
–

IOT ROVER
Project report

Jorge Crespo Celdrán

May 2016

B. Eng. in Electronics Engineering

 1

Acknowledgements

Thanks to Eva Murphy and Fergal Henry for supervising the realization of this project and

with all the adaptation to the Irish education system. Also a special thanks to my parents

and to the Erasmus+ program for allow me to study in Ireland during this year and realize

this project. To finish, I want to thank my parents and my family, and also my friends, for

encourage and support me during all the year.

 2

Content

1 Introduction and objectives .. 4

1.1 Summary of the project objectives ... 4

1.2 Reasons to choose this project ... 4

1.3 Applications ... 5

2 Background ... 6

2.1 Actual developments .. 6

2.2 Comparison ... 6

3 Research .. 7

3.1 Concept selection .. 7

3.1.1 Original concept .. 7

3.1.2 Selected concept ... 7

3.2 Components review .. 7

3.2.1 Motor controllers .. 7

3.2.2 Motors ... 8

3.2.3 LCD modules ... 8

3.2.4 Distance sensors ... 9

3.2.5 Power sources ... 11

3.2.6 DC/DC convertors ... 12

3.2.7 GPS+GPRS modules ... 13

3.2.8 Arduino.. 15

3.2.9 Chassis ... 16

3.2.10 PIC microcontroller ... 16

4 Ethical considerations ... 17

4.1 Environment impact.. 17

4.2 Society impact ... 17

4.3 Health and safety .. 17

4.4 Legislations .. 18

5 Hardware development .. 19

5.1 Hardware diagram: ... 19

5.2 Diagram with photos: ... 20

5.3 Circuit design (Proteus) ... 21

5.4 Mounting hardware .. 22

 3

6 Software development ... 26

6.1 PIC ... 26

6.1.1 IDE (MPLab-X) ... 26

6.1.2 Programming the PIC .. 27

6.1.3 Libraries ... 27

6.1.4 Code .. 27

6.2 Arduino ... 38

6.2.1 IDE (Arduino) ... 38

6.2.2 Programming the Arduino .. 38

6.2.3 Libraries: .. 38

6.2.4 Examples ... 39

6.2.5 Code .. 40

6.3 Control Webpage .. 46

7 Usage ... 46

7.1 Mode dashboard: .. 46

7.2 Manual move dashboard: ... 47

7.3 GPS dashboard: ... 47

8 Final conclussions .. 48

9 Links to resources ... 48

10 Illustration table .. 49

11 References .. 50

 4

1 Introduction and objectives

1.1 Summary of the project objectives

The objective of the project will be to develop

and build an little ROVER car with sensors to

interact with its environment and avoid

collisions (Distance sensors), an GPS receiver to

know every time it’s exact position and an

connexion to the internet through an mobile

broadband connection (GPRS or 3G) to send

data about its location and receive instructions

from the user. We will use to read the data and

send the instructions an webpage accessible

from any computer with internet connection,

and if possible we will try to develop an specific app for android.

1.2 Reasons to choose this project

This is an excellent opportunity to put in practise the knowledge acquire during the

degree. This is also a very interesting project related with the current trend of connect

everything to the internet (Know as Internet of things) During the development of the

project we will have the opportunity of work with different modules and see how they

work in a real environment. We will have to look for the GPS and mobile internet devices,

see how to connect it to the PIC and develop a program to interface everything and make

it work together all right. Also this project evolves sensors to measure distance to avoid

collisions and will need a power stage to control the motors using the logic signals from

the PIC, and even may be necessary to program and control stage using a PID to make the

motors work all right. In summary, with this project I will put into practice a lot of the

knowledge acquired during the years of university.

 5

1.3 Applications

An autonomous and remote controlled car

may be a very interesting development, it’s

useful for a very big range of things, and in a

close future we will see autonomous vehicles

of different sizes in our roads. Some of the

possible applications are:

Rescue teams:

Have access to dangerous zones and localize

people in disasters like earthquakes, and even

give the help in first instance in case a human

can get access to the victim.

Recognise dangerous zones:

In case of contamination nuclear, radiological, bacteriological or chemical it’s very

dangerous to send humans to develop their labours. A ROVER can do the job without take

risk.

Help people with mobility problems:

For people who need help in their daily chores this kind of vehicle may be very useful

Big scale developments:

We could use autonomous vehicles as couriers, to supress the deliverer, make it safer and

save money or even as public transport system, with the same advantages.

Even for this little development controlled by the internet we could think about different

functions that our rover could do without many changes. You could leave it at home,

install a camera on the robot and use it to have a look to your dog while you are working.

Or imagine that you are at the pool and you are too lazy for going to the kitchen for a

beer, well, you could send the robot and control it from your mobile.

 6

2 Background

2.1 Actual developments

Currently the autonomous vehicles are real. There are autonomous vehicles like the

development of Google (Google 2015), which is a fully autonomous car, or the

development of Tesla (TeslaMotors 2015), which depends of a human driver but

automatics some of the functions of the driving. Also small vehicles more similar to our

development are currently used by armies of some countries and for police departments

for dangerous operations as deactivation of explosives, but there are not any solution in

the market for your own use for a competitive price.

Another developments at big scale have been done by some classic car manufactures, like

Volkswagen, Mercedes-Benz or General Motors, there are also importants the

developments of Google and Tesla which we have mention and also in the industry of the

trucks there are quite interesting developments made by Daimler, Scania and Volvo, these

trucks have been tested with great results. We can be sure about that in a few years we

will see a final product in the market.

2.2 Comparison

This project will try to be an approach to what needs an autonomous vehicle to work

allright and what need an real time connection throught the internet to control a vehicle.

We will try to make it work as better as possible while we keep the design as low cost as

possible, an also we would like to make it open source, sharing all the code (GPLv3) (gnu

n.d.) and all the documentation (CC by-nc-sa)(Creativecommons.org n.d.) in order to allow

anyone to replicate the project, or even that other people continue and improve the

project.

 7

3 Research

3.1 Concept selection

3.1.1 Original concept
In the beginning was quite difficult to decide which project to develop. The only condition

given was to use a PIC, the PIC18F45k20 (Microchip 2010) to control the project. Also,

personally, I wanted to develop something related with the internet of things, so I wanted

a module to have internet connection through a mobile connection or using Wi-Fi. With

these two conditions in mind I develop two different proposals.

3.1.2 Selected concept
One of the options was the autonomous car controlled over internet and the other one

was a system to automate different aspects of a home, like control of the temperature,

lights, irrigation…

The Rover was selected because to work with GPS is very interesting and also because the

control system is more interesting involving more factors.

3.2 Components review

3.2.1 Motor controllers
Our design will have two motors, one for each track. Our

traction will be differential and we also want to be able to go

to the front and to the back. So we need a system that allows

us to control the velocity and the direction of the motors. For

this purpose, the best approach is the utilization of an H

bridge. Between the differents options in the market for this

kind of integrated device, we have choose a L298N

(STMicroelectronics 2000). It is a dual H bridge embedded in

a chip which is very used in field of Do It Yourself

robotics. It have been tested by a lot of people, it’s

cheap and accomplish with our requirements. The

only problem with this chis is that it doesn’t have

embedded flyback diodes, so we will have to add

these diodes externally. For this work, 8 general

purpose low cost 1N4007 diodes (Vishay 2002) will be

great.

