
Implementation of a Playback 
Controllable Morphing Algorithm in Max 

Víctor Llinares Vacas 
722525 

Bachelor thesis submitted as a part of requirements for obtaining the Bachelor’s Degree in 
Telecomunication Systems, Sound and Image Engineering at the Universitat Politècnica de 

València, Escola Superior de Gandia 
 

Faculty of Media  
Institute of Sound And Vibration Engineering (ISAVE) 
Hochschule Düsseldorf, University of Applied Sciences 

Supervisors: 
Prof. Dr. Michael Oehler 
Dipl.-Ing. Frank Meuter 

Düsseldorf, December 2016 



To my family, for their support, love and encouragement. 



STATEMENT OF ORIGINALITY 

 I declare that I am the sole author of this bachelor thesis titled Implementation of a Playback 

Controllable Morphing Algorithm in Max. 

The work contained in this thesis has not been previously submitted for a degree or diploma 

at any other higher education institution.  

The data, concepts, softwares and tools that have been taken directly or indirectly from other 

sources have been acknowledged and referenced. 

DATE: 

SIGNED: 



Abstract 

     Sound Morphing, it's a transformation in wich two sounds from different sources are 

gradually hybridized. In this Thesis, the morphing concept will be defined, trying to avoid the 

ambiguity surrounding it in the Sound field.  Moreover, a brief study of several Morphing 

algorithms will be realized, and finally, a morphing playback controllable algorithm will be 

developed in Max. 

     Keywords: Sound Morphing, Algorithm, Playback controllable, Max 

     El Morphing de sonido, es una transformación en la que se hibridizan gradualmente dos 

sonidos de fuentes distintas hasta llegar a un punto intermedio. En esta tesis, se define el 

concepto de morphing, tratando de evitar la ambigüedad que lo rodea en el campo del sonido. 

También se llevará a cabo una breve investigación sobre diversos algoritmos de morphing , 

así como el desarrollo en el software Max de un algoritmo de morphing de sonido con control 

sobre la reproducción. 

     Palabras clave: Morphing de sonido, Algoritmo, Control, Max. 

!4



Contents

1. Introduction 7                                                                                                                          

1.1  Thesis Structure 8                                                                                                                  

2. Background 9                                                                                                                          

2.1 Sound Morphing Definition 9                                                                                                 

2.2  Fundamentals of Sound Morphing  10                                                                                  

2.3 Differentiating Other Sound Processing Techniques 11                                                         

2.3.1  Cross-synthesis 11                                                                                                              

2.3.2  Convolution.  12                                                                                                                 

3. Morphing Aproaches 14                                                                                                         

3.1 Sound Morphing using Loris and the Reassigned Bandwidth-Enhanced Additive Sound 

Model 14                                                                                                                                       

3.2  Sound Morphing by Feature Interpolation 21                                                                       

3.3 New Approaches Currently in Development 24                                                                     

3.3.1 Sound morphing strategies based on alterations of time-frequency represesentations by 

gabor multipliers. 24                                                                                                                     

4. Theory  26                                                                                                                                

4.1 Introduction to Fourier 26                                                                                                       

4.2 Fourier Analysis, Series and Transform. 28                                                                            

4.3 The Fourier Integral and Complex Numbers. 30                                                                    

!5



4.4 Sinusoidal Functions as Detectors in Fourier Analysis 33                                                     

4.5 Phase 35                                                                                                                                  

4.6  DFT and STFT 37                                                                                                                  

4.7 Max and Fourier Transform 39                                                                                               

 5. Method  43                                                                                                                              

5.1 Deciding my Approach 43                                                                                                      

5.2 Recording FFT Data in Jitter Matrices 44                                                                              

5.2 Controlling the Playback 47                                                                                                   

5.3 Sound Morphing Using the jit.xfade Object 49                                                                      

5.3.1 Basis 49                                                                                                                                

5.3.2 The Patch 50                                                                                                                        

5.3.2.1 The loader section 51                                                                                                        

5.3.2.2 The playback control section 53                                                                                       

5.3.2.3 The matrices section 55                                                                                                    

5.3.2.4 The interpolation section 56                                                                                             

6. Conclusion 58                                                                                                                          

6.1 Futre Work 59                                                                                                                         

7. Acknowledgements 60                                                                                                            

8. References 61                                                                                                                          

!6



1. Introduction 

     Sound Morphing is one of the most discussed and interesting sound transformation 

techniques, due to its creative potential and flexibility. It's been used in fields like computer 

music and synthesizers, speech research or even in psychoacoustic experiments. 

     The concept of creating hybrid elements is always interesting, and in spite of its greatest 

popularity in the image field, the abstract factor surrounding an hybrid between two sounds 

makes it, in my opinion, even more fascinating if possible. The creation of an intermediate 

timbre between two musical instrument, for instance, can lead us to imagine a new timbre 

realm representing a third unexisting instrument. 

     Despite its popularity, it seems to be a lot of controversy regarding the true nature of the 

process, evidencing the necessity of setting up boundaries between what should and what 

shouldn't be called Sound Morphing. In this thesis, an attempt in clarifying the blurry barrier 

that separates Sound Morphing from other audio techniques will be carried out. Also several 

algorithms for both analysis and Sound morphing will be described and finally an algorithm 

that will allow the user to have a playback control over the morphing process will be 

developed in Max.  

     Before the final algorithm programming section I will explain the choices I made along 

the way to implement it and will introduce some theory about sound analysis and resynthesis 

to accompany the whole project with a theoretical complement about the subject. 

During the theoretical part of this thesis, I'll try to illustrate the content with Max examples, 

as well as explain how Max deals with sound processing regarding to what's relevant for the 

topic. 

!7



1.1  Thesis Structure 

     - Chapter 2: Sound morphing concept is defined. Also, an attempt to clarify the blur 

surrounding this technique is performed by making a distinction with different sound 

processing approaches that are conceptually close to sound morphing. 

     - Chapter 3: Reviews some of the already developed, and still in development, sound 

morphing algorithms. 

     - Chapter 4: Deals with the theoretical background of sound processing and Max software, 

introducing the unavoidable Fourier analysis, for performing alterations in sound at a 

frequency domain level. 

     - Chapter 5: playback controllable sound morphing algorithm 

     - Chapter 6: Conclusions and future work. 

     - Chapter 7: Aknowledgments 

     - Chapter 8: References 

!8



2. Background 

2.1 Sound Morphing Definition 

     Sound morphing, is a sound transformation technique that bridges the gap between two (or 

more) different sounds, gradually transforming a sound object into another.  

     Some may take this definition to the letter, calling morphing what's just a simple mix or a 

completely different technique. The essential difference between Sound Morphing and the 

rest of the miscalled morphing techniques is that in a sound morph, only one identifiable 

sound stream should be perceived by the listener throughout the transformation, for what we 

need to interpolate values at a frequency domain level.  

To better understand the procedure, it seems somehow easier to think about morphing in the 

Image field (Image or video morphing), being a technique which the average reader will be 

much more familiar with, having seen it in innumerable movies.  

  

For instance, having two different human faces as an input and a target, to gradually 

transform the Source into the target, interpolating values from both objects is needed in order 

to achieve a perceptually satisfying intermediate representation. If instead of interpolation 

from both pictures, we just exchanged parts of each pictures, even if it was under  certain 

parameters, one could easily identify those parts from each of the inputs, because those parts 

!9

Figure 2.1  Example for image morphing. (Caetano, Rodet, 2011)



will never change to an intermediate point, and that's the most relevant differentiating aspect 

of a morph. 

     Unlike video morphing, in which most of the time reaching the target image in a gradual 

way is the main purpose, in audio morphing we find the most important information in the 

results that are perceptually intermediate to the objects treated, i.e. the transformation itself. 

