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Abstract We elaborate on the existing notion that quantum mechasias emergent
phenomenon, by presenting a thermodynamical theory thétias to quantum me-
chanics. This dual theory is that of classical irreversthErmodynamics. The linear
regime of irreversibility considered here correspond$itogemiclassical approxima-
tion in quantum mechanics. An important issue we addresevisthe irreversibility
of time evolution in thermodynamics is mapped onto the quartmechanical side of
the correspondence.

1 Introduction

In his Nobel Prize Lecture, Prigogine advocated an intrigui/pe of “complementar-
ity between dynamics, which implies the knowledge of trijees or wavefunctions,
and thermodynamics, which implies entropy” [18]. Anotheskil Prize winner, 't
Hooft, has long argued that quantum mechanics must emesgedome underlying
deterministic theory via information loss [11]. Entropyoicourse intimately related
to information loss, hence one expects some link to existden these two approaches
to quantum theory.
In an apparently unrelated venue, the Chapman—Kolmogayeaten [6]

F(Zl)F(ZQ) = F(Zl + 2’2), (1)

is a functional equation in the unknowhn, wherez,, z; are any two values assumed
by the complex variable. It has the general solution

F,(z) = e, 2

with ¢ € C an arbitrary constant. Implicitly assumed above is the iplidation rule
for complex numbers. In other wordE] (2) solMels (1) withipace of number—valued
functions. If we allow for a more general multiplication eusuch as matrix multi-
plication (possibly infinite—dimensional matrices), titha general solutioh{2) of the
functional equatior{1) can be allowed to depend paranadtyion az—independent,
constanimatrix or operator A acting on some linear space:

Fa(z) = e, (3)
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The functional equatioi 1), in its different guises, wilhp an important role in what

follows. We see that its solutions are by no means uniquesrtttipg as they do on the
space where one tries to solve the equation. Moreover, waedlthat the question of
specifying one solution space or another will bear a clolsgioa to the question posed
at the beginning—namely, the duality between thermodyngiamd mechanics, on the
one hand, and the emergence property of quantum mechanitise other.

Let X and) respectively stand for the configuration spaces of a mechbsystem
and a thermodynamical system, the latter taken slightlyyainan equilibrium. We
will be interested in the quantum theory based¥nand in the theory of irreversible
thermodynamics in the linear regime based)oil6]. There exist profound analo-
gies between these two theorigs|[[L, 8,[15,19, 20]. Furthexnseeming mismatches
between the two actually have a natural explanation in tiéext of the emergent ap-
proach to quantum theoryl[2] 4]; closely related topics waaralysed long ago in [3]
and more recently in[5, 710, 10,112,114 17,121, 22]. One cfelraismatches concerns
the irreversibility of time evolution in the thermodynaraigicture, as opposed to its
reversibility in the quantum—mechanical picture.

The standard quantum formalism is invariant under timensleThis is reflected,
e.g, in the fact that the Hilbert space of quantum statégt’) is complex and self-
dual [23], so one can exchange the incoming sfateand the outgoing statg)| by
Hermitean conjugation, without ever stepping outside ilrergHilbert space.?(X).
On the other hand, the thermodynamical space of states tothplex Banach space
L'(Y) of complex—valued, integrable probability densities J — C. This is in
sharp contrast to the square—integrable probability teasiplitudesof quantum the-
ory. Now the topological dual space f3 ()) is the Banach spade™ () [23]. These
two spaces fail to qualify as Hilbert spaces. In other wofaisany |¢) € L'()) and
any (1| € L>=()H the respective normis||; and |||/ are well defined, but nei-
ther of these derives from a scalar product. All there exssésnondegenerate, bilinear
pairing

() L=() x L'(Y) —C (4)
taking the covectofy| and the vectof¢) into the numbef|e):

(]¢) == /y 0. (5)

Under these circumstances there is no exchanging the imgostate ¢) € L'()) and
the outgoing statéy| € L>°()), as they belong to different spaces. Therefore time
reversal symmetry is lost. We see tldidpensing with the scalar product in quantum
theory is the same as dispensing with time reversal symmetry

