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ABSTRACT 16 

Human activities have altered flow regimes resulting in increased pressures and 17 

threats on river biota. Physical habitat simulation has been established as a 18 

standard approach among the methods for Environmental Flow Assessment 19 

(EFA). Traditionally, in EFA, univariate habitat suitability curves have been used 20 

to evaluate the habitat suitability at the microhabitat scale whereas Generalized 21 

Additive Models (GAMs) and fuzzy logic are considered the most common 22 

multivariate approaches to do so. The assessment of the habitat suitability for 23 

three size classes of the West Balkan trout (Salmo farioides; Karaman, 1938) 24 

inferred with these multivariate approaches was compared at three different 25 

levels. First the modelled patterns of habitat selection were compared by 26 

developing partial dependence plots. Then, the habitat assessment was 27 

spatially explicitly compared by calculating the fuzzy kappa statistic and finally, 28 

the habitat quantity and quality was compared broadly and at relevant flows 29 

under a hypothetical flow regulation, based on the Weighted Usable Area 30 

(WUA) vs. flow curves. The GAMs were slightly more accurate and the WUA-31 

flow curves demonstrated that they were more optimistic in the habitat 32 

assessment with larger areas assessed with low to intermediate suitability (0.2-33 

0.6). Nevertheless, both approaches coincided in the habitat assessment (the 34 

optimal areas were spatially coincident) and in the modelled patterns of habitat 35 

selection; large trout selected microhabitats with low flow velocity, large depth, 36 

coarse substrate and abundant cover. Medium sized trout selected 37 

microhabitats with low flow velocity, middle-to-large depth, any kind of substrate 38 

but bedrock and some elements of cover. Finally small trout selected 39 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=136
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=27865
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microhabitats with low flow velocity, small depth, and light cover only avoiding 40 

bedrock substrate. Furthermore, both approaches also rendered similar WUA-41 

flow curves and coincided in the predicted increases and decreases of the WUA 42 

under the hypothetical flow regulation. Although on an equal footing, GAMs 43 

performed slightly better, they do not automatically account for variables 44 

interactions. Conversely, fuzzy models do so and can be easily modified by 45 

experts to include new insights or to cover a wider range of environmental 46 

conditions. Therefore, as a consequence of the agreement between both 47 

approaches, we would advocate for combinations of GAMs and fuzzy models in 48 

fish-based EFA. 49 

 50 

Keywords: fuzzy kappa, habitat suitability, microhabitat, physical habitat 51 

simulation, Salmo farioides, Takagi-Sugeno-Kang fuzzy models 52 
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1 Introduction 54 

Human activities such as water withdrawals (Benejam et al., 2010), storing for 55 

irrigation purposes (Costa et al., 2012) and hydropeaking (Yao et al., 2015), 56 

directly alter river flow regimes in regulated streams impacting freshwater biota 57 

(Döll et al., 2009). Moreover, indirectly, human activities have significantly 58 

modified precipitation patterns by altering climate (Kalogeropoulos and 59 

Chalkias, 2013) and land use (Döll et al., 2009) thus flow regimes in 60 

unregulated streams are not exempt of anthropogenic impacts (Li et al., 2015). 61 

To evaluate the threats posed by such phenomena the development of 62 

scientifically sophisticated tools has now become a fundamental area of 63 

research within the scientific community (Arthington et al., 2006). The methods 64 

addressed to evaluate river flows were classified into four different categories 65 

(Tharme, 2003), namely: hydrological methods (e.g. Mathews and Richter, 66 

2007), hydraulic methods (e.g. Lamouroux and Souchon, 2002), physical 67 

habitat methods (e.g. Muñoz-Mas et al., 2014) and holistic methods (e.g. 68 

McClain et al., 2014). 69 

The hydrological methods rely on statistical analysis of hydrological data 70 

whereas the hydraulic methods analyse changes in simple hydraulic variables, 71 

such as wetted perimeter or maximum depth, as proxies of limiting factors for 72 

freshwater biota. Physical habitat methods assess the quantity and suitability of 73 

the physical habitat for the target species or assemblages under different flows 74 

on the basis of integrated hydrological, hydraulic and biological data (Maddock, 75 

1999). The lasts approach typically encompasses a hydrodynamic model, in 76 
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order to simulate spatial and temporal variations in critical hydraulic parameters; 77 

depth, flow velocity, substrate and cover (Boavida et al., 2014) and a habitat 78 

suitability model usually developed at the microhabitat scale for target species 79 

thus overstepping the simplicity of the hydraulic methods at the expense of 80 

increasing the cost rates (Lamouroux and Souchon, 2002). Finally, several 81 

components of the riverine ecosystems as well as social and economic modules 82 

are incorporated under the framework of the holistic approaches for basin-scale 83 

evaluation. 84 

Nowadays, legislative frameworks in many countries reflect modern societal 85 

needs for improved ecological conditions in regulated rivers including the 86 

implementation of environmental flow regimes (Katopodis, 2012). However, the 87 

requirements and the methods for their determination strongly depend on the 88 

considered jurisdiction (Tharme, 2003). For instance, Spanish legislation 89 

requires the development of physical habitat studies (Muñoz-Mas et al., 2012) 90 

whereas environmental flow recommendations in Greece are based on 91 

simplified hydrological methods (Ministry of Environment, Energy and Climate 92 

Change, 2011). Hydrological methods have been criticized because they have 93 

often been simplified to flow rules that neglect natural system complexity 94 

(Arthington et al., 2006). Avoiding this oversimplification, the physical habitat 95 

simulation has been identified by some practitioners as the most scientifically 96 

and legally defensible methodology for Environmental Flow Assessment (EFA) 97 

(Tharme, 2003). Therefore it has demonstrated to be adequate in evaluating the 98 

effect of different management alternatives (Yao et al., 2015), restoration 99 
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actions (Mouton et al., 2007) and potential effects of climate change (Belgiorno 100 

et al., 2013). 101 

Regarding the habitat suitability model component in the physical habitat 102 

simulation, Waters (1976) suggested the application of continuous curves 103 

representing a suitability index (ranging from 0 to 1) for each variable (e.g. 104 

velocity or depth) instead of binary criteria; with one meaning maximum 105 

suitability and zero totally unsuitable. Since then the use of the so-called Habitat 106 

Suitability Curves (HSCs) became by far the most common approach in studies 107 

involving the physical habitat simulation (Muñoz-Mas et al., 2012). The sum of 108 

the areas (i.e. cells or pixels) weighed by the inferred suitability within the entire 109 

domain of the hydrodynamic model correspond to the Weighted Usable Area 110 

(WUA) (Bovee et al., 1998). The WUA is the most renowned general indicator 111 

of habitat quality and quantity and is usually calculated for every of the 112 

simulated flows thus becoming the WUA-flow curve (Boavida et al., 2014). 113 

Upon the WUA-flow curve further calculations should be made for the EFA; for 114 

instance the comparison of alternative flow regimes and/or scenario analysis via 115 

habitat time series (Milhous et al., 1990). 116 

However, the variables within the aforementioned approach are treated 117 

independently for the estimation of the HSCs even though interactions among 118 

them were expected (Orth and Maughan, 1982). Consequently, there are 119 

examples of multivariate approaches (e.g. logistic regression) that 120 

demonstrated a greater ability in the determination of the presence or absence 121 

of some species (Guay et al., 2000). Between the multivariate approaches 122 
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those who have received increasing attention are the Generalized Additive 123 

Models (GAMs) (Hastie and Tibshirani, 1990) and those based on fuzzy logic 124 

(Zadeh, 1965). Although different in nature, the structure of the GAMs could be 125 

considered the natural succession of the HSCs because the effect of the set of 126 

inputs is simultaneously modelled with smooths curves that resemble the HSCs. 127 

On the other hand the popularity of fuzzy logic relies in its capability to mimic 128 

human reasoning (Muñoz-Mas et al., 2016). Fuzzy logic describes the input 129 

space in linguistic terms (e.g. Low velocity or High depth), without loss of 130 

accuracy (Castro, 1995), and articulates their different combinations in a 131 

comprehensive rules set (Mouton et al., 2008). Further, the mathematics behind 132 

are simple enough to be inspected, used and modified by human experts using 133 

expert knowledge or new insights to cover a wider range of environmental 134 

conditions (Mouton et al., 2008), which emphasizes the usefulness of fuzzy 135 

logic to deal with impoverished or extirpated populations. Thus, Jowett and 136 

Davey (2007) have developed GAMs for large brown trout (Salmo trutta; 137 

Linnaeus, 1758) in New Zealand rivers, whereas Muñoz-Mas et al. (2012) 138 

developed the fuzzy counterpart for medium size individuals in Iberian rivers. 139 

Accordingly to that increasing interest, both techniques are actually 140 

implemented in commercial software packages; GAMs have been implemented 141 

in SEFA (Payne and Jowett, 2012) whereas CASiMiR allows the use of fuzzy 142 

models (Jorde, 1997; Schneider, 2001). Limited knowledge exists on the 143 

comparison of these two approaches in respect to the simulated habitat 144 

suitability (Fukuda et al., 2013) and, as far as we know, there is no example of 145 

comparison of such models (developed upon the same database) in EFA. 146 



 

8 

 

Different taxa can be targeted in EFA studies. However, fish species can 147 

occupy high trophic levels (Sánchez-Hernández and Amundsen, 2015), they 148 

are relatively easy to sample and to identify, and generally are known to 149 

indicate in-stream habitat constraints (Lorenz et al., 2013). Furthermore, fish are 150 

mobile species compared to other aquatic organism groups, e.g. benthic 151 

invertebrates, and often undergo ontogenetic shifts in their habitat selection 152 

(Ayllón et al., 2010). Thus, to complete their life cycle, all the required habitats 153 

must be present. Consequently the state of fish populations and fish habitats 154 

has served as indicators of aquatic ecosystem health (Katopodis, 2012). Among 155 

fish species, salmonids play a crucial role in cold-water food webs and in the 156 

generation of ecosystem services (Schindler et al., 2010). The West Balkan 157 

(W.B.) trout (Salmo farioides; Karaman, 1938) is a poorly studied Balkan 158 

endemicity (Delling, 2010) restricted to upland streams between Montenegro 159 

and western Greece (Kottelat and Freyhof, 2007) and is assessed as vulnerable 160 

in a state-wide conservation evaluation (Zogaris and Economou, 2009). Only 161 

some general hints about the optimal habitat for this trout are known, such as 162 

the typical salmonids’ requirements for cold and fast flowing waters. However, 163 

until now there has been no investigation concerning the species’ specific 164 

habitat preferences at the microhabitat scale. 165 

In this study habitat suitability models for three size classes of the W.B. trout 166 

were developed by means of GAMs and fuzzy models. These models were 167 

used to infer the habitat suitability (spatially distributed and summarized in the 168 