2.2  Fundamentals of Sound Morphing  

     From a perceptual point of view, we could easily differentiate morphing from other audio 

techniques inasmuch as the result is a unique identifiable output stream, meaning that we are 

not perceptually able to detect either of the inputs by listening to the morphed outcome. This 

is already enough to rule out most of the commonly misnamed morphing techniques such as 

simple mixing, convolution or cross-synthesis among others. Here, we're understanding 

outcome as the sound generated between the two sources. It's obvious that during a morphing 

process, where the sound “travels” from the source sound to the destination sound, the 

listener will be able to identify both the source and destination as different sound entities, but 

if we took just the part of the morphing process were we find the actual morphed sound, it 

wont appear to the listener that one of the sounds or it's characteristics is affecting the other in 

any way, but a third entitie is created in between both the source and the destination. 

     Following, I'll explain several audio processing techniques that are commonly 

misunderstood as being analogous to sound morphing.  

     The first obstacle that I faced when I started this thesis, was to start reading and learning 

about morphing from articles that were calling morphing processes that were not. It's curious 

how this concept is misunderstood, and due to it's mixing or blending nature, it's used to 

describe other  techniques that consist of similar conceptual process. This misunderstanding, 

!10



is given and aggravated due to the lack of a strict mathematical approach to sound morphing. 

For example, no one would call convolution a simple mixing process, since the word 

convolution is directly linked to a mathematical approach that restricts it's use to a single 

defined process. I find then, that a more useful way to restrict the use of Sound Morphing to a 

single process is to specify,  define and differentiate what the other conceptually similar 

processes are. 

2.3 Differentiating Other Sound Processing Techniques 

2.3.1  Cross-synthesis 

     Cross-synthesis is a technique that maps characteristics of one sound to another using 

spectral or amplitude envelopes from one sound to affect a second one. One example could 

be impressing the spectral envelope of a voice speech into an instrument sound, or simply use 

the amplitude spectrum of one sound with the phase spectrum of another. The result are well-

known effects like “talking-guitar” or any kind of musical vocoder in which it can be easily 

distinguish elements of the two sound sources. 

!11
Figure 2.2 Simple corss-synthesis in Max (Dobrian, 2001)



2.3.2  Convolution.  

     Convolution is a mathematical way of combining two signals to form a third signal. Using 

the strategy of impulse decomposition, systems are described by a signal called the impulse 

response. Convolution is important because it relates the three signals of interest: the input 

signal, the output signal, and the impulse response (Smith, 1997, pg. 107). 

     Convolution is used in Digital Signal Processing in order to characterise a system. To 

summarize, if we know the Impulse response of a system, i.e. the response of a system when 

the input gets excited by an Impulse, we know the behaviour of the system hence we are able 

to calculate what the output will be for any possible signal.  

     From a more perceptual or musical point of view, convolution is mostly used for 

emulating rooms and enviroments responses for reverbs. Nonetheless, a convolution in time-

domain is the same as a multiplication in frequencie-domain, so as showed in the next 

example, one could use the the fft (Fast Fourier Transform) of two different sounds and 

multiply it in the frequencie domain to obtain a third one. 

 

!12

Figure 2.3 A simple type of spectral convolution (Dobrian, 2001)



     It's true that, if we understand morphing as a hybridisation of sounds, convolution as 

showed before is creating a third sound from two different sources in a very straight-forward 

approach. Some authors will include this in the morphing family while others, will discard it 

claiming that in audio morphing, similar features are matched and interpolated, and for doing 

so, the system must analyse the signals and determine how to interpolate them. In this paper, 

we consider convolution a valid hybridisation process but different in concept and definition 

to a sound morphing procedure. 

      As we'll see in the next section, there are algorithms that use features from each of the 

inputs of a morph, matching similar qualities, instead of simply interpolating, to achieve a 

more perceptually meaningful result. Caetano and Rodet (Caetano, Rodet, 2011) make a 

distinction between Interpolating and Morphing, in which interpolating acts on the 

parameters of a model while Morphing  includes by definition hybridisation of perceptual 

qualities. This implies that a previous analysis of the signals is required in order to obtain 

features of each input that help to reach (and control) a satisfying outcome. In this work, the 

Morphing described by Caetano and Rodet is just considered a more perception accurate 

Morhping algorithm without ruling out interpolating techniches wich will be also considered 

morphing.  

!13



3. Morphing Aproaches 

  

3.1 Sound Morphing using Loris and the Reassigned Bandwidth-Enhanced Additive 

Sound Model 

     This section is mainly based and extracted from References [19] and [20]. 

     Additive synthesis, represents each sound as a collection of sine wave components, or 

partials. This allows independent fine control over the amplitude and frequency characteristic 

of each partial in a sound. As a result, a wide variety of modifications are possible with 

additive synthesis, including frequency shifting, time dilation, cross synthesis, and sound 

morphing. 

     The reasigned bandwidth-enhanced additive sound model is kind of an improved 

sinusoidal model, developed by Kelly Fitz and Leopold Haken, in which sound waves are 

modeled as a collection of sine waves called partials. This partials are not strictly sinusoidal, 

a bandwidth-enhancment technique is employed in order to combine sinusoidal and noise 

energy creating bandwidth-enhanced partials (sine waves with noise) with time-varying 

parameters. 

     In order to implement efficient real-time timbre manipulations, they developed a stream-

based representation of partial envelopes. Envelope parameter streams provide amplitude, 

frequency, phase, and noiseness envelopes (or Bandwidht) for each partial. Bandwidth 

envelopes represent noise energy associated with each partial and constitute an important 

extension to additive sine wave synthesis. Noise envelopes were developed in order to have a 

homogenous representation of both sinusoidal energy and noise energy of a sound. 

!14



The method of reassignment (Auger and Flandrin, 1995) improves the time and frequency 

estimates used to define partial parameter envelopes. This model yields greater resolution in 

time and frequency than is possible using conventional additive techniques, and preserves the 

temporal envelope of transient signals, even in modified reconstruction (Fitz, Haken, and 

Christensen, 2000).  

Envelope Parameter Streams 

     Data streams encode envelope parameters for each partial (Haken 1995). The envelope 

parameters for all the partials in a sound are encoded sequentially. Typically, the stream has a 

"block size" of 128 samples, which means the parameters for each partial are updated every 

128 samples, or 2.9 ms at a 44.1 kHz sampling rate. 

     Envelope parameter streams are usually created by traversing a file. The file contains data 

from a non-real-time(Loris) analysis  of a source recording. A parameter stream typically 

passes through several processing elements. These processing elements can combine multiple 

streams in a variety of ways, and can modify values within a stream. Finally, a synthesis 

element computes an audio sample stream from the envelope parameter stream. 

The synthesis element implements bandwidth-enhanced oscillators (Fitz and Haken 1995) 

with this sum: 

!15



 

     The noise envelope Nk is their extension to the additive sine wave model. Rather than use 

a separate model to represent noise in the sounds, Fitz and Haken define this third envelope 

(in addition to the traditional Ak and Fk envelopes) and retain a homogenous data stream. 

Analysis Parameters  

     The analysis and representation of transients is a well-known problem for additive 

synthesis. The onset of a sound, in particular, is psychoacoustically important (Berger 1964, 

Saldanha and Corso 1964) and is difficult to analyze with sufficient time accuracy. The time-

domain shape of an attack is distorted because the window used in the analysis of the sound 

cannot be perfectly time-localized. 

     Conventional additive analysis performs a sequence of short-time Fourier transforms. The 

time  domain signal is windowed, with overlapping windows used for successive transforms. 

The result of each transform is mapped to the time at the center of each window. If a window 

of data is centered just before the onset of a sound, the left (early) samples in the window 

!16

Figure 3.1     Bandwidth-enhanced oscillators sum. (Fitz and Haken, 2003)



precede the attack and the right (later) samples in the window include the attack. If this 

situation is not explicitly detected, the attack is blurred. The time-domain shape of transients 

is distorted even if, at each window, the analysis guarantees phase-correctness of each partial.  

With the reassigned bandwidth-enhanced greater resolution in time and frequency can be 

achieved and temporal envelope of transient signals is better preserved. It can be configured 

according to two parameters: the instantaneous frequency resolution, or minimum 

instantaneous frequency separation between partials, and the shape of the short-time analysis 

window, specified by the symmetrical main lobe width in Hz.  