We have in[[1[ 8] tocuhed on several basic issues concernihgrenodynamical
formalism for quantum theory. Specifically, a map has beersitacted between the
quantum mechanics of a finite number of degrees of freedorieane hand, and the
theory of irreversible processes in the linear regime, endtmer. The current paper
elaborates further on the properties ofh@rmodynamical dual theorfpr emergent

1We follow the notations of ref[[1]. In particular, the roubtackets in¢) and (1| refer to L1 ()’) and
its topological dualL>° (}), respectively, while the angular brackets of the quantueehanical kety) and
bra (x| refer to L?(X) and its topological duaL?(X). Concerning the measure dnand)), see below.



quantum mechanics. The underlying logic might be briefly mamsed as follows:
i) it has been claimed that thermodynamics is complementadyal, to mechanics;
if) mechanics is symmetric under time reversal while thermadyios is not;
iii) dispensing with time reversal symmetry is the same as dsspgnvith the scalar
product in quantum theory;
iv) the representation of the Chapman—Kolmogorov equdfionr{ihe quantum me-
chanical Hilbert spacé? (') makes decisive use of the scalar product;
v) here we construct representations[df (1) on the thermodipgahf@anach spaces
LY(Y) andL>(Y), where no scalar product is present.

For simplicity we will henceforth assum& and)’ both equal taR, the latter en-
dowed with the Lebesgue measure.

The aim of our paper is not to reformulate the theory of irreil@e thermodynam-
ics as originally developed in [16]. Rathere intend to exhibit irreversibility as a key
property of quantum—mechanical behaviour

2 Different representations for Chapman—Kolmogorov

2.1 The quantum—mechanical representation
In quantum mechanics it is customary to wrfie (1) as
U(tl)U(tg) = U(tl +t2), teR, (6)

and to call it thegroup propertyof time evolution. IfH denotes the quantum Hamilto-
nian operator (assumed time—independent for simpliditgn [6) is solved by matrices
such as[(B), here called time—evolution operators and dkfise

U(t) :=exp (—%tH) . (7)
The solutions of[(B) satisfy the differential equation
. dU . dU
' = HU(),  H= lha‘tzo. 8)

Comparing [¥) with[(B) we have = ¢t and A = —iH/h. TheU(t) are unitary on
L?(R). In a basis of position eigenfunctiofss, the matrix elements df (¢) equal the
Feynman propagatokzs|U(t2 — t1)|x1) = K (x2,t2|z1,t1). In terms of the latter,
one rewrites the group properfy (6) as

K (x3,t3]x1,t1) = /d£C2K($C37753|$C2,752)K($2,t2|$1,t1)- 9

There is a path integral for the Feynman propagétor

m(tg):wg

Dz(t) exp {% /t2 de L [x(¢t), :C(t)]} , (10)

ty

K (x2,ta|z1,t1) = /

I(t] ):Il
whereL is the classical Lagrangian function.

To summarise, the operatoks (7) provide a unitary reprasentof the commuta-
tive group [6) on the Hilbert spade?(R).



2.2 Intermezzo

Here we recall some technicalities to be used later; a goondrgéreference is [23].

LY(R) is the space of all Lebesgue measurable, absolutely irtlegfanctions
¢ : R — C, i.e, functions such thaf;, [¢(y)|dy < co. This is a complex Banach
space with respect to the norfy||; = [; lo(y)|dyB A a denumerablevasis (a
Schauder basis) exists far (R).

The topological dual space t'(R) is L>°(R), a duality between the two being
given in Eqgs. [(#),[(5). L°°(R) is the space of all Lebesgue measurable functions
¥ : R — C that are essentially bounddds., functions that remain bounded on all
R except possibly on a set of measure zdre® (R) is a Banach space with respect to
the norm|| - ||, defined as follows. A nonnegative numbkere R is said to be an
essential upper bound @f whenever the set of poinis € R where|y(y)| > « has
zero measure. The norf|| is the infimum of all those:

[|¥]|oo := inf {a € R* : a essential upper bound of 1/1} . (12)

A key property is that one can pointwise multiply € L>(R) with ¢ € L!(R) to
obtainy¢ € L'(R) becausefy, [v¢|dy < oo; this is used decisively in the pairinigl (5).
Another key property of.>°(R) is that it admits no Schauder basis.