Illustration 1. H Bridge. (BUTTAY 2006)

Illustration 2. L298 motor controller

 8

3.2.2 Motors
As we are going to use H bridge, and assuming that our robot doesn’t have special

requirements of speed, torque or consumption, we are going to use the starter DC

brushed motors which are included in the chassis that we will use.

3.2.3 LCD modules
For the LCD module, has been chosen a standard display with 2 lines of 16 characters. It

has to be based on the Hitachi HD 44780 (Hitachi 1998) as there is a lot of information

about this chip and there are a lot of open free libraries to interactuate with screens based

on this this chip since different microcontrollers (Including our PIC).

The major ploblem of these modules is that the major part of then are designed to operate

at a logic voltage of 5 volts, but our microcontroller operates at 3.3 volts, so will have to

use a LCD module rated for 3.3 volts, which is more difficult of find and also is more

expensive.

Illustration 3. DC Motor. (Wapcaplet
2006)

Illustration 4. LCD 16x2 Display. (Electrosome n.d.)

 9

3.2.4 Distance sensors
For this purpose we have evaluate two main options. Sensors based in ultrasounds and

sensors based in infrared. For each technology there has been reviewed one sensor,

chosen based on the quantity of documentation about it and availability. The best options

are:

 Infrared sensor Sharp GP2Y0A21YK (Sharp n.d.), it cost around 12€ and give us an

analogue output of 3.1V at 10 cm to 0.4V at 80 cm

 Ultrasonic sensor HC-SR04. It’s very cheap, around 1.50€ the unit. The function is

a little more difficult, we should send a trigger signal to start the measuring, and

then the module will answer us with an echo signal with the same duration that

has wait the module to receive the ultrasonic back, so then we have to calculate

based on the sound velocity, how much meters are between the unit and the

obstacle.

Illustration 6. Hc-sr04 Distance Sensor.(Labyteacora n.d.)

Illustration 5. Sharp GP2Y0A21YK. (Sharp n.d.)

 10

Two options would have work all right in our design, and after review both options there

was chosen the infrared sensor, because the output is analogy, and it gives us an

interesting opportunity to work with the embedded Analog to Digital Converter.

For use this sensor in our project, we have to convert the input voltage to a value in

centimetres. For doing that, and assuming that for our project a high precision is not very

important, we have linearized the output given in the next graphic:

Illustration 7. Graphic Voltage/Distance

We have chosen two points:

5cm -> 3.3 volts

60cm -> 0.5v

And assuming that the ADC output gives us a 10 bit value, where:

0=0v

1023=3.3v

�������� = 5 + (1023 − �������) ∗
60 − 5

1023 −
1023 ∗ 0.5

3.3

�������� = 5 + (1023 − �������) ∗ 0.0634

This equation must be implemented in the code.

 11

3.2.5 Power sources
In this project we have seen that

there will be many different

components working at different

voltages and requesting different

currents. Which the rover will go in

its own, we will need a battery.

There are different kinds of

technology that we can use in our

battery: Simple alkaline cells, which

are rejected because is more

interesting to be able to recharge

the batteries. In rechargeable

batteries we can choose Lead-Acid,

Ni-MH or Li-Po batteries, between

other options. There has been choose a Li-Po battery because the its most recent

technology, offers more energy per unit of volume and currently the tendency in the

world of the modalism is the use of Li-Po batteries, so we can find more information and

there are more options available.

Illustration 9. Discharge curves for LiPo and NiMH batteries.(RCUniverse n.d.)

Illustration 8. LiPo Battery Turnigy 11.1V, 5Ah

 12

3.2.6 DC/DC convertors

Furthermore, in our project there are components working at 3.3 volts and at 5 volts. To

generate this voltage there has been assess the famous series of Texas Instruments

LM7805 (Texas Instruments 1995), with the variation UA78M33 (Texas Instruments 2015)

for 3.3 volts, or the use of the commuted PWM DC/DC converter also from Texas

Instruments LM2596 (Texas Instruments 2013). This last option has a better performance,

which is very important in an embedded device, but was chosen the option of the linear

regulators based on the LM78XX because needs less components and simplifies our work.

But for a production device there should be seriously considerated the use of a commuted

DC/DC converter.

Illustration 10. (Techinc n.d.)

Illustration 11. LM2596 Typical operation. As we see, it needs some aditional components.(Texas Instruments
n.d.)

 13

3.2.7 GPS+GPRS modules

The project will need connectivity to the Internet and GPS connection. For this purpose

we will use a module with connectivity throught the serial port of the PIC (Microchip

2010), an will consist of a GPS module and a GPRS module. For the GPS and GPRS we have

a lot of different options, but any of them has specific documentation for work with an

PIC microcontroller. In any case, all the solutions I have found have specific libraries for

Arduino and Raspberry and only needs 4 wires (RX, TX, VCC and GND) so we have two

options, find a way to make it work with our PIC, writing or adapting the libraries for

Arduino, or to connect an Arduino to the PIC and make them speak together. The best

options that I have found are:

 Adafruit Fona 808 (Adafruit n.d.): It’s a board based on the SIM808 integrated

device. It includes GPRS and GPS connectivity, and also a wide variety of libraries

and examples. It’s the cheapest option (44€) and accomplish with our

requirements. Adafruit has a service for Internet Of Things applications, where

you can program inputs and outputs and control it from any internet brownser.

Illustration 12. Fona 808 (Adafruit n.d.)

 14

 Cooking hacks SIM908 (Hacks n.d.): Very similar to the previous development but

with a modern chipset. We also have a lot of documentation about projects with

this device. It cost 99€

 SparqEE CELLv1.0 (SparqEE n.d.) + Independent GPS module. This module doesn’t

includes GPS, so we would have to buy it apart, the main advantage is that with

the module you receive the right to use the servers and the IDE of the company

to develop your project. The module cost 95€ and a GPS module around 35€

Illustration 13. SIM908

Illustration 15. GPS module Illustration 14. SparqEE Cell

 15

3.2.8 Arduino

Arduino (Arduino 2016) is an open software and open hardware development board

based on a Atmel microcontroller. An Arduino mega has been included in our project

because has not be possible to stablish connection between the GPRS and GPS board and

the PIC microcontroller using the embedded serial communication port. In the case of

Arduino there are Open Source libraries and examples to make it work, so the

implementation has been easy. This unexpected problem and the solution using an

Arduino carry another problem, the communication between the PIC and the Arduino. It

has been solved developing the software to make a parallel communication using 8 ports

of the Arduino as outputs and 8 ports of the PIC as imputs.

Illustration 16. Arduino Mega (Arduino 2016)

 16

3.2.9 Chassis

For the chassis has been evaluated the option of the 3D printing or to buy a commercial

chassis. At the end, due to the lack of time and the fact that here I don’t have full access

to a 3D printer, has been chosen to buy a commercial development.

Between the different options, has been chose the Rover 5 Robot Chassis, because the IT

have made projects with it and the Access was easy.