WUA) in a study site in the mountainous part of the Acheloos River (Western 169 

Greece). Then the assessed suitability was spatially explicitly compared by 170 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=136
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=27865
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calculating the fuzzy kappa statistic. Finally the WUA-flow curves were visually 171 

compared and the WUA values derived from the natural flow regime and those 172 

derived from the hypothetical extraction of the maximum amount of water legally 173 

permitted were numerically compared. The implications of the Greek legislation 174 

in EFA were discussed. 175 

 176 

2 Materials and methods 177 

2.1 Study site and data collection 178 

The W.B. trout data collection was conducted, at the microhabitat scale, during 179 

summer 2014 in the Voidomatis River, north-western Greece; a reference river 180 

within the Northern Pindos National Park (Fig. 1). As a consequence the period 181 

of strict validity of the developed model would encompass only that season. The 182 

mean annual precipitation in the study area typically ranges between 1100 and 183 

1700 mm, yielding a mean daily flow of 13 m3/s (Woodward et al., 2008); while 184 

during the period of data collection (July 2014) it presented a flow rate of 6.29 185 

m3/s. 186 

 187 
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 188 

Fig. 1 Location of the site where microhabitat data of West Balkan trout were collected 189 

(Voidomatis River) and location where the physical habitat simulation was performed 190 

(Acheloos River). 191 

 192 

A modification of the equal effort approach (Johnson, 1980) was applied in the 193 

selection of the surveyed area. This approach reduces the bias derived from the 194 

unbalanced fast- and slow-waters sampling (Muñoz-Mas et al., 2012). 195 

Therefore, the river stretch was stratified in Hydro-Morphological Units (HMU) 196 

classified as pool, glide, run, riffle and rapid; then several HMUs were selected 197 

balancing the areas of slow (i.e. pool and glide) and fast (i.e. run, riffle and 198 

rapid) flow habitats. According to common procedures (Martínez-Capel et al., 199 

2009; Muñoz-Mas et al., 2012), the microhabitat study was conducted by 200 

underwater observation (snorkelling) during daylight, classifying the observed 201 

individuals in three size classes; large (>20 cm), medium (20–10 cm) and small 202 

(<10 cm). The main purpose of the habitat suitability models in the physical 203 

habitat simulation approach is to determine habitat in an ecosystem that is best 204 
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suited for a particular species life history, rather than for determining species 205 

abundance and diversity, as do population models (Tomsic et al., 2007); 206 

consequently data were collected following a presence-absence scheme. The 207 

study focused on individuals that were ‘feeding’ or 'holding a feeding position' 208 

because it is assumed that they are occupying such positions as the most 209 

energetically profitable (Rincón and Lobón-Cerviá, 1993). 210 

The absences were sampled along each HMU in 4 cross-sections uniformly 211 

distributed with 5 point sampling along each cross section, whereas the 212 

presences (i.e. W.B. trout observations) were measured at the corresponding 213 

locations. Depth [m] was measured with a wading rod to the nearest cm and the 214 

mean flow velocity of the water column (hereafter velocity [m/s]) was measured 215 

with a propeller current meter (OTT®). The percentage of each substrate class 216 

was visually estimated around the sampling point or fish location. The substrate 217 

classification was simplified from the American Geophysical Union size scale: 218 

bedrock, boulders (>256), cobbles (64–256 mm), gravel (8–64 mm), fine gravel 219 

(2–8 mm), sand (62 µm–2 mm), silt (< 62 µm) similarly to previous works 220 

(Martínez-Capel et al., 2009; Muñoz-Mas et al., 2012). Substrate composition 221 

was converted into a single value through the Substrate index [-], by summing 222 

the weighted percentages of each substrate type as follows: Substrate index = 223 

0.08 · Bedrock % + 0.07 · Boulder % + 0.06 · Cobble % + 0.05 · Gravel % + 224 

0.04 · Fine Gravel % + 0.03 · Sand % (Mouton et al., 2011). 225 

In addition, the abundance of 5 different cover types was also recorded. 226 

Namely, aquatic vegetation, undercut banks, woody debris, shade and large 227 
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boulders. These cover types corresponded to the most commonly used by other 228 

salmonids (Heggenes et al., 1999; Zika and Peter, 2002; Strakosh et al., 2003); 229 

while they also summarize the concept of structural cover (e.g., boulders, log 230 

jams) (Bovee et al., 1998) and escape cover (e.g. vegetation, undercut banks) 231 

(Raleigh et al., 1986). As they were written down the cover was scored with 232 

three values as follows; easy observation of the fish from the shore (1), 233 

observation of the fish possible by underwater observation from distant 234 

locations (2) and underwater observation of fish only from close locations (3). 235 

Finally, the cover types and their scores were summarized in a cover index [-] 236 

by summing the different scores at each location (e.g. none = 0, boulders 3 + 237 

undercut banks 1 = 4, etc.). In the end, 103 large, 73 medium and 69 small 238 

W.B. trout were recorded, whereas the hydraulic conditions in the surrounding 239 

area were measured at 241 sites (Fig. 2). 240 

 241 
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 242 

Fig. 2 Violin plots of the data collected in the Voidomatis River. They appear stratified 243 

by size class of West Balkan trout and the absences. 244 

 245 

2.2 Habitat suitability modelling 246 

2.2.1 Generalized Additive Models (GAMs) 247 

The ecological gradient theory states that species responses to environmental 248 

variables are likely to be unimodal and often skewed although, straight-lines are 249 

adjusted without any justification (Austin, 2007). In this regard GAMs (Hastie 250 

and Tibshirani, 1990) are semi-parametric models, indicated to deal with non-251 
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linearity, since they do not presuppose any specific type of distribution of the 252 

input variables applying smooth functions with different degree and number of 253 

curvatures (i.e. the si in equation 1) to simultaneously model their effects 254 

(Jowett and Davey, 2007). 255 

 256 

𝑔(𝐸(𝑦)) = 𝛽0 + 𝑠1(𝑥1) + 𝑠2(𝑥2) + … + 𝑠𝑖(𝑥𝑖) (1) 257 

 258 

where g is the link function, E is the expected value, β0 is the intercept, xi 259 

correspond to the input variables and si are the smooth functions. 260 

The expected value can be calculated as the direct aggregation of the effect 261 

derived from every variable (g = gaussian link function) or can be adjusted to 262 

pre-specified distributions such as poisson or binomial, constraining the outputs 263 

to the desired domain. The GAMs development was carried out in R (R Core 264 

Team, 2015) by means of the mgcv package (Wood, 2004). Tensor product 265 

smooths are especially useful for representing functions of covariates measured 266 

in different units (Wood, 2006). Therefore, instead of one smooth spline for 267 

each input variable a single tensor product was used for the optimization of the 268 

smooth curves. The maximum number of knots (i.e. the number of bends of 269 

every smooth curve) was restricted to three in order to obtain unimodal 270 

responses and due to the presence-absence nature of the collected data the 271 

selected link function was the binominal, which constraints the output to the 272 

range between 0 and 1. Data prevalence (i.e. the ratio of presence data within 273 

the entire dataset) was relatively low; 0.30, 0.23 and 0.22 for large, medium and 274 
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small W.B. trout, respectively. In order to reduce the number of falsely predicted 275 

absences, the absence data were down-weighted accordingly to data 276 

prevalence because these values may impact the classification capability of 277 

habitat models (Maggini et al., 2006; Platts et al., 2008; Beakes et al., 2014). 278 

For instance the presence cases in the adult GAM were weighted by 0.70 and 279 

the absence by 0.30. No-variable selection was carried out so we avoided 280 

hypothesis tests in favour of global measures of model performance (Anderson 281 

et al., 2000; Platts et al., 2008). Consequently, input p-values (Wood, 2013) or 282 

AIC (Akaike, 1998) were not inspected. However a 3 × 3 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 283 

scheme was followed to inspect the predictive capability of the developed 284 

GAMs calculating several performance criteria for every fold. Namely, overall 285 

accuracy or Correctly Classified Instances (CCI), Sensitivity (Sn) which 286 

corresponds to the ratio of presences correctly classified, Specificity (Sp) which 287 

corresponds to the ratio of absences correctly classified, Cohen’s Kappa and 288 

the True Skill Statistics (𝑇𝑆𝑆 =  𝑆𝑛 +  𝑆𝑝 − 1) (Mouton et al., 2010). 289 

 290 

2.2.2 Takagi-Sugeno-Kang fuzzy models 291 

The fuzzy logic approach, firstly introduced by Zadeh (1965), takes into account 292 

the inherent uncertainty of ecological variables by discretizing the inputs in 293 

fuzzy sets named using linguistic terms (e.g. Low velocity, Medium velocity, 294 

High velocity etc.). Owing to the fuzzy nature of these sets a given value may 295 

belong, (with different proportions), to more than one fuzzy sets. The degree of 296 

membership in each category is mathematized by means of membership 297 
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functions usually of trapezoidal or triangular shapes (e.g. Muñoz-Mas et al., 298 

2012; Fukuda, 2013; Boavida et al., 2014). For instance a triangular 299 

membership function is defined by three parameters (am, bm and cm); the 300 

membership degree linearly increases between am and bm from zero to one and 301 

linearly decreases from one to zero between bm and cm (Fig. 3). 302 

 303 

 304 

Fig. 3 Depiction and parameters defining triangular membership functions. 305 

 306 

Furthermore the fuzzy logic approach allow modellers to express non-linear 307 

relations in an interpretable manner (Casillas et al., 2005) because the 308 

relationship between the different combinations of fuzzy sets are articulated in 309 

IF-THEN sequences, which are known as fuzzy rules (Muñoz-Mas et al., 2012). 310 

Different types of fuzzy models exist varying mostly in the nature of the 311 

consequent (i.e. the THEN part). Mamdani-Assilian fuzzy models (Mamdani, 312 

1974) have their consequents defined also by fuzzy sets whereas Takagi-313 

Sugeno-Kang (TSK) fuzzy models (Takagi and Sugeno, 1985) present linear 314 

functions (e.g. equation 2). 315 
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 316 

𝐼𝐹 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑥1 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ 𝑖𝑠 𝑥2 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑖𝑠 𝑥3 𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 𝑥4 𝑇𝐻𝐸𝑁 𝑧 =317 

𝐴𝑖 · 𝑥1 + 𝐵𝑖 · 𝑥2 + 𝐶𝑖 · 𝑥3 + 𝐷𝑖 · 𝑥4 + 𝐸𝑖 (2) 318 

 319 

where i corresponds to the rule at hand and from Ai to Ei are the parameters of 320 

the consequent linear function. TSK fuzzy models were selected because they 321 

performed well in previous studies on habitat suitability modelling (Fukuda, 322 

2013). These TSK fuzzy models were implemented in R (R Core Team, 2015) 323 

with the help of the frbs package (Riza et al., 2015) developing zero order TSK 324 

fuzzy models (𝑖. 𝑒.  𝐴𝑖  =  𝐵𝑖  =  𝐶𝑖  =  𝐷𝑖  =  0). Therefore, the consequent part 325 

corresponded to a dichotomous output, 0 or 1 (i.e. presence or absence). Each 326 

consequent is weighted by the fulfilment degree of the corresponding fuzzy rule 327 

