Rosso, M. and Comoglio, C., 2012. Defining minimum environmental flows at regional scale: 

Application of mesoscale habitat models and catchments classification. River Res. Appl. 28 (6), 717–730. 

http://dx.doi.org/10.1002/rra.1571. 

Wang, D. and Alhamdoosh, M., 2013. Evolutionary extreme learning machine ensembles with size control. 

Neurocomputing 102 98–110. http://dx.doi.org/10.1016/j.neucom.2011.12.046. 

Yao, X. and Xu, Y., 2006. Recent advances in evolutionary computation. J. Comput. Sci. Technol. 21 (1), 1–18. 

http://dx.doi.org/10.1007/s11390–006–0001–4. 

http://dx.doi.org/10.1577/1548-8446(2001)026%3c0006:M%3e2.0.CO;2
http://dx.doi.org/10.1002/rra.1043
http://dx.doi.org/10.1162/neco.1996.8.4.869
http://dx.doi.org/10.3989/graellsia.2011.v67.032
http://dx.doi.org/10.1577/1548-8659(1993)1222.3.CO;2
http://dx.doi.org/10.1016/S0075-9511(04)80047-1
http://dx.doi.org/10.1016/j.neucom.2013.05.024
http://dx.doi.org/10.1111/j.1600-0587.2008.05742.x
http://dx.doi.org/10.1016/j.envsoft.2015.01.005
http://dx.doi.org/10.1002/rra.1571
http://dx.doi.org/10.1016/j.neucom.2011.12.046
http://dx.doi.org/10.1007/s11390-006-0001-4