Illustration 17. Rover 5 chassis

3.2.10 PIC microcontroller

This component is the only condition in the project. It is a 8 bit microcontroller

manufactured by Microchip. PIC18F45K20 (Microchip 2010)

Illustration 18. PIC 18F45K20

 17

4 Ethical considerations

4.1 Environment impact

It will make use of electric energy with a build-in

battery, which is more eco-friendly that use gas, like

most of the actuals vehicles.

4.2 Society impact

Autonomous vehicles will have a very big impact in our

society. They will substitute the drivers of any vehicle

at the same time that will be created a big industry for

design manufacture and maintain these vehicles. The

cost of the transports will be lower, making products

cheaper, travels cheaper, and allowing very low cost of

transport, which will make cheaper alternatives to

traditional shops like e-commerce. Also make it open

source would make this development more accessible

and will allow other people continue the development

in the best conditions, being free if the purpose is not

commercial, for example for NGO or for

academic works.

Illustration 20. Creative Commons logo (Creativecommons.org n.d.)

4.3 Health and safety

Of course, the design should accomplish with all the normative of the European Union

referring to electrical devices and to vehicles, but we are going to think bigger. In the

future with autonomous vehicles we could reduce collisions and death people by car

accidents to a very small number. Human mistakes will be a think of the past and we will

only care about mechanical, climatological and other accidents.

Illustration 19. Wind generator

 18

4.4 Legislations

This kind of autonomous vehicle will not have the right to driving on the road. The

legislation should change and the vehicle should demonstrate that it is 100% safe.

All the pieces of Our development are ROHS compliant, but the tin that has been used to

solder manually a few cables and components has a percentage of plumb, which makes

the global project not ROHS compliant. With standard equipment in impossible to solder

without lead, we would have need special solder stations of high temperature and also

the process is more complicated.

Also, for this kind of product we should be sure about that the product comply with the

CE normative for Europe and the FCC normative for the United States. This is a process

which requires a deep knowledge of the directives in order to determinate if the project

accomplish or not.

Illustration 21. CE Logo
Illustration 22. ROHS logo

 19

5 Hardware development

5.1 Hardware diagram:

In the next diagram we can see a basic approach to the structure of the modules of our

project. The power connections from the voltage regulators to the components have not

been drawn in order to keep the diagram more readable.

PIC microcontroller

L298 dual H bridge

Right

Motor

Left

Motor

Arduino

Distance

sensor

Distance

sensor

Distance

sensor

Battery

Power

regulator

(5v)

GPS+GPRS module

LCD Screen

Power

regulator

(3.3v)

Illustration 23. Hardware block diagram

 20

5.2 Diagram with photos:

 21

5.3 Circuit design (Proteus)

A design in Proteus has been made in order to simulate all the possible components and

test it before connect the real components. The Arduino and the GPS+GPRS module has

not simulated, and the imput from the Arduino to the PIC has been made using one switch

for each input, at the bottom left. Also we can see the power regulators in the top, the

three distance sensors in the left, the motor controller plus the motors in the right and

the lcd screen in the bottom. The PIC microcontroller is in the center.

The simulation of the device is a very helpful tool that allows us to test everything without

danger for the components, and also the embedded tool in proteus for debugging allows

us to find errors in the code in an easy and secure form.

RA4/T0CKI/C1OUT
6

RA5/AN4/SS/HLVDIN/C2OUT
7

RA6/OSC2/CLKO
14

RA7/OSC1/CLKI
13

RB0/AN12/INT0/FLT0
33

RB1/AN10/INT1/C12IN2-
34

RB2/AN8/INT2
35

RB3/AN9/CCP2A/C12IN3-
36

RB4/AN11/KBI0
37

RB5//KBI1/PGM
38

RB6/KBI2/PGC
39

RB7/KBI3/PGD
40

RC0/T1OSO/T13CKI
15

RC3/SCK/SCL
18

RC4/SDI/SDA
23

RC5/SDO
24

RC6/TX/CK
25

RC7/RX/DT
26

RD0/PSP0
19

RD1/PSP1
20

RD2/PSP2
21

RD3/PSP3
22

RD4/PSP4
27

RD5/PSP5/P1B
28

RD6/PSP6/P1C
29

RD7/PSP7/P1D
30

RE0/AN5/RD
8

RE1/AN6/WR
9

RE2/AN7/CS
10

RE3/MCLR/VPP
1

RC1/T1OSI/CCP2B
16

RC2/CCP1/P1A
17

RA0/AN0/C12IN0-
2

RA1/AN1/C12IN1-
3

RA2/AN2/C2IN+/VREF-/CVREF
4

RA3/AN3/C1IN+/VREF+
5

U1

PIC18F45K20

IN1
5

IN2
7

ENA
6

OUT1
2

OUT2
3

ENB
11

OUT3
13

OUT4
14

IN3
10

IN4
12

SENSA
1

SENSB
15

GND

8

VS

4

VCC

9 U2

L298

D1
DIODE

D2
DIODE

D3
DIODE

D4
DIODE

D5
DIODE

D6
DIODE

D7
DIODE

D8
DIODE

VI
1

VO
3

G
N

D
2

U6
7805

11.2v

C1

10nF
C2

10nF

R1
10k

R2

1k

1
2

BATTERY

CONN-H2 C3
10nF

D
7

1
4

D
6

1
3

D
5

1
2

D
4

11
D

3
1
0

D
2

9
D

1
8

D
0

7

E
6

R
W

5
R

S
4

V
S

S
1

V
D

D
2

V
E

E
3

LCD1
LM016L

91%

RV1
1k

IN
3

OUT
2

GND

1

U7
LM1086-3,3

A

B

C

D

Volts

+11.2

Volts

+5.00

Volts

 0.00

Volts

+2.25

10.0
VO

1
VCC

3

GND
2

U8

GP2Y0A21YK0F

80.0
VO

1
VCC

3

GND
2

U9

GP2Y0A21YK0F

22.0
VO

1
VCC

3

GND
2

U10

GP2Y0A21YK0F

0
%

RV2

1k

Volts

+1.02

R3

100kR4

10kR5

10kR6

10kR7

10kR8

10kR9

10kR10

10k

Illustration 24. Proteus design.

 22

5.4 Mounting hardware

In this section has been include a set of photos of the rover mounted. The PIC and the

discrete components has been mounted in a protoboard, and the Arduino and the

GPS+GPRS module has been mounted apart in another board, with 8 wires (The parallel

connection) between both sections. The battery is between both boards. Everything has

been joined to the chassis using wires.

Illustration 25. Arduino and Fona module

 23

Illustration 26. Protoboar with PIC detail

Illustration 27. General view (Back)

 24

Illustration 28. General View (Front)

Illustration 29. General View (Up)

 25

Illustration 30. Robot in action

 26

6 Software development

The development of the software to make everything work in perfect harmony has been

the most intense task of the project.

There is a main program write for the Arduino, and also a there has been writing a little

programme for the Arduino, to interact with the GPS+GPRS board and to send data to the

PIC.

6.1 PIC

6.1.1 IDE (MPLab-X)
For the development of the modules for the PIC microcontroller has been used the

Integrated Development Environment MPLab-X (Microchip n.d.). Is is a proprietary

development of Microchip for programing their chips. It’s free without code optimization

and incorporates all the option we will need.

