DINÁMICA DEL COLOR
EN LA PINTURA
Prácticas plásticas y visuales

Tesis Doctoral

Presentada por:
Guillermo Bellod Ortuño

Dirigida por:
Dr. Francisco Javier Sanmartín Piquer
Dr. Joel Mestre Froissard

Valencia, febrero de 2017
ÍNDICE DE CONTENIDOS

1. INTRODUCCIÓN 5
 · 1. 1. Descripción de la tesis doctoral y planteamiento.........................7
 · 1. 2. Motivaciones...10
 · 1. 3. Contexto y límites de la investigación..12
 1. 3. 1. Acotación del área de Estudio..12
 1. 3. 2. Ensayos realizados..12
 1. 3. 3. Acotación metodológica...13
 · 1. 4. Objetivos...14

2. EL COLOR, ELEMENTO FORMAL DINÁMICO 15
 · 2. 1 La observación mediante color matching....................................17
 · 2. 2. Activación del color luz...19
 2. 2. 1 Mezclas aditivas. Ensayos...20
 · 2. 3 Activación del color pigmento ...22
 2. 3. 1 Mezclas sustractivas. Ensayos.......................................24
 · 2. 4. Cinética del color ..27
 · 2. 5. Procesos opuestos. Ensayos...29
 · 2. 6. Agentes fluorescentes en la dinámica del color..........................31

3. APLICACIONES DINÁMICAS DEL COLOR 35
 · 3. 1. Dinámica del color en la figuración pictórica.............................38
 3. 1. 1. Búsqueda de ilusión figurativa.......................................38
 3. 1. 2. Dinámica del color en la representación figurativa..................40
 3. 1. 3. Iluminación en la Pintura WSL..46
 3. 1. 4. Tratamiento gráfico. Técnicas pictóricas.............................50
 3. 1. 5. Presentación de la Pintura WSL......................................53
 · 3. 2. Observación de la dinámica del color: Cúpula de percepción cromátı57
 3. 2. 1. Observación de la dinámica del color..................................57
 3. 2. 2. Campo Visual, Campo de Investigación................................59
 3. 2. 3. Acercamiento a la Cúpula de percepción................................61
 3. 2. 4. Proyecto Punto Nemo...64
 3. 2. 5. El diseño de Iris. Tratamiento mapa de colores........................67
 3. 2. 6. El diseño de Pulsión. Tratamiento postimagen..........................69

4. CONCLUSIONES GENERALES .. 72
Al Dr. Francisco Javier, por guiarme y enseñarme con su perspicaz visión.

Al Dr. Joel, por sus valiosos consejos.

A mi padre, a quien le dedico este trabajo.

Familiares y amigos, por estar ahí.

Y Silvia y Adriana, por llenar de colores mi vida.
1 INTRODUCCIÓN
Cuando los medios están gastados,
(como los de la pintura del siglo XIX)
agotada su fuerza de expresión,
se ha de regresar de nuevo a los fundamentos.

Henri Matisse
1.1. Descripción de la tesis doctoral y planteamiento

La presente tesis es un estudio sobre el color y sus diferentes aportaciones al lenguaje plástico y visual. El objetivo principal es incorporar el color como elemento formal dinámico al lenguaje visual habilitando la capacidad de interacción del color. Por un lado es un estudio sobre la dinámica del color en el cual se determinan los factores en el proceso perceptivo del color tanto físicos, como fisiológicos, investigando el desarrollo de las cualidades dinámicas para formar un marco conceptual. Y por otro lado desde la praxis, habilitar métodos, técnicas y conceptos que permitan el desarrollo de la dinámica del color en el lenguaje plástico, incorporando el movimiento del color al discurso pictórico y la comunicación visual.

El movimiento del color es un acontecimiento perceptivo que podemos encontrar en nuestro entorno visual desde una puesta de sol, el paso de las nubes por el mar, el cambio estacional de las hojas de los árboles, animales que cambian el aspecto de su piel, etc. La mayoría de movimientos de color se producen en un lapso de tiempo que no nos permiten ser conscientes o percibir el cambio tal cual se produce pasando de un estado a otro. Pasa demasiado tiempo algunas veces y también a nivel perceptivo existe la tendencia a asignar colores creando una estabilización en las sensaciones de color. Aun cambiando las condiciones luminicas seguimos percibiendo el mismo color lo que se ha denominado constancia del color. Debemos crear sistemas de referencia a partir de registros de color y muestrarios secuenciados que faciliten la observación del movimiento de color para poder observarlo con detenimiento. En la presente tesis hemos tratado de acotar el estudio a un entorno concreto, un campo de investigación específico del color, el soporte pictórico. En él, hemos desarrollado varios proyectos con la finalidad de controlar las capacidades dinámicas del color, haciendo pruebas, reproduciendo experiencias y extrayendo conclusiones que ayuden a desarrollar métodos y conceptos aplicados a la dinámica del color dentro del proceso pictórico. A partir del estudio dinámico del color, el objetivo consiguiente es lograr incorporarlo a la comunicación como elemento formal en la composición de la imagen buscando abrir nuevas vías en valores expresivos y estéticos.

Es necesario primero realizar un esquema sobre el proceso de percepción del color y cuales son los diferentes factores desde donde se modifican y se produce la dinámica del color para entender cada uno de los estudios propuestos en la presente tesis. El color es un acto comunicativo y como tal se transmite según diferentes niveles, desde los cuales se modifican aspectos que influyen en su dinámica. En un primer nivel se encuentra el medio emisor, la fuente luminica con la cual se puede emitir alteraciones cromáticas. Lámparas que producen cambios de iluminación, cambios de longitud de onda e intensidad.

1 Termín acuñado en la teoría del Retinex por Edwin Land, 1980.
En un segundo nivel, el transmisor, donde se encuentra la materia por donde transcurre la luz y desde donde se produce el fenómeno físico del color. Y en último nivel, el receptivo donde se realiza la percepción visual. La luz llega al ojo como estímulo visual, pasa por un procesamiento tanto óptico como neuronal donde factores fisiológicos como la intensidad, duración y ordenación del estímulo, el estado de adaptación del observador, el área de la retina afectada así como otros factores de carácter psicológico vinculados al aprendizaje, la experiencia o el estado anímico del observador influyen en la percepción. En este nivel se construye el color percibido.

En la presente tesis elaboramos tres estudios cada uno respondiendo a objetivos diferentes pero que engloban este proceso comunicativo. En un primer estudio se analizan las posibilidades dinámicas del color desde su dimensión física, investigando la interacción entre el color luz y el color pigmento. Se definen las condiciones lumínicas, materiales a utilizar, mezclas aditivas y sustractivas e interacción de ambas, exposiciones de muestras y representaciones donde se visualicen las trazas de movimiento, así como tratamientos de color desde procesos opuestos y tratamientos para hacer más dinámico el color como la utilización de la fluorescencia y los colores metámeros. Con todo ello se crea un marco de referencia para la dinámica del color donde interactuar y unas posibilidades técnicas para expresar los colores mediante el control de la luz y el control de la paleta de colores.

En un segundo estudio estas capacidades adquiridas se ponen a disposición del lenguaje pictórico aplicándolo en el entorno de creación artística. Se desarrolla un proyecto de pintura denominado “Pintura de amplio espectro lumínico” o también “Pintura WSL.” Tipología de pintura basada en la interacción de la luz con la materia. La pintura de amplio espectro lumínico trata la imagen en función del control de la iluminación y el comportamiento de los materiales. La interacción entre la luz y los pigmentos proponen un campo de investigación en la obra como proceso comunicativo. Se proponen dos proyectos, por un lado la creación de obra en formato cuadro. Un análisis de la relación de la dinámica del color en la representación figurativa, un desarrollo de técnicas y conceptos con la finalidad comunicativa de presentar la obra tanto en espacios de exhibición como plataformas digitales. Y en un tercer estudio se realiza un proyecto atendiendo principalmente al aspecto perceptivo de la dinámica del color. Se realiza el diseño de una cúpula perceptiva la cual permita el estudio de aspectos como la relación entre el espectador y la obra a nivel perceptivo, el desarrollo del lenguaje visual a partir de la exposición de pintura WSL y la utilización de la cúpula como soporte pictórico.

Sin embargo los proyectos no han ido solo determinados por la creación de contenidos, sino por un ordenamiento en distintas etapas del proceso de la tesis incorporándose la gestión y aportación tanto de resultados como de conclusiones. La evolución de los proyectos y su cohesión no hubieran adquirido una dimensión global y cohesionada sino se hubieran publicado en un lugar determinado para una audiencia especializada, es decir exponiendo resultados de forma que podamos adquirir una distancia con el trabajo y entablar un diálogo con agentes externos que sean afines al tema del proyecto. Y para ello la manera mejor es participar en congresos y simposios especializados. En mi caso el hecho de exteriorizar los resultados en congresos publicando las ponencias de cada proyecto ha supuesto dividir la tesis en fases, asentando los conocimientos de cada práctica al poder recapitular la información. La exposición

2 Acrónimo en inglés, Wide Spectrum Lighting
progresiva de resultados, es un formato de trabajo ideal para no decaer en el solitario esfuerzo de la investigación. Externalizar los resultados adquiridos hasta el momento y tener el privilegio de someter el trabajo a la valoración de expertos supone exponer el trabajo de investigación desde un aspecto global, tanto en sus formas como en su contenido. Muchas de esas personas provienen de esferas de conocimiento diferentes al tuyo lo que significa tener la posibilidad de que puedan aportar múltiples puntos de vista, diferentes maneras de exponer los resultados y poder aclarar conceptos añadiendo matizes diferentes. También ha sido muy importante la exposición de resultados ya que te obliga a darle forma a los contenidos con mayor aspecto comunicativo, también a extraer conclusiones para cada proyecto y lo que es más importante, el hecho de realizar este esfuerzo comunicativo supone una oportunidad de motivación para proseguir en el proceso de creación de la tesis.

Este marco metodológico ha sido de gran ayuda en las diferentes fases de los tres proyectos realizados. El primer estudio fue publicado con el título de ‘Binomio: Luz y Pigmento. Cinética del color’ (Véase Anexo) y fue llevado al Congreso Internacional de Luz y Comunicación que se celebraba en la Universidad de Minho en Braga, Portugal en el 2015. Fue una suerte pues ese año fue declarado por Naciones Unidas como año internacional de la luz lo que suponía una especial colaboración de participantes en el congreso. Diferentes acercamientos a la luz, desde aportaciones científicas y tecnológicas donde la luz tenía un protagonismo como herramienta de trabajo para múltiples actividades, telecomunicación, arquitectura ingeniería, hasta aportaciones en el campo de la filosofía, psicología y artes, donde la luz se mostraba como una herramienta de percepción y acercamiento a la estética y al conocimiento. Cada ponencia proporcionaba un interesante punto de partida para expresar las capacidades comunicativas de la luz. Los participantes alargábamos las sesiones aportando matizes enriquecedores según las múltiples disciplinas. Las conversaciones con el profesor Augusto Deodato Guerreiro de la Universidad de Lisboa sobre la ambivalencia de la luz en el campo de la comunicación y las posibilidades luminicas en el espacio urbano fueron muy aclaradoras para contextualizar mejor el estudio del color. También fue muy interesante las conversaciones con la profesora Raquel Leite de la Escuela Superior de Oporto con quien entable diferentes diálogos sobre la configuración de la luz en la escultura y la fotografía o el profesor Víctor Sánchez Morcillo, profesor del Departamento de Física Aplicada de la Universidad Politécnica de Valencia quien me ayudó a aclarar diferencias entre la dinámica y cinética del color.

Los avances fueron notables y de gran ayuda para iniciar otra fase en el proceso de investigación. Para el segundo estudio busqué un congreso especializado en el color que pudiera entablar una dialéctica en términos de percepción del color. El congreso que cumplió las mayores expectativas fue el XI Congreso Nacional del Color llevado acabo en la ciudad de Orense. Allí expuse la ‘Dinámica del Color en la figuración pictórica’ (Véase Anexo) lo cual supuso acercar las experiencias realizadas sobre la dinámica del color a los congregados, la mayoría de ellos expertos en el campo del color. El intercambio fue muy productivo por un lado los trabajos expuestos de la dinámica del color en un medio audiovisual suponía un acercamiento y aproximación a los compañeros del congreso que respondieron con una participación en diversos comentarios. También fue una manera de descubrir otras características del color, llevadas a mano por arquitectos, interioristas, pintores, enólogos, físicos y psicólogos entre otros. Una visión
multidisciplinar e integradora de las diferentes cualidades que el color aporta a la sociedad. Tuve la oportunidad de conocer a la profesora Sophie Wuerger del Instituto de Psicología la Universidad de Liverpool. Las charlas mantenidas a raíz de su conferencia sobre la actuación periférica en la retina y la constancia del color resultaron estimulantes y aclaradoras para el siguiente proyecto propuesto, la cúpula de percepción. También fue muy productivo, el intercambio de información con Victoria Lafuente Rosales de la Universidad de Zaragoza sobre la cinética del color desde la química y la metodología que emplean. Sus estudios sobre el cambio de color en la maduración de la cereza es un trabajo de investigación ejemplar. Fueron muchos los contactos, aunque no todos los que me hubiera gustado tener. Sin duda realizar ponencias en el transcurso de la tesis aporta experiencia, metodología y oxigena la ardua tarea de investigar sobre un contenido específico.

También durante el transcurso de la tesis la aportación de los directores de tesis Francisco Javier SanMartín y Joël Mestre han sido clave para la concreción de los resultados. A partir de la experiencia tenida en estos diferentes proyectos me han surgido nuevos planteamientos en la práctica pictórica. He conseguido comprender la dinámica del color dentro del proceso plástico y visual, de explorar nuevas vías en el lenguaje visual y en las técnicas pictóricas, de dar un enfoque diferente al tratamiento de la imagen tanto desde un punto de vista del trabajo creativo como del papel del observador.

1.2. Motivaciones

Cualquier dedicación que te ocupe una importante parte de tu tiempo a de llevar consigo motivaciones que consoliden la actividad. Un impulso motor que te mueva a tomar interés, a tomar decisiones, a adquirir responsabilidad, a alcanzar objetivos y en definitiva a seguir un camino. Muchas veces no son decisiones ni intereses que tomemos plenamente conscientes y somos impulsados por fuerzas que estaban ahí y hasta que no hacemos un balance del trabajo un tiempo después no nos damos cuenta de las auténticas motivaciones. Para llevar acabo una tarea artística se conectan diferentes dimensiones tanto técnicas, culturales y espirituales en un proceso de síntesis. Cada una de ellas refleja una actitud y motivación y lleva a la determinación de la obra y por ende de la actividad. El ejercicio artístico es un compendio de múltiples actitudes y motivaciones. En la presente tesis se expone un estudio sobre el color desde la práctica de varias obras artísticas, las características que forman el sistema de trabajo propuesto esclareciendo el proceso creativo y el proceso perceptivo sin recavar en las motivaciones estéticas ni iconográficas de cada obra sino en las propiedades que establece el propio sistema, concretamente el sistema que plantea la dinámica del color en la pintura. Con tal fin, es necesario establecer una visión de la evolución en el uso del color para ver de donde nace y cual ha sido el impulso que ha llevado a este estudio.
La primera motivación que siempre ha estado y siempre he recurrido a ella, es el mar como fuente de inspiración. Desde la infancia el buceo ha sido mi pasión y he ido descubriendo que la observación del mar, sus cambios de luz, los colores que exhibe mostrando la expresividad del medio, junto al placer sensorial que despierta la luz tamizada por el agua en contacto visual han sido el motor principal. Muchos colores de la vida marina se perciben con acusados contrastes pareciendo incluso luminiscentes. Azules eléctricos y verdes en contraste con marrones, naranjas y rojos, colores que aparecen con una viveza especial y que para los pintores se convierte en un reto poder plasmarlos.

La segunda influencia a mencionar es haber podido observar el tratamiento del color por parte de un pintor, mi padre. Aprendiendo de cerca en sus sesiones como trabajaba. Siempre tuvo una paleta de color bastante sobria imponiendo el dibujo en detrimento del color, en su última época que coincidió con que yo era estudiante, pasó a una paleta rica de colores, aunque fiel a su dibujo consiguió un tratamiento del color muy libre. Una de las cosas que aprendí de su tratamiento del color es como ampliaba el rango de luminosidad en los pigmentos. Pigmentos como azules ultramar, carmines garanza, verdes esmeralda y violetas los degradaba con blancos, desde concentrados intensos y oscuros hasta colores vibrantes y luminosos.

Por último, mencionar mi trabajo personal en los años que realicé obras con pintura fluorescente. Cuadros fluorescentes pintados en la oscuridad que se convirtieron en la base para el posterior estudio de la dinámica del color. Pintaba con luz ultravioleta totalmente a oscuras, buscando en un principio la psicodelia de formas y colores, pero no contento con esto, busqué nuevos retos como poder expresar figuración y realismo. Experimenté con colores fluorescentes, buscando degradados para crear volúmenes y amplió la paleta de colores al máximo con colores marrones, grises y blancos fluorescentes saliendo de los típicos fluorescentes naranjas, rojos y amarillos entre otros. Sin embargo la pintura fluorescente tenía un inconveniente, los cuadros pintados cuando eran vistos con otra luz se veían de manera muy diferente a como en la oscuridad. Algunos colores se veían oscuros, sucios y los fluorescentes poco cubrientes para crear capas. Todo esto estropeaba cualquier intención figurativa y restringía su observación a ambientes oscuros. Es por este motivo que propuse otro objetivo. La hipótesis de que ocurriría si se pintan para la observación en ambas luces, pudiéndose mirar los cuadros tanto a plena luz de día, con luz natural, como inmerso en la oscuridad, con iluminación ultravioleta. A partir esta premisa me planteé estudiar las diferentes iluminaciones y comencé a experimentar mezclando los pigmentos convencionales con agentes fluorescentes para lograr ambos propósitos ampliando consecuentemente la paleta de color. Según la iluminación utilizada se potenciaba unas propiedades u otras del color creando una ambivalencia en los colores. A estos avances, le siguió experimentar con la tecnología LED, aportando colores-luz muy definidos y fácilmente mezclables, creando de esta manera, una paleta de colores-luz. Una paleta de colores-luz que multiplicaría las posibilidades a la hora de investigar su reacción con la otra paleta, la de los pigmentos. En definitiva, este proceso fue una escalada personal hacia el color y una posibilidad de poder plantearme dicha interacción, los colores-luz y colores pigmento como un campo de estudio, el de la dinámica del color y sobretodo llevar estos conocimientos a un campo con fines estéticos y poder comprobar las cualidades visuales y plásticas a través de la pintura.
1. 3. Contexto y límites de la investigación

1. 3.1. Acotación del área de Estudio

Para realizar un estudio de la dinámica del color se necesita establecer un campo de investigación concreto donde poder experimentar. El color es un fenómeno psicofísico lo que establece unas características de observación de medición y de representación que se interrelacionan para determinar resultados. La experimentación que se ha de realizar pertenece a un campo de investigación específica, la pintura. Se establece un área de trabajo limitado por la creación de obra gráfica, de los instrumentos y materiales de creación y de observación. Lámparas de iluminación y soportes pictóricos conforman el área de trabajo, dejando fuera otro tipo de manifestaciones dinámicas del color. La investigación se centra en los colores percibidos dentro del soporte pictórico. Un espacio concreto de trabajo donde poner a disposición mecanismos que controlen los factores dinámicos del color. El control de la iluminación, y las mezclas de colores matéricos deben de facilitar la determinación del color percibido y en consecuencia estas características formar parte del campo de observación.

1. 3.2. Ensayos realizados

- Un primer ensayo centra la investigación en el desarrollo perceptivo de la dinámica del color tratando de desarrollar al máximo las posibilidades dinámicas mediante la creación de medios de iluminación que abarquen el mayor rango de frecuencias del espectro visible y por otro lado ampliando los colores de la paleta plástica desde la sensibilidad de los pigmentos a las nuevas condiciones luminicas. La incorporación de tecnología Led, la creación de lámparas de amplio espectro lumínico y las diferentes mezclas de pigmentos sensibles forman los agentes dinámicos y el soporte de estudio. Elementos de experimentación que aportan efectos como la incorporación de colores metámeros al proceso dinámico o la activación de procesos opuestos, conceptos necesarios para el desarrollo de la dinámica del color en la pintura. Ha sido también muy importante establecer los medios necesarios para registrar el movimiento, como la creación de gráficas, círculos cromáticos así como videos en técnica time-lapse formalizando así soportes demostrativos para los resultados.

- En un segundo ensayo las aportaciones a nivel técnico impuestas por la dinámica del color se llevan a la dimensión plástica de la obra artística. El campo de investigación pasa al lienzo, donde se ensayarán nuevas vías expresivas y fórmulas estéticas. La obra se plantea dentro un proceso tanto creativo como perceptivo con un enfoque particular, la representación figurativa por medio de la pintura de amplio espectro lumínico. Los ensayos se orientan y se enfocan en esta dirección, con diferentes pruebas de iluminación tanto en la fase creativa como en un fase puramente percutiva como es la presentación de la obra. También el ensayo de técnicas pictóricas aplicadas
en la representación figurativa y técnicas de presentación de la obra en espacios de exhibición y plataformas digitales.

- En un tercer ensayo se ha trabajado con un soporte pictórico diferente buscando una mayor activación del observador, ahondando en mecanismos perceptivos que potencien la predisposición del espectador. Para ello se ha diseñado una cúpula de percepción visual donde ensayar la dinámica del color utilizando el mayor campo visual posible. Desde un punto de vista sincretista la finalidad ha sido considerar diferentes disciplinas para lograr una participación sensorial integradora y dar pie a ensayos sinestésicos practicando el control secuencial en la iluminación como eje vertebrador de la experiencia visual en la dinámica del color.