(i) and summed. Thus, the TSK fuzzy model provided smooth outputs all along 328 

the feasible output range (from 0 to 1) in a similar way to the binomial link 329 

function selected for the GAMs. In order to match the ecological gradient theory 330 

(Austin, 2007) the complexity of the model was limited by considering three 331 

fuzzy sets with triangular shape per input variable (e.g. Low velocity, Medium 332 

velocity and High velocity). However if a given rule does not cover any input 333 

data it shall remain undetermined. To overcome such deficiency, a uniform 334 

distribution of the fuzzy sets over the variable range was implemented since it 335 

has been proved to reduce the number of untrained rules (Muñoz-Mas et al., 336 

2012). Consequently the vertices of the triangular fuzzy sets were placed in 337 

accordance with variables’ quantiles. The fuzzy rules optimization was based on 338 
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the TSS because its maximization usually renders models that balance the 339 

accuracy over the presence and absence classes (Mouton et al., 2010). For 340 

every developed TSK fuzzy model the optimisation was performed nine times 341 

with the hill-climbing algorithm (see Mouton et al., 2008 for further details) 342 

searching for the optimal value for every consequent (i.e. 0 or 1) and the 343 

ultimate consequent was assigned by rounding up the mean value obtained in 344 

the nine iterations. The 3 × 3 fold cross-validation scheme was also followed to 345 

inspect the predictive capability of the TSK fuzzy models over the same data 346 

subsets used in the GAMs section. Finally, the same performance criteria 347 

calculated for the GAMs were calculated. 348 

 349 

2.3 Hydraulic modelling 350 

A representative reach of the Acheloos River upstream of the Mesochora dam 351 

was selected in order to apply the hydraulic simulation. A topographic survey 352 

encompassing the main channel and banks, was carried out with a GPS/GNSS 353 

Geomax-Zenith 20 using geodesic references (i.e. GGRS '87 - Greek Geodetic 354 

Reference System) to improve the accuracy. Substrate percentages and cover 355 

types were co-ordinately recorded to match the requirements of the habitat 356 

suitability models. The topographic survey was then used to generate digital 357 

elevation models as a base for the hydraulic simulation. 358 

HEC-RAS (Version 4.1) was used to perform a quasi-2D hydraulic simulation 359 

for several flows in regard to the mean monthly summer flows. The length of the 360 

representative reach was 390 m (Papadaki et al., 2014); simulations were 361 
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performed with 27 cross-sections along the river stretch placed in accordance 362 

with the general principles of 1D modelling (Jowett and Duncan, 2012). 363 

Manning’s roughness coefficient was adjusted for model calibration by 364 

comparing the observed water surface elevations and velocities at 10 critical 365 

cross-sections and two surveyed flows (i.e. 4 m3/s and 8.8 m3/s) with the 366 

simulated model results.  367 

For the quasi-2D hydraulic approach every cross-section was subdivided in 10 368 

cells both in the main channel and the overbank area. Thereby, velocities were 369 

separately calculated for each cell of the simulated water stage. In the end, 370 

every pixel of the hydraulic model for each river flow presented a value for 371 

velocity, depth, substrate index and cover index on which the habitat 372 

assessment was then performed. 373 

 374 

2.4  Comparison of the habitat suitability models and river habitat 375 

assessment 376 

Model reliability and transparency is of major concern for ecological modelling 377 

(Austin, 2007). Unlike the analysis of GAMs, the analysis of TSK fuzzy models 378 

is straightforward. Thus, to concurrently characterize the relationship between 379 

the inputs variables and the outputs, the partial dependence plots (PDPs) 380 

implemented in the package randomForests (Liaw and Wiener, 2002) were 381 

developed allowing an easy comparison of the GAMs and the TSK fuzzy 382 

models. The PDPs depict the average of the outputs for an input variable and 383 

accounts for the effects of the remaining variables within the model by 384 
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averaging their effect yielding interpretable univariate plots. However, as a 385 

consequence, the depicted output range may differ from the feasible one (i.e. 386 

from 0 to 1). 387 

The outputs of the GAMs and the TSK fuzzy models match the range typically 388 

provided by the HSCs (i.e. from 0 to 1). Thus, in order to illustrate similitudes 389 

and differences in the habitat assessment (regardless the simulated flow or 390 

corresponding season), it was used to build the WUA-flow curves which were 391 

then visually compared. The WUA is the sum of the areas (in this case 1 𝑥 1 m 392 

pixels) weighted by the inferred suitability. Since a single WUA value per flow is 393 

inferred, similar values of WUA could dramatically differ in the spatial 394 

distribution of the assessed suitability. To overcome this limitation a spatially 395 

explicit pairwise comparison was performed by calculating the fuzzy kappa 396 

statistic (Hagen-Zanker et al., 2005). Fuzzy kappa statistic is similar to the 397 

traditional Cohen’s kappa and provides a meaningful index ranging from -1 to 1, 398 

with one corresponding to perfect agreement. The spatial explicit comparison 399 

was carried out with the Map Comparison Kit version 3.2.3 (Visser and De Nijs, 400 

2006) by dividing the assessed suitability in 5 uniform intervals. This software 401 

allows performing the comparison with certain degree of tolerance between 402 

categories of the overlaid pixels and taking into account the surrounding area. 403 

However the extension of the area of influence affects the results obtained from 404 

the fuzzy kappa statistic; for instance, a large influence area has demonstrated 405 

to dramatically increase the values of the statistic (Rose et al., 2009) thus 406 

providing awkward interpretation. Therefore it should be selected in accordance 407 

with grounded reasons such as known differences in map resolutions or the 408 
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home range of the target species. Brown trout, a closely related species, has 409 

proved a home range of approximately 300 m (Ovidio et al., 1998) a distance 410 

similar to the length of the area comprised in the hydraulic models. Therefore 411 

we calculated the fuzzy kappa by considering only the overlaying pixels 412 

(1 𝑥 1 𝑚) following the correspondence depicted in the similarity matrix where 413 

similarity between categories linearly decreases as the distance from the main 414 

diagonal increases (Table 1). 415 

 416 

Table 1 Similarity matrix used in the calculation of the fuzzy kappa statistic. The 417 

similarity linearly decreases as the interval goes farther from the main diagonal. 418 

  Suitability 

 
 

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 

Su
it

ab
ili

ty
 0.0-0.2 1.00 0.75 0.50 0.25 0.00 

0.2-0.4 0.75 1.00 0.75 0.50 0.25 

0.4-0.6 0.50 0.75 1.00 0.75 0.50 

0.6-0.8 0.25 0.50 0.75 1.00 0.75 

0.8-1.0 0.00 0.25 0.50 0.75 1.00 

 419 

Greek legislation on environmental flows coincides with the period of strict 420 

validity of the developed models (i.e. summer). Consequently the developed 421 

models allowed the comparison in WUA terms of the hypothetical extractions of 422 

the largest flow legally permitted. Currently, Greek legislation establishes the 423 

minimum flow as a percentage of the natural flow according to the highest value 424 

of the following rules: 425 

 426 

1. 30 % of the mean monthly flows of June, July and August 427 
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2. 50 % of the mean monthly flow of September. 428 

3. 0.03 m3/s. 429 

4. 0.2 m depth at the thalweg if there is sensitive ichthyofauna present. 430 

 431 

The hydrological data close to the study site of Mesochora are scarce with only 432 

two complete hydrologic cycles available (1986–1988) although, these data 433 

were used to infer the mean monthly flow (Fig. 4) which presented the minimum 434 

in August (1.44 m3/s) and the maximum in April (32.91 m3/s). Finally, the 435 

analysis focused on the months from June to September (i.e. 8.93, 4.92, 1.44, 436 

1.85 m3/s), and the same period but considering the worst scenario (i.e. 2.68, 437 

1.48, 0.43, 0.92 m3/s). The values of the WUAs for these flows (natural and 438 

hypothetically impacted) were interpolated from the corresponding WUA-flow 439 

curves for both models, GAM and TSK fuzzy, and the impact on the habitat 440 

suitability of Greek legislation was discussed. 441 

 442 

 443 

Fig. 4 Natural flow regime in the Acheloos River in the near vicinity of the Mesochora 444 

dam. Band width corresponds to the 0.95 confidence interval. 445 
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 446 

3 Results 447 

Based on the results obtained during the 3 × 3 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 the GAMs 448 

would outperform the TSK fuzzy models (Table 2). The training of the ultimate 449 

models with the entire dataset mitigated such a trend and both models 450 

presented similar values of the performance criteria for the three size classes 451 

(Table 2 values between brackets). 452 

 453 

Table 2 Accuracy or Correctly Classified Instances (CCI), Sensitivity (Sn), Specificity 454 

(Sp), Cohen’s kappa (Kappa) and True Skill Statistics (TSS) for the developed models. 455 

The values for the ultimate models use in the habitat assessment (i.e. those without 456 

cross validation) appear between brackets  457 

 
Large Medium Small 

 
GAM TSK GAM TSK GAM TSK 

CCI 
0.67±0.05 

(0.72) 
0.45±0.35 

(0.68) 
0.64±0.05 

(0.68) 
0.46±0.35 

(0.68) 
0.63±0.07 

(0.72) 
0.48±0.36 

(0.74) 

Sn 
0.66±0.07 

(0.74) 
0.49±0.35 

(0.71) 
0.64±0.06 

(0.75) 
0.48±0.29 

(0.68) 
0.55±0.14 

(0.72) 
0.43±0.24 

(0.59) 

Sp 
0.68±0.08 

(0.72) 
0.46±0.32 

(0.67) 
0.64±0.08 

(0.66) 
0.47±0.34 

(0.68) 
0.66±0.08 

(0.72) 
0.51±0.36 

(0.78) 

Kappa 
0.31±0.08 

(0.41) 
0.21±0.14 

(0.34) 
0.23±0.05 

(0.32) 
0.19±0.1 

(0.29) 
0.16±0.12 

(0.35) 
0.2±0.11 

(0.33) 

TSS 
0.34±0.08 

(0.46) 
0.24±0.16 

(0.38) 
0.29±0.05 

(0.42) 
0.24±0.12 

(0.37) 
0.2±0.15 

(0.44) 
0.24±0.12 

(0.37) 

 458 

The PDPs showed similar pattern for both approaches basically differing in their 459 

smoothness degree with the TSK-Fuzzy model yielding piecewise rectilinear 460 

PDPs (Fig. 5). 461 



 