The frequency resolution parameter is the minimum distance in frequency between partials 

meaning, it will control the density of partials. 

The shape of the short-time analysis window governs the time-frequency resolution of the 

reassigned spectral surface, from which bandwidth-enhanced partials are derived  

      An analysis window that is short in time, and therefore wide in frequency, yields im- 

proved temporal resolution at the expense of frequency resolution. Spectral components that 

are near in frequency are difficult to resolve, and low-frequency components are poorly 

represented. A longer analysis window compromises temporal resolution, but yields greater 

frequency resolution. Spectral components that are near in frequency are more easily 

resolved, and low-frequency components are more accurately represented, but short-duration 

events may suffer temporal smearing, and short-duration events that are near in time may not 

be resolved.  

     The use of time-frequency reassignment allows us to use long (narrow in frequency) 

analysis windows to obtain good frequency resolution, without smearing shortduration 

events. However, multiple short-duration events occuring within a single analysis window 

still cannot be resolved. Fortunately, the improved frequency resolution due to time-

!17



frequency reassignment also allows us to use short-duration analysis windows to analyze 

sounds having a high density of transient events, without greatly sacrificing frequency 

resolution. 

Sound Morphing using loris 

     Sound Morphing using traditional additive sound models for quasi-harmonic sounds 

basically consist in a weighted interpolation of the time-varying frequencies and amplitudes 

of the corresponding partials in the source sounds.  

      In Loris (the software that implements the reassigned bandwidth-enhanced additive sound 

model) sound morphing is achieved fundamentally as in traditional additive sound models, 

so, interpolating the time-varying frequencies, amplitudes, and bandwidths of corresponding 

partials obtained from reassigned bandwidth-enhanced analysis of the source sounds. The 

difference though remains in the process of partial construction. 

!18

Figure 3.2    Equal-weight morphing of a hypothetical pair of partials by interpolation of their frequency (left plot) 
and amplitude (right plot) envelopes. The source partial envelopes are plotted with solid and dashed lines, and the 
envelopes corresponding to 50% (equal-weight) morph are plotted with dotted lines. Note that these envelopes are 
artificially generated to illustrate the morphing operation, and do not correspond to any real sounds. (Fitz, Hakken, 
Lefvert and O’Donnell, 2002)



     Three independent morphing envelopes control the evolution of the frequency, amplitude, 

and bandwidth, or noisiness of the morph.  

     Using the reassigned bandwidth-enhanced additive model (Haken, Fitz, and Christensen 

2002) even very noisy quasi-harmonic sounds can be represented by a single partial for each 

harmonic, simplifying and improving the morphing process.  

     For non-harmonic or polyphonic sounds though, explicitly establishing correspondences is 

necessary due to the lack of obvious correspondence between partials or the opposite, having 

many possible correspondences between partials. In this case,  correspondence between 

partials in the source sounds are established by channelizing and distilling. 

     Partials in each source sound are assigned unique identifiers, or labels, and partials having 

the same label are morphed by interpolating their frequency, amplitude, and band-width 

envelopes according to the corresponding morphing function. The product of a morph is a 

new set of partials, consisting of a single partial for each label represented in any of the 

source sounds.  

     In Loris, channelization is an automated process of labeling the partials in an analyzed 

sound. Partials can be labeled one by one, but analysis data for a single sound may consist of 

hundreds or thousands of partials. If the sound has a known, simple frequency structure, an 

automated process is much more efficient.   

     Channelized partials are labeled according to their adherence to a harmonic frequency 

structure with a time-varying fundamental frequency. The frequency spectrum is partitioned 

into non-overlapping channels having time-varying center frequencies that are harmonic 

(integer) multiples of a specified reference frequency envelope, and each channel is identified 

by a unique label equal to its harmonic number. The reference (fundamental) frequency 

!19



envelope for channelization can be constructed explcitly, point by point, or constructed 

automatically by tracking a long, high-energy partial in the analysis data. Each partial is as- 

signed the label corresponding to the channel containing the greatest portion of its (the 

partial’s) energy.  

     The sound morphing algorithm described above requires that partials in a given source be 

labeled uniquely, that is, no two partials can have the same label. In Loris, distillation is the 

process for enforcing this condition. All partials identified with a particular channel, and 

therefore having a common label, are distilled into a single partial, leaving at most a single 

partial per frequency channel and label. Channels that contain no partials are not represented 

in the distilled partial data.   

     Labeled and distilled sets of partials are morphed by interpolating the envelopes of 

corresponding partials according to specified morphing functions. Partials in one distilled 

source that have no corresponding partial in the other source(s) are crossfaded according to 

the morphing function. Source partials may also be unlabeled, or assigned the label 0, to 

indicate that they have no correspondence with other sources in the morph. All unlabeled 

partials in a morph are crossfaded according to the morphing function.  

     The various morph sources need not be distilled using identical sets of frequency 

channels. However, dramatic partial frequency sweeps will dominate other audible effects of 

the morph, so care must be taken to coordinate the frequency channels used in the distillation 

process. Though the harmonic frequency structure described by the channelization process 

may not be a good representation of the frequency structure of a particular sound (as in the 

case of a non-harmonic bell sound for example), it may still yield good morphing results by 

labeling partials in such a way as to prevent dramatic frequency sweeps.  

!20



3.2  Sound Morphing by Feature Interpolation 

This section is mainly based and extracted from References [7] and [8]. 

     One of the most spread uses of Sound Morphing has been music compositions or musical 

purposes ( sound design...). When we imagine a morph between two different musical 

instruments, one could think that the result should be a third hybrid instrument placed in 

between the source and target instruments, therefore sharing features with both, or more 

accurate, being perceptually intermediate to those source and target instruments.  Unlike in 

the algorithm described before, which basically consist in interpolating the parameters of the 

model of a sound regardless of perceptual features, in this algorithm, obtaining sounds whose 

values of features are intermediate to those of the source and target sounds is the main goal. 

     Using this strategy, the authors aim to be able to measure the perceptual impact of the 

morphed sounds using feature values as an objective measure. Also, linear changes in the 

sound features may lead to linear perceptual changes. 

In this work, parameter refers to coefficients from which sounds can be resynthesized, while 

feature refers to coefficients used to describe or identify a particular aspect of a sound.  

!21

Figure 3.3 Morphing scheme using interpolation principle (left) compared to the morphing by feature 

interpolation principle (right). (Caetano and Rodet, 2013)



     In figure 3.3, we can see the main difference between morphing using the interpolation 

principle and morphing by feature interpolation. It's true that, if we are looking for linear 

varying perceptually relevant features in a morph, representing sounds by adjusting 

parameters of a model and linearly interpolating those parameters can't assure that changes 

during morph will be perceptually linear. If we want the result to sound perceptually 

intermediate, we need to develop techniques to interpolate perceptually motivated features.  

On the other hand, resynthesize sounds directly from feature values (particularly when the 

features are correlated to perceptual characteristics of sounds) is not a straight-forward 

process, or it's not possible in theory. 

Features used in this process are acoustic correlates of timbre dimensions obtained by 

perceptual studies, such that sounds whose feature values are intermediate between two 

would be placed between them in the underlying timbre space used as guide. 

Acoustic correlates of timbre spaces  

This section has been extraced from [] pp. 

     Multi Dimensional Scaling (MDS) techniques figure among the most prominent when 

trying to quantitatively describe timbre. Grey ( Grey and Morrer, 1977) investigated the 

multidimensional nature of the perception of musical instrument timbre, constructed a three-

dimensional timbre space, and proposed acoustic correlates for each dimension. He 

concluded that the first dimension corresponded to spectral energy distribution (spectral 

centroid), the second and third dimensions were related to the temporal variation of the notes 

(onset synchronicity). Krumhansl (Krumhansl, 1989) conducted a similar study using 

synthesized sounds and also found three dimensions related to attack, synchronicity and 

brightness. More recently, Caclin ( Caclin, McAdams, Smith, and Winsberg, 2005)studied the 

perceptual relevance of a number of acoustic correlates of timbre-space dimensions with 

!22



MDS techniques and concluded that listeners use attack time, spectral centroid and spectrum 

fine structure in dissimilarity rating experiments. Here we should notice that most MDS 

techniques suppose that the underlying space is orthogonal and metric, which means that the 

dimensions are independent and the notion of distance is defined. Therefore, shifting linearly 

from a source to a target sound in such space would correspond to a perceptually linear 

change across all dimensions and would also result in linear variation of the values of the 

correlates of each dimension.  