1.3.3. Acotación metodológica

La metodología empleada en el desarrollo de esta tesis doctoral se basa principalmente en la observación. Trabajar con el color requiere de una continua observación y calibración de sus componentes. El como realizar el estudio es una tarea importante obviamente debe asentarse desde la práctica visual ya que el color es un fenómeno psico-perceptivo. Desde la experiencia del color tratamos métodos inductivos para poder encontrar principios estéticos que sirvan como modelos de siguientes ensayos. Si de estos ensayos se logra esclarecer algún elemento funcional trataremos de establecer conceptos necesarios que ayuden a consolidar un marco referencial que facilite el estudio.

Para el desarrollo de la tesis se han empleado metodologías diversas que en diferentes fases han requerido actitudes diferentes desde una implicación más analítica a la utilización de métodos heurísticos más intuitivos con la finalidad de inventar y descubrir caminos que lleven a la consecución de objetivos propuestos. En el plano teórico el método más utilizado ha sido la búsqueda bibliográfica con la finalidad de ahondar en los conceptos pertinentes al campo del color y del lenguaje visual. Libros que han facilitado la aportación científica a todo el proceso principalmente en el estudio en el campo del color y su aplicación. Los libros de cabecera que utilizado en esta tesis han sido ‘Tejiendo el Arco Iris: Color para filósofos’ escrito C. L. Hardin. Un ensayo sobre el color que convierte todos los avances históricos en materia de la física, percepción y lenguaje del color en un tema filosófico adentrándose en la fenomenología y la ontología sobre el color. Otro libro ‘Teoria de los colores’ de Goethe. Según palabras de Goethe, éste era el libro que más orgulloso estaba de haber escrito, por encima de su dramaturgia. Un ensayo del color escrito en 1810 donde se pone por primera vez como protagonismo el factor psico-perceptivo, sin duda, un clásico del color y muy moderno para su época. También han sido muy importantes libros sobre análisis estético, como ‘la Imagen’ de Jaques Aument, un ensayo sobre la sintaxis de la imagen o ‘El Cine expandido’ (1970) de Gene YoungBlood, un ensayo sobre las capacidades del medio audiovisual de interacción en la sociedad, libro que anticipa y explica aspectos vigentes hoy en día como la realidad virtual o las redes sociales. En materia de pintura principalmente ha habido dos libros que han marcado los principales conceptos en el tratamiento de la figuración, ‘La pintura actual’ (1972) de Raul Chavarrí. Crítico de arte, contemporáneo de los realismos de vanguardia de los años 60 y 70 en
España, el cual dio una peculiar visión sobre el arte figurativo y propuso un termino en el arte, el Ultrarrrealismo. Un libro que me ayudó a ubicarme en el espacio y en el tiempo de la pintura española. Otro libro importante ha sido ‘Tratado de Pintura’ de Leonardo Da Vinci. Un libro que me acercó al origen de la investigación del color, sobretodo en el estudio de la figuración. Tratado de pintura se presenta como una fuente de preceptos, quizás, de los que el Ultrarrrealismo de Raúl Chavarri buscaba. Para mi, ha sido un libro inspirador, el cual he ojeado en múltiples ocasiones durante la tesis y que por su especial prosa me parecía poesía para un pintor. Sin embargo la bibliografía, ha sido diversa, muchos de los libros, sobre psicología de la percepción, historia del arte, ensayos de artistas y filósofos, tratados de materiales y técnicas. Aportaciones necesarias para comprender el lenguaje pictórico y el proceso percutivo.

También se han buscado métodos y modelos de representación e ilustración que facilitando la comprensión de las experiencias prácticas como creación de modelos visuales mapas y gráficas. En el plano práctico se han utilizado también diversos métodos. Estrategias de diseño de producto para la fabricación de lámparas y aparatos, métodos de experimentación de materiales para trabajar materiales plásticos y fabricación de colores. Métodos de creación de obra pictórica trabajando por fases de concreción y utilizando diferentes técnicas. Métodos de medición y manejo de datos para todos los resultados colorimétricos. Métodos de registro visual tanto analógicos como digitales, en fotografía, video. y edición digital. También métodos en luminotécnea para crear escenas luminícas, utilizando aparatos DMX, programación de objetos y métodos de escritura para secuencializar las escenas luminícas.

1.4. Objetivos

Esta investigación pretende, a partir del estudio del movimiento del color, crear muestras y proporcionar herramientas tanto conceptuales como técnicas para llevar acabo un desarrollo en la práctica pictórica. Propone explorar nuevas maneras de expresar la imagen visual en el desarrollo de la obra. Concretar técnicamente las capacidades dinámicas del color a través del diseño de iluminación de amplio espectro lumínico y la utilización de métodos, recursos y conceptos pictóricos que permitan el desarrollo de la dinámica del color como elemento formal dentro de la sintaxis del lenguaje visual, concretamente en el tratamiento de la imagen pictórica.

Los objetivos alcanzados se han dividido principalmente según el transcurso experimental quedando reflejados en los diferentes apartados de la tesis. En el primer estudio el objetivo ha sido investigar sobre el color tratando de acotar su campo de acción, su autonomía y delimitar cuales son los umbrales de percepción del color estableciendo los principios de su actividad. En el segundo estudio se desarrollan estos principios percutivos y se vinculan a la práctica estética desarrollando un proceso pictórico y un lenguaje gráfico. Y un último objetivo ha sido crear un espacio alternativo, un formato pictórico diferente que tenga presente las condiciones del observador potenciando al máximo la dinámica del color.
2. EL COLOR, ELEMENTO FORMAL DINÁMICO
'La única forma de ver un color es observarlo en relación con su entorno.'

Josef Albers
2.1 La observación mediante color matching

Los colores son sensaciones dadas por un flujo luminoso absorbido por la retina y después procesado por el sistema nervioso. Sentimos el amarillo de un naranja o el verdor de un azul como sensaciones producidas por la percepción. Un proceso en el cual la materia física pasa a la mente (psiqué). Correlaciona y compara sensaciones para construir una memoria visual que nos ubique y oriente en la naturaleza visual. Son sensaciones convertidas en estados de percepción y para ello existen varias condiciones. Una condición es la física, el comportamiento de la materia lumínica, una condición fisiológica, el funcionamiento del órgano visual y una condición psicológica, el procesamiento neuronal que lleva acabo el acto de percibir.\(^3\)

Conocer el color no es una tarea sencilla depende en última instancia de una sensación, de una observación, una praxis que no podemos eludir. Por este motivo podemos encontrar en la mayoría de estudios sobre color que se han realizado una observación y comparación del color. Los colores se observan, se cotejan y se clasifican, **una forma de estudio llamada color matching** o juego de colores. La praxis de sistematizar los colores ha sido el principio de la colorimetría. Desde los primeros círculos cromáticos en 1776 por el entomólogo y grabador Moses Harris como los llevador por el pintor Runge a sofistificados sistemas como el árbol de colores por el pintor Albert Munsell en 1929.

Realizar un muestrario o juego de colores requiere una habilidad técnica para mezclar colores, no obstante igual de importante será tener habilidad perceptiva, es decir hacer uso consciente del proceso psicofísico, relacionando fenómenos psicológicos con fenómenos físicos. La tarea que se ha de realizar principalmente es contrastar datos, cuantificar patrones, curvas de sensibilidad y umbrales que nos faciliten el poder entender la actuación del color

En el estudio sobre el movimiento del color es necesario primero especificar una metodología y unos materiales a utilizar. Metodología que permitirá separar los tres elementos influyentes en la percepción, luz, superficie iluminada y observador para poder analizar como se relacionan entre si, **acercándose** al procesamiento visual. En última instancia, cuanto mas control exista de los factores, **-caetaris paribus**, más cerca estaremos del proceso perceptivo y de poder establecer las causas por las cuales se produce el movimiento del color. El campo de investigación es amplísimo tanto como luz y materia existe en el universo, por ello debemos de acotar el estudio a un campo de actuación concreto. En este sentido el soporte o la superficie será nuestro campo de investigación, el lugar adecuado para realizar la observación de los colores, donde controlar la fuente de iluminación y poder ultimar la percepción de los colores. En primer lugar, empezando por un entorno de observación que parta de la oscuridad, es decir donde la única luz que actúe sobre la superficie sea proveniente de la lámpara de iluminación. Cualquier luz ajena a la

\(^3\) VALERO MUÑOZ, Antonio. *Principios de Color y Holopintura*. P. 65
escena, desvirtúa la percepción del observador lo que en luminotecnia se denomina grado de deslumbramiento. Se necesita oscuridad al igual que los músicos necesitan insonorizar sus estudios para que el sonido no se vea contaminado.

La metodología será fundamental para poder acercarnos al proceso cinético del color. Debemos de cuestionarnos cuales son los parámetros, como se activan, como se relacionan, como se miden y por último como deben ser las muestras a realizar. Analizaremos sus dos componentes por separado el color luz y el color pigmento para después valorar la representación cinética del color.

Figura 1. Piezas imantadas sobre panel para estudiar la interacción del color. Fotografía G. Bellod
2. 2. Activación del color luz

La iluminación es indispensable en la existencia visual. Es la acción por la cual se transmite la luz y mediante la cual el observador se informa de los objetos, pero no solo de los objetos se recibe información también la fuente lumínica y los mecanismos de recepción del propio receptor aportan información.

A mediados de siglo XIX se empezaron a hacer estudios para diferenciar las frecuencias de luz y ver su composición, Goethe pensador alemán, realizó múltiples experimentos cuestionó el comportamiento psíquico de la percepción y fue también, quien declaró por vez primera que la luz blanca estaba compuesta por tres colores, rojo verde y violeta. Mas tarde el físico escocés Maxwell estudió la composición de la luz simplificando su composición al rojo verde y azul. Gracias a los experimentos que realizó Maxwell con sus propios artilugios, algunos con aspecto infantil, como sus molinetes de colores y sobretodo la caja de luz (figura 2). La caja de luz le permitió recomponer la luz y crear colores para ver la composición de los mismos. Permitía simplificar el color a un principio triestímulo logrando cualquier color por medio de la mezcla entre ellos. Con este aparato, camino inverso al prisma de Newton, consiguió demostrar la composición de los colores y desarrolló los principios de la visión del color. El triángulo de Maxwell ha sido precursor de muchos modelos hoy día vigentes que han evolucionado según este sistema, como los modelos de la Commission Internationale d’Éclairage (CIE) y todos los aparatos que funcionan con modelos RGB.

Figura 2. Instrumentos de observación para estudiar el comportamiento del color luz y la visión del color. Caja de Luz y Molinetes de colores diseñados por James Clerk Maxwell. 1860. Laboratorio de Cavendish (Universidad de Cambridge)
2. 2. 1 Mezclas aditivas. Ensayos

La mezcla aditiva se consigue mediante la suma de frecuencias. Para poder realizar mezclas de color luz en este trabajo de investigación se ha confeccionado una lámpara y un controlador, permitiendo el estudio de la creación de colores luz. La tecnología LED actualmente aporta las mejores condiciones para poder trabajar con los colores luz. No solo por la capacidad cromática de emitir una frecuencia de luz concreta, monocromática como es el caso del rojo el verde y azul que permite la mezcla aditiva desde los primarios. También permite el control de intensidad lo que viene a facilitar el uso de la luz en zona escotópica, zona con poca iluminación y zona fotópica con mayor iluminación. La lámpara Rainbowie está diseñada, Figura 3, con el fin de cubrir toda la radiación de espectro posible. El controlador de luz L’orella (Véase Figura 4) está diseñado para controlar desde la distancia del observador y poder reproducir diferentes escenas lumínicas y trabajar con la dinámica del color.

4 Lámpara de amplio espectro lumínico que tiene la característica de poder mezclar diferentes luces, una composición formada por luz ultravioleta, luz azul, luz rosa, luz verde, blanco cálido y blanco frío. Construida con un cuerpo de madera que funciona de soporte y un reflector de aluminio que sustenta las tiras de leds. Posee dos aperturas por donde se encasquetan dos bombillas de luz negra. El reflector es una lámina de aluminio pulido con la capacidad de ser extendido por dos ejes articulados de metacrilato, pudiendo dirigir los rayos de luz de una iluminación intensiva de 30º de apertura hasta una iluminación dispersora de 60º de apertura. Lo que permite abarcar superficies entre 4 metros y 12 metros cuadrados, siempre teniendo en cuenta una distancia aconsejable de un metro a tres de distancia de la lámpara respecto el objeto para proporcionar el flujo lumínico con una capacidad de 400 luxes aproximadamente. Más información en el apartado Anexo (Véase figura 25)

5 Controlador para lámpara de amplio espectro lumínico. Dispositivo que permite mezclar las luces y visualizar el resultado de la luz de la lámpara en el propio dispositivo, monitorizándola. Es una interfaz que permite mezclar las luces y visualizar el resultado de la luz de la lámpara en el propio dispositivo. Las cuencas blancas reflejan la luz de las luces piloto y el borde de metacrilato testifica la mezcla de luz de la lámpara. Posee unos reguladores de intensidad e interruptores para cada luz dispuestos radialmente para poder ser controlados con una mano mientras la otra soporta el dispositivo. Es un instrumento mecánico que requiere de cierta habilidad para utilizarlo, sobretodo cuando se pretende crear secuencias lumínicas o acompañar música mediante su manejo.

L’Orella es un objeto de inspiración marina pensado para crear estados animicos, un objeto de invocación de imágenes. Los cuadros se someten a la pulsión de este instrumento, como una guitarra moviliza los sonidos. Poniendo de esta manera los dedos en sintonia con las sensaciones retinianas. La percepción del cuadro y sus colores se transforman en un campo de experimentación visual activo”.

G.Bellod

Más Información en el apartado Anexo (Véase figura 25)
Para definir los tipos de iluminación, basaremos las composiciones lumínicas en la mezcla aditiva de los colores primarios. Colores secundarios y terciarios mezclados según determinadas proporciones, dependiendo de la sensibilidad del color percibido aportaremos mayor intensidad de una luz primaria u otra para formar los colores secundarios. Ejemplo, un color luz amarillo se supone que será la mezcla equidistante de luz roja y verde. Sin embargo para que realmente concuerde con el color percibido que no tienda al naranja y tampoco al verde, la proporción de verde ha de ser un poco superior. Compondremos el círculo cromático aditivo en base a la influencia de cada color primario en la composición. La mezcla de las tres luces primarias dan como resultado la luz blanca, pero existen diferentes blancos dependiendo de las proporciones de unos y otros. El blanco equienergético estipulado por la Commission Internationale d’Éclairage CIE D65, es el blanco que posee la temperatura de color 6500° K. Esta luz blanca es la luz designada como óptima para visualizar los colores en condiciones estándar. Existen tablas

Figura 3 Lámpara Rainbowie

Figura 4 Controlador L’Orella
en el mercado de luminotecnia que informan cuales han de ser las proporciones óptimas para cada luz según los amperios de potencia de los LED para conseguir el blanco equienergético. En el caso de la lámpara Rainbowie posee 20 amperios de potencia sus proporciones para la mezcla han de ser de 23,4% de azul, 33,5 de verde y 43,1 de rojo. Estas proporciones harán de guía para conseguir los colores secundarios y terciarios hasta completar el círculo cromático de colores luz. Un total de 12 colores luz, colores primarios, secundarios y terciarios. A estos 12 colores le añadiremos la luz ultravioleta que como veremos más delante incrementa las posibilidades del pigmento aunque algunos colores en la oscuridad den la sensación de ser azulados en condición fotopica se mitiga la sensación. La luz ultravioleta será importante pues forma parte del funcionamiento de la dinámica del color que se investiga.

2.3 Activación del color pigmento

El foco de atención donde el observador dirige la mirada y desde donde se recibe la luz es el cuadro. La luz llega con todas sus características hasta el cuadro, allí comienza una serie de diferentes propiedades físicas, como la absorción, reflexión y transmisión de la luz, factores que transforman las propiedades hasta llegar a la retina del ojo en forma de imagen. El color luz pasa a ser color reflejado. Ciertas longitudes de onda se reflejan y otras no, dependiendo del principal factor de absorción de longitudes de onda, el pigmento; material que produce la absorción selectiva determinando el color reflejado. Cada pigmento añade la capacidad sustractiva de su composición esto conlleva a que cada vez que se añada un pigmento a una mezcla, se sustraen otra parte del espectro de luz, en consecuencia el color se vuelve más opaco y oscuro.

Desde la antigüedad, la alquimia ha sido la ciencia que ha tratado de controlar los efectos de sustracción de los materiales. Procurando los colores a la industria y a las artes muchos de ellos a partir de un proceso de extracción y depuración de minerales y plantas, otros sintéticos creados desde la composición química. Durante el siglo XIX, de los veinte pigmentos que utilizaban en común la paleta impresionista, doce eran de origen sintético. Supuso una proliferación en los recursos pictóricos y un comienzo por intentar acercarse a la naturaleza del color. El impresionismo destacó por su interés en plasmar en la imagen la luz. Basándose en los juegos de luces que interactuaban en la naturaleza, como amaneceres, reflejos en el agua y plantas. Utilizaban recursos visuales y pictóricos que potenciaban la propia naturaleza del color y la luz, comprendiendo el mecanismo visual a través de la luz y la importante aportación en la
comunicación visual. Por ello, las teorías sobre el contraste simultáneo del color desarrolladas por el químico Michel Eugène Chevreul fueron asignadas en el grupo como auténticos preceptos⁶. Los impresionistas eran conscientes de las limitaciones y exageraban los efectos para poder emular el color percibido. El contraste era un recurso formal para poder compensar las carencias de luminosidad del pigmento frente a la naturaleza visual de la luz. Evans en la percepción del color 1974 hace un estudio de intensidad, la ratio del pigmento es de 4 a 1 mientras que el de la luz es de 40 a 1. Esto supone una desventaja en la búsqueda de un naturalismo y una mimesis de la naturaleza. Los impresionistas con el fin de estimular más el efecto de luz mediante un juego de contrastes, sustituyeron el efecto de contraste luminico, de blanco y negro, acromático por el contraste cromático, utilizando sombras de color, iluminando más el cuadro evitando la oscuridad del negro. Los impresionistas preservaron las cualidades luminicas mediante el control de la sustracción del pigmento sobre todo extrayendo la oscuridad, lo que condujo a una auténtica purgación del color negro.

El camino hacia la luz mediante la pintura tuvo su máximo exponente en Seurat. Pintor impresionista el cual sumó a la técnica impresionista, la utilización de la mezcla óptica utilizando la síntesis aditiva. Seurat se autodenominó impresionista luminista. El puntillismo era su técnica y mediante ella proporcionaba viveza a la superficie pero no era suficiente para garantizar la luminosidad y la cromaticidad conseguida con la mezcla aditiva. Los puntos de complementarios pareados tendían a crear una impresión no de luminosidad sino de grisura. La investigación de Seurat quedó truncada por su temprana muerte, dejando quizás inconcluso un capítulo en la historia del Arte, un capítulo que marcaba la evolución de la búsqueda de la luz en la pintura.⁷

Figura 6. Tetera antigua de aluminio, 1885. Georges Seurat mediante la utilización de la disposición de colores puros logra la mezcla óptica para formar colores.

2.3.1 Mezclas sustractivas. Ensayos

El trabajo realizado es una muestra gráfica de las diferentes posibilidades del pigmento ante la luz. El pigmento que se va a utilizar trata de cumplir unos parámetros, por un lado pigmentos que sean lo más puro posibles evitando brillos y opacidades que distorsionen. Y también, es necesario que los pigmentos cubran las frecuencias más representativas en el espectro visible, es decir colores concretos. Para llevar acabo esta labor la pureza del pigmento es fundamental y va ligada a la elección de los materiales. Sin embargo también es de saber que al mezclar con un medio el pigmento pierde pureza debido, al índice de refracción que varia.

Han sido elegidos 24 colores para formar el muestrario circular, colores primarios, secundarios, terciarios y cuaternarios. Según la CIE el observador medio distingue entorno a 30 matices de color, por lo que ampliar a más colores, no es necesario y lo único que conllevaría es a dificultar la comprobación e identificación de los colores.
La paleta de color pigmento está formada por 12 pigmentos cuidadosamente mezclados, en vez de los tres primarios, Magenta, Cyan y Amarillo para llegar a un color, a unos matices y una luminosidad más vibrante hasta obtener los 24 colores.

Los 24 colores forman la visión espectral. Aunque el color púrpura no está considerado espectral y cierra el círculo. La mezcla sustractiva ha sido mediante colores pigmentos industriales de diferentes marcas, como Talens y Titan mezclados en solución acrílica. Se ha elegido un total de 12 pigmentos. La mezcla sustractiva ha sido en buena parte realizada por un proceso hecho en laboratorio químico donde se han producido colores con mejores cualidades. Un ejemplo es el naranja. Podríamos realizar el naranja en base a la mezcla de amarillo y rojo pero no se consigue la misma vibración que un naranja efectuado químicamente como un Naranja de Cadmio. Se han realizado los 24 colores del círculo cromático tratando de mezclar los pigmentos evitando mezclas que sustraigan demasiada luminosidad o no aporten suficiente matiz.