Illustration 31. MPLab-X IDE

 27

6.1.2 Programming the PIC
For the programming of the PIC has been used a Pickit 3 (Microchip n.d.) programmer. It’s

ready for work with MPLab-X and you only have to connect it to the PC via a USB port and

to the PIC throught the 5 wires detailed in the next diagram (Pin 6 is not connected)

Illustration 32. PickIt 3 connection diagram

6.1.3 Libraries
One external library developed by a third (Extremeelectronics 2013) has been used to

interact with the LCD library. This library is open source and free to use for non-

commercial applications, so it’s perfect for our project and help us to save a lot of time

writing drivers for the LCD screen. As this development is done by a third, the code will

not be commented in this report.

6.1.4 Code
To make the software more legible and also increment the portability or changes, the

program has been developed in different modules to interact with each piece of hardware

and realize specific actions. We will see one by one all this modules and all the functions

of each one. There has been included only the “.c” files in this report, as the “.h” files only

includes the declaration of the functions. Also all the code is commented, it’s easy to

follow without extra information

6.1.4.1 Main.c

This is our main module, it starts all the different modules and starts a loop which just call

a function to make an ADC and the go function, which is the main control function.

 28

#include <xc.h>
#include "ADC.h"
#include "motors.h"
#include "lcd_hd44780_pic16.h"
#include "TimerPWM.h"
#include "driver.h"
#include "parallel.h"

void main(void) {

 ADCInit();//Start Analog to digital converter
 MotorInit();//Start the motor controller
 TimerPWMInit();//Start the generation of PWM signal using
timers
 LCDInit(LS_NONE); //Initialize the LCD Module
 parallelInit();//Initialize the reception from the Arduino over
the parallel port
 SetMotorLeft(0);//Start motor left at speed 0
 SetMotorRight(0);//Start motor right at speed 0

 /* Endless loop*/
 while(1) {
 ADCInitiateConversion();//One analog read.
 Go();//Take decissions to avoid obstacles. And send orders
to obstacles.
 }
}

6.1.4.2 Driver.c

This module takes the decisions to move the rover based on the data received from the

Arduino through the serial port. There are also a few functions to perform basic moves.

#include <xc.h>
#include "motors.h"
#include "lcd_hd44780_pic16.h"
#include "ADC.h"
#include "driver.h"
#include "parallel.h"
#include <stdlib.h>
#define _XTAL_FREQ 1000000

/*This is our basic function to move the ROVER.
 * It is call one time per program cycle
 * has two modes, one for manual control
 * and another is the automatic mode.
 * The mode is selected from the webpage
 * and received from the Arduino
 * */
void Go(void) {
 ReadParallel();/*One lecture of the parallel port.
 * This sets the mode and speed of both motors*/

 if(ReadMode()==0){//Manual mode
 signed int SpeedLeft, SpeedRight;

 29

 SpeedLeft=ReadParallelSpeedLeft();
 SpeedRight=ReadParallelSpeedRight();

 if(SpeedRight>0 && SpeedLeft>0){//If we go straight,
considerate distance sensors
 if ((ReadDistanceCentral()<37) ||
(ReadDistanceRight()<30) || (ReadDistanceLeft()<30)){//Danger!!
 SetMotorLeft(0);
 SetMotorRight(0);
 }else{//If there are not obstacles, listen the orders
 SetMotorLeft (SpeedLeft);
 SetMotorRight(SpeedRight);
 }
 }else{//If we are not going straight, ignore sensors
 SetMotorLeft (SpeedLeft);
 SetMotorRight(SpeedRight);
 }

 }else if (ReadMode()==1){//Automatic mode

 if (ReadDistanceCentral()<37){//Obstacles in the front
 if(ReadDistanceRight()>ReadDistanceLeft()){
 TurnRight135();
 }else{
 TurnLeft135();
 }
 }else if (ReadDistanceRight()<30){//Obstacles in the right
 TurnLeft90();
 }else if (ReadDistanceLeft()<30){//Obstacles in the left
 TurnRight90();
 }else{//No obstacles!!
 SetMotorRight(40);
 SetMotorLeft(40);
 }
 }
}

/*The next functions make some basic funcions in the robot
 *turn a different number of degrees to the right or the left
 * and go a little bit back
 */
void TurnRight90(void){
 SetMotorRight(-100);
 SetMotorLeft(100);
 __delay_ms(100);
}

void TurnLeft90(void){
 SetMotorRight(100);
 SetMotorLeft(-100);
 __delay_ms(100);
}

void TurnRight135(void){
 SetMotorRight(-100);
 SetMotorLeft(100);
 __delay_ms(150);
}

void TurnLeft135(void){
 SetMotorRight(100);

 30

 SetMotorLeft(-100);
 __delay_ms(150);
}

void Turn180(void){
 SetMotorRight(100);
 SetMotorLeft(-100);
 __delay_ms(200);

}

void GoBack(){
 SetMotorRight(-50);
 SetMotorLeft(-50);
 __delay_ms(500);
}

6.1.4.3 Motors.c

This is the module that receives a number from -100 to +100 and writes the pins to set

the direction of the motors and also send the data to the modulo to generate PWM signals

and control the speed.

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#include "TimerPWM.h"
#include "motors.h"

/*Pins for the ports to the motor controller*/
#define ML1 RC0
#define ML2 RC1
#define MR1 RC2
#define MR2 RC3

static signed int MotorRightSpeed=0;
static signed int MotorLeftSpeed=0;

/*
 * Start the port used to control the motors
 * Also set the motors to be stopped
 */
void MotorInit(){
 TRISC = 0b11000000; // Motors are on PORTC and output (Minus
the Tx and Rx)
 ML1=1;
 ML2=0;
 MR1=1;
 MR2=0;
 SetPWMMotorLeft(0);
 SetPWMMotorRight(0);
}

/*Function to set the speed of the left motor
 * ML1 and ML2 control the direction, and later we set the PWM of
that motor to set the speed

 31

 * the function works with a signed integer from -100 to +100
 */
void SetMotorLeft(signed int speed){

 MotorLeftSpeed=speed;
 //Set direction
 if(speed>0){
 //Go forward
 ML1=1;
 ML2=0;
 }else if (speed<0){
 //Go Backward
 ML1=0;
 ML2=1;
 }

 //Set speed
 SetPWMMotorLeft(abs(speed));//We need two independent PWM
}

/*Same thing for the other motor
 */
void SetMotorRight(signed int speed){

 MotorRightSpeed=speed;
 //Set direction
 if(speed>0){
 //Go forward
 MR1=1;
 MR2=0;
 }else if (speed<0){
 //Go Backward
 MR1=0;
 MR2=1;
 }

 //Set speed
 SetPWMMotorRight(abs(speed));//We need two independent PWM
}

6.1.4.4 TimerPWM.c

Module for generate the two necessary PWM signals to control the speed of the motors.

It has been done using a timer because this microcontroller only has one hardware PWM

generator, and we need two independent signals, one for each wheel.