     Most perceptually salient dimensions of timbre spaces are supposed to be captured by 

spectral and temporal features used in this algorithm, namely, the distribution of spectral 

energy and the attack time. 

     The first step of this whole process would be then modeling perceptually relevant features, 

that would consist of temporal modeling, and spectral modeling. 

     The temporal modeling stage consists in two steps, temporal segmentation, where the 

duration of 4 perceptually important regions is determined (Attack, transition, steady-state or 

sustain, and release). And the amplitude envelope estimation. Once both sounds from source 

and target have been temporally aligned, an interpolated amplitude envelope will modulate 

the spectral frames of the morphed sound. 

     For the spectral modeling stage, an harmonic sinusoidal modeling plus noise residual 

technique is used. The morphing process then, follows the next steps: temporal alignment, 

spectral envelope morphing and amplitude envelope morphing.  

     First of all,  temporal stages of the sound (attack, sustain, release) must be aligned, for a 

perceptually pleasant morph. Then, in the spectral envelope morphing stage, the ideal 

scenario would be to interpolate spectral feature values and invert the results to get the 

spectral envelope parameters directly related to those interpolated features. As there's no 

!23



known analytic inversion from the chosen features, instead, a study of which spectral 

envelope representation leads to linearly varying values of spectral shape features when its 

parameters are linearly interpolated is carried out.  

     Last step is to morphing the amplitude envelope which is similar to the spectral envelope 

and morphing the noise residual for what a morph of spectral envelope of the residual noise is 

done and then sinthesized by filtering white noise with it for mixing it into the morphed 

sinusoidal component.  

3.3 New Approaches Currently in Development 

3.3.1 Sound morphing strategies based on alterations of time-frequency 

represesentations by gabor multipliers. 

     Sound Morhping is usually based on methods that require previous analysis of the source 

signals. Unlike all the aglorithms and morphing strategies presented before, sound morphing  

based on gabor multipliers don't need any previous analysis or model for achieving sound 

morphing. 

     Representation is a key aspect for this strategy. A simultaneous temporal and sepctral 

representation is used for this technique and in fact, the whole approach is based on the 

alteration of Time-Frequency Representation. 

     “If we consider a piece of music as a function of time f(t), we get the temporal behavior 

and maybe the rhythmic patterns, but we don’t know the tone pitch that is played. If we look 

in contrast at the Fourier transformation  f(omega), we get the frequencies of the prevailing 

notes, but we don’t know anything about the duration of this note. Like our ear provides 

!24



information about time and frequency at the same time, we want to obtain a function that is 

both dependent on time and on frequency, a function that imitates our ear” (Bammer, 2015). 

     Time-Frequency Representation show the evolution of the spectral content of signals over 

time, so we can have information about time-evolving frequencies like a spectrogram that 

changes over time, as our hearing system does. 

     This strategy focuses on invertible time-frequency representations, largely used in the 

context of analysis/transformation/synthesis of sounds, and exploit them to perform sounds 

morphing.  

     Works by multiplying its time-frequency representation with a time-frequency transfer 

function, called a Gabor mask. This approach presents a clear advantage: no need of a 

previous analysis. On the other hand, it only works in sounds with similar features. 

     Sound morphing strategies based on alterations of time-frequency represesentations by 

gabor multipliers is a technique still being developed, and it opens a new field of sound 

morphing study. 

  

!25



4. Theory  

4.1 Introduction to Fourier 

     The French mathematician Joseph Fourier demonstrated that any periodic wave can be 

expressed and hence modeled as the sum of harmonically-related sinusoids. This simple idea 

hides a complex mathematical theory that's “the central tool in musical signal 

processing” (Roads, 1996, pg. 1075). 

     Fourier transform, is a mathematical process, that using Fourier Theory, transforms signals 

from time domain to frequency domain by decomposing a cycle of an arbitrary waveform 

into its sine components. 

     The power of Fourier Transformation and how it facilitates the capacity of spectral 

transformation makes it an indispensable topic which will be covered in this paper (until 

some extend) in the simplest way trying to make it as accessible as possible. 

     According to Roads (1996), Fourier theory says that any signal of infinite length can be 

represented with a Fourier transform (FT) spectrum that spans from 0Hz to + and – infinity. 

When working with sampled signals in the Digital domain though, an adaptation of the 

Fourier transform called Discrete Fourier Transform must be used. In order for the DFT to 

work accurately, it should be used in short-time slices that should ideally equal to one cylce 

(or period) of the signal being analysed. To perform this operation on ‘real world’ sounds that 

are almost invariably not strictly periodic, and of unknown frequency, one can perform the 

DFT on consecutive time slices to get a sense of how the spectrum changes over time. If the 

number of digital samples in each time slice (or frame) is a power of 2, one can use a faster 

version of the DFT known as the Fast Fourier Transform (Dobrian, 2001, MSP Analysis 

tutorial 3). The FFT is just an optimised algorithm of DFT that eliminates redundant 

!26



calculations, but unfortunately as DFT, it will deliver acceptable results only if the condition 

of the analysis are ideal, that's to say, if one exact period of the signal (or an exact integer) is 

being analysed.  In most cases, one period of the signal analysed won't fit perfectly in the 

analysis time slice, but the FFT will still analyse the slice as if it contained a period of the 

signal. Such an analysis will contain many spurious frequencies not actually present in the 

signal. To resolve this problem, we can try to ‘taper’ the ends of each time slice by applying 

an amplitude envelope to it, and use overlapping time slices to compensate for the use of the 

envelope. This process using overlapped, windowed time slices is known as Short Term 

Fourier Transform (STFT) (Dobrian 2001, MSP Analysis tutorial 3). 

 

!27

Figure 4.1  Overlapping triangular windows (envelopes) applied to a 100Hz cosine wave (Dobrian, 2001).



4.2 Fourier Analysis, Series and Transform. 

     As Fourier demonstrated, periodic signals can be expressed as a sum of harmonically-

related sinusoids. This is how a periodic function in a form of Fourier series can be written 

as: 

     A sum of harmonically-related sinusoids, with magnitude Cn, phase 𝜃n, frequency 

ωn=nω0= 2π/T, where T is a period of function x(t) . As n is an integer, the infinite sum 

defined in the equation will take place at integer multiples of the fundamental frequencies, or 

what are also known as harmonics of the signal. Acording to Smith(1997, chapter 11) 

periodic signals have a frequency spectrum consisting of harmonics. The first harmonic, i.e., 

the frequency that the time domain repeats itself, is also called the fundamental frequency. 

This means that the frequency spectrum can be viewed in two ways: (1) the frequency 

spectrum is continuous, but zero at all frequencies except the harmonics, or (2) the frequency 

spectrum is discrete, and only defined at the harmonic frequencies. In other words, the 

frequencies between the harmonics can be thought of as having a value of zero, or simply not 

existing. The important point is that they do not contribute to forming the time domain signal.  

     When working with STFT, the fundamental frequency in this process is determined by the 

size of the analysis window.  

     Fourier’s theory says that x(t) can be accurately reconstructed with an infinite number of 

pure sinusoidal waves of different amplitudes, frequencies, and initial phases. These waves 

make up the signal’s Fourier transform spectrum” (Roads, 1996, p. 1086). 

!28

x(t) = C0 + Cn cos(nω 0t +θn )n=1

∞∑
Equation 4.1 (Roads, 1996, p.1085)



 

  

!29

Figure 4.2  Continuous-time signal x(t) of infinite length (Rhoads, 1996, p. 1085)

Figure 4.3  Magnitude spectrum after Fourier transform of the input signal x(t)  in 
figure 3.3 (Rhoads, 1996, p. 1086). 