Los 12 pigmentos utilizados y sus respectivos pigmentos genéricos son:

Amarillo de Cadmio (sulfuro de cadmio y zinc litopón), Naranja (SulfuroSeleniuro de Cadmio), Rojo escarlata (disazóico y monoazóico), Carmín Garanza (moazóico y quinacridona), Magenta (quinacridona y dioxido de titanio rutilo), Violeta (fosfato de cobalto y litio, doxicicina), Azul ultramar (pígmento azul ultramar), Azul de cobalto (azul del cobalto) Azul Cyan (ftlocianina de cobre, dioxido de titanio y oxido de zinc) Verde esmeralda (azul de cobalto, oxido de cromo hidratado, filocianina de cobre policlorada), Verde Cinabrio (monoazóico, filocianina de cobre policlorada, oxido de hierro amarillo) y Verde Amarillento (monoazóico, filocianina de cobre policlorada).
Los 24 colores conseguidos a partir de estos pigmentos son los siguientes:

<table>
<thead>
<tr>
<th>Colores Pigmento</th>
<th>Nom</th>
<th>Colores Pigmento</th>
<th>Nom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Amarillo de Cadmio</td>
<td>Y</td>
<td>13- Azul de ultramar</td>
<td>VB</td>
</tr>
<tr>
<td>2- Ocre Amarillo</td>
<td>oY</td>
<td>14- Azul de Prusia</td>
<td>uB</td>
</tr>
<tr>
<td>3- Naranja-Amarillo</td>
<td>yO</td>
<td>15- Azul de Cobalto</td>
<td>B</td>
</tr>
<tr>
<td>4- Naranja</td>
<td>O</td>
<td>16- Azul de Manganese</td>
<td>cB</td>
</tr>
<tr>
<td>5- Escarlata</td>
<td>oR</td>
<td>17- Cyan</td>
<td>C</td>
</tr>
<tr>
<td>6- Rojo intenso</td>
<td>R</td>
<td>18- Azul verdoso</td>
<td>gC</td>
</tr>
<tr>
<td>7- Rojo Púrpura</td>
<td>pR</td>
<td>19- Verde esmeralda</td>
<td>GB</td>
</tr>
<tr>
<td>8- Magenta</td>
<td>M</td>
<td>20- Verde Botella</td>
<td>bG</td>
</tr>
<tr>
<td>9- Púrpura</td>
<td>P</td>
<td>21- Verde</td>
<td>G</td>
</tr>
<tr>
<td>10- Violeta purpureo</td>
<td>pV</td>
<td>22- Verde claro</td>
<td>yG</td>
</tr>
<tr>
<td>11- Violeta</td>
<td>V</td>
<td>23- Verde amarillento</td>
<td>YG</td>
</tr>
<tr>
<td>12- Azul de ultramar</td>
<td>vB</td>
<td>24- Amarillo verdoso</td>
<td>gY</td>
</tr>
</tbody>
</table>

2. 4. Cinética del color

La dinámica del color estudia los colores transitivos, es decir el movimiento de color desde un punto de vista global teniendo en cuenta tanto características exógenas, cambios en la iluminación y la variación de la composición química de los elementos observados y también motivos endógenos el procesamiento visual interno desde la retina hasta la percepción del color. La cinética del color estudia los cambios de color analizando los aspectos físicos de su composición química e iluminante sin tener en cuenta motivos endógenos de la percepción visual. Se compara las composiciones de los colores transitivos, sin tener en cuenta aspectos temporales en el color percibido como la duración del estímulo o el lugar de la retina que afecta.

La cinética del color es utilizada sobre todo para analizar la composición química. Mediante el movimiento del color se analizan los cambios químicos. Desde la industria de la alimentación, procesos como la fermentación y maduración son controlados. La cinética del color analiza los movimientos cromáticos que se producen químicamente. El color actúa como biomarcador testificando el estado de los alimentos. Los procesos químicos como fermentación, sublimación, precipitación y filtración han sido utilizados desde la antigüedad por los alquimistas para cambiar las cualidades cromáticas de los elementos. La química del color utiliza las cualidades a escala atómica de los elementos para formar los colores. Los elementos más influentes para producir variaciones en los colores son los metales de transición, metales que tienen la capacidad de compartir con otros elementos campos eléctricos estimulando longitudes de onda determinadas. El cromo, el zinc y el cadmio son algunos de estos metales de transición utilizados en la industria de los pigmentos.

Para realizar un estudio cinético del color hemos buscado un proceso de reacción donde poder ver el movimiento, en este caso no es una reacción estrictamente química, como en la cinética del color en los alimentos, sino desde una perspectiva fotoquímica, por un lado mez克莱mos químicamente las cualidades de la materia desde el círculo cromático sustractivo (figura 6) y por otro las cualidades de la luz desde el círculo cromático aditivo. Ambos círculos se fusionan en el círculo cromático cinético (figura 7), representación de un huso de colores en forma de plato.

Aunque la representación más dinámica sería la tridimensional, un poliedro toroidal donde el círculo cromático sustractivo gira entorno al círculo cromático aditivo. Desde la figura los 12 estados de iluminación han quedado dispuestos radialmente sin poder ver su conexión cíclica, es decir linealmente quedando como extremos la luz roja y la púrpura. Sin embargo, desde esta perspectiva bidimensional se puede observar la relación de la luz con los gradientes cromáticos de los colores sustractivos. El comportamiento de cada luz en función del pigmento por donde transita crea un juego compositivo de reflexiones de colores-luz. En primer orden, los colores-luz primarios activan una escala monocromática, es decir la luz azul, roja o verde activa el gradiente de luminosidad de su propia luz al pasar por el círculo cromático sustractivo generando un claroscuro monocromático que abarca gradualmente dos tercios de
círculo con luz dejando un tercio prácticamente en la oscuridad. Mientras que los colores-luz secundarios activan una escala bitonal reflejando los colores primarios constitutivos y la graduación entre ellos. Las luces violetas abarcan prácticamente todo el círculo. Esto indica la capacidad de iluminar según cada una de las composiciones, de luz y de pigmento. Es importante destacar que los colores se observan en unas condiciones lumínicas bajas, en zona escotópica donde la diferencia de luminosidad reflejada por ejemplo de un pigmento verde a un amarillo puede ser notable. Otro ejemplo a destacar es en la iluminación violeta a pesar de ser complementaria a la luz amarilla, la luz violeta dejará de emitir luz en el pigmento verde debido a que apenas tiene luminosidad para el azul y el verde es complementario a la luz roja del violeta, mientras que el color amarillo refleja la luz roja.

Figura 7. Círculo Cromático Cinético. Muestrario de 288 colores. Los 24 colores sustractivos dispuestos radialmente son iluminados por 12 colores-luz pertenecientes al círculo cromático de mezcla aditiva. Colores iluminados por lámpara Rainbowie y fotografiados con cámara Canon E-500, (Objetivo 50 mm , f 3.5 ,tiempo 1, 66 segundos.)
2.5. Procesos opuestos. Ensayos

El movimiento del color se produce debido a una alteración en el índice de cromaticidad, es decir su composición espectral varía, pero no solo este factor lo determina también la luminosidad. El funcionamiento de los receptores en la retina forman un circuito de estimulación sensorial responsable de la capacidad de respuesta. Tres clases de frecuencias, ondas largas, medias y cortas estimulan los respectivos sensores (conos y bastones) activándose y desactivándose creando un circuito entorno a dos ejes polares, el canal rojo-verde y canal azul-amarillo. (Véase gráfica izquierda de la Figura 8). La dinámica del color se manifiesta dentro de este circuito de posibilidades cromáticas siendo la relación entre ambos ejes las que determinan la cualidad dinámica del color.

![Ejes de movimiento en la recepción cromática por procesos opuestos](image)

Figura 8. Gráfica izquierda. Esquema perceptual sobre la recepción cromática basado en la Teoría de los procesos opuestos Ewald Hering, 1874 y revalorizada por Jameson y Hurvich, 1957. **Gráfica derecha.** Respuesta Cromática (Rojo-verde y Azul-amarillo) y acromática (blanco) de los receptores de un observador medio. Datos. *Unweaving the Rainbow*. pp 37. C. L. Hardin

Este sistema perceptivo es propuesto por la teoría de procesos opuestos donde se expresa que el movimiento de color oscila entre la polaridad de los receptores.

En los ejercicios realizados, *figuras 9 y 10*, se han trabajado la dinámica del color según el funcionamiento propuesto por el sistema de procesos opuestos. El canal rojo-verde, se estimula mediante la mezcla sustractiva y aditiva que trabajen ambos colores. A través del uso de un gradiente entre el verde y el rojo se interpola creando una transición de movimiento. El estado intermedio es el amarillo, donde el rojo y el verde se contrarrestan, equilibrando la luz. El problema principal en la construcción de un gradiente progresivo con los colores-materia es que la sustracción, mezcla de rojo y verde es demasiado oscura alejada con respecto a las mezcla de colores-luz. Para conseguir un trazado dinámico óptimo de colores transitivos debemos de conseguir en la medida posible, que no se sumen sustracciones sino que se
vayan relevando, cambiando una sustracción por otra. Para ello hemos de tener en cuenta por un lado la pureza del pigmento y las mezclas que se producen. El rojo cadmio medio y un verde titán son suficientemente puros, se activan y desactivan bajo la luz roja y verde correspondientemente pero la mezcla de ambos es muy sustractiva, casi llegando al negro. El siguiente punto a resolver es ir relevando ambos colores por otros intermedios como naranjas, amarillos, verde cinabrio o permanente. Éstos aportan estabilidad en la cromaticidad y luminosidad correspondiente al lugar donde el gradiente se encuentra. En la imagen derecha de la figura 10 se ha realizado una gráfica analizando el gradiente de iluminación conseguido mediante la sustracción controlada con los colores intermedios.

En el eje azul-amarillo también se produce un descenso de luminosidad. Entre los pigmentos rojo y azul. Los pigmentos producen una mezcla demasiado oscura por lo que es necesario como en el caso del canal rojo-verde buscar una mezcla sustractiva que sea más luminosa entre el rojo y el azul. La única manera según los pigmentos disponibles es incorporar blanco a la mezcla pues otros pigmentos alteran la cromaticidad. El color blanco debe de mezclarse en proporciones bajas, al ser la mezcla de los tres colores primarios desplaza su matiz, consecuencia del efecto Bezold-Brücke.
2. 6. Agentes fluorescentes en la dinámica del color.

La mezcla mixta es debida a la interacción entre mezclas aditivas y sustractivas. Los colores dependen del equilibrio entre ambas mezclas. ¿Pero que es lo que ocurre cuando incorporamos la luz ultravioleta y los colores fluorescentes en la mezcla mixta? ¿Afectan a la dinámica del color? ¿En que medida?

La incorporación de luz ultravioleta o también llamada luz negra en las mezclas aditivas supone adherir longitudes de onda entre 400 y 410 nm. La luz ultravioleta es casi imperceptible y puede mezclarse con otras luces sin apenas percibir cambios de luminosidad y cromaticidad. En cuanto a como afecta a los colores pigmento, los pigmentos son alterados por el resto de iluminaciones mientras que la luz ultravioleta no les afecta. Solo cuando se ilumina aisladamente con luz ultravioleta algunos colores pigmento que sean luminosos como el blanco, reflejan ligeramente un tenue azul. Sin embargo existen unos colores que si reflejan la luz ultravioleta los colores fluorescentes. Estos colores reflejan la radiación electromagnética de la luz ultravioleta en otra longitud de onda diferente a ella, por consiguiente consiguen frecuencias de luz mucho más visibles que la ultravioleta y se perciben como emisores de luz. La diferencia con los colores que no llevan agentes fluorescentes en una zona de poca iluminación es de fuerte contraste de luminosidad.

¿Qué es lo que ocurre cuando mezclamos colores fluorescentes con no fluorescentes? Los colores podrán en función de la mezcla de pigmentos emitir más o menos luz y aparecer en la zona fotópica como colores con aspecto fluorescente o no. Es decir se pueden crear colores semi-fluorescentes que puedan tener ambas propiedades la de emitir luz y la de aparecer como un color pigmento susceptible al resto de
iluminaciones. El color semi-fluorescente emite simultáneamente una radiación respondiendo a diferentes
frecuencias, coexisten ambas propiedades la de absorber y emitir luz. Por un lado el pigmento no
fluorescente posee la capacidad de sustraer frecuencias de la luz visible sin ser estimulado por la luz
ultravioleta y por el otro el pigmento fluorescente es capaz de convertir la luz ultravioleta en otra
frecuencia visible. De esta manera se incorporan agentes fluorescentes en las mezclas sustractivas
aportando sus características luminicas en la zona escotópica. Sin embargo, según la iluminación va
incrementándose aparecerán las propiedades de los colores no fluorescentes. Esto conlleva a que en
comparación con otros colores que no sean fluorescentes se puedan ver iguales, creando de esta manera
colores metámeros, es decir colores que con una luz se perciben iguales y con otra luz diferente. 8
Joseph Albers en su libro ‘ Interacción del color’, nos indica que la manera de percibir los colores es
verlos en relación con su entorno. Es decir el color necesita de un sistema de referencia donde ubicarse.
Cuando los colores se disponen entre ellos, cambian sus referencias, unos a otros esto es fácilmente
causado por el movimiento de luz, surge una dinámica, produciendo cambios compositivos que influyen
en la configuración de cada uno y en la configuración global. Los colores metámeros son un recurso de
enorme dinamismo en la configuración dentro de la dinámica del color. Al percibir un color y poder
mediante un cambio de iluminación configurar dos nuevos valores, crear una forma nueva donde antes no
se percibía. Los colores metámeros son un recurso puramente formal ya que posibilita al cambio
lumínico la capacidad de delimitar áreas y descubrir formas.

En la figura 11 se ha creado un muestrario comparativo de dos círculos cromático-cinético, el de la
izquierda con colores semi-fluorescentes es decir con activos fluorescentes y el de la derecha sin activos.
El círculo central superior son los 24 colores vistos con iluminación blanca D-65, los dos círculos se ven
así con esta iluminación.

Dependiendo de la carga de fluorescentes la luminosidad en la zona escotópica será mayor o menor. El
objetivo principal de los colores semi-fluorescentes ha sido mezclar pigmentos sustractivos y pigmentos
fluorescentes ecualizando la cromaticidad y luminosidad con el fin de poder entablar correspondencia con
el resto de color tanto con los puramente fluorescentes como los que no llevan ningún agente
fluorescente. En la gráfica de la figura 12 se ha realizado un estudio de la luminosidad de 12 pigmentos
sin activos a través del espectro de luz para poder observar la reflectancia inicial de los matices de cada
color en el círculo cromático y con ello determinar el factor dinámico. Cada una de las curvas representa
el índice de luminosidad del pigmento al pasar por el espectro de luz.

8 Dos o más estímulos luminosos que físicamente tengan composiciones de frecuencias diferentes pueden activar al mismo receptor. Esto es lo que llaman el principio de Univariancia. Las frecuencias son reconducidas según los tres tipos de receptores enviando la misma señal neuronal. Debido a este principio existen los colores metámeros, colores que se ven iguales bajo determinada luz. Encontramos ejemplos en la naturaleza, existen colores como algunos verdes compuestos por frecuencias diferentes que se ven iguales a plena luz del sol y no conseguimos diferenciarlos. Sin embargo cuando se cambia a otra iluminación se estimulan receptores diferentes para cada verde y podemos diferenciarlos. También ocurre cuando incluimos una luz ultravioleta que podemos observar matices en los colores que nos permiten diferenciarlos. El principio metamérico es una cualidad que se emplea en las tres dimensiones del color tanto en la luminosidad, saturación como matiz. Esto indica que no hay ninguna luz completamente verdadera. Atribuimos a la luz del sol, su capacidad de ofrecer la información verídica. Sin embargo al igual que la luz de medio día nos parece cegadora y nos resta sensibilidad, una luz compuesta por muchas frecuencias nos puede impedir diferenciar ciertos matices del color. Color para filósofos. HARDIN. C. L. Color for Philosophers. (Unweaving the Rainbow). P 84-89
Figura 11 Círculos cromático-cinético. Izquierda con activos fluorescentes. Derecha sin activos.. Abajo rueda de los colores luz. Los colores de ambos círculos son iguales vistos bajo la luz blanca (círculo de arriba) con esta luz son metámeros.

Figura 12. Representación de la luminosidad de 12 pigmentos sin activos fluorescentes a través del espectro de luz. La gráfica es un análisis de la capacidad de reflectancia y absorción del pigmento. Iluminación medida con CIELab Photoshop.
Estos muestrarios servirán de pautas para desarrollar las capacidades tanto de iluminación como del uso del pigmento y poder iniciar un desarrollo del proceso creativo, sabiendo posibilidades y limitaciones que puedan surgir. Conocimientos que facilitan la toma de decisiones a la hora no solo de componer una imagen, sino de elegir que tipo de imágenes funcionarán mejor con unos u otro parámetros cromáticos. La dinámica del color abre una nueva vía de experimentación en la pintura proponiendo un sistema donde el color pasa a ser un elemento formal con unas capacidades dinámicas que podrán ser activadas a la hora de configurar la obra.
3. Aplicaciones de la dinámica del color.
El led azul se hizo esperar varias décadas respecto al led rojo y el verde hasta que en los años 90 apareció, incorporándose a la tecnología de iluminación. Esto supuso disponer de todo el espectro de luz e irrumpir como un nuevo tratamiento de la luz para crear dispositivos de iluminación y creación de imágenes. La precisa gama de colores, su eficiencia con un rendimiento mejorado respecto a otras tecnologías y su versatilidad integrándose en el control digital, supuso una nueva relación con la luz, no solo para plasmar imágenes también en la iluminación de espacios como por ejemplo en el Museo del Prado donde han cambiado el alumbrado valorando positivamente los cambios por sus aportaciones tanto en conservación como en la calidad para el visionado de los cuadros. En la creación artística, intervenciones como escenografías e instalaciones han explorado nuevos recursos luminicos incluso se han destinado espacios para la exhibición de obras de arte hechas con luz como el primer museo de luz Lichts Kunst Unna en Alemania.

Con exposiciones de artistas relevantes como James Turrell y Olafur Eliasson el desarrollo de las cualidades luminicas por medio del color en el espacio han puesto a disposición este conocimiento perceptivo. El color no solo como atributo de los objetos sino con propiedades de interacción poniendo a prueba las capacidades sensoriales. Sus obras ponen de relevancia el papel activo del espectador, creación de atmósferas cromáticas y experiencias visuales únicas. El control luminico y de los colores luz con fines artisticos no es algo nuevo desde las primeras vanguardias, artistas como Thomas Wilfred o Moholy- Nagy introdujeron los colores-luz bañando las paredes de los espacios expositivos.

Las lámparas de amplio espectro lumínico han sido inventadas con este mismo espíritu de activar la percepción y buscar en el arte su expresión. Lámparas que gestionan el espectro de luz e iluminan los cuadros valiéndose de la tecnologia led, integrando por un lado la artesania del pintor que mezcla cada color en la superficie, con la técnica del iluminador que busca el efecto y la atmósfera de la luz. Con estas pretensiones surge la pintura de amplio espectro lumínico (Pintura WSL). Pintura susceptible a los cambios de color, fusionando las cualidades de la luz y del pigmento y formulando una dimensión formal diferente, la dinámica del color. El control luminico otorga de temporalidad al color, proporcionándole un valor múltiple, un rango de posibilidades. Los colores se convierten en transitorios, efímeros, y a través del sistema perceptivo entran en juego nuevos parámetros ya no solo los contrastes simultáneos, aquellos que se producen en la dimensión espacial sino también, simultáneamente otro tipo de contrastes,

9 Miguel Falomir, director adjunto de Conservación e Investigación del Prado. “Con la iluminación halógena, los segundos planos pierden nitidez” Manuela Mena, jefe de conservación de siglo XVIII “ la luz LED afecta a las miradas de los protagonistas de estas pinturas y las muestra tal y como quería Goya”.La Voz Galicia, 2015.

10 Web oficial <http://www.lichtkunst-unna.de/> [Consulta: 10 de junio de 2016]
contrastes sucesivos, con los cuales se activa la secuenciación temporal. La pintura WSL pone a disposición la dinámica del color como un elemento formal configurador de la obra. Valores dinámicos se introducen en el tratamiento de la imagen, nuevos aspectos formales e iconográficos que cuestionarán la metodología y conceptos que la práctica pictórica propondrá. En este apartado trataremos algunos de estos aspectos desde el análisis de la creación de obra pictórica.

3.1. Dinámica del color en la figuración
3. 1. 1. Búsqueda de ilusión figurativa

El observador recibe una inconstante percepción del color que el cambio de luz proporciona a los objetos. Los colores se relacionan entre ellos y dentro del proceso perceptivo tratamos de asignar colores a los objetos. Aunque determinada luz pueda cambiarnos la información de un objeto por ejemplo, un plátano visto bajo una luz azulada se verá en tonos verdes pero en su contexto seguiremos viéndolo amarillo. Asimilamos las micro-trasformaciones que produce la luz y renegociamos el sentido del color influidos por nuestra experiencia y marco referencial de la memoria. Está propiedad es la constancia del color tratada por Edward Land en su teoría del Retinex comprobando que parte de nuestra percepción del color viene de la retina de carácter óptico y otra parte del córtex de carácter neuronal. C.L Hardin profundiza en esta dimensión en la que el color es inconstante y le asigna la categoría de ilusión. Los objetos se perciben como ilusiones, pero particularmente estables ilusiones, pues la ilusión es comprobada, comparada y prevista por la percepción. La ilusión está determinada por las capacidades del sistema perceptivo en el sentido global de aceptación de condiciones tanto perceptivas como psicológicas. Proviene de un error de percepción, una confusión entre la imagen y algo distinto a la imagen que nos permite percibir a través de, y a pesar de. En nuestra aprehensión de toda imagen, entra una parte normalmente consentida y consciente en la aceptación de la doble realidad perceptiva de la imagen. Percibimos simultáneamente una imagen como un fragmento de superficie plana y como un fragmento de espacio tridimensional: a este fenómeno psicológico, el teórico Jaques Aumont denomina doble realidad perceptiva de las imágenes. La realidad bidimensional porción plana donde se puede tocar y desplazar sobre el plano y la porción tridimensional que solo existe en la vista y simula la profundidad. La visión binocular nos informa con las fijaciones sucesivas que realiza la mirada que no hay disparidad entre las imágenes retinianas de cada ojo y así construimos el plano del cuadro. Para la sensación tridimensional se necesita imitar caracteres de la visión que reproducen y rememoran la visión natural. Leonardo da Vinci en su tratado de pintura incluyó una lista de prescripciones para uso de pintores como la perspectiva aérea y el tratamiento de los contornos Todas las medidas forman parte de la respuesta técnica al proceso perceptivo, una respuesta que imita el comportamiento de la retina.