24 

 

In general, the large W.B. trout selected low flow velocity microhabitats with the 462 

largest depth, coarse-to-rocky substrates (cobble to bedrock) and abundant 463 

cover. The medium W.B. trout presented slight discrepancies between the GAM 464 

and the TSK model. The PDPs showed preference for low flow velocity with 465 

middle-to-large depth, whereas the substrate presented the largest discrepancy. 466 

The TSK fuzzy model placed the optimum for fine substrate whereas the GAM 467 

model did it for coarse substrate (gravel and cobble). Finally, the medium size 468 

class selected microhabitats with cover either scarce or abundant. The small 469 

W.B. trout also presented slight discrepancies between the GAM and the TSK 470 

fuzzy model. The PDPs coincided in the preference for microhabitats with low 471 

flow velocity but differed in regards to the optimal depth; the GAM stated as 472 

preferable deeper microhabitats. The small size class selected a wide range of 473 

substrate types from fine to coarse substrates and also selected microhabitats 474 

with either scarce or abundant cover. 475 

 476 
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 477 

Fig. 5 Partial Dependence Plots (PDPs) calculated by means of the GAMs and the TSK 478 

fuzzy models for the three size classes of the West Balkan (W.B.) trout. 479 

 480 
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The study site at the Acheloos River presented low suitability for the W.B. trout 481 

thus the WUA-flow curves presented low values in comparison with the 482 

corresponding wetted area (Fig. 6). The TSK fuzzy models presented generally 483 

lower WUA values of the WUA than the GAM’s counterparts but showing similar 484 

patterns. Though both curves presented a very gentle slope, only the WUA-flow 485 

curves for the large W.B. trout showed discrepant trends. Thus, the GAM-486 

related curve presented a gentle decreasing trend and the TSK’s an increasing 487 

one. The values of the fuzzy kappa were relatively low; nevertheless, in 488 

accordance with the concordant PDPs, the fuzzy kappa analysis suggested 489 

similar spatial distribution of the suitable and unsuitable microhabitats achieving 490 

the larger values for those flows with closer values of the WUA. Only the large 491 

W.B. trout presented an erratic pattern, especially for these flows between 0.5 492 

and 5 m3/s which presented the larger differences in terms of WUA but 493 

relatively high values of fuzzy kappa. 494 

 495 
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 496 

Fig. 6 Upper sequence; WUA-flow curves calculated with the GAM and the TSK-fuzzy. 497 

Lower sequence fuzzy kappa-flow curves for the three size classes of the West Balkan 498 

(W.B.) trout. The highest curve corresponds to the wetted area. 499 

 500 

Generally, the GAMs demonstrated to be more optimistic in the habitat 501 

assessment by significantly increasing the pixels assessed with low to 502 

intermediate suitability (i.e. from 0.2 to 0.6). Fig. 7 depicts the habitat 503 

assessment for the flows with the most discrepant WUA; 0.6, 25 and 40 m3/s for 504 

the large, the medium and the small W.B. trout respectively (0.5, 21 and 40 505 

m3/s considering the lowest values of fuzzy kappa). The regions assessed with 506 

high suitability were almost coincident but the areas assessed with low to 507 

intermediate suitability were larger for the GAMs which in accordance with the 508 
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values stated in the similarity matrix, caused the relatively low values of the 509 

fuzzy kappa statistic. 510 

 511 

 512 

Fig. 7 General view of the habitat assessment for the flows with the most discrepant 513 

Weighted Usable Area.  514 

 515 

In accordance with the patterns observed in the WUA-flow curves the 516 

hypothetical reduction of the running flows following legal minimum flow norms 517 

would present either positive or negative values. The large W.B. trout would 518 

experience an increase of the WUA in each of the analysed flows, regardless 519 

the considered model, GAM or TSK (Fig. 8). Conversely, the medium size class 520 

would experience a decrement of the WUA for every month and habitat 521 

suitability model. Finally the small W.B. trout was the only size class that mixed 522 
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the trends. Both models suggested a decrement in June whereas the GAM 523 

yielded almost the same values of WUA for the natural and the hypothetically 524 

regulated counterparts. Conversely the TSK fuzzy model suggested a small 525 

increase of the WUA for the same period. 526 

 527 

  528 

Fig. 8 Weighted Usable Area (WUA) for the mean monthly natural flow in the analysed 529 

period and values derived from a hypothetical extraction of the largest legal amount of 530 

water, 70 % in June, July and August and 50 % in September. Maximum in the y-axis 531 

correspond to the wetted area of the largest monthly mean flow (April; 32.91 m3/s). 532 

 533 

The WUA-flow curves inferred with the GAMs showed steeper shapes; 534 

consequently the per cent variation of WUA was larger than the ones for the 535 

TSK fuzzy models (Table 3). Only the TSK fuzzy model for small W.B. trout 536 

inverted this trend by showing smaller variations than the GAM. Even though 537 

the minimum hypothetical reduction in the running flow would be of 50 % that 538 

percentage of variation was never exceeded either positively or negatively; the 539 

largest predicted impact would affect largely the medium W.B. trout with a 540 

predicted reduction of ca. 37 % in June. 541 
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 542 

Table 3 Per cent variation of the WUA derived from the hypothetical extraction of the 543 

largest legal amount of water (release of only the minimum legal environmental flow 544 

during summer). 545 

    June July August September 

Large 
GAM 20% 20% 7% 8% 

TSK 0% 15% 13% 14% 

Medium 
GAM -36% -32% -24% -14% 

TSK -38% -23% -14% -6% 

Small 
GAM -17% 2% -2% 1% 

TSK -22% 7% 8% 9% 

 546 

4 Discussion 547 

4.1 Models’ comparison 548 

In accordance with the calculated performances and the agreement between 549 

the PDPs, the entire set of habitat suitability models (GAMs and TSK fuzzy 550 

models) were considered adequate for EFA. Analysing the performance criteria 551 

of the ultimate models, both approaches presented similar values in magnitude, 552 

which practically coincided with those obtained in previous studies involving 553 

similar datasets of salmonids (Muñoz-Mas et al., 2012; Muñoz-Mas et al., 554 

2014). In those studies, a Mandami-Asilian fuzzy model was developed for 555 

medium brown trout and another one for large brown trout by means of 556 

probabilistic neural networks achieving values of kappa and TSS near to 0.4. 557 

However analysing the performance criteria obtained through the cross-558 

validation the GAMs proved a larger predictive capability and especially a larger 559 

stability (i.e. smaller standard deviation). Fuzzy models are universal 560 
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approximators (Castro, 1995) therefore they can over-fit the data. The use of 561 

adequate datasets has proved fundamental in the development of proficient 562 

fuzzy models (Yi et al., 2014); thus two thirds of the data from any of our 563 

datasets (i.e. the one for large, medium and small W.B. trout) training 81 rules, 564 

which corresponds to 3 fuzzy sets to the 4th degree, have demonstrated to be 565 

insufficient to render generalizing models in every one of the nine trials. 566 

Consequently, some models poorly performed over the corresponding 567 

validation datasets. Accordingly, on the basis of selecting the most stable and 568 

accurate model, GAMs could be considered a slightly preferable option for EFA, 569 

especially taking into account that there was no validation with independent 570 

data. 571 

The main reason for the GAM outperformance is its greater flexibility in 572 

responses adjustment and the only way to increase the flexibility of the TSK 573 

fuzzy model is the increase of the amount of fuzzy sets (increasing granularity) 574 

and/or testing different membership functions. There are several approaches to 575 

simultaneously optimize the number and/or the shapes of the membership 576 

functions simultaneously with the optimization of the consequents (e.g. Casillas 577 

et al., 2005; Alcalá-Fdez et al., 2009). However, these approaches tend to be 578 

detrimental to the interpretability (i.e. the capability to express the behaviour of 579 

the real system in a comprehensible way), which is a fundamental advantage of 580 

fuzzy logic based models (Casillas et al., 2005). The membership functions (in 581 

this case triangular) condition the transitions between the suitability assigned to 582 

the different regions of the universe of discourse (i.e. the ones described in the 583 

fuzzy rules) and thus linear membership functions turned in linear PDPs. 584 
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Despite specific studies demonstrated that there is not an optimal membership 585 

function applicable to every problem (Mitaim and Kosko, 2001) in most of the 586 

cases the studies addressed to EFA skipped the analysis of different 587 

alternatives (e.g. Muñoz-Mas et al., 2012; Yi et al., 2014; Boavida et al., 2014). 588 

Gaussian or bell-shaped membership functions could produce rounded and 589 

smooth PDPs (Mitaim and Kosko, 2001) however, triangular membership 590 

functions present remarkable advantages; they are defined by few parameters 591 

which can be easily tuned (Alcalá-Fdez et al., 2009) and the sum of 592 

membership for each data is always one. As a consequence, triangular 593 

membership functions still are being used in the development of novel 594 

modelling approaches (e.g. Casillas et al., 2005; Alcalá-Fdez et al., 2009) and 595 

thus we considered them an adequate choice. On the other hand increasing the 596 

number of fuzzy sets may increase models’ accuracy. However, it also 597 

increases the possibility of over-fitting the data and the ratio of undetermined 598 

rules (Mouton et al., 2008). In our study, the PDPs of both approaches markedly 599 

matched, in contrast with previous studies where they differed (Fukuda et al., 600 

2013). Therefore, it was considered that the prior constraint by limiting the 601 

amount of knots and of fuzzy sets up to three allowed the development of sound 602 

models that fitted well with the ecological gradient theory (Austin, 2007) and 603 

thus, the differences in models’ performance were insufficient to trigger the 604 

search of additional improvements. 605 

 606 

 607 
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4.2 West Balkan trout habitat selection 608 

The PDPs for the W.B. trout closely resembled the habitat selection patterns 609 

observed in other salmonids of mountain streams, especially the brown trout. 610 

Large W.B. trout selected habitats with low velocity, large depth, coarse 611 

substrate, even bedrock, and abundant cover. Such patterns practically 612 

coincided with Bovee’s (1978) HSCs for large brown trout with the only 613 

difference appearing in the selection related to bedrock substrate. Likewise, 614 