The spacel.}(R) is canonically and isometrically embedded into its topalab
bidual,i.e., L'(R) c L*(R)**. SinceL!(R) is nonreflexive, this inclusion is strict, a
property that will be used later dﬂﬂFinaIly, the absence of a scalar productiof{R)
andL°°(R) does not prevent the existence of unitary operators on ttienfatter being
defined as those that preserve the corresponding norm.

2.3 The representation in irreversible thermodynamics

In statistics, the Chapman—Kolmogorov equatidn (1) waskweiwn before the advent
of quantum theory [6]. Here one is given a certain measureespahere assumed
equal toR endowed with the Lebesgue measure) and the correspondinagBapaces
L'(R) and its topological duaL>(R). These two will become carrier spaces for
representations of the Chapman-Kolmogorov equadiion (1).

One callsf; (2; 3:) the conditionalprobability that the random variablee R

takes on the valug, at timer, provided that it took on the valug at timer;. Then
one usually writes the Chapman—Kolmogorov equafion (1)rimeaner similar ta{9),

n (ys y1> :/dy2 " (ys‘m) f (yz y1>7 (12)
3171 73172 T2l

which expresses the Bayes rule for conditional probagditiA representation of this
equation by means of linear operatof&-) on L*(R) and onL>*(R) would thus have
to satisfy the algebra

U(T)U(T2) =U(T1 + T2), (13)

2Just for comparison, the norm on the Hilbert spaé¢R) is ||¢|]2 := ([ \¢(y)|2dy)1/2.
3The topological complementary spacelib(R), i.e., the spaceZ such thatl. ' (R)** = L1 (R) & Z, is
known in the literature, but it will not be necessary here.



which is again a presentation &1 (1). We can immediately offithe matrix elements
of U(r):
Gl = ) = £ (2] ). 14)

21T

As opposed to the quantum—mechanical case, the carriex fpabe representation of
the algebra(13) is Banach but not Hilbert. The reason farithihat one deals directly
with probabilities rather than amplitudes.

The question arises: if one were to express the mairix (1hefiorm given by the
general solution{3), then clearly one would have: +, but what would the operator
A be? It is mathematically true, though physically unsatisfey, to claim that4
would be (proportional to) the logarithm of(7). One of the purposes of this paper
is to determine the operatat explicitly, and to interpret it in the terms stated in the
introduction. However, in order to do this, a knowledge & tlonditional probabilities

f1 (%j; yl) is needed.

T1
There are a number of instances in which pfje(zz ‘ :) are known explicitly.

An important example is that aflassical, irreversible thermodynamics of stationary,
Markov processes in the linear regimfeor such processes one has [16]

2
f Y2| Y1) _ 1 s/kp ox s (y2 — e_’Y(Tz—n)yl)
' 217 V21 V1 — e—2v(r2—71) P 2kp 1 —e2v(r2—71)
The notation used here is that 6f [1]. Specificalty; is Boltzmann’s constant, the

entropy S is a function of the extensive parameigrand we expand in a Taylor
series around a stable equilibrium point. Up to quadratimsewve have

]. (15)

_ L oo _ 48
Moreover, the assumption of linearity implies the follogsiproportionality between
the thermodynamical forcg := d.S/dy and the fluxy := dy/dr it produces|[15]:

g=LY, L>0. (17)

The Onsager coefficiedt must be positive for the process to be dissipative. Finally
v := sL. Sometimes one also usfs= L~!, soy = s/R.

The following path—integral representation for the coiadial probabilities[(15) of
these models is noteworthy [16]:

y(T2)=y2 1 T2

f (” yl) - / Dy(7) exp{—— / drﬁ[y;(ﬂ,y(f)]}. (18)
2171 y(T1)=y1 2kp T1

The above exponential contains tirermodynamical Lagrangiad, defined as

dy

L) = 5 [P0+ 220, o= T (19



The path integral{18) is the thermodynamical analogué @f.(The corresponding
thermodynamical momentum, equalsRdy/dr, whereR plays the role of a mass,
and thethermodynamical Hamiltonia# corresponding td (19) reads
_ Ly Ry? 2
H=gpty— 5V (20)
It must be borne in mind, however, that the dimensions§ ahd# are entropy per unit
time. With this caveat, we will continue to cglf a Hamiltonian.