#include <xc.h>
#include <stdio.h>
#include <stdlib.h>

/*Variables to keep saved the PWM values
 */
static unsigned int PWMRight;
static unsigned int PWMLeft;

/*This functions starts the timer and the timer interruptions

 32

 *
 */
void TimerPWMInit(){
 GIE=1;//Enable global interruptions
 TMR0IE=1;//Timer0 Interruption
 T08BIT=1;//8 bit mode
 T0CS=0;//Internal transition
 PSA=1;//Timer 0 with no preescaller (1:1)
 T0PS2=0;//Preescaller, dont care
 T0PS1=0;//
 T0PS0=1;//

 TMR0IF=0; //Overflow flag
 TMR0H=0x00;//Timer start at 156 to 256 (1ms)
 TMR0L=156;
 TMR0ON=1;//Start timer
}

/*Sets the speed of the motor.
 * It receives a value from 0 to 100 from the motor.c module
 * and converts it to values from 20 to 0, which are used by
 * the interruption
 */
void SetPWMMotorLeft (unsigned int percentage){
 PWMLeft=20-percentage/5;
}
void SetPWMMotorRight (unsigned int percentage){
 PWMRight=20-percentage/5;
}

/*Returns the actual value of the PWM variables
 */
unsigned int ReadPWMMotorRight (){
 return PWMRight;
}
unsigned int ReadPWMMotorLeft (){
 return PWMLeft;
}

6.1.4.5 ADC.c

Modulo to read the analogs inputs and save the last value to a variable, which can be read

calling from any module to a function. It makes use of a interruption to read the input and

also displays the value of the last distance lectures in the LCD.

#include <xc.h>
#include "lcd_hd44780_pic16.h"
#include "ADC.h"
/*Constants for keep in memory the last measures from the ADC*/
static unsigned int DistanceLeft=50;
static unsigned int DistanceRight=50;
static unsigned int DistanceCentral=50;
static unsigned int Battery;

void ADCInit(void) {

 /* Configure the ADC - input to ADC is AN0 (PORTA.0)*/
 TRISA0 = 1; // configure PORTA.0 as an input

 33

 TRISA1 = 1; // configure PORTA.1 as an input
 TRISA2 = 1; // configure PORTA.2 as an input
 TRISA3 = 1; // configure PORTA.3 as an input

 ANS0 = 1; // disable PORTA.0's digital input
 ANS1 = 1; // disable PORTA.1's digital input
 ANS2 = 1; // disable PORTA.2's digital input
 ANS3 = 1; // disable PORTA.3's digital input

 ADON = 1; // enable ADC
 ADCON1 = 0; // reference voltages are internal
 ADCON2 = 0x91; // right justified, 4 TAD, FOSC/8
 ADIF = 0; // clear the ADC conversion complete interrupt flag
 ADIE = 1; // enable ADC interrupt

 PEIE = 1; // set the global peripheral interrupt enable bit
 GIE = 1; // set the global interrupt enable bit

}

void ADCInitiateConversion(void) {
 GO = 1;//Initiate one read from the ADC
}

//Returns the 10 bits read from the ADC
unsigned int ADCGetOutput(void) {
 int temp;
 temp = ADRESL;
 return temp + (ADRESH << 8);
}

//Returns the 8 low bits read from the ADC
unsigned char ADCGetOutputLowByte() {
 return ADRESL;
}

//Returns the 2 hight bits read from the ADC
unsigned char ADCGetOutputHighByte() {
 return ADRESH;
}

//Updates the variable. Will be call from the ADC interrupt.
void SetDistanceLeft (unsigned int lecture){
 DistanceLeft=5+(1023-lecture)*0.042;//Not exact, but it gives
us an idea.
}

//Returns the constant. Will be called when calculating route to
avoid collisions
unsigned int ReadDistanceLeft (){
 return DistanceLeft;
}

void SetDistanceRight (unsigned int lecture){
 ShowLecturesInLCD ();
 DistanceRight=5+(1023-lecture)*0.042;
}

unsigned int ReadDistanceRight (){
 return DistanceRight;
}

 34

void SetDistanceCentral (unsigned int lecture){
 DistanceCentral=5+(1023-lecture)*0.042;
}

unsigned int ReadDistanceCentral (){
 return DistanceCentral;
}

void SetBattery (unsigned int lecture){
 //Measure bridge with 997+9800 ohm resistors
 Battery=((lecture*3.548)-11)*100;//Hight accuracy!.
}

unsigned int ReadBattery (){
 return Battery;
}

//Function to write the distances in the LCD. Called one time per
cicle of lectures
void ShowLecturesInLCD (void){
//Show values in LCD
 LCDGotoXY(0,0);
 LCDWriteString("Right-Front-Left");

 LCDGotoXY(0,1);
 LCDWriteInt(DistanceRight, 3);

 LCDGotoXY(6,1);
 LCDWriteInt(DistanceCentral, 3);

 LCDGotoXY(12,1);
 LCDWriteInt(DistanceLeft,3);
}

6.1.4.6 Parallel.c

This is the module that reads the port b, which comes from the Arduino and converts the

byte received to a speed for the left motor and another speed for the right motor. Both

can be consulted from any othe module calling the correspondent functions.

void ReadParallel(){
 unsigned char lecture=PORTB;
 unsigned char left=lecture>>4;//MSB
 unsigned char right=lecture & 0x0f;//LSB
 SpeedRight=ConvertParallelSpeed(right);
 SpeedLeft=ConvertParallelSpeed(left);

 if (left==0x0c){
 Mode=1;
 }else{
 Mode=0;
 }
}

/*Sends the lectures to other functions
 */

 35

signed int ReadParallelSpeedRight(){
 return SpeedRight;
}
signed int ReadParallelSpeedLeft(){
 return SpeedLeft;
}
unsigned int ReadMode(){
 return Mode;
}

/*This is the module that converts the two groups of 4 bits to
speeds for the motors
 * a 0x01 means -100, 0x02 for -80 ...
 * for 0x00, 0x06 and in default cases, the motors stop
 */
signed int ConvertParallelSpeed (char velocity){
 switch(velocity){
 case 0x01:
 return -100;
 break;
 case 0x02:
 return -80;
 break;
 case 0x03:
 return -60;
 break;
 case 0x04:
 return -40;
 break;
 case 0x05:
 return -20;
 break;
 case 0x06:
 return 0;
 break;
 case 0x07:
 return 20;
 break;
 case 0x08:
 return 40;
 break;
 case 0x09:
 return 60;
 break;
 case 0x0a:
 return 80;
 break;
 case 0x0b:
 return 100;
 break;
 default:
 return 0;
 break;
 }
}

 36

6.1.4.7 Interrupts.c

 This is the last module, here we have configured two different kind of interruption, one

for the timer (to generate the PWM signals) and another to read the analog port.