Ayllón et al. (2010) and Muñoz-Mas et al. (2014) also reported the use of large 615 

depth and coarse (also bedrock) substrates; however in those warmer 616 

Mediterranean rivers brown trout selected faster microhabitats, most probably 617 

because those rivers presented higher summer water temperatures (22 ºC) – 618 

enhancing the natatorial capacity – than the ones observed in the Voidomatis 619 

River (10-12 ºC summer temperature). Although, none of these studies 620 

independently considered cover a variable that can be also influencing such 621 

differences. Cover is a more difficult variable to identify and quantify what may 622 

explain its absence from many habitat studies (Heggenes et al., 1999). 623 

Nevertheless Strakosh et al. (2003) studied the patterns of cover selection of 624 

medium-to-large brown trout (body length > 17 cm) finding that the most 625 

important cover types were the undercut banks, vegetation, log jams, water 626 

turbulence and depth; whereas overhanging canopy and shade proved to be of 627 

lesser importance. We summarized the available cover in a single index 628 

although we can asseverate that the most used cover coincided with those 629 

detailed above; but the shaded area was profusely used by the large W.B. trout. 630 
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The PDPs of medium W.B. trout for velocity, depth and substrate also matched 631 

those patterns of habitat selection described by Bovee’s (1978) HSCs. Both 632 

PDPs coincided with Bovee’s (1978) HSCs by stating 0 m/s as the most 633 

suitable flow velocity and a gentle decrement of the suitability in comparison 634 

with the more abrupt decrement observed in the PDPs for the large W.B. trout. 635 

In addition medium W.B. trout selected shallower microhabitats than the large 636 

counterpart. Such differences typical of salmonids (Gibson, 1993) have been 637 

also reported in Iberian rivers where juvenile brown trout occupied smaller 638 

depth than the adults (Ayllón et al., 2010; Muñoz-Mas et al., 2012; Muñoz-Mas 639 

et al., 2014). Conversely the PDPs for substrate differed from the suitability 640 

described within the aforementioned literature; several authors suggested acute 641 

HSCs with the optimum at cobbles (Bovee, 1978; Ayllón et al., 2010; Muñoz-642 

Mas et al., 2012), whereas the PDPs for the medium W.B. trout suggested a 643 

wider optimal range from fine to coarse substrate. The GAM stated the optimum 644 

at cobbles whereas the TSK fuzzy model displaced it to silt and sand. However 645 

we cannot rule out that these differences are only caused by the number of 646 

degrees of freedom set up during the development of these HSCs which were 647 

significantly larger in comparison with the GAMs herein developed (Bovee, 648 

1978; Muñoz-Mas et al., 2012). Habitat selection in salmonids is based on their 649 

competitive abilities and the profitability of territories in terms of both potential 650 

net energy intake rate and predation risk (Ayllón et al., 2009). The existing 651 

literature stated a weaker over-selection of microhabitats with cover for medium 652 

size brown trout in comparison with the large counterpart (Vismara et al., 2001) 653 

which would be concordant with the patterns described in the PDPs for medium 654 
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W.B. trout. Cover was summarized in a single predictor although, it would be 655 

plausible that lighter cover provided enough shelter for these smaller 656 

individuals. However, trout species have a territorial behaviour, consequently 657 

the distribution of younger individuals could be also affected by older fish 658 

through intercohort competition (Ayllón et al., 2009) displacing the smaller and 659 

weaker individuals from optimal microhabitats which could also possibly explain 660 

these differences. 661 

The differences between the PDPs for the small W.B. trout and the small brown 662 

trout literature were larger. Our results showed that small W.B. trout tended to 663 

occupy near-bank microhabitats with low flow velocity (optimum at 0 m/s) and 664 

lower depth than their larger counterparts, whereas the literature lacks 665 

consensus about the most suitability habitats for the small brown trout. For 666 

instance Bovee (1978) and Ayllón et al. (2009) suggested a wider optimal range 667 

for velocity than the medium counterpart but a more restricted one for depth, 668 

(0.3 m to 0.5 m), which is significantly shallower than the one depicted in the 669 

corresponding PDPs. The PDPs for substrate do not fit better the patterns of 670 

substrate selection described in brown trout literature. Thereby, while our 671 

results suggested a wide range of suitable substrates, brown trout studies 672 

restricted the suitable substrates to gravel and cobble (Bovee, 1978; Ayllón et 673 

al., 2009). Nevertheless, we considered the modelled suitability plausible since 674 

it was similar to observations in some Iberian rivers (Muñoz-Mas et al. 675 

unpublished). Larger brown trout tended to occupy areas with deeper water and 676 

more cover than did yearling brown trout (Heggenes, 1988a) apparently 677 

because small brown trout easily shelter in the cobble-boulder substrate’s 678 
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interstitial spaces (Heggenes, 1988b). Such a pattern of cover use could explain 679 

the differences observed in the PDPs however, likewise the medium size case, 680 

they could be caused by the aforementioned intercohort competition. To sum up 681 

we conclude that W.B. trout habitat selection certainly resemble those 682 

described for brown trout but the abundance and types of the available 683 

microhabitats (Rincón and Lobón-Cerviá, 1993) and the modelling technique 684 

(Fukuda et al., 2013) could have influenced the inferred preferences. Therefore 685 

we acknowledge that this comparison should be cautiously interpreted as it 686 

might need further verification. 687 

 688 

4.3 Environmental flow assessment 689 

The populations of the W.B. trout in the Acheloos River have declined during 690 

the last decade; thus, W.B. trout is currently rather scarce in the main-stem of 691 

the river system as we confirmed during the summer sampling. Such a 692 

phenomenon has been suggested to be caused by severe overfishing involving 693 

illegal spear fishing and electrofishing since instream and riparian conditions in 694 

this stretch of river are not degraded (Zogaris et al., 2009). This section of the 695 

Acheloos River is dominated by low populations of cyprinids (Economou et al., 696 

2007) thus the extensive shallow braided channel may not suit dense trout 697 

populations. Consequently, the scarcity of W.B. trout did not allow performing 698 

any validation of the developed habitat suitability models. However, interviewed 699 

anglers stated that the large W.B. trout were always found in the large and deep 700 

pools. These comments, together with the aforementioned similarities with 701 
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brown trout habitat selection patterns, enhance the credibility of the low values 702 

of WUA calculated for most of the simulated flows and the subsequent 703 

comparison. 704 

Nowadays a common approach to overcome the possible bias of using a given 705 

modelling technique is the use of models’ ensembles, based on a single 706 

technique (Muñoz-Mas et al., 2015) or combining the predictions of several 707 

techniques (Muñoz-Mas et al., 2016). Nevertheless the coincidences between 708 

the PDPs, the patterns of the WUA-flow curves and, especially in the effects of 709 

the hypothetical extraction of the maximum amount of water legally permitted 710 

(fairly coincident, positively or negatively) suggested this approach, though 711 

recommendable, unnecessary. Certainly, the relatively low values of the fuzzy 712 

kappa statistic suggested low similarity. Although the most discrepant flows (i.e. 713 

0.6, 25 and 40 m3/s for large, medium and small W.B. trout respectively) 714 

presented the optimal areas in the same locations as well as any other pair of 715 

flows did in accordance with the increasing values of the fuzzy kappa statistic. 716 

Such low values of the fuzzy kappa statistic have been caused by the more 717 

classificatory character of the TSK fuzzy models (i.e. they tended to provide 718 

lopsided values either towards zero or one). However, another reason that 719 

could be playing a significant role for such a low values is the well documented 720 

dependence of the kappa statistic on data prevalence (Allouche et al., 2006). As 721 

a consequence we cannot discard that these low values of the fuzzy kappa 722 

have been exacerbated by the bias on the categories of the assessed 723 

suitability, since the TSK fuzzy models assessed most of the pixels within the 724 

category from 0 to 0.2 and very few to the remaining categories. The study site 725 
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resembled a deep run, a morphology characterized by relatively high flow 726 

velocity which tends to increase with the increase of the flow rate. Therefore in 727 

accordance with the modelled habitat requirements we concluded that the 728 

resulting low suitability of the site is certainly plausible and thus both 729 

approaches, GAMs and TSK fuzzy models, should be considered almost equal 730 

for EFA though the per cent reduction in the WUAs slightly varied. We referred 731 

the increase or decrease on WUA to the WUA in natural flow regime however, 732 

environmental flow legislation typically refers it to a specific WUA value (e.g. the 733 

maximum WUA) to facilitate the proper comparison (Muñoz-Mas et al., 2012). 734 

As a consequence, the effects of the hypothetical water abstraction, which 735 

varied regarding the flow and size, should be viewed as illustrative of the 736 

changing trends in the suitable habitat available and the absolute per cent 737 

differences ignored. Likewise previous studies (Li et al., 2015), the reduction of 738 

the flow rate can have a positive effect as it had for the large individuals but also 739 

negatives as it demonstrated for medium and, to a lesser extent, for small W.B. 740 

trout. Accordingly to these divergent effects the shifts in the WUA proved 741 

insufficient to evaluate either positively or negatively the Greek provisions for 742 

the minimum flow; habitat time series analysis (Milhous et al., 1990) should be 743 

performed in the near future to ascertain its properness. Nevertheless we 744 

considered hard to believe that a reduction of 70 % of the flow rate can be 745 

innocuous for the inhabiting biota. 746 

 747 

4.4 Models’ selection 748 
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For the foregoing we considered that the GAMs and the TSK fuzzy counterparts 749 

quite similar models. In this case the only element that could tip the balance 750 

between GAMs or TSK fuzzy models was the accuracy and the stability, which 751 

was superior in the GAMs since the PDPs were ecologically relevant and fitted 752 

well each other and the habitat selection patterns of other salmonids. However, 753 

GAMs need sound training datasets and, in their very basic implementation, do 754 

not consider variables interactions. Conversely, the mathematics behind the 755 

zero order TSK fuzzy models are simple enough to allow their modification or 756 

their development by means of experts (e.g. following Ahmadi-Nedushan et al., 757 

2008) which upholds their validity for EFA, especially, dealing with impoverished 758 

populations. In addition fuzzy models will be specially suited to do exploratory 759 

analysis when interactions between variables are suspected to exist. As a 760 

consequence we would not advocate for one or the other approach rather for 761 

combinations of them in accordance with the necessities and limitations of the 762 

problem at hand. 763 

 764 

5 Conclusions 765 

GAMs outperformed TSK fuzzy models due to greater flexibility in modelling 766 

habitat suitability. The PDPs for the GAMs and the TSK fuzzy models 767 

suggested similar habitat selection. Large W.B. trout selected slow flowing 768 

microhabitats with the greatest depth, coarse and bedrock substrates and 769 

abundant cover. The medium-sized W.B. trout mostly selected microhabitats 770 

with low flow velocity but they proved more versatile by tolerating higher flow 771 
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velocity. In terms of depth, substrate and cover they occupied deep areas with 772 

coarse substrate but were not as restrictive regarding the abundance of cover 773 

than the large counterpart. Finally the small W.B. trout selected shallow 774 

microhabitats with low flow velocity and fine-to-coarse substrate. Apparently the 775 

small W.B. trout used the interstitial space of the coarse substrate for 776 

concealment thus proved a weaker preference for microhabitats with abundant 777 

cover. The habitat selection patterns as well as the ontogenetic shift in the 778 

habitat preferences resembled those observed for the brown trout. In 779 

accordance with the similarities observed in the PDPs both approaches yielded 780 

similar habitat suitability assessment. The study site in the Acheloos River 781 

indicted a low suitability for the W.B. trout although the GAMs provided more 782 

optimistic results. The TSK models presented generally values of the WUA 783 

slightly lower than the GAM’s but the shape of the PDPs, the habitat 784 

assessment (optimal microhabitats) and the shape of the WUA-flow curves 785 

largely matched. Therefore, the predicted variation in the WUA exerted by the 786 

hypothetical flow reduction was similar for both modelling approaches. 787 

However, the sign of the hypothetical change in the WUA varied, being positive 788 

for the large W.B trout and negative for the remaining size classes. Thus, in 789 

accordance with these divergent effects it has not been possible to evaluate the 790 