2.4 Mapping irreversible thermodynamics into quantum mectan-
ics

For the processes considered[inl (15) we claim that one camedgfierators o ! (R)
and onL>°(R)

2kp

with A suitably chosen, such that their matrix elements coinciile thiose given in
(@4). Hence theé{(7) will provide a representation of the algehral(13). In whélbies
we construct{/(7) explicitly, but one can already expect the argunteraf the expo-
nential [21) to be someperatorversion of the thermodynamical Hamiltoniimction
given in [20). For this reason we have not distinguishedtimtally between the two.
This operatof{ will also turn out to be (proportional to) the unknown operat men-
tioned after eq.[(14). Froni (P1) it follows that the thermpasnical analogue of the
guantum-mechanical equatidn (8) is

dU(r)
dr

We can resort to our previous wotlk [1] in order to identify thgerator in its
action onL!(R) and onL>(R). In [1] we have established a map between quantum
mechanics in the semiclassical regime, on the one hand,henth¢ory of classical,
irreversible thermodynamics of stationary, Markov preessin the linear regime, on
the other hand. In the mechanical picture, the relevantdragjan and Hamiltonian
functions are

2 2 2
_m (dz mw o 1l 5 mw®
L_2(dt) o v He=gopt e (23)

U(T) = exp (—Lm) (21)

dU(r)
dr T:O.

—2/€B :HU(T), H:—2k3 (22)

Comparing them with their thermodynamical partnérd (19 @), we see that the
mechanical and the thermodynamical functions can be wamsfd into each other if
we apply the replacemets

mw S

w —_— > —
s h 2kB 9
4While the first two replacements ¢f{24) are dimensionallgract without any further assumptions, the
third identification also requires thatandy have the same dimensions. Since this need not always be the

case, a dimensionful conversion factor must be understeadglicitly contained in the replacement« vy,
whenever needed.

T <y, (24)




as well as the Wick rotation
T =it (25)

Furthermore, Boltzmann’s constan is the thermodynamical partner of Planck’s con-
stanth multiplied by 2 [19]:

As a consistency check one can apply all the above repladsrt®ifif) in order to
arrive at

Ult) = exp (—ihtH) & exp Gﬁﬂ) — U(7). 27)

However, we still have to identify the operat#f in its action on thermodynamical
states. This will be done in sectibnB.1.

2.5 Incoming statesvs. outgoing states

In principle, thermodynamical states are normalised podita densities, hence ele-
ments of L1(R). However, as we will see shortly, this viewpoint must be estl
somewhat. For this purpose let us call the elemenfs'¢R) incoming statesincom-
ing linear operator®);, are defined

Om : LY(R) — LY(R), (28)

so as to map incoming statés) € L!(R) into incoming state®;,|¢) € L'(R).
Incoming states are postulated to evolve in time according t

d
- 2k3¥ = Hinl9), (29)
-
whereH;, is an incoming linear operator, to be identified presently.
The space of outgoing states is the topological dudl'giR), henceL>(R). Out-

going linear operator®,,,; are similarly defined
Oout : L= (R) — L*™(R), (30)

in order to map outgoing statég| € L°>°(RR) into outgoing state&)|Oput € L= (R).
The operato©! that is transpose to an incoming operaf®y; is defined on the topo-
logical dual space:

OL : L®(R) — L™ (R). (31)

In this way O is actually an outgoing operatd,. | By definition the transpose
satisfies

(V|O8h]6) = (Y|Owml¢), V(¥ € L¥(R), V|$) € L'(R). (32)

5Since the topological bidudlZL! (R))** contains more than just!(R), we stop short of stating that
“The transpos&? . to an outgoing operata®. is an incoming operatad;,,”. The previous statement,
trivially true in finitely many dimensions and still true di¥ (R), no longer holds in our context, with the
consequence that twice transposing does not give back itfinaroperator. We will see in secti¢n 3.2 that

this fact has far-reaching implications.




What equation should govern the time evolution of outgotiages? Clearly it can
only be
(wl

therefore
—2kB (¢|¢ (Y[ HEID) + (| Hin|B). (34)

The right—hand side of the above is generally nonzero: itesges the irreversibil-
ity property of time evolution in thermodynamics. This isa try from the time—
symmetric case of standard quantum mechanics, vihid(éy|¢))/dt = 0.