The equation of the Fourier Transfor (or Fourier Integral) is the following 

      The apparently simple concept of Fourier Analysis, brings with it several layers of 

mathematical abstractions. A fundamental abstraction is the way sinusoidal signals can be 

expressed either in terms of trigonometric (circular) functions or in terms of complex 

numbers, vectors, and exponential functions. (Roads, 1996 ps. 1076, 1077).  

     For a better understanding of the Fourier Transform, an alternative way of denoting 

circular functions is necessary. In the next section complex numbers and it's relation with the 

Fourier analysis will be described. 

4.3 The Fourier Integral and Complex Numbers. 

     When using Fourier integral, we are transforming a signal from time domain to frequency 

domain and vice versa (with the inverse Fourier Transform). There are two magnitudes that 

define a signal in the frequency domain though, Amplitude and Phase. 

      While the first magnitude importance is immediate, the phase is just as important.   

     Complex numbers are like circular functions also presented on a (2D) plane since they 

have a real and imaginary part. They have the unique property of representing and 

manipulating two variables as a single quantity, which fits perfectly with Fourier analysis and 

they also shorten the equations used in DSP, and enable techniques that are difficult or 

impossible with real numbers alone (Smith, 1997, p. 551). 

!30

X( f ) = x(t)
−∞

∞

∫ e− jωtdt

Equation 4.2  (Roads, 1996, p. 1087)



     As we can see from figure 4.4 a complex number in 2D space can be written in Cartesian 

coordinate system (x coordinate, y coordinate) or in polar coordinate system (distance from 

center point, angle).  

     When adding a third dimension (time) to complex numbers since audio signals exist only 

in time, our angle 𝜃 becomes ωt where ω is angular speed (ω = 2πf) and t stands for time.  

!31

Figure 4.4  Complex number presented with Cartesian coordinates as point (a,b) and with polar coordinates as point 
(r, 𝜃) where r is a distance from center and 𝜃 is the angle between vector and abscise (Roads, 1996, p. 1077).  

Figure 4.5  The projection of a rotating vector on a vertical axis is travelling vertically up and down 
between values 1 and -1.(Roads, 1996, p. 1079).  



     Having the equation (that can be derived from the previous representations in figures 4.5 

and 4.6) 

     “The Fourier transform uses one of the most common tricks of engineering mathematics: 

the representation of a sinusoidal function as a sum of a sine and a cosine at the same 

frequency but with possibly different amplitudes” (Roads, 1996, p. 1081).  

 

     To find the magnitude (which we have called “amplitude” until now-magnitude is the 

same as amplitude when we are only interested in a positive value- the absolute value): 

 

and phase: 

 

"  

!32

y(t) = r sin(ωt +θ )
Equation 4.3 

y(t) = Asinωt + Bcosωt
Equation 4.4

magnitude = Re2+ Im2

Equation 4.5 Redmon (2002)

Equation 4.6 Redmon 

phase = a tan2(Im,Re)



     Finally there's a third way of representation sine functions. According to Roads (1996, p 

1082) the representation in form of complex exponential function makes the algebra 

manipulation much easier. 

 

     After seeing the relationship between complex numbers, circular and exponential 

functions, we will focus in an interesting property of sinusoidal functions: 

When you multiply two sine waves together, the resulting wave’s average (mean) value is 

proportional to the sines’ amplitudes if the sines’ frequencies are identical, but zero for all 

other frequencies.  And that's how sinusoidal functions act as detectors for specific harmonic 

content. 

4.4 Sinusoidal Functions as Detectors in Fourier Analysis 

     As mentioned before, when multiplying sine waves ( process called ring modulation) if we 

take a look at the average (mean) of the result, it would be zero if the sine waves are different, 

this means, the area above and below the abscise of the resulting wave will be identical, and 

the mean therefore zero. Contrarily, if we multiply two sine waves at the same frequency (and 

phase) the average will be proportional to the amplitudes of the sine waves. This provides a 

mechanism to identify matching frequencies in a signal, and that is what's constantly 

happening in FFT, a comparison (mutliplication) between an input and the periodic, 

!33

e jωt = cosωt + j sinωt
Equation 4.6  



harmonic-rich entity that the FFT is itself, detecting that way, which of its own many virtual 

sine waves are also present in the input (Dobson, 1993). 

     Following, a demonstration of this property is performed using Max/MSP. In the first case 

(figure 4.6) two identical sine waves are multiplied, resulting in a signal which mean is 

different than zero. 

  

     Then, in the next patch (figure 4.7) two sine waves at different frequency are multiplied, 

resulting in a signal which mean is zero. 

   

!34

Figure 4.6  Multiplication of sine waves with same frequency. 



4.5 Phase 

     Until now, we only considered exactly equal sine waves for fourier detection, but this will 

rarely happen in real case scenario. In the next example (figure 4.8), we observe how sine 

wave multiplication behaves when the two signals differ in phase. 

     As described in previous figure 4.6, the first case that we observe in fig. 4.8 is a 

multiplication of two sine waves at the same frequency with identical phase, so as expected, 

the average or offset of the result is 0.5. When phase is shifted 0.25 (pi/2) as well as when it 

is shifted 0.75 (3pi/2) the resulting offset is 0. And finally, when shifted 0.5 (pi) the offset 

results in -0.5.  

!35

Figure 4.7  Multiplication of sine waves with different frequency. 



     The first and most obvious conclusion one comes to is that this detecting method will not 

work when there are phase differences between the probe and the target signal, which, in a 

real case, would be most of the times. So one could think that, if it's necessary for both 

signals to have the same phase, a solution could be probing with as many phases and take the 

best match. While this would work, it would also result in an extremely extensive calculation, 

and therefore in an Extremely Slow Fourier Transform (ESFT).  

     Taking a second look at figure 4.8, the worst result is obtained when the phase is shifted 

0.25, which actually turns the sine into a cosine, giving a resulting offset of 0 (no match). 

When doing the same experiment with a cosine signal as a probe, results are exactly the 

opposite. perfect match (offset= 0.5) is obtained when the phase is shifted 0.25, that is, when 

!36

Figure 4.8  Two sine waves multiplied several times at same frequency and different phase.



both signals are cosines. That gives an indicator that all possible results will be bounded in 

this stripe. When the target phase lies in between those extrems, both mesurements will get a 

partial match.  

     Using the identity: for any possible theta we can obtain the exact phase and amplitude 

using sine and cosine probes. This reduces testing with any possible phase value to only two, 

and it's also the basis for the DFT (Redmon, 2002).  

4.6  DFT and STFT 

     DFT or Discrete Fourier Transform, is the adaptation of Fourier Transform to the discrete 

(digital) domain. Performing a DFT presents several redundancies, and by exploiting them, a 

faster version of FT called FFT (Fast Fourier Transform) can be used. In order to do that, a 

power-of-two length for the FFT must be used, meaning, the length of the analysis time slice 

(in samples) should be a power of 2.  

     As mentioned at the beginning of this chapter, Fourier Transform will work correctly only 

when dealing with a single cycle of a periodic waveform. Until now, tests have been run over 

one cycle of periodic signals, but for discrete signals, when using FFT, the interval will be an 

arbitrary time slice measured in samples (2n for FFT).  

     Normal signals that will be used with FFT won’t usually be periodic, and even if they 

were, by setting and arbitrary time slice to FFT will ensure that a cycle of the incoming signal 

will almost never fit perfectly in the FFT window. We can still get results with the transform, 

but there is some “spectral leakage.”  

     When working with FFT, common values for time slices normally are 512, 1024, 2048… 

(always 2n samples). By setting the amount of samples of the time slice, the lowest frequency 

analysable is also set. This is due to setting an amount of samples at a certain sampling rate, 

!37



will give us a fundamental probe at sampling rate/windowsize= hz, called the fundamental     

FFT frequency. Lower frequencies have longer periods that won’t fit in the FFT time slice 

and therefore won’t be detected. 