11 AUMONT, Jaques. La imagen,(1990). P. 65
La pintura WSL por medio del color construye una ilusión estable. Los colores pasan por la dimensión dinámica del color hasta encontrar constancia formal. Denominamos constancia formal a la armonía surgida de todos los contrastes cromáticos que generan la imagen. Los contrastes cromáticos son alterados desde el control lumínico según las capacidades dinámicas del color dando como resultado valores de claroscuro que cambian, como vimos en el círculo cromático cinético en el capítulo anterior. El claroscuro es una de las cualidades principales en la configuración tridimensional influyendo en las sensaciones volumétricas. Los cambios de color trastocan el claroscuro haciéndolo dinámico, alterando la visión tridimensional y su relación con el plano del cuadro.

Figura 13. Superposición fotográfica de imágenes vistas con diferentes iluminaciones. Pintura de amplio espectro lumínico (WSL)
Autor: Guillermo Bellod, Técnica Mixta 105cm. X 42cm. Año 2012
3.1.2 Dinámica del color en la representación figurativa

La representación figurativa utiliza las figuras para comunicar visualmente, pudiendo ser planas o tridimensionales. Tanto unas como otras construyen formas, mediante elementos visuales como la línea, el claroscuro o el color encargándose de aportar la identidad que las convierte en representantes de la naturaleza visual. Cualquier convencionalismo puede ser depositario de rasgos de identidad que nos acerque a una naturaleza visual determinada, a veces superando a la propia fotografía. Un ejemplo serían las ilustraciones de plantas o animales que pueden llegar a tener un nivel representativo mucho mayor que una fotografía, utilizando líneas o planos de luz que no pertenecen a una transcripción realista pero si revelan su naturaleza visual.

En los trabajos realizados mediante pintura WSL, *Tiféret y Oniricatchsub* (Figuras 14 y 15) se ha utilizado la representación figurativa. Figuras determinadas por los cambios de luz que produce el control de iluminación. Su percepción dista de la realidad en cuanto los objetos representados son de colores y formas diferentes a los reales pero sin embargo contienen estructuras que ayudan a su identificación visual. Un ejemplo a destacar está en las hojas del árbol de Tiféret según cambia su iluminación, las hojas aunque no pertenecen a ninguna planta específica, mantienen una morfología acorde con la botánica, como su forma polibulada o su estructura superficial con una textura craquelada que emula al limbo de la hoja.

El craquelado posee una doble superficie interna y externa con colores perfectamente definidos que se activan con los cambio de iluminación. En el caso de Tiféret emulan una disposición natural como es las hojas vistas a contraluz. Con una iluminación escotópica donde los agentes fluorescentes se agudizan, las hojas son portadoras de luz en la capa interna del craquelado y las líneas de contorno dando la sensación que la planta a contra luz se ilumina. Esta característica luminica podría percibirse en la naturaleza de manera similar. Al recibir diferentes iluminaciones pueden dar diferentes visiones y así complementar las características que ayuden a concretar la figuración. Con otras iluminaciones se consiguen aspectos formales como la disposición espacial de las hojas en el árbol o si están orientadas en haz o envés. Cada aspecto formal puede ser identificativos de un elemento estructural de la naturaleza visual del árbol. (véase figura 16)

De la misma manera ocurre en otros trabajos como en Oniricatchsub. El tratamiento figurativo puede distar de la realidad pero hay aspectos formales que pueden desempeñar una funcionalidad perceptiva que ayude a identificar a la figura representada. En el caso de la representación de las sepias, la estructura epitelial de estos animales esta formada por los cromatóforos, unos músculos que se dilatan y contraen
sacando a la superficie diferentes tintes y que por mezcla óptica podemos observar diferentes colores y cambios de color. Esta estructura visual puede ser imitada en mayor o menor medida por la combinación de técnicas pictóricas y de iluminación. El empleo de toques separados de color o texturas que combinen diferencias facilita la mezcla óptica y la capacidad interactiva de colores-materia puros con los colores-luz. La técnica de utilizar la mezcla óptica ha sido una técnica habitual desde las primeras demostraciones en obras como las de Tiziano, donde utilizaba impastos restregados para combinar colores compuestos. Tiziano sabedor de la calidad y excepcionalidad de los pigmentos que llegaron a sus manos, respetó la naturaleza de ellos, aplicándolos puros mediante técnicas de restregado.

“….realizadas a golpes, de forma gruesa y con manchas, no se pueden ver de cerca, mientras que de lejos resultan perfectas. Y ese modo ha sido causa de que muchos, queriendo imitarlo y mostrarse mañosos, hayan hecho torpes figuras; y esto sucede porque, si bien a muchos parece que han sido hechas sin trabajo, no es esa la verdad y se engañan, pues se ve que han sido retocadas y se ha vuelto a ellas tantas veces con los colores, que se advierte el trabajo.”

Giorgio Vasari

También los impresionistas hicieron uso de la mezcla óptica, aplicando el restregado y pinceladas cortas preservando la pureza del color. Sin embargo, quizás la técnica que mejor representaba la capacidad óptica de mezclarse fue el puntillismo por la homogénea disposición de la luz facilitando la receptividad en la retina.

La mezcla óptica ha sido fundamental en el tratamiento dinámico del color haciendo que el color no pierda cualidades por sustracción. También el planteamiento realista donde las texturas identifican la naturaleza de las figuras ha sido necesario tener en cuenta por lo que la técnica elegida debe cumplir esa doble función. Mezcla óptica facilitando la interacción de los colores y adecuación de texturas acercando la identidad representativa. Un ejemplo de esta intención ha sido la técnica del puntillismo y craquelados para la representación de las sepias. (Véase Figura 17)

12 VASARI Giorgio; Las vidas de los más excelentes arquitectos, pintores y escultores italianos desde Cimabue a nuestros tiempos (Primera publicación 1550) Ed. Tecnos 1998 P. 190.
Figura 16. Detalle Tiferet. Iluminación azulada. En el limbo de las hojas representadas podemos apreciar el amarillo fluorescente en la capa inferior de los craquelados, simulando el contraluz de las hojas.

Son muchos los tratados de pintura que apuntan a buscar en la esencia de la naturaleza las causas visuales, tratados como el de Leonardo, Durero, Albertí… realizan acercamientos a la naturaleza visual, no instruyendo a una simple transcripción visual de la realidad sino a conocer la realidad interna de los objetos, a veces incluso idealizándolos comprendiendo que la transcripción al lenguaje del dibujo y la pintura es determinante por ser su nuevo aspecto físico.

“El pintor que traduce, guiándose de la práctica y de la simple vista, pero sin discernimiento, no pasa de ser un espejo que imita las cosas más diversas, sin que entienda la esencia de ninguna.”

Leonardo Da Vinci

En este sentido debo de hacer mención de un autor del siglo XX cuyas reflexiones han influido en la concepción de las obras que he realizado para la pintura WSL, el crítico de Arte Raúl Chavarrí fue coetáneo de los realismo de vanguardia que tuvieron lugar en España durante los años 60 y setenta. Definía el realismo como un acto de precisión en la realidad. Dio forma a un movimiento pictórico el Ultrarrealismo y buscó las características de este movimiento en cada uno de los pintores de su generación. Alguno de ellos como Antonio López o Eduardo Naranjo, ya eran encasillado en movimientos internacionales como el Hiperrealismo, pero la visión de Raúl Chavarrí, desde su análisis personal los acercaba a unas características diferentes, encontrando otras denominaciones comunes. Trató de desligarlos de movimientos ya pasados como el surrealismo o realismo académicos definiendo las características de un nuevo y particular movimiento. El movimiento ultrarrealista como lo definió, buscaba la precisión de la realidad en la esencia de la realidad. Se fundamentaba no en una búsqueda de realidad aumentada como el Hiperrealismo manifestaba a través de una visión fotográfica de la realidad, sino construir la imagen a partir de una emulación de comportamientos y funciones visuales de la propia naturaleza visual que el lenguaje pictórico debe de transcribir al lienzo. Uno de los pintores que nombra como precursor es Eufemiano Sánchez, pintor de posguerra el cual pintaba bodegones, especialmente paños. La característica sobresaliente que Raúl Chavarrí destacó en referencia al movimiento se encuentra en los rasgos de la obra de Eufemiano Sánchez concretamente en la representación de telas. Como representa los paños utilizando la propia trama del lienzo para destacar las características constitutivas del objeto, encontrando aspectos determinantes, haciendo coincidir su naturaleza física y visual en la representación. Esta característica no es algo nuevo digamos que ha acompañado a la representación realista a través de la historia y se ha podido constatar cuando el lenguaje pictórico ha sabido transcribir los aspectos relevantes de la realidad visual sincronizando el como se ve y de que está hecha.

A simple vista aunque pueda parecer que la dinámica del color nos aleje de la realidad, el comportamiento de la luz incidiendo sobre las figuras cambiándolas, rememora aspectos implícitos en nuestra percepción visual, como es la propia percepción del color. Cuando observamos en el transcurso del tiempo, desde las diferentes iluminaciones que nos acompañan en la naturaleza visual se producen multitud de micro-transformaciones en el color de las cosas. La luz del sol se manifiesta con cualidades

13 DA VINCI, Leonardo. Tratado de Pintura (Consideraciones morales) P. 195.
14 CHAVARRÍ, Raúl. La pintura actual española. (1ª Parte) P. 103
diferentes en cada momento del día, también los cambios a iluminaciones artificiales transformando la apariencia de las cosas. De todo ese movimiento lumínico que se produce en nuestro entorno, la percepción visual establece un conocimiento y reinterpreta normalizando algunos aspectos como el fenómeno de la constancia del color. En la pintura de amplio espectro lumínico se acelera el proceso de percepción, ahondado en la naturaleza visual. La visión nos aporta información de donde estamos, quien es el iluminante, analizando los colores luz y quien es el iluminado analizando los colores pigmento. Este proceso nos lleva a poder percibir de manera estable y mantener una identidad en las figuras. Los colores transitivos reestructuran la doble realidad perceptiva, la relación entre la lectura bidimensional y tridimensional provocando un código diferente al de otro tipo de imágenes como la fotografía, pintura tradicional o también imágenes en movimiento como el cine. La pintura WSL mediante el tratamiento dinámico del color consigue un código que le diferencia de otros planteamientos visuales. En la búsqueda de la representación figurativa, los cambios de iluminación basados en la dinámica del color pueden llegar a ser tan diferentes que rompan la coherencia representativa. La representación figurativa debe ser preservada en mayor o menor medida con cada cambio de luz para que la imagen mantenga ciertas características que identifiquen a las figuras. La dinámica del color se convierte en una herramienta que puede proporcionar autonomía a las figuras, por ello el pintor que quiera pintar figuración con pintura WSL debe tener en cuenta todos los cambios dinámicos del color para preservar las figuras. Si se pretender establecer una tridimensionalidad, volumetría, claroscuro y composición. La disposición cromática y lumínica juega un papel importante. Esto quiere decir que para mantener los volúmenes tendremos que establecer un claroscuro desde la propia naturaleza del color, su variabilidad lumínica. La pintura WSL otorga a cada iluminación un aspecto funcional y las cualidades de la luz y del pigmento serán las que constituyen las características de la representación figurativa.
3. 1. 3. Iluminación en la pintura de amplio espectro lumínico

En la Pintura WSL la iluminación desempeña un papel importante tanto en el proceso perceptivo como en el proceso creativo. La iluminación no solo configura el aspecto último que el observador va a recibir, es decir el proceso perceptivo sino también forma parte del proceso creativo. Los cambios de iluminación durante el proceso de formación de la imagen son acciones que informan sobre la composición, un análisis de los componentes necesarios para formar la imagen.

Aspectos compositivos, volumétricos y de perspectiva son algunas de las características para estructurar una escena con figuras. Es necesario dotar de valores o establecer transiciones que no interrumpan la coherencia de la figura. La pintura WSL debe cumplir unas condiciones necesarias para mantener la configuración en todo su espectro lumínico. La característica principal del cuadro es pues que puede ser visto con cualquier iluminación, es autónomo desde los parámetros lumínicos. Su composición debe sobrevivir a cualquier cambio de luz. La cromaticidad y la intensidad lumínica son los dos principios que deben supeditarse en los planteamientos formales. Por un lado, el cuadro podrá ser visualizado desde una perspectiva escotópica o fotópica, según la luminosidad, pudiendo transitar de la oscuridad a la luz y viceversa, y por otro lado, bajo cualquier alteración de su cromaticidad, en consecuencia el cuadro podrá ser visualizado en cualquier tonalidad.

La iluminación de amplio espectro lumínico convierte el cuadro en un campo de acción poliédrica, con múltiples caras. La mezcla aditiva proporciona un carácter modulable tanto en su intensidad lumínica como en su cromaticidad. La iluminación se configura sumando fuentes de luz que determinan la escena. Las lámparas de amplio espectro lumínico ofrecen un control lumínico desde seis diferentes fuentes, iluminación ultravioleta, roja, azul, verde, blanco frío y blanco cálido. Cada uno de ellas puede ser independiente o ser mezcladas pero para crear una configuración global en el cuadro deben tenerse en cuenta todas las combinaciones posibles.

Las diferentes iluminaciones se configuran creando la puesta en escena de la obra. Se divide en dos acciones la iluminación. Scene o escena lumínica, cada una de las combinaciones mediante mezcla aditiva de iluminación su característica principal es que es una luz estática proporcionando una información determinada en el tiempo y por otro lado la acción Chase, secuencia de escenas. Las escenas pueden ir encadenadas una detrás de otra o también con transiciones fundidas formando secuencias.

Para realizar el control de la configuración global del cuadro es necesario establecer unas escenas claves de iluminación donde el cuadro se construye. Podemos hacer un planteamiento parecido a los colores-materia con los colores-luz, al mezclar y producir específicas iluminaciones, su composición primaria es

16 La visión global en la pintura de amplio espectro lumínico solo puede ser observada completamente cuando el cuadro está avanzado en su ejecución y puede sintetizarse su visión mediante los movimientos lumínicos, es una visión holística, sincretista. A partir de la síntesis de diferentes visiones, como cada una de las iluminaciones posibles que puede recibir el cuadro. La visión global del cuadro necesita de un buen planteamiento inicial. Todos los aspectos compositivos son influyentes, la elección de los elementos formales, la relación lumínica de los objetos, la representatividad de la escena real y la perspectiva interceden en la visión global.
participe en la composición la resultante, es decir se pueden tener como referencia las escenas primarias sabiendo su repercusión en las mezclas. A efectos prácticos si un cuadro ha sido configurado con una imagen vista en luz azul y por otro lado con luz roja, podremos establecer una configuración con luz violeta. Esto nos lleva a simplificar su proceso construyendo un circuito lumínico de posibles transiciones donde el cuadro debe de asentar sus principios formales. Cinco escenas lumínicas son las que configuran la imagen global: Una escena inicial en ultravioleta, 3 escenas primarias con luz roja, verde y azul y una escena global para la luz blanca. Todas las mezclas posibles entre ellas construyen el resto de iluminaciones del cuadro por mezcla aditiva.

Cada una de ellas tiene sus propias características:

- **La iluminación Ultravioleta** o también llamada luz negra, es la luz o radiación cuya longitud de onda está por debajo de los 410 nm. Es la iluminación básica, se encuentra presente en cualquier mezcla luminica sin llegar a mitigar las propiedades de otras luces y por otro lado aportando cualidades necesarias para generar dinámica en los colores. La iluminación ultravioleta refleja la luminosidad de los colores que llevan agentes fluorescentes, el resto de colores permanecerán en la oscuridad sino poseen mezcla fluorescente. La luz ultravioleta activa determinados colores metaméricos, genera fuertes contrastes lumínicos entre los colores. Principio activo en el que se basará la dinámica del color.

- **La iluminación Azul.** Su longitud de onda está entre 450 y 490 nm. Está iluminación a efectos de radiación lumínica podríamos decir que es la continuación de la luz ultravioleta, mantiene la acción de los agentes fluorescentes destacando amarillos verdes rojos y naranjas fluorescentes con luz propia. El color que se mantiene en la oscuridad es el naranja, el resto reflejan con mayor o menor intensidad el color azul dependiendo de su composición espectral. La iluminación Azul y Ultravioleta se transmiten en ondas cortas más energéticas que el resto. Estas iluminaciones en la oscuridad producen una fuerte excitación al introducirse en mayor cantidad al no ser frenada por la pupila que no percibe una luminosidad alta pero su radiación es enérgica incluso en largas exposiciones, puede alterar el ciclo circadiano y ser dañina para la retina.

- **La iluminación Roja.** Luz cuyas ondas están en una longitud entre 620 y 770 nm. Son de ondas largas y producen calor. Producen relajación, la radiación infrarroja no es visible y se puede percibir como calor. La luz roja tiene la característica que la podemos detectar junto a frecuencias de ondas altas junto a cortas produciendo colores no espectrales e decir que no se producen en el arco iris como el púrpura y con el cual podemos cerrar la escala cromática en un círculo. La luz roja convive con la luz ultravioleta en la zona escotópica respetando la vibración de los colores, podríamos decir que mas que una acción aditiva es una acción complementaria ambas luces conviven.

- **La iluminación Verde.** Luz cuya ondas están en una longitud de onda entre 490-570. Es una luz que produce la sensación de visibilidad aun estando en baja luminosidad, aporta definición a las formas. Junto a la luz roja forma la luz amarilla, acentuando la sensación de formas figuras con mayor luminosidad. Se
utiliza en trabajos donde la vista requiere una especial atención al entorno espacial como ejemplo las pantallas de submarinos para poder visualizar con escasa iluminación.

La iluminación Blanca. Esta luz se regula por la temperatura de color resultante, es decir la cantidad de cada componente de rojo de ver y azul. El blanco equienergético lleva cerca de 47% de rojos 38% de Verdes y 15 % de azules aunque esta proporción varía según la fuente y en el caso de la luz natural aspectos como la latitud o la hora del día. En la lámpara de amplio espectro se encuentran de dos tipos blancos, blanco frío de 4100º K y un blanco cálido de 3000º K. La iluminación blanca en la pintura WSL añade luminosidad, como se puede apreciar en la tabla de colores asignada según las fuentes de iluminación (Véase Anexo). Añadiendo blanco frío a colores fríos para aumentar su brillo y blanco cálido a los cálidos. La suma de todas las fuentes de luz conformaría el blanco máximo.

En la composición global de la obra la línea está presente como elemento configurador. El dibujo es el instrumento de estructuración de la escena. Las figuras son circunscritas por líneas fluorescentes. Los colores fluorescentes son los colores que menor movimiento adoptan en la pintura WSL. Sobreviven a los cambios de luz, de esta manera las líneas de contorno se convierten en una fuerte estructura compositiva que potencia la relación figura fondo. Sin embargo el resto de colores en la escena que pertenecen al dintorno de las figuras y al fondo son colores que sufren cambios en función de la luz, cambio no solo de la interacción cromática con variaciones de contrastes simultáneos y sucesivos sino cambios de intensidad lumínica. Es decir cada iluminación establece una relación entre los colores y estos a su vez reflejan diferencias en la luminosidad. Este efecto convierte el claroscuro en un valor dinámico, cada iluminación debe de tener en cuenta los cambios de luminosidad que se producen para resaltar las figuras.

La figuración propuesta mantiene las características formales necesarias sin afectar la presencia de los objetos representados, todas las visiones atienden a una figuración. Aunque la dinámica del color propone movimientos en las figuras, existe un grado de transfiguración dependiendo del control de iluminación y del tratamiento de las figuras. Las figuras se presentan como “armonías espaciotemporales” por medio de la dinámica del color. Se dilatan y se contraen. La líneas, manchas, grafismos que generan formas se interrelacionan mediante el color en dos dimensiones, una mediante contrastes simultáneos en la dimensión espacial y otra por contrastes sucesivos en la dimensión temporal, creando por fusión un contraste mixto que da lugar a “armonías espacio-temporales”. La persistencia retiniana produce un estado perceptivo donde las escenas lumínicas se fusionan armonías de color. Se aniquila la propia esencia sugestiva del color, del color simbólico para dar lugar a la activación de la imagen. Mediante el movimiento en la imagen por sus cambios de color se presenta el “ente del cuadro”, un estado perceptivo donde fondo y figura interactúan facilitando una actividad presencial de los objetos. La dinámica del color estructura dicho movimiento formal. Un ejemplo donde podemos percibir este fenómeno es visualizando el cuadro con sucesivas iluminaciones a una velocidad alta donde se produzca la persistencia retiniana. El color deja de tener un valor sugestivo, de identificación única, para ser estructurador de las formas por medio del movimiento.