One further point deserves attention. In standard quantechanics on.?(R),
the matrix elementy|O|¢) = [ dz¢*(2)Og¢(x) naturally carries the dimensions of
the operato®; here both)* (z) and¢(x ) have the dimensiofx]~'/2 of a probability
amplitude onR. In the thermodynamical dual to quantum theory, the inconsitate
|¢) € L*(R) carries the dimensiofy] ~! because it is a probabilityensity while the
outgoing statéy| € L>°(R) is dimensionlesbecause it imot meant to be integrated
on its own. It is only upon taking the pairingl (5) th@t| will be integrated against
O|#). So the dimensions dfi|O|¢) are again correct, although the dimensional bal-
ance between incoming and outgoing states that existéd(iR) has disappeared.

Altogether, dispensing with the scalar product in quantheoty is the same as
dispensing with time reversal symmetry. Moreover, dispensith the scalar prod-
uct has the consequence that, as thermodynamical statesust regard not just the
elements of_! (R) but also those of its topological dua (R).

3 The harmonic oscillator representation of irreversible
thermodynamics
For mechanics we use tlitmensionlessoordinater € R. Then the quantum har-

monic oscillator equation oh?(RR) reads

(- s o)) vt e @

wheree is a dimensionless energy eigenvalue.

3.1 The oscillator on the Banach spaces!(R) and L>°(R)

For thermodynamics we use thenensionlessoordinate; € R. Then the dimension-
less thermodynamical momentum is representedidgdy, and the equation for the
thermodynamical oscillator reads

(5 +0)ut) =out)  ser (36

Above,o is a dimensionless eigenvalue (entropy per unit time), lvhie require to be
real for physical reasons. With respect[iol(35), the onlyngesin [36) is the sign of



the potential term (se€_(119) arid[20)). Elg.1(36) identifiesaheratof{ explicitly in
its action onL!(R) and L>°(R), a question posed in sectibn2.4. Specifically, for the
action of the Hamiltonian on the initial states we have

d2
Hin = “aE y?: LY(R) — L*(R). (37)

The operatof{,; is formally the same a#,,,, but it acts on the dual space:
Houwt = ——5 —y° : L°(R) — L>(R). (38)

In order to solvel(36) we first look for a factorisationwofy) in the form
w(y) = h(y) exp(ay®),  aeC, (39)
wherea is some constant to be picked appropriately. WitH (39) 1) (8& finds

(f—;h(y) + 4aydiyh(y) + [2a+0) + (4a® + 1)y?] h(y) = 0. (40)
The choicer = i/2 simplifies [40) considerably:

L ) + 2y h(y) + i+ o)h(y) = 0. (41)
dy? dy
Finally the change of variables= ei%y reduces[(4]1) to

L) = 2L - (1= ioi() = 0 2)

where we have definddz) := h (e—igT" z) = h(y). Now (42) is a particular instance
of the Hermite differential equation on the complex plane,
H"(2) —2zH'(2) + 2vH(2) = 0, veC. (43)

In our case we havery = —1+io with o € R, sov ¢ N. Whenv ¢ N two linearly in-
dependent solutions to the Hermite equation are given biémmite functiondd,, (z)
andH,(—=z), where[138]

o (z) = 2r(1_u) n; (_1)715!(77) (22)". (44)

The above power series defines an entire functionefC for any value ofv € C. Its
asymptotic behaviour i$ [13]:

iy
v ﬁe Z_V_l 22

H,(z) ~ (2z2) (=) e”, |z| = o0, w/4<arg(z)<5mw/4. (45)




In (@8) we have dropped subdominant terms, keeping onlyahdihg contributions;
the angular sector 7/4 < arg(z) < 57 /4 isimposed on us by the change of variables
z = elf y made above foy € R.