     Besides probing with the FFT fundamental, it continues with the harmonic series (2x, 3x, 

4x…) through half the sample rate. At that point, there are only two sample points per probe 

cycle, the Nyquist limit. It also probes with 0x, which is just the average of the target and 

gives us the DC offset (Redmon 2002). That’s why FFT spectrum is harmonic spectrum of 

the FFT frequency. 

     Another quality of FFT is that the amount of samples in the slice will also determine the 

amount of bands obtained in the analysis also known as frequency bins.  

     To clarify the FFT principles and see where its limitations are, let’s think about a practical 

case: 

     Having set the FFT window at, for example, 1024 samples, gives us a fundamental FFT 

frequency of 44100/1025= 43.07 Hz. If the signal being analysed is a sine wave at 43.07 Hz, 

or a multiple, then it will fit perfectly in the FFT window, and the analysis will reveal a 

maximum energy in the corresponding frequency bin (second bin for the fundamental, third 

bin for the 2nd harmonic, etc). On the other hand, if the frequency wasn’t a harmonic of the 

fundamental, the analysis will reveal a great energy in the bin corresponding to the closest 

FFT harmonic of the frequency being analysed, and also smaller amount of energy in all the 

rest of bins. While this could lead to acceptable results, it’s not the optimal result. In order to 

reduce such errors in the form of spectral leakage, there are ways to “force” the incoming 

signal to become “periodic” and fit the 2n samples, like perform FFTs repeatedly, overlapping 

its windows. Those overlapped windows are called also frames (like the frames in video) and 

are the basis of the Short-time Fourier Transform (STFT). While using the STFT will smooth 

!38



the results, by implementing a technique known as Phase Vocoder, the exact frequency 

deviation from the centre bin can be calculated. Since phase is a relative measure, it’s in the 

difference where the information relays. Phase Vocoder uses phase difference between 

successive FFT frames instead of phase values, allowing us to know the exact frequency of a 

bin, giving us the deviation from the closest harmonic. 

4.7 Max and Fourier Transform 

     Fourier Transform, or more specific, FFT formula is encapsulated in the fft~ object in 

Max/MSP. This object receives a signal in its inlet and for each slice of time it receives (512 

samples long by default) it sends out a signal of the same length listing the amount of energy 

in each frequency region (Dobrian, 2001, MSP Analysis tutorial 3). The output signal is not 

an audible signal though, and it’s not a single stream, but two signals in parallel consisting of 

lists of real (left output) and imaginary (middle output) numbers which are the result of the 

FFT of the previous slice at the input (512 samples by default). 

 

"  
Figure 4.9 Simple example of FFT in Max (Dobrian,2001) 

!39



    These (numbers) are not the amplitude and phase of each bin, but should be thought of 

instead as pairs of Cartesian coordinates, where x is the real part and y is the imaginary, 

representing points on a 2-dimensional plane. (See Figure 4.9 ) 

     The amplitude and phase of each frequency bin are the polar coordinates of these points, 

where the distance from the origin is the bin amplitude and the angle around the origin is the 

bin phase. 

     As mentioned before, the known problem with FFT is that when the slice being analysed 

doesn’t comprise one, or a multiple amount of cycles, the results will contain  many spurious 

frequencies not actually present in the signal.  

     This is very simple to test in Max/MSP. Using the patch from figure 4.8, and given that by 

default the fft~ object time slice is 512 samples long and sampling rate is 44100 Hz, the FFT 

fundamental frequency will be 44100/512= 83.131281 Hz, three different frequency 

sinusoids will be connected into fft- object,  FFT fundamental, FFT fundamentalx10 (10th 

harmonic) and a slight variation from the 10th harmonic frequency. Next figures show a 

portion of the captured spectrum. 

 

!40

Figure 4.10 Captured spectrum when the input is the FFT fundamental 



 

 

  

    In fig 4.10, and 4.11 the result shows perfectly the maximum amount on the correct 

frequency bin, 2nd bin for the fundamental, 11th bin for the 10th harmonic. On the other 

hand, changing slightly the frequency input form 10th harmonic a couple of Hz (from 

831.31282Hz to 833) in fig 4.12 will make the input not fit perfectly in the fft window and 

hence, the result of the analysis shows a greater energy in the 10th harmonic and spurious 

frequencies present on all the rest of bins. In order to avoid that the STFT principles (perform 

FFTs repeatedly and overlapping its windows ) can be applied. There’s a patching work 

around to achieve STFT in Max, however, this approach can often be a challenge to program, 

and there is also the difficulty of generalizing the patch for multiple combinations of FFT size 

and overlap. Since the arguments to fft~/ifft~ for FFT frame size and overlap can't be 

!41

Figure 4.11 Captured spectrum when the input is 10x the FFT fundamental 

Figure 4.12 Captured spectrum when the input is a sligh variation of the 10th harmonicth of the FFT fundamental 



changed, multiple hand-tweaked versions of each subpatch must be created for different 

situations. For example, a percussive sound would necessitate an analysis with at least four 

overlaps, while a reasonably static, harmonically rich sound would call for a very large FFT 

size. The pfft~ object addresses many of the shortcomings of the basic fft~ and ifft~ objects, 

allowing you to create and load special ‘spectral subpatches’ that manipulate frequency-

domain signal data independently of windowing, overlap and FFT size. A single sub-patch 

can therefore be suitable for multiple applications. Furthermore, the pfft~ object manages the 

overlapping of FFT frames, handles the windowing functions for you, and eliminates the 

redundant mirrored data in the spectrum, making it both more convenient to use and more 

efficient than the traditional fft~ and ifft~objects (Dobrian, 2001, MSP Analysys Tutorial 4).           

!42



 5. Method  

5.1 Deciding my Approach  

     During the process of writing this thesis, I’ve been trying different softwares and 

algorithms to perform sound morphing. The initial idea was using Native Instruments 

Reaktor, to develop a piece of code that could be used in the new Blocks enviroment. After 

realising that coding in Reaktor may not let the user go as deep as creating their own 

algorithm, I changed my mind and started trying Loris and the Reassigned Bandwidth-

Enhanced Additive Sound model. Even if I found the approach clever and straightforward, 

the software wasn’t as straightforward and I couldn’t have any control of the algorithm itself. 

Then I tried to introduce Max in the ecuation, using the sdif data outputed by the Loris 

analysis with the sdif externals that cnmat developed. Noticing the versatility of Max, and 

after learning about it’s analysis MSP objects and Jitter matrices, I decided to switch my 

approach completely to Max. The implementation that I present here is based on Luke 

Duboi’s phase vocoder patch jitter_pvoc_2d.pat, distributed with Jitter and Jean-François 

Charles article A Tutorial on Spectral Sound Processing Using Max/MSP and Jitter, 

published in Computer Music Journal (2008) 

     MSP and Jitter are extensions to the Max software that were added in 1997 and 2002 

respectively. MSP brought audio processing in real time to max, while Jitter allowed Max 

users to process video, 3D and matrices. 

Note that programming in Max is somehow similar to clasisical programming where we can 

have several events triggered by diferent function or actions while in MSP all the events are 

happening continuosly in all signal paths. 

!43



5.2 Recording FFT Data in Jitter Matrices 

     The first problem one faces when working in frequency domain in Max is that FFT 

representation is two-dimensional while the audio stream and and buffers in Max are on -

dimensional. The two-dimensional nature of the data and the one-dimensional 

framework makes coding of advanced processing patterns somewhat difficult. The 

introduction of Jitter, enabled manipulation of matrices in Max and hence two 

dimensional data is now straightforward in the Max environment.

Matrices in Jitter can have multiple planes. In this case, I’ll be using two-plane 

matrices for storing amplitude values and phase difference values derived from the 

FFT analysis.

!44

Figure 5.1 A representation of a two-plane Jitter matrix and the different arguments in the Jitter object that defines it 
(Charles, 2008). 