Uno de los elementos que provocan mayor transformación formal y dinamismo son los colores metámeros. Los cambios de luz pueden crear desde transiciones cromáticas, hasta fuertes cambios
formales, apareciendo y desapareciendo formas debido a la presencia de estos colores. Aunque el
metamerismo en otros campos del arte como en las artes gráficas no es valorado debido a la
responsabilidad que ejerce el color en la impresión. Sin embargo en el caso de la pintura WSL es una
cualidad imprescindible para conseguir acción en el color y en su expresividad. Con los colores
metámeros se pueden crear movimientos en las figuras, hacer aparecer y desaparecer rasgos y potenciar
efectos tridimensionales. El metamerismo es un fenómeno perceptivo de carácter psicofísico. Aspectos
como el tiempo de exposición y la adaptación al estímulo son factores que influyen en los efectos
dinámicos y rítmicos en las imágenes.

Figura 18. Detalle Tiféret. Dos iluminaciones diferentes donde apreciar los colores
metámeros. Una acción inversa, con la luz violácea aparecen unos colores y desaparecen otros
y con la luz cian se invierte el efecto. La luz violácea produce un aguzamiento en las formas
caso 1, mientras que en las hojas es mitigado el efecto. Sin embargo con la luz cian las
nervaduras de las hojas se contrastan mientras que en el cielo dejan de acusarse cambios de
tonos.

3. 1. 4. Tratamiento gráfico. Técnicas pictóricas

Tiferet y Ontricatchsub son dos cuadros con un planteamiento formal figurativo realista. Desde el punto
de vista de observación representan escénicamente los objetos definiendo el lugar del observador, dentro
de una tradición renacentista de cuadro-ventana. Los elementos formales del cuadro, como líneas, colores
y texturas están a disposición de la anatomía y la morfología de los objetos representados con un carácter
sincrético. Es decir teniendo en cuenta también otros aspectos a la hora de definir la morfología definitiva. Aspectos funcionales como su disposición respecto a la dimensión global exotópica y una visión particular endotópica, es decir responder a los cambios de observación que puede realizar el observador a la alejarse o acercarse al cuadro.

Las **líneas** forman parte de la estructura compositiva del cuadro así como de la identidad de las figuras siendo predominantes las líneas de contorno respecto a otras líneas menores, surgidas de grafismos. Las líneas de contorno han sido preservadas como elemento estructural de la composición desde el primer boceto tamaño cuartilla, buscando en la composición los ritmos que el pulso de la ejecución de la línea en el boceto sugiere. En la evolución de las diferentes fases de la creación de la obra, las líneas mantienen un tratamiento hasta llegar a ser líneas del cuadro definitivo. El dibujo ha seguido un proceso según los preceptos vasarianos de concreción de la obra. Desde el apunte, boceto y cartón para llegar al cuadro final, se ha mantenido el aspecto del dibujo, solo el grosor de las líneas han cambiado adaptándose al formato definitivo y a la intensidad lumínica. (Vease Anexo, figura 28)

Las líneas de contorno, en colores fluorescentes establecen la estructura más estable para la relación figura fondo, también una estabilidad en la relación bidimensional del cuadro mientras que la estructura de lintorno se relaciona con la tridimensionalidad provocada por la dinámica del color que se propone dentro de las figuras.

En cuanto a la naturaleza de los objetos representados “*de que están hechos los objetos*”, la textura juega un papel esencial, dependiendo de su tipología en mayor o menor grado aportará un efecto de ilusionismo hacia lo realista como puede producir la perspectiva u otros recursos perceptivos que emulan la naturaleza visual. Las texturas pueden sugerir y acercarnos a la sensación perceptiva de esencia de la realidad, provocando otro sentido, el táctil. En el caso de la obra *Tiféret*, la textura utilizada principalmente es el craquelado que integra diferentes figuras en una única figura central. Repite los patrones creando un manto uniforme como un mosaico. Sin embargo los tamaños de los grafismos y colores tanto internos como externos que forman las pequeñas teselas cuarteadas varían de uno a otros en los diferentes craquelados. Tres tipos de craquelados para diferentes naturalezas físicas: la naturaleza epitelial de la serpiente, de las plantas en las hojas y troncos y de la tierra. El tamaño del craquelado también es un elemento potenciador de tridimensionalidad al distribuir sus diferentes tamaños respecto al plano visual del cuadro. La utilización de craquelados y esgrafiados llevados a cabo en la pintura WSL tienen una función distribuidora de los colores y luces. Con estas técnicas se crea una doble capa visual una interna y otra externa que distribuyen los colores sin ser mezclados manteniendo las propiedades luminicas de cada color y facilitando la mezcla óptica. En el cuadro *Oniricatchsub*, los grafismos como puntillismo y craquelados han sido compuestos con intencionalidad visual para mediante la mezcla óptica dinamizar la formas. (Figura 19)
Figura 19 Detalles Tiferet. Diferentes craquelados para El tronco y suelo. Las líneas fluorescentes se acusan como elemento estructurador en iluminaciones escotópicas aparece acusadas remarcando el diseño y dibujo del cuadro.

La distribución óptica depende en mayor medida de la intencionalidad que se deposita en aspectos de luminosidad, cromatismo y textura. Las técnicas como craquelados y esgrafiados son herramientas básicas para la distribución óptica creando una doble capa que agiliza el comportamiento dinámico del color. El trabajo en fases será necesario para controlar las diferentes capas y poder interceder en la construcción de mezclas de color que faciliten cualidades volumétricas a las figuras. El proceso de ejecución del cuadro se ha dividido según las construcción de algunas de las capas relevantes para la visualización global en tres diferentes fases: 1ª Fase: Capa Luminiscencia interna, 2ª Fase: Capa Epitelial y 3ª Fase Capa Claroscuro Dinámico. Cada una de las capas tamiza la anterior y aporta cualidades cromáticas a la mezcla óptica.

En la primera fase, se compone de dos capas, una primera capa de relieves, creando texturas que faciliten el asentamiento de craquelados o zonas lisas. El trabajo es realizado mediante látex, arena, polvo de mármol y papeles abrasivos. En una segunda capa colores fluorescentes para darle fotoluminiscencia, es decir que las figuras resultantes emitan luz propia en la oscuridad. Esta cualidad de luminosidad interna de los objetos, sobretodo en la zona escotópica es muy favorable, proporcionando presencia a las figuras y permitiendo el contraste cromático con los colores no fluorescentes cuando se pasa de una iluminación a otra. La fase de luminiscencia interna no admite arrepentimientos al quedar interna, dentro de esgrafiados y craquelados por lo que se debe tener una imagen global de la mezcla óptica y la distribución de texturas, previendo la combinación de colores con las capas superiores.

En la segunda fase Capa epitelial, se consolida las texturas y se ecualiza la luminosidad. Se consigue un entramado activo y vibrante, los colores luminosos respiran, afloran entre los craquelados y esgrafiados. Esta capa matérica extrafina en altorrelieve con propiedades tridimensionales es la responsable del carácter ultrarrealista que propugnaba Raúl Chavarri. Pintores como Rembrandt con sus empastes supieron con maestría crear este tipo de capas que modelaban y después mediante veladuras conseguían plasmar una veraz interpretación de la realidad. La capa epitelial aporta identidad del objeto, es sustancial
en la representación, define una doble realidad perceptiva, visual y táctil. El aspecto matérico de los craquelados proporciona una hipervisión dérmica, en el sentido de visión ampliada de la piel, creando sinestesias entre lo háptico y lo visual. A la hora de realizar tampoco admite demasiados arrepentimientos y en el caso de los craquelados depende de cierto factor de azar al no poder controlar el resultado al cien por cien.

Y por último la fase de Claroscuro dinámico. La aplicación en esta capa es muy parecida a la técnica de restregado, scumbling, que se realiza en lienzo. Una pintura superficial que debe ser aplicada con cuidado de no traspasar a capas inferiores o si se hace que sea por algún motivo intencionado. Esta fase conforma la mezcla óptica y en la caso de la pintura WSL relevante, pues muchas de las decisiones cromáticas se realizan evaluando los efectos de la mezcla óptica. Los cambios de iluminación irán aportando las necesidades para crear las figuras. En esta fase los colores son dispuestos con mayor precisión pensando en el dinamismo cromático. Se conjugan colores para las tres categorías según su luminosidad, fluorescentes, semi-fluorescentes y no fluorescentes estructurando un claroscuro que en definitiva será el principal activo de la figuración.

3. 1. 5. Presentación de la Pintura WSL.

El cuadro llega a los retoques finales donde toda perspectiva es necesaria para ultimar los detalles y recabar su conveniencia. Un análisis en cada escena lumínica informa del estado del cuadro, desde luces primarias, roja, azul, verde y ultravioleta, hasta secundarias amarilla, cian, violeta y la luz blanca, Principalmente cubriendo tres visiones, una visión natural a cuatro metros de distancia, endoscópica a un metro y exoscópica a más de ocho metros. El trabajo no termina con el proceso creativo en cuanto a su ejecución pictórica respecta, en esta fase los colores se articulan con un rango de movimiento, colores transitorios que forman la dinámica del color. Se deja de trabajar con los pinceles y se pasa a un proceso perceptivo que sin embargo todavía es creativo pues necesita del diseño de la iluminación. Que cualidades y durante cuánto tiempo se exponen los colores.
Esta fase es la de Presentación, una fase donde se pasa del controlador manual, dispositivo l’orella a un control de la iluminación mediante un secuenciador que permita crear cadenas de escenas lumínicas, chases y automatizarlo. El hecho de desocupar las manos permite integrarse mejor en el proceso perceptivo y valorar la percepción dinámica del color. Pulsión es el aparato que diseña las secuencias, las graba y reproduce creando ciclos lumínicos mediante cadenas de escenas lumínicas. El dispositivo no solo proporciona escenas lumínicas mediante la mezcla de fuentes creando los colores luz, sino que posee un control de la señal lumínica lo que significa que la luz titila creando un efecto estroboscópico pudiendo simular efectos como el de la luz de neón, de candil o más acusados como el de relámpagos.

En la exposición realizada en la sala Sporting Club de Valencia, Tiféret fue presentado junto a otras obras más. Pulsión sincronizaba siete lámparas de amplio espectro lumínico iluminando los cuadros. El diseño de iluminación consistió en emular la iluminación de un día en el tiempo mínimo posible. Un tiempo lo suficientemente lento como para realizar suaves transiciones apenas imperceptibles y lo suficientemente rápido para emular diferentes estados lumínicos a lo largo de un día en la mayor brevedad de tiempo posible. Se redujo el día a seis minutos, una noche representada por la iluminación ultravioleta de dos minutos seguida de un amanecer con diferentes escenas lumínicas en naranjas amarillos y verdes de un minuto, el día representado con blancos de diferentes matices, mas fríos más calidos, como si pasaran nubes por encima del espacio tamizando la luz, llegando a una luz de mediodía con el máximo de iluminación blanca de las lámparas para volver decrescendo hacia un atardecer con escenas lumínicas en verdes, azules y violetas hasta fundirse en la oscuridad. Este ciclo se repitió durante toda la inauguración que duró aproximadamente tres horas, cada hora constaba de diez ciclos, un total de treinta ciclos, es decir alrededor de un mes transcurrió en esas tres horas. La presentación de la obra en la inauguración es un evento social. Los cuadros no son exclusivamente los protagonistas y los asistentes forman parte del evento. Durante la exposición el público conversaba sin apreciar bruscos movimientos de luz pasando de un estado a otro. En un momento estaban en la oscuridad que se encontraban al máximo de potencia de luz. Al concluir la exposición, varios comentarios que se repitieron entre el público, me llamaron la atención acerca de la sensación temporal. Salieron de la exposición totalmente desorientados como si hubieran estado el doble de tiempo.

La luz y sus diferentes radiaciones tienen una extraordinaria capacidad de estimulación para los estados anímicos y funciones biológicas. La luz regula nuestro ciclo circadiano, es el reloj biológico que orienta de manera natural las funciones que el cuerpo realiza de reposo y activación. Desde un punto de vista perceptivo, en cierto sentido los colores luz juegan un marco de referencia que estructura la percepción, no solo modifican el sentido espacial como se presenta en la dinámica del color sino también pueden transformar el sentido temporal.

La presentación dinámica del color es una experiencia sensorial, por este motivo las condiciones que rodean al observador son esenciales. La exposición de cuadros necesita un espacio de exhibición y toda una serie de preparatorios, montaje de cuadros lámparas, etc. siendo en ocasiones complicado llevar acabo. Sin embargo la pintura WSL al margen de realizar exposiciones se puede comunicar creando portafolios o videos en internet. Aunque suponga una transformación considerable en la percepción, no significa una ruptura con los valores de la obra sino otra manera de presentarla. Se convierte en un camino de acercamiento hacia ella pudiendo llegar a revelar aspectos interesantes y curiosos que aporten nuevas visiones del cuadro. La dinámica del color se visualiza como imágenes en movimiento es por esta razón que encuentre en la filmación y en el video un modo de dejar registrado los movimientos de color y de presentar la obra en plataformas digitales, proyecciones o pantallas.

La iluminación de proyectores y pantallas comparte la misma tecnología que las lámparas de amplio espectro utilizando la mezcla aditiva de iluminación led aunque no cubren todo el espectro como las lámparas al no llevar fuentes de iluminación ultravioleta. Los movimientos de color al tener que registrar un rango de colores alto con una variable luminosidad son difíciles de captar mediante cámaras de filmación. Los sensores de las cámaras no trabajan bien. Los cambios de luz saturan los colores y producen ruido en la imagen. Se necesitan cámaras y lentes especializadas para su filmación sin embargo
existen alternativas para encontrar resultados de calidad que aseguren el registro dinámico del color. Con una cámara réflex, un ordenador y un poco de paciencia es posible. La manera empleada para registrar la pintura WSL ha sido fotográfica y animada mediante técnica de time-lapse, con programas de edición. La fotografía permite captar sin ruido con una resolución fidedigna los colores. Registra los colores exactos de cada escena lumínica. El único inconveniente de esta técnica es que el movimiento en si que vemos, hay que simularlo mediante técnicas de edición, siendo de esta forma un movimiento diferente, de otra naturaleza, ya no producido mediante el control de las lámparas sino por control de imágenes. No obstante, tanto una forma como otra responden a los mismos colores el problema ahora será como generar el movimiento de imágenes y responder a otro tipo de problemas como cuántas fotografías hacer en qué orden y cómo articularlas para generar el movimiento. Un mecanismo que facilite el control de secuencias, que sea lo menos aparatoso e intuitivo posible. Con este fin ha sido diseñado el circuito fotográfico (figura 21). Un mapa de movimiento que facilite ir a cada color y desde la luz a la oscuridad, que responde a círculos cromáticos para que desde los programas se convierta en un proceso sencillo de edición, cortar, pegar estirar y alargar, creando diferentes movimientos muy similares a los que realizan los dimmers en un controlador de luz.

Con esta técnica se han producido los videos de Oniricatchsub y Tiféret, una presentación de la obra tanto a nivel iconográfico en cuanto a su planteamiento representativo como a un nivel estético vinculado a un nivel perceptivo dejando constancia de principios dinámicos del color como la utilización de los colores metámeros.

Figura 21. En la imagen izquierda representación fotográfica en diferentes escenas lumínicas primarias y secundarias según tres zonas de luminosidad. En la gráfica derecha, circuito con diferentes conexiones para establecer secuencias time-lapse. Seis secuencias tres circulares y tres en dirección al blanco.
3. 2. Observación de la dinámica del color:
Cúpula de percepción Cromática

El hecho de que el color sólo se materializa cuando la luz llega a la retina reflejada por una superficie, nos muestra que el color es la capacidad de analizarnos a nosotros mismos.

Olafur Eliasson
3. 2. 1 Observación de la dinámica del color

Observar implica determinar las propiedades que surgen de nuestra interacción con el mundo, pero no son propiedades de los objetos en sí mismos sino mas bien propiedades de interacción basadas en el propio aparato perceptual, donde la memoria y la experiencia confeccionan un marco conceptual, creando en el observador una mayor capacidad discriminativa. Los atributos destacados en la observación del color dependen de los propios rasgos y del sistema de conceptualización. Enfocamos nuestra percepción según unos criterios, sin embargo cualquier cambio de paradigma puede hacer que ciertos atributos que antes pasaban desapercibidos pasen a ser relevantes.

En cierta manera nuestra percepción sensorial es “diseñable”, podemos inducir en ella, añadir experiencias en nuestro entorno. En el campo del Arte, el diseño de la percepción sensorial es siempre muy valorado. Dependiendo de las características culturales espacios como museos, galerías y salas de conciertos buscan su máxima efectividad potenciando la experiencia perceptiva, cada aspecto tanto espacial, temporal como emocional debe ser tenido en cuenta. El diseño perceptivo facilita a los estímulos un marco conceptual necesario para que se de el proceso de interacción entre espectador y obra. Con la finalidad de potenciar el proceso perceptivo, en este apartado se ha propuesto el diseño de un espacio donde reunir diferentes agentes que faciliten y potencien la experiencia perceptiva dinámica del color.

A parte de los factores físicos derivados de la mezcla aditiva y sustractiva, existen otros factores como la fisiología del ojo humano y factores de carácter psicológico vinculados al aprendizaje, la experiencia o el estado anímico del observador, todos ellos influyen en la percepción visual. Estos factores se intercambian en cada individuo. Cada individuo negocia con su entorno, con su físico, con su experiencia para llegar a la percepción. En la dinámica del color confluyen éstos de manera muy activa convirtiéndose en un campo de investigación extra-objetivo, es decir cada observador tiene sensaciones que pueden variar por su propia condición física, pero que compartiendo las experiencias visuales, estas sensaciones subjetivas se convierten en factores comunes que podemos establecer.

En este apartado presentamos un proyecto para crear un campo de investigación en la dinámica del color, donde cada individuo pueda estar inmerso en el acto de observación de los colores enfocando el trabajo en las capacidades del espectador. El proyecto Punto Nemo desarrolla un diseño con esta finalidad: La Cúpula de percepción cromática.

La función principal de la Cúpula de Percepción Cromática es crear un lugar de encuentro entre la luz, la materia y espectador. Ello se resume en experimentar la percepción dinámica del color y tener la posibilidad de adquirir conocimiento sobre los factores que hacen posible los cambios cromáticos. Crear

17 Punto Nemo: Es un proyecto de creación pictórica desarrollado durante el 2016. Su nombre está relacionado con la ubicación del espectador frente a la obra, haciendo alusión al lugar mas alejado de tierra firme que es como se denomina en geografía Punto Nemo.
una ordenación cromática tanto espacial como temporal, desde acciones concretas en la consecución de un diseño.

En el apartado segundo se delimitaron los principios del color creando un muestrario de colores, mezclas aditivas y sustractivas del color. A partir del análisis de pautas y trazados de diferentes contrastes cromáticos y luminosos se ha podido dimensionar el color en un orden entre el espectro de luz y la mezcla de pigmentos estableciendo un comportamiento dinámico del color. Los resultados obtenidos aportaron por un lado una metodología a la hora de trabajar con la luz y experiencias que desvelaban la sensibilidad formal que podía aportar la dinámica del color en la composición de imágenes.

Sin embargo en este proyecto se ha tenido especial atención a la figura del espectador como agente activo de la experiencia visual, relegando el papel estático y pasivo del observador, donde simplemente se sitúa delante del cuadro en una única dirección estableciendo la relación cuadro-ventana y desestimando cualquier posible interacción visual que el entorno espacial pueda proponer. El formato repercute en la percepción de los colores, el área de la retina afectada por la luz tiene relevancia en la construcción de la imagen.

Con el propósito de ampliar la acción del observador y potenciar la interacción con el medio se ha diseñado un espacio donde el campo visual y el campo de investigación coincidan al máximo. La forma esférica es idónea pues por un lado simula el entorno visual natural de la visión y por otro mantiene el correlato de la disposición sensible de la retina.

Los dos elementos necesarios para la visualización con los que se ha trabajado la dinámica del color desde la pintura de amplio espectro lumínico han sido por una parte la lámpara y el soporte pictórico. Ambos elementos en este nuevo proyecto deben buscar un diseño ergonómico para un observador activo, un diseño integrador, donde funcionalidad y experimentación sean los principios que atiendan la dinámica del color.

3.2.2. Campo Visual, Campo de Investigación.

El estudio del color depende de una confluencia de factores, no solo desde el medio emisor, es decir la fuente lumínica y la materia que refleja o refracta la luz sino también, por parte del receptor como capta y organiza la luz. El conocimiento de ciertos aspectos del aparato visual del observador y la manera de procesar los colores habilita un campo de acción a la hora de diseñar la interacción entre el observador y la obra. El campo visual, espacio donde actúa el ojo es uno de los principales factores a tener en cuenta pues asimilamos de manera diferente los colores según su distribución. Es necesario diferenciar las propiedades de cada zona visual. A la hora de crear o diseñar un entorno visual pues el campo visual establece una jerarquía visual y con ello un procesamiento que potencia determinadas lecturas del entorno.
El campo visual se divide en dos zonas, el campo visual central aquel donde confluyen las dos ópticas oculares y donde reside el enfoque de la imagen y el campo visual periférico que abarca toda la zona de visión hasta la zona del hueso temporal llegando a 100° hacia fuera en cada ojo desde el centro de la imagen. La zona periférica no es una zona común para ambos ojos y su característica no es la capacidad de enfoque sino la percepción de movimiento. La capacidad retentiva es inversa en ambas zonas, el 83% de la corteza visual pertenece solo a 60° de visión central y el resto la visión periférica es cinco veces mayor que la central. El número de fotorreceptores (conos) es menor en la periferia que en la fóvea, cerca de 4.000 conos por mm² en toda la retina periférica en comparación con 200.000 en la fóvea central. Estas proporciones siempre han formulado la idea que la percepción del color en visión periférica es débil, pero según el profesor Christopher Tylor, neurocientífico visual son estimaciones falsas. Según los estudios realizados por el profesor Tylor utilizando discos de colores de tamaños progresivos demuestra que se puede mantener el estímulo en la retina periférica.