Altogether, two linearly independent solutions[fal(36)responding to the eigen-
valueo € R are given byw* (y), where

wo—i(y) = H,%Jr%o (:I:ei%y) el /2, (46)
By (48), their asymptotic behaviour foy| — oo is

. 3x —l4ioc —m(o+i)/2 Can 1
)~ (s205%) 1 F v YR ()
2

&y

e W2 (47)

We are looking for eigenfunctions withib' (R) and/orL>°(R). Eqn. [4T) proves that
wy (y) € L*(R) butwy (y) ¢ L' (R).

3.2 The spectrum

Summarising, the operaterd? /dy? — 32 on L>°(R) has an eigenvalue spectrum con-
taining the whole real lin® [ This spectrum is twice degenerate, the (unnormalised)
eigenfunctions corresponding to € R being given in Eq. [(46). The same opera-
tor acting onL!(R) has a void spectrum. This latter conclusion is not as tragjit a
might seem at first sight—on the contrary, everything fitsetbgr once one realises
that evolution in thermodynamical time is irreversible, and that the spaéé(R),
which admits a Schauder basis, has a topological 86&IR) admitting no Schauder
basis. Let us analyse these facts from a physical and fronttzematical viewpoint.

Physically, an empty spectrum @ (R) just means thahere can be no incoming
eigenstatesMoreover, no incoming state can ever evolve into an incgreigenstate
under thermodynamical evolution. This is an expressiomre¥ersibility. However, as
a result of evolution irr, one can perfectly well obtaioutgoingeigenstates. The latter
remain outgoingigenstatesinder thermodynamical evolution.

Mathematically, in standard quantum mechanicsI3(R) one is used to taking
the transpose of a matrix by exchanging rows with columnsplifitly understood
here is the existence of Schauder bases in the spaté(&f) and in its topological
dual (againZ?(RR)). Once one diagonalises an operator, how can it be thagitspose
is not diagonal as well? While this cannot happer.#{R), this can perfectly well
be the case when dealing with the spaéégR) and L>°(R), becausd.!(R) admits
a Schauder basis whil&>(R) does not In turn, this is a consequence of the fact
that we are renouncing probability densitsnplitudes(elements ofZ.?(R)) in favour
of probability densitiegelements of.L!(R)), as befits a thermodynamical description
of quantum theory.

One would like to identify the thermodynamical analoguehef uantum mechan-
ical vacuum state; one expects to somehow map the quantuchameal state of least
energy, or vacuum, into the thermodynamical state of maxéntopy. Let us recall

6Actually the eigenvalue spectrum of this operator ot (R) also contains nonreal eigenvalues (see
@8)), but here we are only interested in real eigenvalues.

10



that the (unnormalised) quantum-mechanical vacuum waeétn is exp(—22/2).
The Wick rotation[(2b) introduces the imaginary unit, giyims the ternexp(iy?/2) in
@8). Nowr = —1/2 + io/2 = 0 only wheno = —i, a possibility we have excluded
per decree. Let us temporarily sidestep this decree andhabidet

( d? 2) +iy?/2 _ . Fiy?/2
— ==ty e = F1e (48)
dy?

is very reminiscent of the equation governing the quantuechanical vacuum. The
thermodynamical density corresponding to the statg+iy?/2) equals the constant
unit function onR, which is nonnormalisable undéfr- ||; in L*(R) but carries fi-
nite norm undet]| - || in L>°(R). As a perfectly uniform probability distribution,
exp(=iy?/2) is the thermodynamical state that maximises the entréiythe eigen-
states in[(46) are thermodynamical excitations thereafc@ehey carry less entropy.
Of course, we cannot allow the eigenvalues: +i within our spectrum, but the above
discussion is illustrative because, lay1(47), all our thedymamical eigenstate (46)
tend asymptotically to a linear combination of the state§? exp [+1 (o In(y) + y?)].
In other words, all our thermodynamical eigenstates camtegpreted afluctuations
around a state of maximal entropy

3.3 Irreversibility vs nonunitarity

A key consequence of irreversibility is nonunitarity. Camy to the operator& (¢) of
(@), which are unitary oi.?(R), the operatoré((7) of (21) arenorunitary onL>°(R).

Nonunitarity is readily proved. Leb, € L*°(R) be such that{,, w, = cw,.
Sinces € R we have, by[(211),

U(T)w, = exp (—1) W, To € R, (49)
o%n
hence
TO
eyl =0 (=52 ) wnllo 70 € R, (50)
B

which proves our assertion. To summarise: combining (ZJ) and [38) we find,
after reinstating dimensional factors, that the operators

T 1 d2 R~?