#include <xc.h>
#include "ADC.h"
#include "PWM.h"
#include "TimerPWM.h"
#include <usart.h>
#define PIN1 RC5//Pins for the PWM signal
#define PIN2 RC4

void interrupt isr(void) {//One interrupt
 /* If the interrupt was caused by an ADC conversion complete
 * Here we will read one diferent input in each iteration of
the interrupt
 * First time port0, later port1... and when end, repeat from
the port0 again
 * It calls the functions of the ADC.c module to update the
variables
 */
 if (ADIF == 1) {

 static unsigned int Readport=0;
 unsigned int read=ADCGetOutput();

 switch (Readport){
 case 0://Read port 0. Left sensor.
 CHS3=0;
 CHS2=0;
 CHS1=0;
 CHS0=1;
 SetDistanceLeft (read);
 Readport++;
 break;
 case 1://Read port 1. Central sensor.
 CHS3=0;
 CHS2=0;
 CHS1=1;
 CHS0=0;
 SetDistanceCentral (read);
 Readport++;
 break;
 case 2://Read port 2. Central sensor.
 CHS3=0;
 CHS2=0;
 CHS1=1;
 CHS0=1;
 SetDistanceRight (read);
 Readport++;
 break;
 case 3://Read port 3. Battery voltage.
 CHS3=0;
 CHS2=0;
 CHS1=0;
 CHS0=0;
 SetBattery (read);
 Readport=0;

 37

 break;
 default:
 CHS3=0;
 CHS2=0;
 CHS1=0;
 CHS0=0;
 Readport=0;
 break;
 }

 ADIF=0;//Reset interrupt flag
 }

 /*If the interrupt was caused by a timer overfloat.
 * This is used to generate by software the PWM signals
 * as this microcontroller can only manage by hardware one PWM
output.
 * The two PWM signals are generated with just one timer
 * The dutty cycle goes from 0 (100%) to 20 (0%)in steps of a
5%,
 * so the precission is not very hight, but enought for our
purpose
 */
 if (TMR0IF==1){

 static unsigned int PWMLeft;
 static unsigned int PWMRight;
 static unsigned int iteration;

 if (iteration==20){
 PIN1=0;
 PIN2=0;
 iteration=0;
 PWMRight=ReadPWMMotorRight();
 PWMLeft=ReadPWMMotorLeft();
 }
 if (PWMRight==iteration){
 PIN1=1;
 }
 if (PWMLeft==iteration){
 PIN2=1;
 }
 iteration++;

 TMR0IF=0;//Clear interrupt flag
 TMR0H=0x00;//Start the timer from 0
 TMR0L=0x156;
 }
}

 38

6.2 Arduino

6.2.1 IDE (Arduino)
The Arduino IDE (Arduino n.d.) is a free and open source development based on

Processing (Processing n.d.). Is a quite flexible environment and includes out of the box

all the basic libraries for working with an Arduino.

Illustration 33. Arduino IDE

6.2.2 Programming the Arduino

Program the Arduino is as easy as connect it to the computer through an USB cable, as it

includes an embedded microcontroller programmer.

6.2.3 Libraries:

Here we are going to use different libraries developed by the manufacturer of the FONA

(Adafruit). This libraries are very helpful, as they contains all the necessary functions to

read data from the GPS, send data throught the mobile internet connection and also

includes the protocol used to stablish the connection between the Arduino and the

servers. This protocol is calles MQTT and sends a push notification always that a value in

the server changes, so, it doesn’t need to send request from the Arduino each time, saving

data and time:

We will divide the code in parts to explain it better, but everything is in the same file (Not

separated modules).

 39

The used libraries developed by thirds are:

 Adafruit_SleepyDog.h (Adafruit 2016d)

o This library is used to reset the Arduino is case that pass a certain amount

of time withought reception of signal from the servers.

 SoftwareSerial.h (Arduino 2015)

o The communication between the Arduino and the FONA board is make

by a serial communication made by software (instead of using the

embedded hardware pins)

 Adafruit_FONA.h (Adafruit 2016a)

o This is the basic library with the functions to access to the FONA board

 Adafruit_MQTT.h (Adafruit 2016c)

o MQTT protocol, to talk between the Arduino and a server with MQTT

protocol support.

 Adafruit_MQTT_FONA.h (Adafruit 2016c)

o Library to stablish a MQTT connection while using a FONA module.

6.2.4 Examples

A big part of the code is based in one example developed by Adafruit (Adafruit 2016b) to

work with an Arduino and a Fona. The code has been adapted to work allright with our

project. Also, the part of the GPS has been taken from another example also from Adafruit

(Adafruit 2015) and again adapted to fit in the project.

 40

6.2.5 Code

6.2.5.1 Headers

Here we have the invocation of the libraries, the definition of pins, global variables, etc.

#include <Adafruit_SleepyDog.h>
#include <SoftwareSerial.h>
#include "Adafruit_FONA.h"
#include "Adafruit_MQTT.h"
#include "Adafruit_MQTT_FONA.h"

/*************************** FONA Pins
***********************************/
#define FONA_RX 2
#define FONA_TX 10
#define FONA_RST 4
#define LedPin 6

//PIC Parallel Pins
#define P0 36
#define P1 34
#define P2 32
#define P3 30
#define P4 28
#define P5 26
#define P6 24
#define P7 22

//Global Variables
signed int StartStopInt=0, counter=0;
float latitude, longitude, speed_kph, heading, altitude;

SoftwareSerial fonaSS = SoftwareSerial(FONA_TX, FONA_RX);

Adafruit_FONA fona = Adafruit_FONA(FONA_RST);

/************************* WiFi Access Point
*********************************/
#define FONA_APN "hs.vodafone.ie"
#define FONA_USERNAME ""
#define FONA_PASSWORD ""

/************************* Adafruit.io Setup
*********************************/
#define AIO_SERVER "io.adafruit.com"
#define AIO_SERVERPORT 1883
#define AIO_USERNAME "jorgecrce"
#define AIO_KEY "5c9f4f8e308a307c1594a197b4e6e028410dc3e1"

/************ Global State (you don't need to change this!)
******************/
// Store the MQTT server, username, and password in flash memory.
// This is required for using the Adafruit MQTT library.
const char MQTT_SERVER[] PROGMEM = AIO_SERVER;
const char MQTT_USERNAME[] PROGMEM = AIO_USERNAME;
const char MQTT_PASSWORD[] PROGMEM = AIO_KEY;

 41

// Setup the FONA MQTT class by passing in the FONA class and MQTT
server and login details.
Adafruit_MQTT_FONA mqtt(&fona, MQTT_SERVER, AIO_SERVERPORT,
MQTT_USERNAME, MQTT_PASSWORD);

// You don't need to change anything below this line!
#define halt(s) { Serial.println(F(s)); while(1); }

// FONAconnect is a helper function that sets up the FONA and
connects to
// the GPRS network. See the fonahelper.cpp tab above for the
source!
boolean FONAconnect(const __FlashStringHelper *apn, const
__FlashStringHelper *username, const __FlashStringHelper
*password);

/****************************** Feeds
***************************************/
// Setup a feed called 'StartStop' for subscribing to changes.
const char StartStop_FEED[] PROGMEM = AIO_USERNAME
"/feeds/StartStop";
Adafruit_MQTT_Subscribe StartStop = Adafruit_MQTT_Subscribe(&mqtt,
StartStop_FEED);

// Feed location for publish GPS coordinates
const char LOCATION_FEED[] PROGMEM = AIO_USERNAME
"/feeds/location/csv";
Adafruit_MQTT_Publish location_feed = Adafruit_MQTT_Publish(&mqtt,
LOCATION_FEED);

/*************************** Sketch Code
************************************/

// How many transmission failures in a row we're willing to be ok
with before reset
uint8_t txfailures = 0;
#define MAXTXFAILURES 3

6.2.5.2 Setup

This function runs only once. Here we configure the pins that will be use to send the data

to the PIC, and also starts the FONA, connects it to the cellular network and connects it to

the internet throught the GPRS network.