‘A diferencia de los estudios tradicionales de procesamiento de color en visión periférica, con nuestros discos de colores hemos ajustado su tamaño con respecto a la distancia entre la zona periférica que deseamos estudiar y la fóvea. Este es un factor crítico, ya que las regiones periféricas del campo visual proyectan zonas progresivamente más pequeñas de la corteza visual en el cerebro. Por lo tanto, para dar a la periferia las mismas oportunidades y para nivelar la evaluación de visión periférica, los estímulos deben ampliarse de forma proporcional a la distancia de la zona estudiada con la fóvea, con el fin de estimular de la misma forma todas las partes de la corteza visual.’ (C. Tylor, 2015)

Este hallazgo aporta un campo de exploración en el uso de la disposición espacial del color para su mayor implicación en la percepción del color. Poniedo de relevancia la importancia del campo visual periférico a la hora de diseñar entornos visuales y en su aplicación en las representaciones visuales. La diferencia progresiva del estímulo visual se puede contrarrestar con un formato que también progresivamente tenga en cuenta esta disminución. Una forma esférica cóncava que abarque el entorno visual producirá efectos progresivamente disuasorios en la retención de estímulos periféricos. Desde un punto de enfoque funcional podríamos considerar como un diseño ergonómico visual, la distribución espacial para su mejor procesamiento. (Figura 20) La forma circular proporciona una disposición compensada dentro de la retina. El haz amarillo de la figura 20 corresponde a la zona periférica y como se puede apreciar en la retina su zona aumenta con respecto al haz de color magenta procedente de la zona central que conduce a la fóvea central. En esta zona el número de conos es mayor mientras que en la zona periférica el número de conos disminuye y se encuentran los bastones que facilitan la visión del color con baja luminosidad. Es por esta razón que el uso de colores con baja luminosidad pueden ser detectados por el campo visual periférico. Una visión periférica estimulada por un espacio hemisférico puede ayudar a percibir los colores y los posibles movimientos en zona escotópica. La disposición en el campo visual es un parámetro importante para ecualizar la intensidad de color y luminosidad, un control de la composición total del campo visual ayudará a apreciar los posibles movimientos resultantes ante los cambios de frecuencia de luz. La distribución aumenta el campo de actuación de los colores potenciando
la posible dinámica del color que los cambios de luz lleven y centra el estudio mas allá de la detección del color en la relación de colores y los contrastes visuales que se dan en todo el campo visual

![Figura 20](image.png) Campo visual periférico zona magenta y rosa. Campo visual central zona violeta. Ilustración G. Bellod

3. 2. 3. Acercamiento a la Cúpula de percepción

A lo largo de la historia ha habido diferentes obras cuyos formatos han sido diseñados con la finalidad de abarcar el campo visual del espectador potenciando las formas y colores. Las cúpulas y bóvedas pintadas en el Románico y Renacimiento, son espacios que podrían formar parte de esta intencionalidad pero su finalidad no ha sido emplazar el campo visual del espectador potenciándolo sino más bien supeditar a la naturaleza del elemento arquitectónico, decorándolo, normalmente, utilizado como espacio narrativo. Muchas de estas bóvedas y cúpulas están a una altura considerable y es difícil que se ajusten a ocupar una envolvente estimulación del campo visual, a interactuar con el espectador ergonómicamente. Exceptuando algunos elementos compositivos tenidos en cuenta por los artistas como la creación de elementos visuales anamórficos, potenciadores de perspectivas y trampantojos, la funcionalidad es principalmente iconográfica.

Una de las primeras obras que buscó la estimulación en el campo visual mediante la percepción panorámica fue la obra realizada por Monet. Panorama de *Lirios acuáticos de Giverny*, obra singular
dentro del arte moderno, pintada entre 1915 y 1917. (Figura 21) La imagen envolvente de un tríptico circular de 12.75 metros de ancho y 2 m de alto cada uno. Una completa panorámica circular que coloca a ras de agua flotando al espectador en su particular recreación del jardín de lirios de Giverny. Sus pinceladas impresionistas forman un rico tapiz de colores abarcando una gran franja del campo visual del observador.

Desde las vanguardias y especialmente desde el teatro se empieza a plantear el campo visual del observador. Visualizaciones escénicas que cambian la tradicional visión de caja por visiones polidimensionales como las propuestas por el futurista Enrico Prampolini o el Teatro Total de Water Gropius. En general los artistas en las vanguardias buscan una nueva relación con el espectador, influidos por un mundo cambiante no solo por las teorías perceptivas como La Gestalt introduciendo la psicología de la percepción sino también por la incorporación de avances tecnológicos y científicos que facilitaban nuevas maneras de abordar la relación con el observador. Moholy Nagy declaraba que era el momento de hacer participar al espectador permitiendo la activad del observador. Con su obra Modulador de luz y espacio maquina giratoria de proyección sobre las paredes de una habitación, considerada una de las primeras instalaciones cinematográficas con un tratamiento con diferentes disciplinas que hoy en día podríamos denominar “multimedia”, conectando espacio, espectador mediante la proyección.

El campo visual es abordado no solo por escultores y arquitectos, desde la pintura movimientos como el espacialismo, tendencia pictórica que propone una amplificación del campo visual del espectador
mediante la discontinuidad física del lienzo. En 1949 Lucio Fontana crea su proyecto *Ambiente Nero* en la Galería de Naviglione. Una de las primeras obras creadas bajo iluminación ultravioleta, objetos pintados con colores fluorescentes en una habitación oscura. Obra expresa que ilustra su Manifiesto blanco escrito en Buenos Aires años atrás, donde Lucio Fontana propone al espectador una “inmersión” con mayor amplitud de campo visual de la obra. El espectador formula un recorrido y la pintura pasa a tener un aspecto de instalación.

El observador adquiere el papel hegemónico de centro de la actividad perceptiva y para ello, artistas de diferentes esferas encuentran en el control del espacio y la luz, la materia prima para la actividad perceptual. Gene Youngblood en su libro el *Cine Expandido* denominaba Intermedia al ambiente que la tecnología ha provisto a la comunicación humana. Encontró en el entorno de la década de los años 60 una serie de artistas que trabajaban el video arte centrándolos trabajos en los efectos de la percepción visual y experiencias cognitivas; como denominaba Gene Youngblood, cine expandido o cine sinestésico.

“El *Cine Expandido* no es un película del todo, como en la vida, la proyección es un proceso de reconocimiento, de manifiesto de la conciencia fuera de la mente, delante de nuestros ojos. El desarrollo de las capacidades comunicativas centra el mensaje en el propio acto de comunicar… La vida comienza a ser Arte cuando se fusiona lo que haces con lo que eres, lo que ves con lo que sientes. Una acción sinérgica de fusionar mente cuerpo y espíritu.” (Gene YoungBlood, 41, 42)

Con este fin el Arte Intermedia crea una experiencia ambiental para el público, una experiencia emocional real a través de la tecnología audiovisual. Las proyecciones luminícas del artista Jordan Belson sobre la cúpula del Morrison Planetario, San Francisco en 1957 en los conciertos *Vortex*, obra con intermedia con planteamientos sinestésicos entre luz y música. En 1957 el artista Stan VanDerBeek crea la cúpula Movie-Drome inspirada en las esferas de Buckminster Fuller, donde el público se puede tumbar y tener experiencias perceptivas con proyecciones múltiples flotantes. (Véase figura 22)

‘Su intención va más allá del espacio construido es conectar con la biosfera, el cosmos, la mente incluso con la inteligencia extraterrestre.’ (Jürgen Claus, 229)

En 1969 Jud Yalkut crea *Dream Reel*, una obra que también utiliza el espacio arquitectónico para componer el campo visual. Está formada por una estructura semiesférica, un paracaídas de 8 metros de diámetro elevado mediante ventiladores sobre un público, diseño realizado por el arquitecto japonés Yukihisa Isobe. *Dream Reel* denominado por Yalkut teatro flotante utiliza varias proyecciones de video, diapositivas y sistema de sonido estéreo ocupando toda la superficie hemisférica. La mezcla de disciplinas, el video, la escultura, el teatro, la pintura consiguen aglomerarse en un entorno Intermedia18. Estructuras como la cúpula confinan las diferentes sinergias y fomentan sensaciones sinestésicas.

18 Intermedia fue un término acuñado a mediados de los 60 por el Artista Dick Hoggins para describir la interdisciplinariedad artística.
3. 2. 4. Proyecto Punto Nemo

Con la finalidad de observar la dinámica del color nace Punto Nemo, un proyecto sobre percepción visual para espacios expositivos. Diferentes disciplinas, diseño industrial, arquitectura, escultura, pintura, iluminación y música forman un conglomerado multimedia y confluyen en el mismo fin, la dinámica del color. Se ha elaborado una maqueta a escala 1:4 que ilustra el proyecto, (véase figura 23) lo suficientemente pequeña como para poder realizarse sin tener que invertir un tiempo excesivo y demasiados recursos y lo suficientemente grande como para poder monitorizar el proyecto y observar resultados.

Punto Nemo es una cúpula suspendida desde el techo formada por tres partes: Iris, Pupila y Pulsión. Iris es la pantalla en forma de cúpula, la pieza que observamos recibiendo los estímulos visuales. Esta formado por un anillo de donde irradian 24 cuadernas o nervaduras en forma de arco suspendidas que conforman un perímetro de media esfera. Cada una de las cuadernas lleva adherida una pieza pictórica que en conjunto formaran la pantalla o reflector recibiendo la iluminación provinente de una fuente de luz central llamada Pupila, la cual está formada por una lámpara de amplio espectro luminico que regula la luz y una carcosa en forma lenticular que impide cegar al observador. La lámpara es controlada desde Pulsión, secuenciador DMX con el cual se ordenan las señales de luz.
Punto Nemo, pieza espacial, propone al espectador situaciones y recorridos visuales diferentes separando dos zonas, una zona exterior a la cúpula que actúa de umbral de estimulación donde se puede sentir luces y sombras del espacio, un lugar donde la cúpula adquiere un comportamiento escultórico por su estructura de bulto redondo y una zona interior desde donde observar la cúpula internamente y realizar una inmersión visual. Un lugar virtual en cuanto que es una pintura y por su condición invita a la doble realidad de la imagen, a través de la dinámica del color.

![Figura 23. Punto Nemo. Visión Frontal](image)

La pantalla formada por secciones radiales crea un espacio no confinado, que interrelaciona los dos espacios mediante la luz. El punto de vista según el recorrido varía creando anamorfismos. Diferentes perspectivas que influyen en el modo de relacionarse los colores haciendo que se acerquen y se alejen según la ubicación del observador.

Cada sección por su parte interna tiene asignado un color de referencia. Las 24 secciones radiales albergan cada uno de los colores que forma el círculo cromático de 24 colores. Colores matéricos realizados mediante mezclas sustractivas para formar escalas cromáticas tanto radial como meridionalmente.
Estas secciones son importantes en la configuración dinámica del color para crear puntos de referencia fácilmente identificables y poder ubicar los colores en espacios concretos, igual que en la música son identificables los sonidos a espacios como pueden ser los trastes de una guitarra o las teclas de un piano en la cúpula serían las secciones.

Desde un punto de vista funcional las secciones facilitan el montaje y transporte de la obra. La cúpula se estructura en un sistema de hardware y software. La pantalla Iris como software fácilmente sustituible e instalable facilitando también la fase de realización. La ejecución no se convierte en un trabajo incómodo como pintar mirando hacia el techo una cúpula sino que abre la posibilidad a utilizar diferentes posiciones como por ejemplo utilizar el desarrollo de la pieza en forma de mapas modulares para después colocar en las nervaduras.

Los materiales de la maqueta varían con respecto al definitivo en su composición para poder cumplir su función de soporte. En esta maqueta se han utilizado nervaduras realizadas con PVC, pantallas con papel de piedra y sujetadas mediante velcros.

3. 2. 5. El Diseño de Iris, mapa de colores

La intención de ubicarse en un espacio tridimensional de colores ha sido una constante perseguida por artistas y científicos. Conocidos atlas de color como han sido la esfera del artista Runge o el doble cono de OstWald aportaron a la catalogación y a la representatividad espacial del color. Sin embargo estos espacios han sido diseñados como imágenes sin la intención de ser observados en sus tres tridimensiones, sin poder ser explorados en el espacio. En el diseño de Iris se ha buscado no tanto crear unos parámetros colorimétricos o una representación de colores sino más bien buscar una presentación de los colores.
teniendo en cuenta la presencia del observador, como agente activo en la percepción del color que puede aportar y connotar sensaciones cromáticas según las diferentes perspectivas. De esta manera la finalidad es crear un “atlas de color elástico” es decir, ofrecer un sistema de referencia de colores dentro de un campo visual que varíe según el punto de vista y ello posibilite puntos de interacción de color diferentes.

En el diseño de Iris (véase la figura 25), la parte inferior va provista de colores intercalados entre fluorescentes y colores no fluorescentes (sin agentes) y una la parte superior semi fluorescentes siguiendo la escala cromática. Una zona superior luminosa en blancos y amarillos.

![Figura 25. Punto Nemo. Vista contrapicado. Las 5 visión principales, central en la gama de blanco, inferior izquierda en ultravioletas y las tres en la zona derecha rojo, verde y azul.](image)

Las formas y figuras propuestas siguen una perspectiva formal estratificada desde la zona más cercana al espectador, la zona del ecuador de la cúpula, a una figuración cada vez más vertical acercando al zenit donde se encuentra un óculo. Aunque existen figuras se ha procurado evadir una visión pictórica
narrativa, buscando en los elementos visuales la atención comunicativa más que la representatividad que puedan proporcionar.

La idea es seguir la propia forma de la sección, de cada pieza la forma fusiforme e integrarla en su totalidad, buscando una percepción sincretista, desde una dimensión global exotópica hasta una visión particular endotópica, abriendo la profundidad de campo en la multiplicidad del detalle. Esta actitud sincretista se puede encontrar en las mándalas o cúpulas de arabescos o en los fractales donde la totalidad y la parcialidad se identifican eliminando la tensión dramática de principio y fin. Se elimina el conflicto prevaleciendo el espacio-tiempo continuo, la simultaneidad. A su vez el ciclo de los colores luz (formado por el círculo cromático aditivo) establece en la percepción de la obra movimientos de alejamiento y acercamiento en el campo visual. Los movimientos se generan por las gradaciones cromáticas de cada sección impulsando los contrastes cromáticos longitudinalmente. Dependiendo de la situación en que se encuentre el observador las forman tendrán secciones que formarán parte del campo visual periférico y otras que serán el centro de atención siendo el campo de visión central.

3. 2. 6. El Diseño de Pulsión, tratamiento post imagen

Todo estímulo o recepción de un efecto al detenerse o cambiar le sucede otro efecto, denominado postefecto. El postefecto puede ser positivo, es decir se conserva momentáneamente la información sensorial como ejemplo la persistencia retiniana, percibiendo continuidad de movimiento, es la base del cine y el postefecto puede ser negativo es decir percibir una sensación de características opuestas a las producidas por el estímulo. El postefecto negativo se da en las postimágenes donde el estímulo de color activa los procesos opuestos. Este efecto es el de contraste sucesivo donde el color influye al color siguiente, siendo mas o menos acusado según su duración. Los colores se interrelacionan espacio temporalmente, no son efectos aislados. A la hora de componer una secuencia de imágenes, la mezcla perceptiva es constituyente en la determinación de los colores. La disposición de imágenes mediante el control luminico en el caso de la pintura WSL, lleva consigo establecer matices diferentes en la percepción de los colores y formas a través de la creación de secuencias. Cada escena luminica queda relacionada con la siguiente y así sucesivamente, una cualidad de la línea de tiempo donde la disposición de las partes dan origen a un todo. Un estado eurítimo que sugiere el movimiento global de la obra a través del tiempo. Este proceso en la pintura WSL podemos denominarlo como un efecto de musicalización de la obra. Se observa en un tiempo determinado pudiendo percibir “melodías luminicas” secuencias realizadas mediante las escenas luminicas. Thomas Wilfred músico e inventor del Clavilux, órgano de colores en la década de los años 20 del siglo XX denominó a las composiciones de color Lumias.

Con el objetivo de observar y experimentar las postimágenes se ha diseñado la secuencia luminica Tetraedía parte la estimulación de la cúpula formando parte del proyecto Punto Nemo. Una pieza formada por tres secuencias cada una en una gama diferente de rojo, verde, azul. Cada una de las gamas con la misma duración, ritmo e intensidad. (Véase Figura 23). Estas tres gamas primarias se intercalan con una
secuencia en gama neutra de blancos con el objetivo de contrastar el cambio de gama de color y percibir las diferencias cromáticas y los contrastes sucesivos en el entorno rítmico.

Figura 23. Fragmento de Tetraedía. Dos secuencias donde se ve la duración y ritmo de la obra. Una primera secuencia en rojo, desde la letra R y otra secuencia neutra desde la letra W. En la Figura 24 se puede ver la correlación de signos de escritura en el sistema lumínico. La escritura se activa mediante el secuenciador Obey-70 que forma parte de Pulsión. Más información en el Anexo.

Algunos colores comunes para dos de las gamas se sitúan distintamente para cada una de ellas. Esto lleva a una percepción diferente, en una gama el color tiene una función tónica produciendo mayor contraste con el resto del conjunto mientras que la otra gama hace de mediador, sin recibir tanto contraste pasando desapercibido. Estas capacidades de los colores dentro de las gamas tienen cierto paralelismo con las notas musicales. Notas tónicas y dominantes dentro de las escalas generan diferentes acordes mientras que esas mismas notas en otra escala cambian su función. En cuanto a la percepción de la formas, los colores dispuestos en la cúpula siguen movimientos radiales según el movimiento que cada gama presenta por la escala cromática de luz siendo un movimiento pendular que acusa unas u otras secciones de la cúpula.
Los diseños de Iris y Pulsión son fundamentales para extraer las cualidades dinámicas del color. Cada diseño aporta referentes en la observación, factores determinantes que vuelcan el interés en el tercer elemento, el receptor. Se activan las cualidades que la sensibilidad del aparato perceptual requiere y se procede a través de los diseños. Sin embargo al ser un proyecto y no realizarse en el tamaño real, las conclusiones no pertenecen a observaciones a escala natural donde la cúpula juegue un papel plenamente activo en el observador. Por este motivo los diseños son aproximaciones, puntos de partida desde donde avanzar en cada estudio. No obstante estos modelos consiguen ejemplificar el tratamiento dinámico del color e inician un camino hacia su realización. Con el motivo de crear modelos dinámicos donde observar registrar los movimientos se ha realizado el video *Punto Nemo*\(^{19}\), como registro donde se integra la composición *Tetraedia* con el diseño de *Iris*.

4. Conclusiones Generales
Con una perspectiva del trayecto recorrido, tras finalizar el camino de investigación, hemos llegado al lugar donde extraer una serie de conclusiones a partir de los resultados obtenidos. El estudio del color es un tema que se puede abordar desde diferentes esferas de conocimiento, según los fundamentos y aplicaciones que se propongan. Los ensayos realizados no han sido solo experiencias para lograr objetivos determinados en la investigación, sino en muchos casos han formado parte de un desarrollo práctico-artístico donde un proceso evolutivo y un suma de objetivos complementarios han participado en los resultados. Sin el previo interés de años anteriores indagando en los fundamentos, ensayos y técnicas en el entorno de la pintura fluorescente no se hubiera creado los precedentes para esta investigación. La fluorescencia supone dentro de los principios dinámicos del color, un nexo entre las cualidades lumínicas y las cualidades matéricas, entre las cualidades de emisión y recepción de la luz. Desde las primeras experiencias con la fluorescencia han sido las mismas preguntas con diferentes matices las que han ido contestando las necesidades del sistema dinámico del color ¿Qué iluminación aplicar en la pintura? ¿Qué luces y que pigmentos son adecuados? ¿Se puede fusionar con técnicas y procesos que ya conozca? ¿Qué metodología utilizar para potenciar los efectos? ¿Cómo representa el color en este medio? ¿Es posible introducir nuevos valores a partir de nuevas técnicas? Los principios de investigación no han variado en el transcurso de la investigación y probablemente al acabar la tesis, si se mantiene el mismo espíritu de trabajo y curiosidad surjan nuevas vías que cuestionen nuevos objetivos. La pintura no es un estudio aislado requiere de una amplitud de conocimientos. Conocimientos puestos a disposición de la práctica pintura, necesarios para adquirir nuevas perspectivas, nuevos focos de interés. En muchos casos forman parte de un empleo poco acertado y no aportan nada, incluso conllevan a la equivocación pero sin los cuales sería imposible avanzar en el desarrollo de la pintura.