Greek state-legislated requirements for the minimum flow. Nevertheless, as a 791 

consequence of the agreement between the modelling approaches, we would 792 

advocate for combinations of GAMs and TSK fuzzy models in environmental 793 

flow assessment. 794 

 795 



 

41 

 

ACKNOWLEDGMENTS 796 

This study was supported by the ECOFLOW project funded by the Hellenic 797 

General Secretariat of Research and Technology in the framework of the NSRF 798 

2007-2013. We are grateful for field assistance of Dimitris Kommatas, Orfeas 799 

Triantafillou and Martin Palt and to Alcibiades N. Economou for assistance in 800 

discussions on trout biology and ecology. 801 

 802 

REFERENCES 803 

Ahmadi-Nedushan, B., St-Hilaire, A., Bérubé, M., Ouarda, T.B.M.J. and 804 

Robichaud, É, 2008. Instream flow determination using a multiple input fuzzy-805 

based rule system: a case study. River Res. Appl. 24 (3), 279–292. 806 

http://dx.doi.org/10.1002/rra.1059. 807 

Akaike, H., 1998. Information Theory and an Extension of the Maximum 808 

Likelihood Principle. In: Parzen, E., Tanabe, K. and Kitagawa, G.(ed.), Selected 809 

Papers of Hirotugu Akaike. Springer, New York, (USA), pp. 199-213. 810 

Alcalá-Fdez, J., Alcalá, R., Gacto, M.J. and Herrera, F., 2009. Learning the 811 

membership function contexts for mining fuzzy association rules by using 812 

genetic algorithms. Fuzzy Sets Syst. 160 (7), 905-921. 813 

http://dx.doi.org/10.1016/j.fss.2008.05.012. 814 

Allouche, O., Tsoar, A. and Kadmon, R., 2006. Assessing the accuracy of 815 

species distribution models: prevalence, kappa and the true skill statistic (TSS). 816 

http://dx.doi.org/10.1002/rra.1059
http://dx.doi.org/10.1016/j.fss.2008.05.012


 

42 

 

J. Appl. Ecol. 43 (6), 1223–1232. http://dx.doi.org/10.1111/j.1365-817 

2664.2006.01214.x. 818 

Anderson, D.R., Burnham, K.P. and Thompson, W.L., 2000. Null hypothesis 819 

testing: Problems, prevalence, and an alternative. J. Wildl. Manage. 64 (4), 912-820 

923. http://dx.doi.org/10.2307/3803199. 821 

Arthington, A.H., Bunn, S.E., Poff, N.L. and Naiman, R.J., 2006. The challenge 822 

of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16 823 

(4), 1311-1318. http://dx.doi.org/10.1890/1051-824 

0761(2006)016[1311:TCOPEF]2.0.CO;2. 825 

Austin, M., 2007. Species distribution models and ecological theory: A critical 826 

assessment and some possible new approaches. Ecol. Model. 200 (1-2), 1-19. 827 

http://dx.doi.org/10.1016/j.ecolmodel.2006.07.005. 828 

Ayllón, D., Almodóvar, A., Nicola, G.G. and Elvira, B., 2009. Interactive effects 829 

of cover and hydraulics on brown trout habitat selection patterns. River Res. 830 

Appl. 25 (8), 1051-1065. http://dx.doi.org/10.1002/rra.1215. 831 

Ayllón, D., Almodóvar, A., Nicola, G.G. and Elvira, B., 2010. Ontogenetic and 832 

spatial variations in brown trout habitat selection. Ecol. Freshw. Fish. 19 (3), 833 

420–432. http://dx.doi.org/10.1111/j.1600-0633.2010.00426.x. 834 

Beakes, M.P., Moore, J.W., Retford, N., Brown, R., Merz, J.E. and Sogard, 835 

S.M., 2014. Evaluating statistical approaches to quantifying juvenile Chinook 836 

http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.2307/3803199
http://dx.doi.org/10.1890/1051-0761(2006)016%5b1311:TCOPEF
http://dx.doi.org/10.1890/1051-0761(2006)016%5b1311:TCOPEF
http://dx.doi.org/10.1016/j.ecolmodel.2006.07.005
http://dx.doi.org/10.1002/rra.1215
http://dx.doi.org/10.1111/j.1600-0633.2010.00426.x


 

43 

 

salmon habitat in a regulated California river. River Res. Appl. 30 (2), 180-191. 837 

http://dx.doi.org/10.1002/rra.2632. 838 

Belgiorno, V., Naddeo, V., Scannapieco, D., Zarra, T. and Ricco, D., 2013. 839 

Ecological status of rivers in preserved areas: Effects of meteorological 840 

parameters. Ecol. Eng. 53 (0), 173-182. 841 

http://dx.doi.org/10.1016/j.ecoleng.2012.12.039. 842 

Benejam, L., Angermeier, P.L., Munné, A. and García-Berthou, E., 2010. 843 

Assessing effects of water abstraction on fish assemblages in Mediterranean 844 

streams. Freshw. Biol. 55 (3), 628-642. http://dx.doi.org/10.1111/j.1365-845 

2427.2009.02299.x. 846 

Boavida, I., Dias, V., Ferreira, M.T. and Santos, J.M., 2014. Univariate functions 847 

versus fuzzy logic: Implications for fish habitat modeling. Ecol. Eng. 71 533-538. 848 

http://dx.doi.org/10.1016/j.ecoleng.2014.07.073. 849 

Bovee, K.D., 1978. Probability of use criteria for the family Salmonidae. 850 

Instream Flow Information Paper No. 4. FWS/OBS-78/07 Washington DC, 851 

(USA), pp. 53. 852 

Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J. and 853 

Henriksen, J., 1998. Stream habitat analysis using the instream flow 854 

incremental methodology Geological Survey - Information and Technology 855 

Report 1998-0004, Fort Collins, CO (USA), pp. 130. 856 

http://dx.doi.org/10.1002/rra.2632
http://dx.doi.org/10.1016/j.ecoleng.2012.12.039
http://dx.doi.org/10.1111/j.1365-2427.2009.02299.x
http://dx.doi.org/10.1111/j.1365-2427.2009.02299.x
http://dx.doi.org/10.1016/j.ecoleng.2014.07.073


 

44 

 

Casillas, J., Cordón, O., del Jesus, M.J. and Herrera, F., 2005. Genetic tuning 857 

of fuzzy rule deep structures preserving interpretability and its interaction with 858 

fuzzy rule set reduction. IEEE Trans. Fuzzy Syst. 13 (1), 13-29. 859 

http://dx.doi.org/10.1109/TFUZZ.2004.839670. 860 

Castro, J.L., 1995. Fuzzy logic controllers are universal approximators. IEEE 861 

Trans. Syst. Man Cybern. 25 (4), 629-635. http://dx.doi.org/10.1109/21.370193. 862 

Costa, R.M.S., Martínez-Capel, F., Muñoz-Mas, R., Alcaraz-Hernández, J.D. 863 

and Garófano-Gómez, V., 2012. Habitat suitability modelling at mesohabitat 864 

scale and effects of dam operation on the endangered Júcar nase, 865 

Parachondrostoma arrigonis (River Cabriel, Spain). River Res. Appl. 28 (6), 866 

740-752. http://dx.doi.org/10.1002/rra.1598. 867 

Delling, B., 2010. Diversity of western and southern Balkan trouts, with the 868 

description of a new species from the Louros River, Greece (Teleostei: 869 

Salmonidae). Ichthyol. Explor. Freshwaters 21 (4), 331-344.  870 

Döll, P., Fiedler, K. and Zhang, J., 2009. Global-scale analysis of river flow 871 

alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13 872 

(12), 2413-2432. http://dx.doi.org/10.5194/hess-13-2413-2009. 873 

Economou, A.N., Zogaris, S., Chatzinikolaou, Y., Tachos, V., Giakoumi, S., 874 

Kommatas, D., Koutsikos, N., Vardakas, L., Blasel, K. and Dussling, U., 2007. 875 

Development of an ichthyological multimetric index for ecological status 876 

assessment of Greek mountain streams and rivers Athens (Greece), pp. 166. 877 

http://dx.doi.org/10.1109/TFUZZ.2004.839670
http://dx.doi.org/10.1109/21.370193
http://dx.doi.org/10.1002/rra.1598
http://dx.doi.org/10.5194/hess-13-2413-2009


 

45 

 

Fukuda, S., 2013. Effects of data prevalence on species distribution modelling 878 

using a genetic takagi-sugeno fuzzy system. IEEE International Workshop on 879 

Genetic and Evolutionary Fuzzy Systems (GEFS), Singapore, 21-27. 880 

Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J. and Mouton, A.M., 881 

2013. Habitat prediction and knowledge extraction for spawning European 882 

grayling (Thymallus thymallus L.) using a broad range of species distribution 883 

models. Environ. Model. Softw. 47 1-6. 884 

http://dx.doi.org/10.1016/j.envsoft.2013.04.005. 885 

Gibson, R.J., 1993. The Atlantic salmon in fresh water: spawning, rearing and 886 

production. Rev. Fish Biol. Fisher. 3 (1), 39-73. 887 

http://dx.doi.org/10.1007/bf00043297. 888 

Guay, J.C., Boisclair, D., Rioux, D., Leclerc, M., Lapointe, M. and Legendre, P., 889 

2000. Development and validation of numerical habitat models for juveniles of 890 

atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 57 (10), 2065-2075. 891 

http://dx.doi.org/10.1139/cjfas-57-10-2065. 892 

Hagen-Zanker, A., Straatman, B. and Uljee, I., 2005. Further developments of a 893 

fuzzy set map comparison approach. Int. J. Geogr. Inf. Sci. 19 (7), 769-785. 894 

http://dx.doi.org/10.1080/13658810500072137. 895 

Hastie, T.J. and Tibshirani, R.J., 1990. Generalized Additive Models. Chapman 896 

& Hall/CRC, London, (UK), 352 pp. 897 

http://dx.doi.org/10.1016/j.envsoft.2013.04.005
http://dx.doi.org/10.1007/bf00043297
http://dx.doi.org/10.1139/cjfas-57-10-2065
http://dx.doi.org/10.1080/13658810500072137