In both planes of the matrix, every column will represent a frame, while the cells in that 

column (equal to half of the FFT size) is the number of frequency bins. 

     In order to record FFT spectrum into a Jitter matrix, a pfft~ object that will launch the 

subpatcher where the frequency domain process will be carried out must be created. 

  

     This object’s arguments define the name of the subpatcher (name.pfft) the FFT size (4096 

samples in this case) and the overlap factor. Both inputs can handle messages or signal 

information. Messages will perform action in the subpatcher while audio signal will be used 

for the STFT. 

     Once created, double clicking on it will open the subpatcher where STFT will be 

performed and data will be recorded into the Jitter matrix. 

!45

Figure 5.2  The pfft~ object in Max/MSP 



 

     The final object on charge of writing data in the matrix is the jit.poke~. This object counts 

with 3 inputs. The first one is the actual data to be written in the matrix. Second and third 

input will set the x and y coordinates inside the matrix where the data in the first input will be 

written in. Directly connected to the jit.poke~ object are the selectors, the function of which 

is no more than selecting between actual data (when we tell the pfft~ object in the parent 

patch to start recording) or sending a -1 signal that will make the jit.poke~ object stop 

recording in the matrix. 

     There’s one jit.poke~ object per plane, so data about amplitudes will be sent to the first 

one and the second one will be receiving phase deviation data. The amplitude data comes 

almost straight from the fftin~ object, just after being transformed into polar coordinates. For 

!46

Figure 5.3 Max/MSP patch for recording spectral information into jitter matrices.



the phase difference two more steps are necessary, first framedelta~ object computes a 

running phase deviation, then the phasewarp~ object warps those values between -π to π. 

Both amplitude and phase values are passed to their respective jit.poke~ object that will write 

in the respective planes in the spectrum matrix.  

     Finally we just need to syncronise x (column) and y (row) writting position in order to 

increase the row value everytime we reach the end of a column. The method will be valid for 

both planes. To do this, the third output of fftin~, which output is the Bin index, will set y 

writing position. By setting a counter that goes through all the cells in the matrix (nr of 

frames multiplied by nr of bins) and getting just the integer part when dividing it by the bin nr 

again, we obtain a counter that increases 1 every time the end of a column is reached.

5.2 Controlling the Playback 

Once we have all the data stored in matrices, given that we know the amount of frames and 

frequency bins to reproduce and the sampling rate, we can obtain the duration of the sound 

and adjust the a playback rate by multiplying the frequency for a normal playback by a factor 

that will determine the speed and direction of it. 

!47



!  

     The fftinfo- object  third outlet will give us the hop size in samples, by multiplying it by 

the number of frames we will obtain the amound of samples to be reproduced. Dividing the 

result by the sampling frequency give us the duration of the sound. In this particular case: 

Duration of the sound=  (200*1024)/44100= 4644ms   

We can use a phasor- object at a frequency that will give us a 4644ms long raise signal:   

fphasor-=1000/4644= 0.215332s 

The phasor- object will then output a signal that will take 0.215332s to go from 0 to 1. 

Scalating it by the number of frames,200 in this case, we get a signal that goes from 0 to 200 

!48

Figure 5.4 Max/MSP patch of the playback control section adapted from Charles Tutorrial



in the desired amount of time, telling the pfft- object wich frame to reproduce. Inside the pfft- 

object no fft will happen thanks to the nofft argument set in the fftin- object in the subpatcher. 

This MSP trick allows to send control signal data from the parent patch into the spectral 

subpatch, hence allowing us to control the Reading speed from the matrix inside the 

subpatcher with the phasor- object. 

Multiplying the fphasor- by a factor, we will change its frequency setting it’s raise to different 

durations affecting the playback speed and direction, hence allowing us to control it. 

5.3 Sound Morphing Using the jit.xfade Object 

5.3.1 Basis 

For my playback controllable morphing algorithm patch, I took inspiration from one of the 

techniques introduced by Jean-François Charles in his paper A tutorial on Spectral Sound 

Processing Using Max/MSP and Jitter (2008). In the paper, Charles describes the Frame 

effect as an artefact that appears when time-stretching a signal to the extreme, when the leap 

between frames at the resynthesis stage becomes audible. His technique uses the jit.xfade 

object to interpolate between consecutive frames in order to reduce the frame effect. In my 

approach, I used the jit.xfade object as the center piece for my algorithm, interpolating 

between frames values from two different sound sources, and controlling the evolution of the 

morph integrating the playback control patch from the previous subsection. 

!49



5.3.2 The Patch 

 

   The patch is divided into 4 sections. The left section is called loader. Here is where sounds 

will be selected or captured and recorded into jitter matrices using pfft- objects. The right 

section is called the playback control and it’s self-explanatory. The middle upper section is 

called the matrices section, and contains both matrices and their visualisations. The last 

section is the interlpolation, and it’s were the jit.xfade object interpolates values from both 

matrices.  

!50

Figure 5.5 Playback Controllable Morphing Algorithm Overview



5.3.2.1 The loader section 

  

  

    This is the first section the user will interact with. At the top of the patch we find the audio 

toggle  the open message the record button and a number box for setting the frames number 

we want to work with (200 by default). One can start by switching on the audio engine. This 

action will make MSP objects start to work and also will start sending the audio captured by 

!51

Figure 5.6 The loader section



channel 1 of the audio device being used (laptop microphone if no external device is selected) 

to the first pfft- record object. Matrices won’t start being written yet though. After that, 

clicking in the open message will open a browsing window for selecting the sound file we 

want to be recorded in the second matrix. At this point we are sending audio to both of the 

pfft- objects. The record button will send a bang setting on a toggle connected to it. This 

toggle will send a 1 message to pfft- objects that will cause the subpatchers linked to them to 

start recording the incoming audio signal in its respective matrices. In the interpolation 

section, both jitter displays will show the data being written in the matrices. The toggle that 

the record button is connected to, also has a 0 message connected to it. This 0 message will 

be fired at a specific time after the start of the recording, setting the toggle to 0 and causing 

the pfft- object to stop recording in the matrices. The time until the 0 message is fired is taken 

from the playback control section, and will change depending on the total amount of frames 

to be recorded, the sampling rate and the overlapping factor of the STFT set at the pfft- 

object. 

!52



5.3.2.2 The playback control section 

 

     This section incorporates the playback control patch described in 5.2 to the morphing 

algorithm. It will send the time duration to the delay object in the loader section that will stop 

the recording after the 200 frames (per default) have been recorded in the matrices. With the 

!53

Figure 5.7 The Playback control section



playback rate integer- object, it’s possible to control the speed and direction of the playback, 

where 1 will be normal speed, 0 will be a spectral freeze, and negative values will cause the 

playback to go backwards. This is the control the user will interact with, being able to 

“scroll” the sound in the morphed matrix. As well as sending the “frame index” to the pfft- 

object to tell it which frame to read from the morphed matrix, we send it to a number- object. 

This number- object will display the incoming “frame index” signal and generate constants 

out of it, so basically it acts as an interface between the MSP “signal world” to the Max 

constants values. This will allow us to divide such constant by the number of frames, scaling 

the 0 to 200 interval of the “frame index” signal, to a 0 to 1 interval that will last the same 

time as the reproduction of the 200 frames. As we’ll see in next section, with this we’ll be 

able to set the jit.xfade object interpolation progression from one matrix to another at the 

same speed of the playback. 

!54



5.3.2.3 The matrices section 

 

     In this section matrices for the two sound sources are defined. In this matrices, spectral 

information from the sounds to be morphed is written. A metro object is connected to both 

matrices to make them output their recorded value. The output signal is then splitted with the 

jit.unpack object, this way, we’ll have amplitude and phase information in two separated 

channels. Those signals are then fed to jit.window objects that will plot the information 

contained in the matrix.  