Cuando comencé a plantear los objetivos necesarios puestos en práctica en la investigación de la dinámica del color, traté de visualizar los ensayos que debía realizar y que vínculos con el trabajo hasta el momento realizado tenían y como podía llevar acabo imaginando una serie de posibles resultados. A lo largo del desarrollo y la puesta en práctica se fueron cuestionando las pautas de los objetivos, he ido descubriendo como muchas de las teorías o de las suposiciones que barajé en un principio se han cumplido, pero otras no, y lo más interesante es que han ido surgiendo otras cuestiones y puntos de vista que nunca hubiera podido imaginar y que tan sólo desde el cuestionamiento del proceso y el carácter empírico de esta tesis se han podido desarrollar. La exposición de los proyectos en congresos mediante ponencias ha sido de gran ayuda para la evolución de la tesis y su cohesión. Me gustaría comentar de una forma ordenada la variedad de conclusiones que se han ido desprendiendo de las prácticas que he desarrollado en esta tesis doctoral, y para ello lo haré de forma cronológica.

El primer estudio, Dinámica y Cinética del Color. Muestras y Proceso, ha supuesto crear las bases de la investigación tratando de acotar el campo acción del color, es decir donde y cuales han sido las causas de su actividad y como controlarlas para darle utilidad. Hemos buscado la actividad en cada uno de los componentes que influyen en el color. Aunque el estudio se ha realizado por separado, primero el estudio de la actividad de la iluminación y después el estudio de la actividad de los pigmentos han sido
actividades simultáneas, es decir la creación de lámparas de amplio espectro lumínico no se hubieran desarrollado sin observar previamente las capacidades de los pigmentos y viceversa, estas capacidades se han desarrollado mediante la creación de las lámparas por lo tanto ha habido una interdependencia. Ambos componentes producen una misma actividad, la dinámica del color, el objeto a estudiar en cuestión, donde la luz y los pigmentos se establecen como parámetros del movimiento del color. Para ello ha sido necesario crear un campo de investigación concreto pues la terminología abarca más allá de la propia actividad pictórica. En los primeros ensayos del movimiento del color se ha estudiado la dinámica del color desde una perspectiva física sin contar con la actividad perceptual. No hemos contado con los factores perceptivos de la visión, diferenciando la cinética de la dinámica del color. Sin embargo en los ensayos del apartado de procesos opuestos. ensayos y de agentes fluorescentes en la dinámica del color si que se ha tenido en cuenta el color percibido. A partir de esquemas perceptivos se han puesto en práctica las gamas cromáticas que mejor activan el movimiento y el empleo de colores metámeros los cuales encuentran en los agentes fluorescentes un medio de activación en el sistema que las lámparas de amplio espectro lumínico proponen.

No obstante, es importante destacar que la investigación de la presente tesis no ha sido un estudio con pretensiones colorimétricas donde el registro de colores se realiza por medio de aparatos específicos como espectrofotómetros, sino ha bastado con la creación de gráficas y muestrarios con la finalidad de ser útiles dentro del proceso perceptivo en función de la actividad práctica a la cual va referida, la creación artística. Un trabajo de documentación y registro limitado por el uso de los instrumentos que teníamos a disposición. Los muestrarios de color mediante imanes. Este método ha supuesto trabajar a nivel perceptivo componiendo diferentes disposiciones sobre la superficie, diferentes muestras que facilitan comprobar las cualidades dinámicas del color al poder yuxtaponer fácilmente los colores y comprobar sus contrastes. Pero aparte de esta aplicación, las muestras de color por medio de paneles imantados no solo han permitido el estudio de la dinámica del color, sino han sido una herramienta útil a la hora de plantear los colores en la obra artística, creando gamas de color, muestras y bosquejos de color que sirven de guía para en los trabajos definitivos.

La medición de datos y registro de colores, también han supuesto el uso de instrumentos comunes en entorno creativo. Programa como Photoshop para realizar gestión del color, así como cámaras digitales donde la óptica y el sensor han recogido la luminosidad y cromaticidad de cada color. Las muestras gráficas digitales han sido el resultado de las comparaciones y mediciones para ilustrar los comportamientos dinámicos del color.

La pretensión de este apartado ha sido encontrar los principios y la metodología para estudiar el movimiento en la pintura, no tanto definir las cualidades cromáticas. Por ello es un apartado abierto a nuevos estudios específicos, a realizar catalogaciones que amplíen el conocimiento de cada color. Sin embargo estos muestrarios sirven de pauta para desarrollar las capacidades dinámicas en el desarrollo creativo de obra pictórica, sabiendo las posibilidades y limitaciones que puedan surgir con el sistema de visualización a partir de las lámparas de amplio espectro lumínico. Los muestrarios exponen el conocimiento del sistema y facilitan la toma de decisiones en el tratamiento de la imagen. La dinámica del color es un atributo formal a considerar al configurar la obra pictórica.
En el segundo estudio *La dinámica del color en la figuración* hemos tratado de establecer una aplicación práctica al sistema que proporciona el uso de los colores-luz y los colores pigmento, tanto a la hora de tratar una imagen mediante la pintura como de presentar la obra. Para ello hemos analizado los aspectos de dos obras realizadas con el sistema de iluminación de amplio espectro lumínico, respondiendo a cuáles han sido los motivos fundamentales a la hora de elegir la figuración para su representación. La realización de estas prácticas han supuesto varios años de trabajo donde diferentes fases y nuevos objetivos se han ido sumando en la creación de la obra. La principal conclusión ha sido reafirmar los resultados.

El estudio de la figuración ha su puesto el afianzamiento de la metodología en la práctica pictórica y el cumplimiento de incorporar la dinámica del color como elemento formal en la práctica pictórica. La concepción ultrarrealista ha significado una toma de conciencia en los principios en los que el pintor se apoya al representar la realidad. A partir de crear conceptos como la esencia de la realidad encontramos un sistema de valores para desarrollar la representación. El ejemplo ha sido la creación de la capa “epitelial” en las obras *Tiféret* y *Oniricathsub*. Mediante la utilización de craquelados se representa la piel de diferentes objetos acercándonos a una realidad fundamentada en la esencia. Establecer técnicas pictóricas que cumplan varias funciones ha sido el principal objetivo. Los craquelados y esgrafiados han supuesto el medio esencial al poder dar un doble nivel de creación al color y así poder trabajar con la mezcla óptica, una cualidad que potencia la actividad dinámica del color y permite orden y pureza en los colores.

Otra de las características extraídas de este apartado ha sido la importancia de establecer una jerarquización de colores en función de los elementos gráficos que van a constituir la figuración. Los colores dependiendo de la proporción de agentes fluorescentes y de su diferente cromaticidad expresan unos valores de luminosidad con mayor o menor intensidad constituyendo un claroscuro dinámico en las figuras ante los cambios lumínicos. No obstante para obtener resultados que cumplan estos objetivos ha sido necesario establecer cuáles son los elementos que resaltan mejor las figuras como que fondo, dirección de la luz y sombras y volúmenes de las figuras para después asignarles los colores que mejor cumplan estás funciones y mantengan la representación de las figuras a través del espectro de luz.

Otra característica observada es la aportación dinámica de los colores metámeros en las figuras aportando mayor o menor información, también proporcionando mayor o menor volumen en las figuras, incluso haciendo aparecer o desaparecer elementos y texturas en las figuras. Estas diferencias de información de una luz a otra cambian la morfología de las figuras y convierten los colores-luz en acciones exactas para que se de el efecto metamérico y los cambios de luz en algo no tan predecible como un simple cambio de color. El comportamiento poliédrico del color activa una maleable visión de la realidad, un punto de vista relativista de las formas. El color como cualidad espacio-temporal que activa mecanismos en la percepción visual que más allá de hacernos dudar de las formas nos ayuda a comprenderlas. El color deja de ser el atributo de sugestión por el cual identificamos a las figuras y pasa a tener un comportamiento formal. El color influye y cuestiona la imagen. La dinámica del color produce colores mentales al fusionar tanto los contrastes sucesivos como simultáneos en las figuras, produce armonías espacio-temporales proponiendo un acontecimiento perceptivo y diferentes estados psico-perceptivos en el observador.
Estas capacidades dinámicas se ponen a disposición del lenguaje pictórico. El lienzo ha pasado a ser el lugar donde hemos ensayado nuevas vías expresivas y fórmulas estéticas. Aunque no hemos realizado un estudio completo de las obras en cuanto su dimensión iconográfica y estética. El estudio ha sido atendiendo al lenguaje de la imagen y la pintura en un sentido gramatical de cómo articular el movimiento del color en la imagen pictórica apoyando la investigación en los ensayos de los cuadros. Han sido varios los ejercicios que se han realizado en búsqueda de métodos de trabajo para investigar la dinámica del color. En el anexo he puesto algunos ensayos, desde trabajos abstractos a experimentos con materiales. Cada obra puede ejemplificar aspectos del lenguaje dinámico del color, diferentes estilos, técnicas y conceptos pueden ser propuestos encontrando objetivos de estudio diferentes. Una de las conclusiones básicas que he encontrado en este apartado ha sido el resaltar aspectos metodológicos a partir de ejemplos prácticos sobre la pintura, es decir poder dar al estudio la dimensión de tratado de pintura a partir del trabajo personal. Partiendo desde aspectos relevantes de la pintura de amplio espectro lumínico como sistema visual mediante obras específicas y análisis determinados, de tal manera que cualquier pintor que quisiera pintar con este sistema visual pueda servirse de los ejemplos y conceptos desarrollados. No solo en el planteamiento técnico y creativo sino también en como presentar la obra pues este sistema visual implica un diseño en la presentación de la obra. La presentación de la obra es un aspecto importante en su configuración, atañe al propio concepto de la obra y lo que significa la dinámica del color en esta tipología pictórica. Se abre una vía para el observador, a indagar en la percepción a través de la presentación de la obra. Se plantea un performance pictórico, una dimensión de actuación de los elementos gráficos buscando la sincronía entre la plástica y lo visual a través del color.

La pintura de amplio espectro lumínico propone una nueva cosmogonía en la imagen, diferentes percepciones del color, que cuestionan La imagen en sí mismo. Cual es la imagen mental que queda de la obra tras los diferentes cambios. Leonardo Da Vinci en su tratado de pintura a cerca del color comenta las posibilidades de los colores-luz y como afectan los colores.

“Para apreciar la variedad de los colores compuestos, tomad varios cuadrados de cristal pintados y mirad el paisaje a través de ellos; todos los colores quedarán falsados e influidos por el color del cristal, debiendo observar vosotros en qué grado cambian esos colores. El color del los objetos lo mismo puede estropearse que perfeccionarse cuando lo miramos con un cristal amarillo. Los que más se alteran son el azul, el negro y el blanco; el amarillo y el verde resisten más. Siguiendo con la vista la mezcla de los colores, que es casi infinita, escogeréis las que juzguéis más agradables y mas nuevas. Hareís la misma operación con cristales de colores diferentes y a veces con tres y aún más, siguiendo el mismo método”

DA VINCI, Leonardo. Del Color, Tratado de pintura P.174

Reflexiones que dejaron una puerta abierta hacia el estudio del lenguaje de los colores-luz y los colores – pigmento. Un estudio que solo siglos después cuando la tecnología de la iluminación ha conseguido articular este método ha adquirido un verdadero sentido visual, de tratamiento de la imagen. Para poder
ofrecerlo al observador más allá de experimentar con los colores y desarrollar de esta manera un lenguaje comunicativo.

En el tercer estudio hemos vinculado los ensayos a las características del observador con el fin de extraer más información sobre el proceso perceptivo mediante la dinámica del color. Antes de elegir la cúpula de percepción se barajaron diferentes ideas con la finalidad de investigar sobre las características perceptivas y potenciar la visualización dinámica del color. Se realizó el boceto para una alfombra donde el espectador pudiera deambular sobre los colores generando un campo visual y estudiarlos. (Véase Anexo, figura 31). Sin embargo el formato “alfombra” necesitaba de un tamaño y unas cualidades que dificultaban las funciones propuestas. La cúpula se erigió como la mejor opción y no solo cumplió las expectativas para investigar sobre el proceso perceptivo sino que abrió el interés en conocer este formato, la manera diferente de visualizar las imágenes y como la cúpula ha sido utilizada para tal fin a través de la historia. El inconveniente principal en este estudio ha sido que la cúpula ensayada ha sido un modelo a escala menor que el previsto. El comportamiento anamórfico que la cúpula propone con sus secciones no es el mismo. En consecuencia, la distribución de los colores varía y la sensación de perspectiva queda reducida. Sin embargo la función envolvente a escala pequeña es la misma manteniendo activo el campo visual y las cualidades de cromaticidad y luminosidad. La realización de la cúpula a escala natural aportaría todas sus expectativas. Por un lado referente al estudio del color, contrastar escala real y escala reducida aportaría datos sobre la dinámica del color según la distancia en el proceso perceptivo. El estudio de los diferentes movimientos del observador dentro de la cúpula. Por otro lado la cúpula quedaría lista para interactuar con otra percepción, la sonora buscando efectos sinestésicos y terminando la configuración de la pieza a un espacio Intermedia, a un espacio con mayor influencia de actuación.

En este apartado se ha buscado también reflejar la importancia de diseñar no solo la composición espacial de la obra sino su composición temporal. Los colores pasan a formar parte del movimiento por lo que dependen de la progresión, en que orden se preceden y suceden. Percepción espacio-temporal que configura la actuación del color. Por lo que el control temporal permite el análisis de la interacción de los colores y de la formación de post imágenes. Propone una musicalización de los colores al poder trabajar con ellos tanto armónica como melódicamente. Hemos podido comprobar la relatividad de los colores dependiendo de su ubicación, cambiando su percepción al igual que una nota musical varía su sensación según el lugar donde se encuentre. La composición Tetraedia realizada para el desarrollo de la cúpula ha supuesto un ensayo y ejemplo de cómo activar la secuencia de colores.

La práctica de la dinámica del color supone un campo extenso donde experimentar con lenguajes visuales. La cúpula de percepción cromática ha supuesto una fusión de la fuente de iluminación y el soporte iluminado en un formato tridimensional. A parte de experimentar en el formato pictórico donde desarrollar nuevos estilos y tratamientos de la imagen, se abre la posibilidad de formatos escultóricos e instalaciones donde experimentar con el color.
5. Bibliografía consultada
Libros y catálogos

→ CHAVARRÍ PORPETA, Raúl. *La pintura española actual*. (1973) Iberico Europea de ediciones S.A.

→ DALÍ, Salvador. *50 Secrets of Magic Craftsmanship*. Version Kindle

→ DOERNER, Max. Los materiales de pintura y su empleo en el arte. (1965) Editorial Reverte S.A.

SANZ RODRÍGUEZ, Juan Carlos; GALLEGO GARCÍA. *Diccionario AKAL del Color.* (2001) Editorial Akal.

VASARI, Giorgio. Las vidas de los másexcelentes arquitectos, pintores y escultores italianos desde Cimabue a nuestros tiempos. Editorial Catedra. ISBN: 8437627362

79
Artículos

→ BERTILSSON, Karl Johan. La ciencia visual del color en la percepción, la arquitectura, los alimentos, la reproducción, el arte el diseño y la educación; útil o no? (2010) XI Congreso Nacional del Color. Alicant

→ CAÑADAS Matas, francisco Javier. La imagen virtual en la pintura Realista actual. (2015) II Congreso Internacional de Investigación en Artes Visuales ANIAV

 - Colour Experiment nº 68. (2014) http://olafureliasson.net

Videos

- Annabelle Serpentine Dance. (1895) Primera película teñida. *William K.L. Dickson Thomas Edison*
 https://www.youtube.com/watch?v=kplgiO9F7Pg

- An Optical Poem. (1938) *Oskar Fischinger*.
 https://www.youtube.com/watch?v=they7m6YePo

- Hermès Éditeur. *Julio Le Parc*.
 https://www.youtube.com/watch?v=M0gGOtHrvtHQ

- La Historia de la Animación abstracta. *Kike Maillo*.
 https://www.youtube.com/watch?v=s8oZ4KE8868

 https://www.youtube.com/watch?v=PeEn-ikXBVCs

- Music of the Spheres. *Jordan Belson*.
 https://www.youtube.com/results?search_query=phenomena+jordan+belson

 https://vimeo.com/120224111

 https://www.youtube.com/watch?v=kYJxJ85R5ds

 https://www.youtube.com/watch?v=9CdkGjjaHlA

 https://vimeo.com/170158865

 https://vimeo.com/68287008

Webs

- BATCHELOR David. Obra y Libros
 http://www.davidbatchelor.co.uk

- BELLOD Guillermo. Obra artística.
 http://www.bellod.es

- COLORSYSTEM. Sistemas de Color en Arte y Ciencia.
 http://www.colorsystem.com/

- COMITÉ ESPAÑOL DE ÓPTICA
 http://www.sedoptica.es/

- DICCIONARIO ENCICLOPEDICO de Arte y Arquitectura
 http://www.arts4x.com/

- ELECTRIC LADY LAND Museum. Arte fluorescente
 http://electric-lady-land.com/

- ELIASSON Olafur. Estudio y obra.
 http://olafureliasson.net/

- FULLER, Buckminster. Cúpulas geodésicas.
 https://bfi.org/

 http://aic-color.org/

- MUNSELL COLOR SYSTEM.
 http://munsell.com/

- SÁNCHEZ, Eufemiano. Biografía y obra
 http://www.eufemiano.org/

- UNNA Museum of Light Art.
 http://www.lichtkunst-unna.de/
6. Glosario
Anamorfismo
Deformación de una imagen producida mediante un procedimiento óptico. Es un efecto perspectivo utilizado en arte para forzar al observador a un determinado punto de vista preestablecido o privilegiado, desde el que el elemento cobra una forma proporcionada y clara.

Apariencia
El aspecto de la percepción visual por el cual se reconocen las cosas.

Atlas de colores
Colección de muestras de colores dispuestas e identificadas según reglas especificadas.

Bezold-Brücke (Fenómeno)
Cambio de tono producido al variar la luminancia, dentro de los límites del dominio de la visión fotópica, de un estímulo de color en el que la cromaticidad se mantiene constante.

Blanco equienergético
Es el color formado por la suma de todos los colores espectrales puros, con una potencia asignada como estándar. Como ejemplo el iluminante D65 propuesto por la CIE.

Caetaris Paribus
Locución latina que significa literalmente ‘siendo las demás cosas igual’ y que se parafrasea en español como ‘permaneciendo el resto constante’

Candil (luz).
Luz estroboscópica emitida por controlador DMX con velocidad entre () por segundo. En la iluminación de amplio espectro lumínico se denomina candil por el parecido titileo con la luz de velas.

Chase
Secuencia de diferentes iluminaciones (escenas) que crean ciclos de iluminación para aparatos de control DMX.

CIE
La Comisión Internacional de la Iluminación (conocida por la sigla CIE, de su nombre en francés Commission internationale de l'éclairage) es la autoridad internacional en luz, iluminación, color y espacios de color. Fue fundada en 1931, con sede en Viena, Austria.

Cielab (Espacio de color)
Espacio de color de tres dimensiones, aproximadamente uniforme, obtenido al representar en coordenadas rectangulares las magnitudes L*, a*, b*. Claridad, croma y tono respectivamente.
Cinética del color.
Estudio de los cambio de color analizando los aspectos físicos de su composición química e iluminante sin tener en cuenta motivos endógenos de la percepción visual, como la duración del estímulo o el lugar de la retina que afecta.

Circadiano
(del latín circa, que significa 'alrededor de' y dies, que significa 'día') Referente al ritmo biológico en intervalos de tiempo.

Color
Atributo de la percepción visual que se compone de una combinación cualquiera de elementos cromáticos y acromáticos. Este atributo puede ser descrito por nombres de colores cromáticos tales como amarillo, naranja, marrón, rojo, rosa, verde, azul, púrpura, etc., o por nombres de colores acromáticos tales como blanco, gris, negro, etc., modificados por los adjetivos que refuerzan el sentido tales como luminoso, apagado, claro, oscuro, etc., o por combinaciones de tales nombres y adjetivos. El color percibido depende de la distribución espectral del estímulo de color, del tamaño, forma, estructura y del entorno de la zona del estímulo, del estado de adaptación del sistema visual del observador y de la experiencia que este último posee de las condiciones de observación en que se encuentra o en condiciones semejantes.

Color-superficie
Color percibido como perteneciente a una superficie en la cual la luz parece ser reflejada

Color acromático.
Color percibido despuesto de tono. Los nombres blanco, gris y negro se utilizan comúnmente para objetos transparentes o translúcidos, incoloros o neutros

Color cromático
Color percibido que posee tono. En el lenguaje corriente, la palabra color se utiliza a menudo en este sentido en oposición a blanco, gris o negro. El adjetivo coloreado se refiere generalmente a un color cromático

Color-luz
color-iluminación
Color percibido como perteneciente a la luz que incide sobre los objetos. Color percibido como perteneciente a una superficie que parece emitir luz como un manantial luminoso primario, o que parece reflejar especularmente una luz de este tipo.
Color-Materia.
Color percibido como perteneciente a un objeto independientemente de la iluminación y las condiciones de observación.

Color transitivo
Se dice de los colores que, dentro de la tonalidad dominante, actúan a manera de transición hacia un color determinado o estableciendo una secuencia como intervalo hacia el mismo, lo que permite establecer un orden de sucesión de matices que gradúa el cambio progresivamente, por ejemplo, de uno a otro extremo de dos tintes fundamentales.

Color-no-luminoso
Color percibido como perteneciente a una superficie que parece transmitir o reflejar difusamente la luz como lo hace un manantial secundario de luz. Los manantiales secundarios de luz vistos en su entorno natural muestran la apariencia de un color no luminoso.

Constancia del color
Fenómeno de la percepción del color por el que la mayoría de las superficies de color parecen mantener la apariencia cromática que tendrían bajo lo que sería la luz del día, incluso bajo condiciones luminosas muy diferentes a dicho tipo de iluminación.