 

46 

 

Heggenes, J., 1988a. Effects of short-term flow fluctuations on displacement of, 898 

and habitat use by, brown trout in a small stream. Trans. Am. Fish. Soc. 117 899 

(4), 336-344. http://dx.doi.org/10.1577/1548-8659(1988)1172.3.CO;2. 900 

Heggenes, J., 1988b. Substrate preferences of brown trout fry (Salmo trutta) in 901 

artificial stream channels. Can. J. Fish. Aquat. Sci. 45 (10), 1801-1806. 902 

http://dx.doi.org/10.1139/f88-211. 903 

Heggenes, J., Baglinière, J.L. and Cunjak, R.A., 1999. Spatial niche variability 904 

for young Atlantic salmon (Salmo salar) and brown trout (S. trutta) in 905 

heterogeneous streams. Ecol. Freshw. Fish 8 (1), 1-21. 906 

http://dx.doi.org/10.1111/j.1600-0633.1999.tb00048.x. 907 

Johnson, H.D., 1980. The comparison of usage and availability measurement 908 

for evaluating resource preference. Ecology 61 65-71. 909 

http://dx.doi.org/10.2307/1937156. 910 

Jorde, K., 1997. Ökologisch begründete, dynamische 911 

Mindestwasserregelungen bei Ausleitungskraftwerken. Universität Stuttgart, 912 

Stuttgart (Germany), pp. 158. 913 

Jowett, I.G. and Davey, A.J.H., 2007. A comparison of composite habitat 914 

suitability indices and generalized additive models of invertebrate abundance 915 

and fish presence-habitat availability. Trans. Am. Fish. Soc. 136 (2), 428-444. 916 

http://dx.doi.org/10.1577/t06-104.1. 917 

http://dx.doi.org/10.1577/1548-8659(1988)117
http://dx.doi.org/10.1139/f88-211
http://dx.doi.org/10.1111/j.1600-0633.1999.tb00048.x
http://dx.doi.org/10.2307/1937156
http://dx.doi.org/10.1577/t06-104.1


 

47 

 

Jowett, I.G. and Duncan, M.J., 2012. Effectiveness of 1D and 2D hydraulic 918 

models for instream habitat analysis in a braided river. Ecol. Eng. 48 92-100. 919 

http://dx.doi.org/10.1016/j.ecoleng.2011.06.036. 920 

Kalogeropoulos, K. and Chalkias, C., 2013. Modelling the impacts of climate 921 

change on surface runoff in small Mediterranean catchments: Empirical 922 

evidence from Greece. Water Environ. J. 27 (4), 505-513. 923 

http://dx.doi.org/10.1111/j.1747-6593.2012.00369.x. 924 

Katopodis, C., 2012. Ecohydraulic approaches in aquatic ecosystems: 925 

Integration of ecological and hydraulic aspects of fish habitat connectivity and 926 

Suitability. Ecol. Eng. 48 (0), 1-7. 927 

http://dx.doi.org/10.1016/j.ecoleng.2012.07.007. 928 

Kottelat, M. and Freyhof, J., 2007. Handbook of European Freshwater Fishes. 929 

Kottelat & Freyhof Publishing, Cornol (Switzerland) & Berlin (Germany), 646 pp. 930 

Lamouroux, N. and Souchon, Y., 2002. Simple predictions of instream habitat 931 

model outputs for fish habitat guilds in large streams. Freshw. Biol. 47 (8), 932 

1531-1542. http://dx.doi.org/10.1046/j.1365-2427.2002.00880.x. 933 

Li, R., Chen, Q., Tonina, D. and Cai, D., 2015. Effects of upstream reservoir 934 

regulation on the hydrological regime and fish habitats of the Lijiang River, 935 

China. Ecol. Eng. 76 (0), 75-83. 936 

http://dx.doi.org/10.1016/j.ecoleng.2014.04.021. 937 

http://dx.doi.org/10.1016/j.ecoleng.2011.06.036
http://dx.doi.org/10.1111/j.1747-6593.2012.00369.x
http://dx.doi.org/10.1016/j.ecoleng.2012.07.007
http://dx.doi.org/10.1046/j.1365-2427.2002.00880.x
http://dx.doi.org/10.1016/j.ecoleng.2014.04.021


 

48 

 

Liaw, A. and Wiener, M., 2002. Classification and Regression by randomForest. 938 

R News 3 (2), 18-22.  939 

Lorenz, A.W., Stoll, S., Sundermann, A. and Haase, P., 2013. Do adult and 940 

YOY fish benefit from river restoration measures? Ecol. Eng. 61, Part A (0), 941 

174-181. http://dx.doi.org/10.1016/j.ecoleng.2013.09.027. 942 

Maddock, I., 1999. The importance of physical habitat assessment for 943 

evaluating river health. Freshwat. Biol. 41 (2), 373-391. 944 

http://dx.doi.org/10.1046/j.1365-2427.1999.00437.x. 945 

Maggini, R., Lehmann, A., Zimmermann, N.E. and Guisan, A., 2006. Improving 946 

generalized regression analysis for the spatial prediction of forest communities. 947 

J. Biogeogr. 33 (10), 1729-1749. http://dx.doi.org/10.1111/j.1365-948 

2699.2006.01465.x. 949 

Mamdani, E.H., 1974. Application of fuzzy algorithms for control of simple 950 

dynamic plant. Proceedings of the Institution of Electrical Engineers 121 (12), 951 

1585-1588. http://dx.doi.org/10.1049/piee.1974.0328. 952 

Martínez-Capel, F., García De Jalón, D., Werenitzky, D., Baeza, D. and Rodilla-953 

Alamá, M., 2009. Microhabitat use by three endemic Iberian cyprinids in 954 

Mediterranean rivers (Tagus River Basin, Spain). Fisheries Manag. Ecol. 16 (1), 955 

52-60. http://dx.doi.org/10.1111/j.1365-2400.2008.00645.x. 956 

http://dx.doi.org/10.1016/j.ecoleng.2013.09.027
http://dx.doi.org/10.1046/j.1365-2427.1999.00437.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01465.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01465.x
http://dx.doi.org/10.1049/piee.1974.0328
http://dx.doi.org/10.1111/j.1365-2400.2008.00645.x


 

49 

 

Mathews, R. and Richter, B.D., 2007. Application of the indicators of hydrologic 957 

alteration software in environmental flow setting. J. Am. Water Resour. Assoc. 958 

43 (6), 1400-1413. http://dx.doi.org/10.1111/j.1752-1688.2007.00099.x. 959 

McClain, M.E., Subalusky, A.L., Anderson, E.P., Dessu, S.B., Melesse, A.M., 960 

Ndomba, P.M., Mtamba, J.O.D., Tamatamah, R.A. and Mligo, C., 2014. 961 

Comparing flow regime, channel hydraulics, and biological communities to infer 962 

flow-ecology relationships in the Mara River of Kenya and Tanzania. Hydrol. 963 

Sci. J. 59 (3-4), 801-819. http://dx.doi.org/10.1080/02626667.2013.853121. 964 

Milhous, R.T., Bartholow, J.M., Updike, M.A. and A.R., M., 1990. Reference 965 

manual for generation and analysis of Habitat Time Series - Version II Biological 966 

Report 90; 27, Washington DC, (USA), pp. 249. 967 

Ministry of Environment, Energy and Climate Change, 2011. 196978/2011. FEK 968 

518/Β/5/04/2011.  969 

Mitaim, S. and Kosko, B., 2001. The shape of fuzzy sets in adaptive function 970 

approximation. IEEE Trans. Fuzzy Syst. 9 (4), 637-656. 971 

http://dx.doi.org/10.1109/91.940974. 972 

Mouton, A.M., Alcaraz-Hernández, J.D., De Baets, B., Goethals, P.L.M. and 973 

Martínez-Capel, F., 2011. Data-driven fuzzy habitat suitability models for brown 974 

trout in Spanish Mediterranean rivers. Environ. Model. Softw. 26 (5), 615–622. 975 

http://dx.doi.org/10.1016/j.envsoft.2010.12.001. 976 

http://dx.doi.org/10.1111/j.1752-1688.2007.00099.x
http://dx.doi.org/10.1080/02626667.2013.853121
http://dx.doi.org/10.1109/91.940974
http://dx.doi.org/10.1016/j.envsoft.2010.12.001


 

50 

 

Mouton, A.M., De Baets, B. and Goethals, P.L.M., 2010. Ecological relevance of 977 

performance criteria for species distribution models. Ecol. Model. 221 (16), 978 

1995-2002. http://dx.doi.org/10.1016/j.ecolmodel.2010.04.017. 979 

Mouton, A.M., De Baets, B., Peter, A., Holzer, G., Müller, R., Goethals, P.L.M., 980 

2008. Entropy-based fuzzy set optimisation for reducing ecological model 981 

complexity. Proceedings of the iEMSs Fourth Biennial Meeting: International 982 

Congress on Environmental Modelling and Software, Barcelona, (Spain), 1750-983 

1757. 984 

Mouton, A.M., Schneider, M., Depestele, J., Goethals, P.L.M. and De Pauw, N., 985 

2007. Fish habitat modelling as a tool for river management. Ecol. Eng. 29 (3), 986 

305-315. http://dx.doi.org/10.1016/j.ecoleng.2006.11.002. 987 

Mouton, A.M., Schneider, M., Peter, A., Holzer, G., Müller, R., Goethals, P.L.M. 988 

and De Pauw, N., 2008. Optimisation of a fuzzy physical habitat model for 989 

spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, 990 

Switzerland). Ecol. Model. 215 (1–3), 122–132. 991 

http://dx.doi.org/10.1016/j.ecolmodel.2008.02.028. 992 

Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F. and Pulido-Velazquez, 993 

M., 2016. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) 994 

under short-term climate change scenarios. Sci. Total Environ. 544 686–700. 995 

http://dx.doi.org/ 10.1016/j.scitotenv.2015.11.147. 996 

http://dx.doi.org/10.1016/j.ecolmodel.2010.04.017
https://biblio.ugent.be/publication?q=parent+exact+%22Proceedings+of+the+iEMSs+Fourth+Biennial+Meeting%3A+International+Congress+on+Environmental+Modelling+and+Software%22
https://biblio.ugent.be/publication?q=parent+exact+%22Proceedings+of+the+iEMSs+Fourth+Biennial+Meeting%3A+International+Congress+on+Environmental+Modelling+and+Software%22
http://dx.doi.org/10.1016/j.ecoleng.2006.11.002
http://dx.doi.org/10.1016/j.ecolmodel.2008.02.028
http://www.sciencedirect.com/science/article/pii/S0048969715311281
http://www.sciencedirect.com/science/article/pii/S0048969715311281
http://dx.doi.org/10.1016/j.scitotenv.2012.07.074
http://dx.doi.org/10.1016/j.scitotenv.2012.07.074