!55

Figure 5.8 The Matrices  section



5.3.2.4 The interpolation section 

 

     This is the section where the actual morph happens. The jit.xfade will interpolate values 

from the two matrices connected to it. The weight of the interpolation where 0 will be 100% 

sound A and 1 will be 100% sound B is set to 0.5 by default. By gradually changing the 

weight factor at the same time of the playback, we’ll obtain the desired sound morphing, 

gradually evolving from sound A to sound B. This is achieved with the escalated “frame 

index” obtained in the playback section. The scalated “frame index” outputs float numbers 

from 0 to 1, during the duration of the 200 frames (or any other number of frames set by the 

user) playback. Sending this values to together with the correct message for changing the 

!56

Figure 5.9 The Interpolation section



weight factor in the jit.xfade object, will result in a gradual morph, that the user will be able 

to reproduce forward, backwards or freeze with the playback rate control. 

!57



6. Conclusion 

     Sound morphing it’s one of the most powerfull and creative sound techniques still being 

developed. The hability of discovering “unexisting” intermidiate timbral spaces between 

different sounds is as fascinating as complex. While there’s a lot of research about 

perceptually perfectioning the technique still going on, the idea in this thesis was to focus 

also in a more interactive aproach, that could make the player have some control over the 

morphing process.  

   Max, and its MSP and Jitter extensions have proved to be extremely convinient for this 

task. Objects like pfft- encapsulate so many functionalities for FFT, simplifing the process for 

the user. The way it separates time-domain and frequency-domain with its subpatchers is also 

very handy and facilitates the understanding of FFT processes to newcomers. 

     Unfortunatelly I wasn’t able to get audible satisfying results with my decission of using 

the jit.xfade for spectral interpolation duties. This decision was made after reading Jean-

François Charles A Tutorial on Spectral Sound Processing Using Max/MSP and Jitter (2008) 

where he uses it to interpolate consecutive frames of a sound. The interpolation in the patch 

here presented is conceptually identical to the one in Jean-François Charles paper, but for 

some unknown reason to me, (probably an error in my programming) the outcome is not the 

expected one.  

    On the other hand, even if the audible result is not as expected, this thesis also brought a 

new point of view for defining sound morphing and also an approach to Fourier Theory and 

spectral processing in Max/MSP and Jitter. 

!58



6.1 Futre Work 

     In the close future, the algorithm presented in this paper will be fixed in order to obtain the 

expected audio results. Furthermore, having set a solid basis for spectral transformation using 

Max/MSP and Jitter matrices,  the algorithm can be improved by programing a new 

interpolating object, or by using mathematical opeartor objects in Max in order to transform 

the spectral content stored in the matrices to achieve a sound morph. 

     The integration of Max with music production DAW Ableton live, gives the posibility of 

adapting the algorithm to this platform in a future being able to interact with in a 

“programming free” enviroment  for musicians and music productors.  

!59



7. Acknowledgements 

     En primer lloc, donar les gràcies a la meua família, pel seu suport, treball i esforç per fer 

possible aquesta aventura. 

     També agrair als meus companys, en Gandia a David i Rafa, amb els que aquestos 4 anys 

de sofriment hauran servit, com a poc, per a guanyar dos bones amistats, i en Alemanya, a 

Ana i Adriana, per oferir altruistament la seua ajuda en qualsevol moment. 

     En tercer lloc, agrair el increïble i incansable suport de Esra, que ha alleugerat aquesta 

càrrega amb la seua estima. 

     Finally I would like to thank Dr. Prof. Michael Oehler for the support and for giving me 

the oportunity of working in a field that I love.  

      

!60



8. References 

[1]Bogaards, N. & Röbel, A. (2005). An interface for analysis-driven sound processing. 
Retrieved from: articles.ircam.fr/textes/Bogaards05b/index.pdf  

[2]Dobrian, C. (2001). Max 7 Help and Documentation Cycling ’74. Available: http://
www.cycling74.com/docs/max5/vignettes/intro/docintro.html  

[3]Redmon, N. (2002). A gentle Introduction to the FFT. Retrieved from: http://
www.earlevel.com/main/2002/08/31/a-gentle-introduction-to-the-fft/ 

[4]Roads, C. (1996). The Computer Music Tutorial. Cambridge, Massachusetts: The MIT 
Press  

[5]Colasanto, F. (2010). Max/MSP Guía de Programación para Artistas. Mexico: Centro 
Mexicano para la Música y las Artes Sonoras. 

[6]Olivero, A. Torrésani, B. Depalle,P. Kronland-Martinet, R. (2012) Sound mor- phing 
strategies based on alterations of time-frequency representations by Gabor multipliers. AES 
45th International Conference on Applications of Time-Frequency Processing in Audio, Mar 
2012, Helsinki, Finland. pp.17 

[7]Caetano, M. and Rodet, X. (2011) Sound Morphing by Feature Interpolation. Czech 
Republic: IEEE International Conference on Acoustics, Speech and Signal Processing, 

[8]Caetano, M. and Rodet, X. (2013) Musical Instrument Sound Morphing Guided by 
Perceptually Motivated Features. IEEE TRANSACTIONS ON AUDIO, SPEECH, AND 
LANGUAGE PROCESSING, VOL. 21, NO. 8, pp. 1666-1675 

[9]Hatch, W. (2005). High-Level Audio Morphing estrategies. Montreal, Canada: McGill 
University. 

 [10]Sibylle Bammer, R. (2015). Signaltransformation via Gabor Multiplier. Wien: 
Universität Wien. 

!61



[11]Tellman, E., Haken, L. and Holloway, B. (1995). Timbre morphing of sounds with 
unequal numbers of features. Journal of the Audio Engineering Society 43(9) 

[12]Sethares, William A.; Milne, Andrew J.; Tiedje, Stefan; Prechtl, Anthony and Plamondon, 
James (2009). Spectral tools for Dynamic Tonality and audio morphing. Computer Music 
Journal, 33(2) pp. 71–84. 

[13]Moorer, J. A. (1978). The Use of the Phase Vocoder in Computer Music Applications. 
Journal of the Audio Engineering Society. Retrieved from: www.jamminpower.com/PDF/
Phase%20Vocoder.pdf  

[14]Droljc, T. (2011). STFT Analysis Driven Sonographic Sound Processing in Real-Time 
using Max/MSP. Yorkshire, United Kingdom: University of Hull. 

[15]Fernández-Cid, P. (2014). Sistemas de convolución: Teoría. Retrieved from: http://
www.hispasonic.com/tutoriales/sistemas-convolucion-teoria/39446 . 

[16]Smith, S.W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing. 
California Technical Publishing.  

[17]Auger, F. and Flandrin P. (1995). Improving the readability of time-frequency and time-
scale repre- sentations by the reassignment method. IEEE 

[18]Charles, J. F. (2008). A Tutorial on Spectral Sound Processing Using Max/MSP and 
Jitter. Computer Music Journal 

[19]Fitz, K., Hakken, L., Lefvert, S., and O’Donnell, M. (2002) Sound Morphing using Loris 
and the Reassigned Bandwidth-Enhanced Additive Sound Model. University of Michigan 
Library: Michigan Publishing. 

[20]Fitz, K., Hakken, L. (2003). Current research in Real-Time Sound Morphing. Retrieved 
from: http://www.hakenaudio.com/RealTimeMorph/ 

[21]Fitz, K., Haken, L. and Christensen, P. (2000). Transient preservation under 
transformation in an additive sound model. In Proc. ICMC, Berlin, Germany, pp. 392–395. 

!62



[22]Krumhansl, C. L. (1989). Why is musical timbre so hard to understand?. in Structure and 
perception of electroacoustic sound and music, Nielzén, S. and Olsson, O. Eds. New York, 
NY, USA: Excerpta Medica, pp. 43–54. 

[23]Caclin, A., McAdams, S., Smith, B. K. and Winsberg, S. Acoustic corelates of timbre 
space dimensions: A confirmatory study using syn- thetic tones. J. Acoust. Soc. Amer., vol. 
118, no. 1, pp. 471–482, 2005. 

[24]Grey, J. M. and Moorer, J. A. (1977). Perceptual evaluations of synthesized musical 
instrument tones. J. Acoust. Soc. Amer., vol. 62, no. 2, pp. 454–462,.

!63