void setup() {

 pinMode(LedPin, OUTPUT);

 pinMode (P0, OUTPUT);
 pinMode (P1, OUTPUT);
 pinMode (P2, OUTPUT);
 pinMode (P3, OUTPUT);
 pinMode (P4, OUTPUT);
 pinMode (P5, OUTPUT);
 pinMode (P6, OUTPUT);

 42

 pinMode (P7, OUTPUT);

 while (!Serial);

 // Watchdog is optional! Better disabled...
 //Watchdog.enable(16000);

 Serial.begin(115200);

 Serial.println(F("Adafruit.IO to PIC Over Arduino"));

 mqtt.subscribe(&StartStop);

 Watchdog.reset();
 delay(5000); // wait a few seconds to stabilize connection
 Watchdog.reset();

 // Initialise the FONA module
 while (! FONAconnect(F(FONA_APN), F(FONA_USERNAME),
F(FONA_PASSWORD))) {
 Serial.println("Retrying FONA");
 }

 Serial.println(F("Connected to Cellular!"));

 Watchdog.reset();
 delay(5000); // wait a few seconds to stabilize connection
 fona.enableGPS(true);
 delay(1000);
 Watchdog.reset();
 mqtt.connect();

}

6.2.5.3 Loop

This function runs continuously. Here we wait for incoming packets from the MQTT server,

and in case we receive a new packet, updates the data that is sending to the PIC. Also,

each 20 iterations checks the GPS to send a new value to the server.

void loop() {
 Watchdog.reset();
 MQTT_connect();
 Watchdog.reset();

 // this is our 'wait for incoming subscription packets' busy
subloop
 Adafruit_MQTT_Subscribe *subscription;

 while ((subscription = mqtt.readSubscription(5000))) {
 if (subscription == &StartStop) {
 Serial.print(F("Lectura: "));
 Serial.println((char *)StartStop.lastread);
 char *value = (char *)StartStop.lastread;
 StartStopInt=atoi(value);
 PICSpeed(StartStopInt);
 digitalWrite(LedPin, HIGH);

 43

 }
 }
 if (counter==20){//Send GPS coordinates one of each 20 iterations
 counter=0;
 bool gpsFix = fona.getGPS(&latitude, &longitude, &speed_kph,
&heading, &altitude);
 logLocation(latitude, longitude, altitude, location_feed);
 }
 counter++;

 Watchdog.reset();
}

6.2.5.4 PICSpeed

This is the function that converts the number received from the server to a speed for the

left motor (4 high significant bits) and le right motor (4 lowest significant bits). Later the

pic makes the deconversion to values between -100 to +100

void PICSpeed(int value){//Left p7-P6-P5-P4 - Right P3-P2-P1-P0.
 switch (value){
 case -100://Front +80 - +80
 digitalWrite(P7, HIGH);
 digitalWrite(P6, LOW);
 digitalWrite(P5, HIGH);
 digitalWrite(P4, LOW);
 digitalWrite(P3, HIGH);
 digitalWrite(P2, LOW);
 digitalWrite(P1, HIGH);
 digitalWrite(P0, LOW);
 //return '1';
 break;
 case -80://Front Left +40 - +60
 digitalWrite(P7, HIGH);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, HIGH);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, HIGH);
 //return '2';
 break;
 case -60://Front Right +60 - +40
 digitalWrite(P7, HIGH);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, HIGH);
 digitalWrite(P3, HIGH);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return '3';
 break;
 case -40://Back -60 - -60
 digitalWrite(P7, LOW);
 digitalWrite(P6, LOW);

 44

 digitalWrite(P5, HIGH);
 digitalWrite(P4, HIGH);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, HIGH);
 digitalWrite(P0, HIGH);
 //return '4';
 break;
 case -20://Back - Right -40 - -60
 digitalWrite(P7, LOW);
 digitalWrite(P6, HIGH);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, HIGH);
 digitalWrite(P0, HIGH);
 //return '5';
 break;
 case 0://STOP
 digitalWrite(P7, LOW);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return '6';
 break;
 case 20://Back left // -60 - -40
 digitalWrite(P7, LOW);
 digitalWrite(P6, LOW);
 digitalWrite(P5, HIGH);
 digitalWrite(P4, HIGH);
 digitalWrite(P3, LOW);
 digitalWrite(P2, HIGH);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return '7';
 break;
 case 40://Right +40 - 0
 digitalWrite(P7, HIGH);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return '8';
 break;
 case 60://Left 0 - +40
 digitalWrite(P7, LOW);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, HIGH);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);

 45

 //return '9';
 break;
 case 80: 40 - -40
 digitalWrite(P7, HIGH);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, HIGH);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return 'a';
 break;
 case 100://-40 - +40
 digitalWrite(P7, LOW);
 digitalWrite(P6, HIGH);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, HIGH);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return 'b';
 break;
 case 1://Automatic mode
 digitalWrite(P7, HIGH);
 digitalWrite(P6, HIGH);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return 'c' in left;
 break;
 default:
 digitalWrite(P7, LOW);
 digitalWrite(P6, LOW);
 digitalWrite(P5, LOW);
 digitalWrite(P4, LOW);
 digitalWrite(P3, LOW);
 digitalWrite(P2, LOW);
 digitalWrite(P1, LOW);
 digitalWrite(P0, LOW);
 //return '0'; //(Speed=0)
 break;
 }
}

 46

6.3 Control Webpage
For the remote control over a web browser, has been chose to use the service Adafruit

IO, again for it’s easy integration with the FONA module (The examples used to develop

the Arduino software are based on Adafruit IO). It is a service where you can create feeds

of data. This feeds saves an integer number and can also save GPS coordinates.

We are using two feed, the first one is called StartStop and it is the responsible of start

the car and send specific values. From example the value 0 is to stop, the value 1 is to go

on automatic mode, -100 means to go to the front and a little to the right… The value

received by the Arduino from this feed is interpreted in the function PICSpeed to send

precise speed values to both motors.

There is a second feed, called location, with saves the GPS streams send directly from the

Arduino each 20 iterations of the main code.

7 Usage

For the utilization, we have three dashboards, one for select auto or manual modes, a

second one for the manual control and another for the visualization of the coordinates in

a map.

7.1 Mode dashboard:
Switch between manual and automatic modes.

Illustration 34. Mode dashboard

 47

7.2 Manual move dashboard:
Orders to move the rover manually:

Illustration 35. Manual dashboard

7.3 GPS dashboard:
Show the GPS coordinates in a map.

Illustration 36. Location dashboard

 48

8 Final conclussions
During the execution of this project, many areas studied as part of my degree in electronic

engineering have been utilized, including mounting analog and digital electronic

components and developing all the program for the PIC microcontroller and for the

Arduino. This project has also covered areas outside the scope of my degree, for

example informatics and automation and mechatronics engineering.