 

51 

 

Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J.D. and Mouton, 997 

A.M., 2015. Can multilayer perceptron ensembles model the ecological niche of 998 

freshwater fish species? Ecol. Model. 309–310 (0), 72-81. 999 

http://dx.doi.org/10.1016/j.ecolmodel.2015.04.025. 1000 

Muñoz-Mas, R., Martínez-Capel, F., Garófano-Gómez, V. and Mouton, A.M., 1001 

2014. Application of Probabilistic Neural Networks to microhabitat suitability 1002 

modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environ. 1003 

Model. Softw. 59 (0), 30-43. http://dx.doi.org/10.1016/j.envsoft.2014.05.003. 1004 

Muñoz-Mas, R., Martínez-Capel, F., Schneider, M. and Mouton, A.M., 2012. 1005 

Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): 1006 

Comparison of data-driven approaches with fuzzy-logic models and univariate 1007 

suitability curves. Sci. Total Environ. 440 123-131. 1008 

http://dx.doi.org/10.1016/j.scitotenv.2012.07.074. 1009 

Orth, D.J. and Maughan, O.E., 1982. Evaluation of the incremental 1010 

methodology for recommending instream flows for fishes. Trans. Am. Fish. Soc. 1011 

111 (4), 413–445. http://dx.doi.org/10.1577/1548-8659(1982)1112.0.co;2. 1012 

Ovidio, M., Baras, E., Goffaux, D., Birtles, C. and Philippart, J.C., 1998. 1013 

Environmental unpredictability rules the autumn migration of brown trout (Salmo 1014 

trutta L.) in the Belgian ardennes. Hydrobiologia 371-372 263-274. 1015 

http://dx.doi.org/10.1023/A:1017068115183. 1016 

http://dx.doi.org/10.1016/j.ecolmodel.2015.04.025
http://dx.doi.org/10.1016/j.envsoft.2014.05.003
http://dx.doi.org/10.1016/j.scitotenv.2012.07.074
http://dx.doi.org/10.1577/1548-8659(1982)111
http://dx.doi.org/10.1023/A:1017068115183


 

52 

 

Papadaki, C., L. Ntoanidis, L., Zogaris, S., Martinez-Capel, F., Muñoz-Mas, R., 1017 

Evelpidou, N. and Dimitriou, E., 2014. Habitat hydraulic modelling for 1018 

environmental flow restoration in upland streams in Greece. 12th International 1019 

Conference on Protection and Restoration of the Environment, Skiathos island, 1020 

(Greece). 1021 

Payne, T.R. and Jowett, I.G., 2012. SEFA - Computer Software System for 1022 

Environmental Flow Analysis based on the Instream Flow Incremental 1023 

Methodology. 9th International Symposium on Ecohydraulics, Vienna, (Austria). 1024 

Platts, P.J., McClean, C.J., Lovett, J.C. and Marchant, R., 2008. Predicting tree 1025 

distributions in an East African biodiversity hotspot: model selection, data bias 1026 

and envelope uncertainty. Ecol.Model. 218 (1-2), 121-134. 1027 

10.1016/j.ecolmodel.2008.06.028. 1028 

R Core Team, 2015. R: A language and environment for statistical computing. 1029 

Version 3.2.1. 1030 

Raleigh, R.F., Zuckerman, L.D. and Nelson, P.C., 1986. Habitat suitability index 1031 

models and instream flow suitability curves: brown trout, revised FWS/OBS - 1032 

82/10.71, Washington DC, (USA), pp. 65. 1033 

Rincón, P.A. and Lobón-Cerviá, J., 1993. Microhabitat use by stream-resident 1034 

brown trout: bioenergetic consequences. T. Am. Fish. Soc. 122 (4), 575-587. 1035 

http://dx.doi.org/10.1577/1548-8659(1993)1222.3.CO;2. 1036 

http://dx.doi.org/10.1577/1548-8659(1993)122


 

53 

 

Riza, L.S., Bergmeir, C., Herrera, F. and Benítez, J.M., 2015. frbs: Fuzzy rule-1037 

based systems for classification and regression in R. J. Stat. Software 65 (6), 1-1038 

30. http://dx.doi.org/10.18637/jss.v065.i06. 1039 

Rose, K.A., Roth, B.M. and Smith, E.P., 2009. Skill assessment of spatial maps 1040 

for oceanographic modeling. J. Mar. Syst. 76 (1-2), 34-48. 1041 

http://dx.doi.org/10.1016/j.jmarsys.2008.05.013. 1042 

Sánchez-Hernández, J. and Amundsen, P., 2015. Trophic ecology of brown 1043 

trout (Salmo trutta L.) in subarctic lakes. Ecol. Freshwat. Fish 24 (1), 148-161. 1044 

http://dx.doi.org/10.1111/eff.12139. 1045 

Schindler, D.E., Hilborn, R., Chasco, B., Boatright, C.P., Quinn, T.P., Rogers, 1046 

L.A. and Webster, M.S., 2010. Population diversity and the portfolio effect in an 1047 

exploited species. Nature 465 (7298), 609-612. 1048 

http://dx.doi.org/10.1038/nature09060. 1049 

Schneider, M., 2001. Habitat - und Abflussmodellierung für Fließgewässer mit 1050 

unscharfen Berechnungsansätzen. Universität Stuttgart, Stuttgart (Germany), 1051 

pp. 180. 1052 

Strakosh, T.R., Neumann, R.M. and Jacobson, R.A., 2003. Development and 1053 

assessment of habitat suitability criteria for adult brown trout in southern New 1054 

England rivers. Ecol. Freshw. Fish. 12, 4265-274. 1055 

http://dx.doi.org/10.1046/j.1600-0633.2003.00022.x. 1056 

http://dx.doi.org/10.18637/jss.v065.i06
http://dx.doi.org/10.1016/j.jmarsys.2008.05.013
http://dx.doi.org/10.1111/eff.12139
http://dx.doi.org/10.1038/nature09060
http://dx.doi.org/10.1046/j.1600-0633.2003.00022.x


 

54 

 

Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its 1057 

applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1), 1058 

116-132. http://dx.doi.org/10.1109/TSMC.1985.6313399. 1059 

Tharme, R.E., 2003. A global perspective on environmental flow assessment: 1060 

Emerging trends in the development and application of environmental flow 1061 

methodologies for rivers. River Res. Appl. 19 (5-6), 397-441. 1062 

http://dx.doi.org/10.1002/rra.736. 1063 

Tomsic, C.A., Granata, T.C., Murphy, R.P. and Livchak, C.J., 2007. Using a 1064 

coupled eco-hydrodynamic model to predict habitat for target species following 1065 

dam removal. Ecol. Eng. 30 (3), 215-230. 1066 

http://dx.doi.org/10.1016/j.ecoleng.2006.11.006. 1067 

Vismara, R., Azzellino, A., Bosi, R., Crosa, G. and Gentili, G., 2001. Habitat 1068 

suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, 1069 

Northern Italy: Comparing univariate and multivariate approaches. Regul. River. 1070 

17 (1), 37–50. http://dx.doi.org/10.1002/1099-1646(200101/02)17:13.0.CO;2-Q. 1071 

Visser, H. and De Nijs, T., 2006. The map comparison kit. Environ. Model. 1072 

Softw. 21 (3), 346-358. http://dx.doi.org/10.1016/j.envsoft.2004.11.013. 1073 

Waters, B.F., 1976. A Methodology for Evaluating the Effects of Different 1074 

Streamflows on Salmonid Habitat. Proceedings of the Symposium and 1075 

Specialty Conference on Instream Flow Needs, Bathesda, MD (USA), 13. 1076 

http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1002/rra.736
http://dx.doi.org/10.1016/j.ecoleng.2006.11.006
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1
http://dx.doi.org/10.1016/j.envsoft.2004.11.013


 

55 

 

Wood, S.N., 2006. Generalized Additive Models: An introduction with R. CRC 1077 

Press, London, (UK), 410 pp. 1078 

Wood, S.N., 2004. Stable and efficient multiple smoothing parameter estimation 1079 

for generalized additive models. J. Am. Stat. Assoc. 99 (467), 673-686. 1080 

http://dx.doi.org/10.1198/016214504000000980. 1081 

Wood, S.N., 2013. On p-values for smooth components of an extended 1082 

generalized additive model. Biometrika 100 (1), 221-228. 1083 

http://dx.doi.org/10.1093/biomet/ass048. 1084 

Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D. and Lewin, J., 1085 

2008. Glacial activity and catchment dynamics in northwest Greece: Long-term 1086 

river behaviour and the slackwater sediment record for the last glacial to 1087 

interglacial transition. Geomorphology 101 (1-2), 44-67. 1088 

http://dx.doi.org/10.1016/j.geomorph.2008.05.018. 1089 

Yao, W., Rutschmann, P. and Sudeep, 2015. Three high flow experiment 1090 

releases from Glen Canyon Dam on rainbow trout and flannelmouth sucker 1091 

habitat in Colorado River. Ecol. Eng. 75 (0), 278-290. 1092 

http://dx.doi.org/10.1016/j.ecoleng.2014.11.024. 1093 

Yi, Y., Cheng, X., Wieprecht, S. and Tang, C., 2014. Comparison of habitat 1094 

suitability models using different habitat suitability evaluation methods. Ecol. 1095 

Eng. 71 (0), 335-345. http://dx.doi.org/10.1016/j.ecoleng.2014.07.034. 1096 

http://dx.doi.org/10.1198/016214504000000980
http://dx.doi.org/10.1093/biomet/ass048
http://dx.doi.org/10.1016/j.geomorph.2008.05.018
http://dx.doi.org/10.1016/j.ecoleng.2014.11.024
http://dx.doi.org/10.1016/j.ecoleng.2014.07.034


 

56 

 

Zadeh, L.A., 1965. Fuzzy sets. Inform. Control 8 (3), 338-353. 1097 

http://dx.doi.org/10.1016/S0019-9958(65)90241-X. 1098 

Zika, U. and Peter, A., 2002. The introduction of woody debris into a 1099 

channelized stream: effect on trout populations and habitat. River Res. Appl. 18 1100 

(4), 355-366. http://dx.doi.org/10.1002/rra.677. 1101 

Zogaris, S. and Economou, A.N., 2009. West Balkan Trout, Salmo fariodes. In: 1102 

Legakis, A. and Maragou, P.(ed.), Red data book of threatened animals of 1103 

Greece. Hellenic Zoological Society, Athens (Greece), pp. 141-143. 1104 

Zogaris, S., Chatzinikolaou, Y. and Dimopoulos, P., 2009. Assessing 1105 

environmental degradation of montane riparian zones in Greece. J. Environ. 1106 

Biol. 30 (5), 719-726.  1107 

  1108 

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1002/rra.677