U(T) = exp [% (ﬁd—yQ + %QQ)] ; T 20, (51)
provide anorunitary, infinite—dimensional representation of the ChapakKolmogorov
semigroup[(IB) or.>°(R). The spacd.!(R) also carries an infinite—dimensional rep-
resentation of (I3) on which the operatdrs](51) act.

It is interesting to observe that the eigenfunction&in (48)ich we have discarded
for reasons already explained, circumvent the above precéilise their eigenvalues
are purely imaginary. Each one of them actually provides @dirhensional unitary
representation of (13) oh>°(R).

11



4 Discussion

Classical thermodynamics is the paradigm of emergent iggeolt renounces the de-
tailed knowledge of a large number of microscopic degredseeflom, in favour of a
small number of macroscopic averages that retain only samaese—grained features
of the system under consideration. It has been claimed ititérature that quantum
mechanics must be an emergent thebr [2, 4, 11]. As one fupteee of evidence in
support of this latter statement, in this paper we have dgesl a thermodynamical
formalism for quantum mechanics.

In the usual formulation of quantum theory, one is concemigd the matrix el-
ements(1)|0]¢) of some operato®, where the incoming state) belongs toL?(R)
and the outgoing stat@)| belongs to the topological dual space, agatfiR).

In the thermodynamical theory that is dual to quantum meiclsaone is again
concerned with matrix elements of the typg|O|¢). However, now the incoming
state is not square integrable but just integrallec L' (R), while the outgoing state
(¢| € L>=(R) belongs to a totally different space. Neithef(R) nor its topological
dual L>°(R) qualify as a Hilbert space, because their respective noomsoti derive
from a scalar product; they are just Banach spaces. The edbséra scalar product
is the hallmark of irreversibility. Indeed the thermodyriesithat is dual to quantum
mechanics is that of irreversible processes (considenegihé¢he linear regime).

One is often interested in the case when the opetaisrthe time evolution opera-
tor U connecting the incoming and the outgoing states. Not bdioged to exchange
the incoming and the outgoirggatesn the transition probability:|U|¢), because they
belong to different spaces, emphasis falls onglexzesd/ connecting these two. Ir-
reversibility manifests itself through the nonunitariitibe representation constructed
here for the Chapman—Kolmogorov equation. The latter ifuthetional equation sat-
isfied byl/.

Incoming state$p) € L*(R) are probability densities, as opposed to the probability
densityamplitudes¢) € L?(R) of standard quantum theory. Outgoing states €
L>(R) have a different physical interpretation. The nofim ||, can be regarded
as a probability density that isot meant to be integrated. Indeed a general function
1 € L°°(R) need not be normalisable under the noffms|; and|| - || on L' (R) and
L?(R) respectively. There is nothing unusual about this—sdatiestates in standard
quantum theory also give rise to nonnormalisable prolgldtnsities.

As an example, in sectidn 3.1 we have worked out the spectouthé thermody-
namical harmonic oscillator. This implies solving the Ssdinger equation for the
repulsivepotentialV (y) = —y?2, the wrong sign being due to the Wick rotation con-
necting irreversible thermodynamics to mechanics. Noprisingly, the spectrum is
empty when diagonalising the Hamiltonian on the spat@R), while exhibiting rich
features on the spade™(R). In particular, all our eigenstates turn out to be nonnor-
malisable under the nornis: ||; and|| - ||> on L'(R) and L?(R) respectively, hence
they all are analogous to scattering states in standarduueaheory. However all our
eigenstates are normalisable under the njori. of L>(R).

An apparently striking feature is the reluctance of incognitates to buileigen-
statesof the Hamiltonian, as seen in sectionl3.2. This apparefitdlify disappears
once one realises thatitgoingstates make perfectly good eigenstates. Furthermore,
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the existence of outgoing states that cannot be reachedebiyntle evolution of any
incoming state whatsoever is another sign of irreverggbiliVe cannot renounce ir-
reversibility because we have programatically dispensédtine reversal symmetry.
Hence incoming eigenstates must go.

Exeunt omnes.
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