9 Links to resources

In the GitHub repository of this project you can download all the code, this report, photos,

the poster a video and anything related with the project:

https://github.com/jorgecrce/IOT-Rover

Also, I include a link to my LinkedIn account:

https://www.linkedin.com/in/jorge-crespo-celdr%C3%A1n-38629b92

 49

10 Illustration table

Illustration 1. H Bridge. (BUTTAY 2006) .. 7

Illustration 2. L298 motor controller .. 7

Illustration 3. DC Motor. (Wapcaplet 2006) ... 8

Illustration 4. LCD 16x2 Display. (Electrosome n.d.) ... 8

Illustration 5. Sharp GP2Y0A21YK. (Sharp n.d.) .. 9

Illustration 6. Hc-sr04 Distance Sensor.(Labyteacora n.d.) ... 9

Illustration 7. Graphic Voltage/Distance ... 10

Illustration 8. LiPo Battery Turnigy 11.1V, 5Ah ... 11

Illustration 9. Discharge curves for LiPo and NiMH batteries.(RCUniverse n.d.) 11

Illustration 10. (Techinc n.d.) .. 12

Illustration 11. LM2596 Typical operation. As we see, it needs some aditional

components.(Texas Instruments n.d.) .. 12

Illustration 12. Fona 808 (Adafruit n.d.) ... 13

Illustration 13. SIM908 .. 14

Illustration 14. SparqEE Cell .. 14

Illustration 15. GPS module .. 14

Illustration 16. Arduino Mega (Arduino 2016) .. 15

Illustration 17. Rover 5 chassis ... 16

Illustration 18. PIC 18F45K20 .. 16

Illustration 19. Wind generator .. 17

Illustration 20. Creative Commons logo (Creativecommons.org n.d.) 17

Illustration 21. CE Logo ... 18

Illustration 22. ROHS logo ... 18

Illustration 23. Hardware block diagram .. 19

Illustration 24. Proteus design. ... 21

Illustration 25. Arduino and Fona module .. 22

Illustration 26. Protoboar with PIC detail ... 23

Illustration 27. General view (Back) .. 23

Illustration 28. General View (Front) .. 24

Illustration 29. General View (Up) .. 24

Illustration 30. Robot in action ... 25

Illustration 31. MPLab-X IDE ... 26

Illustration 32. PickIt 3 connection diagram ... 27

Illustration 33. Arduino IDE ... 38

Illustration 34. Mode dashboard .. 46

Illustration 35. Manual dashboard.. 47

Illustration 36. Location dashboard .. 47

 50

11 References

Adafruit, Fona 808. Available at:
https://www.adafruit.com/product/2542https://www.adafruit.com/product/2542
[Accessed May 19, 2016].

Adafruit, 2016a. Fona library. Available at: https://github.com/adafruit/Adafruit_FONA.

Adafruit, 2015. GPS Fona Example. Available at:
https://github.com/openhomeautomation/arduino-
geofencing/tree/master/geo_fencing_io.

Adafruit, 2016b. MQTT FONA example. Available at:
https://github.com/adafruit/Adafruit_MQTT_Library/tree/master/examples/mqtt_
fona.

Adafruit, 2016c. MQTT libraries. Available at:
https://github.com/adafruit/Adafruit_MQTT_Library.

Adafruit, 2016d. SleepyDog library. Available at:
https://github.com/adafruit/Adafruit_SleepyDog.

Arduino, 2016. Arduino. Available at: http://www.arduino.cc/.

Arduino, Arduino IDE. Available at: https://www.arduino.cc/en/Main/Software.

Arduino, 2015. Software Serial library. Available at:
https://www.arduino.cc/en/Reference/SoftwareSerial.

BUTTAY, C., 2006. H_bridge @ upload.wikimedia.org. Available at:
https://commons.wikimedia.org/wiki/File:H_bridge_operating.svg.

Creativecommons.org, creativecommons.org. Available at:
https://creativecommons.org/licenses/by/2.0/https://creativecommons.org/licens
es/by/2.0/.

Electrosome, 16x2-Character-LCD @ electrosome.com. Available at:
https://electrosome.com/wp-content/uploads/2013/05/16x2-Character-LCD.jpg.

Extremeelectronics, 2013. LCD Library for PIC16. Available at:
http://extremeelectronics.co.in/pic16f877a-tutorials/setup-and-use-of-lcd-library-
for-pic/http://extremeelectronics.co.in/pic16f877a-tutorials/setup-and-use-of-lcd-
library-for-pic/.

gnu, Quick guide GPLv3. Available at: http://www.gnu.org/licenses/quick-guide-
gplv3.htmlhttp://www.gnu.org/licenses/quick-guide-gplv3.html.

Google, 2015. Google self-driving car project. Google Self-Driving Car Project. Available
at: https://www.google.com/selfdrivingcar/ [Accessed January 18, 2015].

Hacks, C., SIM908. Available at: https://www.cooking-hacks.com/gprs-gps-quadband-
module-for-arduino-sim908 [Accessed April 19, 2016].

Hitachi, 1998. Hd44780. Datasheet, pp.1–60. Available at:

 51

https://www.sparkfun.com/datasheets/LCD/HD44780.pdf.

Labyteacora, hc-sr04. Available at:
https://labyteacora.files.wordpress.com/2015/07/front1.jpg.

Microchip, MPLab-X. Available at: http://www.microchip.com/mplab/mplab-x-ide.

Microchip, 2010. PIC18F45K20 Datasheet. Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/41303G.pdf [Accessed
January 15, 2015].

Microchip, PickIt 3. Available at:
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=PG16
4130.

Processing, Processing. Available at: https://processing.org/.

RCUniverse, Discharge curves for Li-PO and Ni-MH. Available at:
http://www.rcuniverse.com/forum/attachment.php?attachmentid=1326435&d=1
375489161.

Sharp, Sharp GP2Y0A21YK. Available at: http://cdn.active-
robots.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d2
7136e95/g/p/gp2d12_2.jpg.

SparqEE, SparqEE CELLv1.0. Available at: http://www.sparqee.com/portfolio/sparqee-
cell/ [Accessed May 19, 2016].

STMicroelectronics, 2000. L298 Dual Full-bridge driver Datasheet. , pp.1–13.

Techinc, Lm7805 Diagram. Available at: https://wiki.techinc.nl/images/5/54/Lm7805-
pinout-diagram.gif.

TeslaMotors, 2015. Tesla Motors. Available at: https://www.teslamotors.com/
[Accessed January 18, 2015].

Texas Instruments, 2015. µA78Mxx Positive-Voltage Regulators Datasheet. Available at:
http://www.ti.com/lit/ds/symlink/ua78m33.pdf.

Texas Instruments, LM2596 Diagram. Available at:
http://www.ti.com/diagrams/custom_diagram_1_LM2596.gif.

Texas Instruments, 2013. LM2596 SIMPLE SWITCHER ® Power Converter 150 kHz 3A
Step-Down Voltage Regulator Datasheet. , (April). Available at:
http://www.ti.com/lit/ds/symlink/lm2596.pdf.

Texas Instruments, 1995. LM78XX Series Voltage Regulators LM78XX Series Voltage
Regulators Datasheet. , (February), pp.1–6. Available at:
http://www.ti.com/lit/ds/symlink/lm7805c.pdf.

Vishay, S., 2002. General Purpose Plastic Rectifier 1N4001 thru 1N4007 Vishay. , (1),
pp.1–5. Available at: http://www.vishay.com/docs/88503/1n4001.pdf.

Wapcaplet, 2006. Electric_motor_cycle_2 @ upload.wikimedia.org. Available at:
https://commons.wikimedia.org/wiki/File:Electric_motor_cycle_2.png.