Constancia formal
Es un proceso perceptivo donde se armonizan los contrastes cromáticos que generan la imagen en movimiento surgidos en la pintura de amplio espectro lumínico. Los contrastes cromáticos son alterados desde el control lumínico según las capacidades dinámicas del color dando como resultado valores de claroscuro que cambian, como vimos en el círculo cromático cinético en el capítulo anterior.

Contraste simultáneo
Exaltación de dos colores producidos por la influencia de compartir un espacio. Puede ser de dos tonos, exaltación de dos tonos, uno claro y otro oscuro, al colocarlos entre colores complementarios. Cuando se ven dos colores complementarios juntos como el rojo y el verde, ambos se ven exaltados, el rojo parece más rojo y el verde más verde. Este fenómeno es explicado por la inhibición lateral a nivel de la retina. También se denomina primera ley de Chevreul, ya que fue Michel Eugène Chevreul, quien publicó en 1839 su obra sobre ‘Los principios de la armonía y sus leyes sobre el contraste de los colores: De la loi du contraste simultané’ donde enunciaba tres leyes simples del contraste: simultáneo, sucesivo y mixto.

Contraste sucesivo
Exaltación cromática de efecto complementario que se crea al cambiar el estimulo visual. (Segunda ley de Chevreul)

Claridad

85
Luminosidad de una superficie juzgada en relación a la luminosidad de una superficie que parece blanca o posee una transmittancia elevada y está iluminada de idéntico modo

Claro
Adjetivo utilizado para describir niveles de claridad elevados.

Claroscuro
Técnica pictórica que consiste en el uso de contrastes fuertes entre volúmenes, unos iluminados y otros ensombrecidos, para destacar más efectivamente algunos elementos. Esta técnica permite crear mayores efectos de relieve y modelado de las formas, a través de la gradación de tonos luminosos.

Claroscuro dinámico
Técnica consistente en utilizar los contrastes producidos por el cambio de iluminación. La dinámica del color ofrece diferentes posibilidades de claroscuro. Esta técnica es empleada en la pintura WSL aportando sensaciones de volumen y espacio al cuadro.

Cromacidad; colorido
Atributo de una sensación visual según el cual una superficie parece presentar un color percibido.

Cromaticidad
Atributo de un estímulo de color definido por sus coordenadas de cromaticidad o por su longitud de onda dominante o complementaria, conjuntamente con su pureza.

Dimmer
Regulador, atenuador para regular la energía en uno o varios focos con el fin de variar la intensidad de la luz que emiten.

Dinámica del Color
Percepción a del movimiento de los colores y Estudio de los colores transitivos que lo constituyen. Movimiento de color desde un punto de vista global teniendo en cuenta tanto características exógenas, cambios en la iluminación y la variación de la composición química de los elementos observados y también motivos endógenos el procesamiento visual interno desde la retina hasta la percepción del color.

Ente del cuadro
Estado perceptivo con acusada actividad presencial de los objetos. El cuadro es visualizado en una sucesión de diferentes iluminaciones a una velocidad alta, de esta manera se activan fenómenos como la persistencia retiniana y la dinámica del color.

Escotómico
Percepción visual que se produce con niveles muy bajos de iluminación
Esgrafiado
Técnica que consiste en trazar dibujos en una superficie que tiene dos capas o colores superpuestos haciendo saltar en ciertos puntos la capa superficial para dejar al descubierto la inferior.

Estímulo de color
Radiación visible que penetra en el ojo y produce una sensación de color, sea cromática o acromática.

Estroboscópica (luz)
Fuente luminosa que emite una serie de destellos muy breves en rápida sucesión y se usa para producir exposiciones múltiples de las fases de un movimiento.

Espectro equienergético
Espectro de una radiación cuya concentración espectral de una magnitud radiométrica en función de la longitud de onda es constante a lo largo de la región visible.

Fosforescente
Sustancia que tiene la propiedad de absorber energía y almacenarla, para emitirla posteriormente en forma de radiación. A aquellos elementos que ofrecen fosforescencia se les conoce como foto-reactivos, es decir que requieren luz para obtener la propiedad

Fluorescente
Sustancia capaz de absorber energía en forma de radiaciones electromagnéticas y luego emitir parte de esa energía en forma de radiación electromagnética de longitud de onda diferente. Un ejemplo es la pintura fluorescente ante iluminación ultravioleta

Fuente luminosa
Objeto que produce luz u otra radiación.

Fotópico
Percepción visual que se produce con niveles de iluminación diurnos (a plena luz del día)

Grado de deslumbramiento
En luminotecnia, es la sensación de disconfort que tiende a ir aumentando con el tiempo, causa fatiga visual y perturba la percepción visual óptima de una luminaria.
Helmholtz-Kohlrausch (Fenómeno)
Variación de la luminosidad de un color percibido, producida al aumentar la pureza de un estímulo de color, mientras se mantiene constante su luminancia dentro de los límites del dominio de la visión fotópica.

Hiperrealismo
Corriente artística, especialmente pictórica, que surgió a finales de la década de 1960 y que se basa en la reproducción fiel, casi fotográfica, de la realidad.

Iluminante
Radiación con una distribución espectral relativa de energía definida en el intervalo de longitudes de onda que influyen en la percepción del color de los objetos.

Iluminante D65
Iluminante estándar propuesto por la CIE dentro de la serie D de iluminantes (aquellos que describen situaciones de iluminación al mediodía en distintas latitudes del mundo). El iluminante D65 describe las condiciones medias de iluminación en un mediodía en Europa Occidental. Su temperatura de color media es de 6500° Kelvin

Lámpara de amplio espectro lumínico.
Fuente lumínica capaz de generar todas las combinaciones de tonos e intensidades de luz dentro del espectro visible pudiendo alcanzar una temperatura de calor de 6000° Kelvin. La lámpara está compuesta por iluminación LED y se puede mediante protocolo DMX haciendo posible el movimiento de luces, ejemplo, lámpara Raimbowie

Led
Acrónimo en inglés, light-emitting diode: ‘diodo emisor de luz’. Debido a que la luz capaz de emitir un led no es muy intensa, para alcanzar la intensidad luminosa similar a las otras lámparas existentes como las incandescentes o las fluorescentes compactas las lámparas LED están compuestas por agrupaciones de leds, en mayor o menor número, según la intensidad luminosa deseada. La excelente variedad de colores en que se producen los ledes ha permitido el desarrollo de nuevas pantallas electrónicas de texto monocromáticas, bicolores, tricolores y RGB (pantallas a todo color) con la habilidad de reproducción de video para fines publicitarios, informativos o para señalización.

Límite púrpura
Línea en el espacio de los valores triestímulos, que representan las mezclas aditivas de los estímulos monocromáticos de longitudes de onda 380 nm y 780 nm aproximadamente.
Luminiscencia
Propiedad que tienen ciertos cuerpos de emitir luz tras haber absorbido energía de otra radiación (principalmente ultravioleta) sin elevar su temperatura. Fluorescencia y fosforescencia son dos formas de luminiscencia.

Luminosidad
Atributo de una sensación visual según el cual una superficie parece emitir más o menos luz.

Luminoso
Adjetivo utilizado para describir niveles de luminosidad elevados

Luz
Atributo necesario y común a todas las percepciones y sensaciones que son peculiares del sistema visual.

Metámeros
Estímulos de color de distribuciones espectrales diferentes que se perciben de la misma manera, es decir tienen los mismos valores triestímulos.

Mezcla aditiva
Estimulación que acumula sobre la retina las acciones de varios estímulos de color, de tal manera que ellos no pueden ser percibidos individualmente.

Mezcla sustractiva
La mezcla de pinturas, tintes, tintas y colorantes naturales para crear colores que absorben ciertas longitudes de onda y reflejan otras. Es decir, la mezcla de pinturas va añadiendo capacidad de absorción al color resultante.

Moiré (Efecto)
Sensación visual que se genera en la interferencia de dos rejillas de líneas o por superposición de patrones a partir de determinado ángulo, o cuando éstas tienen un tamaño distinto. Con los cambios de iluminación pueden acentuarse las interferencias

Monocromático
Estímulo spectral formado por una radiación monocromática.

Percepción visual
Interpretación de la sensación visual.
Pigmento
Material que cambia el color de la luz que refleja o transmite como resultado de la absorción selectiva de la luz según su longitud de onda.

Pintura de amplio espectro lumínico
También llamada Pintura WSL (Acronimo inglés Wide Spectrum Lighting), es aquella realizada para verse bajo cualquier frecuencia de luz visible, con la particularidad de ser susceptible a la dinámica de color que produce los cambios de iluminación.

Post-Imagen
Es una imagen retenida en la mente por el estímulo directo de un color, pero el cual ya no se halla ante el ojo. Ocurre cuando se observa durante un tiempo una superficie de color y luego se desliza el ojo rápidamente sobre una superficie gris o blanca. En este caso se vería en segundo lugar el color complementario u opuesto del observado en primer lugar; de rojo por ejemplo, la imagen posterior será verde azulado. Esta imagen es llamada negativa ya que invierte la disposición de los colores.

Pureza
Medida de la proporción de las cantidades de un estímulo monocromático y de un estímulo acromático especificado que, cuando se mezclan aditivamente, iguales al estímulo de color considerado

Reflectancia
Capacidad de un cuerpo de reflejar la luz.

Retina
Tejido sensible a la luz situado en la superficie interior del ojo. Es similar a una tela donde se proyectan las imágenes. La luz que incide en la retina desencadena una serie de fenómenos químicos y eléctricos que finalmente se traducen en impulsos nerviosos que son enviados hacia el cerebro por el nervio óptico.

Saturación
Cromacidad de una superficie evaluada en proporción a su luminosidad. Para unas condiciones de observación dadas y a unos niveles de luminancia dentro del dominio de visión fotópica, un estímulo de color de una cromaticidad dada presenta aproximadamente la misma saturación para todos los niveles de luminancia, excepto cuando la luminosidad es muy alta.
Sistema tricromático
Sistema de especificación de los estímulos de color en función de los valores triestímulos, basado en la igualación de colores por mezcla aditiva de tres estímulos de color de referencia convenientemente elegidos.

Sistema de ordenación de colores
Clasificación de muestras de acuerdo con un conjunto de reglas de ordenación y denominación de su color, generalmente según escalas definidas. Un sistema de ordenación de colores generalmente se materializa por un conjunto de muestras físicas, algunas veces llamado atlas de color. Un atlas de color facilita la comunicación del color, pero no es un requisito previo para definir un sistema de ordenación de colores.

Sensación visual
Respuesta del sistema visual a una estimulación

Temperatura de color
Temperatura de un radiador completo cuya radiación tiene la misma cromaticidad que el estímulo dado.

Time-Lapse
Técnica cinematográfica que consiste en la captura de varias fotografías o imágenes fijas a determinados intervalos de tiempo y en la postproducción se unen y se les asigna una velocidad específica.

Tono
Atributo de una sensación visual según el cual una superficie parece ser semejante a uno de los colores percibidos, rojo, amarillo, verde o azul o a una combinación de dos de ellos.

Tono binario
Tono percibido que puede ser descrito por una combinación de dos tonos. Por ejemplo: naranja como rojo-amarillento o amarillo-rojizo; violeta como azul-rojizo, etc.

Obey 70
Controlador de DMX que permite operar de modo independiente hasta 12 dispositivos, cada uno con 32 canales DMX para un total de 384 canales. Secuencias de escenas programables, control de estrobo y compatibilidad MIDI.

Observador medio
Observador ideal cuyas propiedades de igualación de colores corresponden a las funciones colorimétricas adoptadas por un comité. Ejemplo Observador la CIE
Oscuro
Adjetivo utilizado para describir niveles de claridad bajos.

Ultrarrealismo
Estilo propuesto por el crítico de Arte Raúl Chavarrí a mediados de los años 60. Ciertos pintores realistas coetáneos a él, poseían características ultrarrealistas como la búsqueda de la esencia de la realidad.

Univariancia (Principio)
Dos o más estímulos luminosos que físicamente tengan composiciones de frecuencias diferentes pueden activar al mismo receptor en la retina. Las frecuencias son reconducidas según los tres tipos de receptores enviando la misma señal neuronal. Debido a este principio existen los colores metámeros, colores que se ven iguales bajo determinada luz.

WSL
Acronimo inglés (Wide Spectrum Lighting). De amplio espectro lumínico. Hace referencia a la capacidad de emitir luz en un amplio rango de luz visible.
7. Anexos
7.1. Procedimientos

El proceso de trabajo lleva una serie de pasos y decisiones que en la mayoría de ocasiones queda oculto por un resultado sin darnos cuenta que es parte sustancial del mismo. Los pasos dados son los avances necesarios que revelan la identidad del trabajo y aunque hayan ido eclipsándose unos a otros, nos demuestran la importancia del proceso. La documentación gráfica del proceso ayuda a entender cada una de las tomas de decisiones que los proyectos han ido sumando, no solo al finalizar el trabajo sino durante el transcurso del mismo. Por este motivo es importante dejar constancia de cada uno de los momentos que van aconteciendo en un proyecto, nos ayuda a tomar cierta distancia con los resultados y poder ir reflexionando en paralelo a la ejecución del trabajo.

Con la finalidad de tener una composición global de los resultados de la tesis se muestra en este apartado algunos de los puntos de partida, materiales y métodos que han supuesto una estructura necesaria para llevar a cabo los proyectos que conforman la tesis.

El primer proyecto realizado fue la creación de los instrumentos de iluminación, lámparas y controladores que facilitaran las expectativas fijadas durante el tiempo de pruebas que hubo con diferentes lámparas y pinturas. El objetivo principal era conseguir una iluminación de amplio espectro lumínico y para ello era necesario aunar en una misma fuente de luz todas las luces que anteriormente venían utilizándose. Esto suponía mayor comodidad al suprimir el tinglado de cables, la ocupación de espacio por cada lámpara, así como los molestos deslumbramientos por los ángulos que formaban. Puesto que no existía este tipo de lámpara en el mercado decidi construirla. En primer lugar integrando los componentes de la luminaria (Véase figura 25, primera fila de fotografías). La iluminación LED y bombillas fluorescentes dentro del mismo reflector, utilizando el mínimo de cables posibles con tiras de cobre adhesivas como se puede apreciar en la primera fotografía.

![Figura 25. Fotografías sobre la creación del controlador de luz L’orella y lámpara de amplio espectro lumínico Rainbowie.](image_url)
El segundo instrumento indispensable era construir un controlador de luz que facilitase los cambios de luz desde cualquier posición, es decir que permitiera moverse por la zona de trabajo y visualizar el cuadro desde diferentes puntos de vista y diferentes iluminaciones. Además de cambiar la iluminación también debía de monitorizar los cambios de la lámpara. Saber la iluminación que hay en ese momento sin tener que estar debajo de la lámpara. Por este motivo se diseño l’Orella como un objeto móvil, un instrumento fácil de transportar que se ajuste al brazo similar a la paleta de un pintor. En la segunda fila de la figura 25 se encuentra el boceto del diseño de la parte que se acopla al brazo. El diseño del controlador de luz fue buscando líneas sinuosas de inspiración modernista, basadas en diseños de Hermann Obrist y en formas de la naturaleza marina especialmente la oreja de mar. Las cuencas de color blanco soportan en su interior los diferentes tipos de luces. Pequeños leds replican la luz que la lámpara está emitiendo e intensifican las cuencas de color. El borde de la paleta realizado en metacrilato también se ilumina dándole un aspecto formal a la luz y convirtiéndolo en un objeto más identificable en la oscuridad.

Figura 26. Serie de fotografías sobre el estudio y proceso para la observación dinámica del color.

Con el sistema de iluminación ya funcionando, el siguiente paso fue crear un campo de investigación donde poder experimentar con los colores, observarlos y poder extraer conclusiones. Fue necesario construir un panel donde los colores fueran móviles, donde se pudiera cambiar la disposición y ver la interacción entre ellos. Este proceso fue necesario para poder catalogarlos, percibir todos los posibles metamerismos y crear nuevos colores, como los híbridos, de composición semi-fluorescentes. Este método es muy manejable ya que permite comparar los colores sin tener que pintar de nuevo cada vez que
se quiera crear una composición cromática, tan solo con desplazarlos y situarlos en el panel. En la figura 26 se puede apreciar la construcción del panel magnético. Las muestras son cartulinas pintadas por ambas partes, una de las caras con solución de limaduras de hierro permitiendo la adherencia y la otra parte realizada con acrílicos con pigmentos. Las formas elegidas de triángulos facilitan la mejor interacción entre los colores y también mejora el efecto dinámico del cambio de luz.

Figura 27. Serie de fotografías de círculos cromáticos sobre panel magnético. Fotografías realizadas con 14 iluminaciones diferentes para doble rueda de colores y escala de grises. Realizada con cámara canon E-500, Objetivo 50 mm. con un diafragma de 3.5 y una exposición de 1, 66 segundos.

Las muestras de color han sido necesarias para poder crear las gráficas del primer apartado de la tesis. Como se ha hecho mención anteriormente, el trabajo de esta tesis no es un trabajo de colorimetría, el color a analizar es el color percibido no el análisis del color de los objetos por lo que no ha sido necesario utilizar espectrofotómetros, tan solo con una cámara fotográfica con sensores y un programa de ordenador, como por ejemplo PhotoShop ha sido suficiente para crear una comparativa de colores. Los resultados de las gráficas se han confeccionado a través de herramientas del programa como CieLab, un selector de color que descompone en índices de luminosidad y cromaticidad. Este apartado dio forma al primer estudio sobre dinámica del color configurando la ponencia ‘Binomio: Luz y Pigmento’ que fue expuesta con motivo del año internacional de la luz en Noviembre del año 2015, en la Universidad de Minho (Portugal). El intercambio de conocimientos con algunos de los conferenciantes sobretodo con físicos, fue muy enriquecedor y ayudó a contrastar algunos conceptos relativos a la dinámica del color.
En el tercer apartado destinado a la aplicación de la dinámica del color en la pintura. Se trabajan los dos proyectos de pintura, *Tiféret* y *Oniricatchsub*. Dos cuadros de gran formato, aunque se realizaron diferentes cuadros de pequeño formato buscando la conexión entre la dinámica y la figuración, fue honestos dos cuadros donde se terminó de asentar los conceptos y metodología de la pintura de amplio espectro lumínico. En la figura 28 se puede ver diferentes imágenes que muestran el desarrollo del proceso de *Tiféret*. Bocetos iniciales como en la primera fotografía. El trabajo de relieve con polvo de mármol y arena para trabajar diferentes tamaños de craquelados en la segunda fotografía. En la tercera fotografía aparece un boceto integrando formas geométricas realizadas con trazados vectoriales dentro de la composición del cuadro. En la cuarta fotografía, el cartón a tamaño natural trabajando el boceto según las formas definitivas. En la quinta fotografía, trabajo de capa epitelial sobre capa de luminiscencia, donde se trabaja horizontalmente para la creación de los craquelados. En la sexta y séptima fotografía trabajo de primera fase capa de luminiscencia interna. En las siguientes fotografías se trabaja la tercera fase donde se busca el volumen con cada uno de los cambios de iluminación, el claroscuro dinámico. En la figura 29 aparecen fragmentos con diferentes iluminaciones que potencian la mezcla óptica entre fluorescentes y el resto de colores haciendo visibles las texturas craqueladas. Sin embargo todavía no se aprecian contrastes cromáticos que originen volumenes, falta el tratamiento de claroscuro dinámico, la última fase para lograr una figuración más pronunciada.

Figura 28. Serie de fotografías sobre el estudio y proceso para la creación de pintura WSL. *Tiféret.*
En el siguiente proyecto, *Oniricatchsub* se ha mantenido los mismos objetivos, lograr una figuración que sobreviva a los cambios de iluminación. Sin embargo con una incentivo añadido buscar una figuración que permita una libertad cromática sin que recaiga la intencionalidad en un motivo externo, es decir que el propia elemento representado sea el motor de esos cambios cromáticos. Con esta finalidad se eligió las sepias como elemento de representación y su acción de apareamiento como el motivo de búsqueda en la representación, pasando a un segundo plano el conseguir volumen en las figuras puesto que eran superficies prácticamente planas y por consiguiente establecer nuevos objetivos como es plasmar el movimiento de los colores. Las superficies de las sepias se convierten de esta manera en pequeños lienzos donde experimentar la dinámica del color. Movimientos ondulatorios de una parte a otra de sus cuerpos, acentuación de líneas de contorno y cambios intermitentes de color fueron algunas de las observaciones realizadas en documentales sobre sepias. En la figura 30 se muestran diferentes imágenes del proceso. En la capa de luminiscencia interna segunda y tercera fotografía se trata de crear patrones de movimiento, dibujos que emerjan entre los craquelados, potenciando las direcciones de color. Con este procedimiento se trata de crear un doble entramado y facilitar el movimiento sobre la superficie al realizar cambios de iluminación, muy similar al efecto Moiré cuando dos entramados se mueven uno sobre otro. En la tercera fila se aprecia una imagen del personaje del cuadro bajo iluminación escotópica. La figura es realizada gracias a la composición de colores fluorescentes. Las últimas dos fotografías son dos fotogramas del video presentación del cuadro.

En el apartado observación de la dinámica del color apartado, antes de elegir la cúpula como modelo donde experimentar con los colores se probaron diferentes formatos entre ellos una alfombra. El objetivo era crear un espacio donde poder deambular a través de los colores. Se realizaron varias pruebas buscando que la trama del material fuera lo suficientemente grande como para dar la sensación de estar pegado al soporte. Para ello se busco diferentes técnicas entre ellas crear un entramado de hilo e integrarlo en un soporte. (Primera y segunda fotografía de la figura 31) Primero tiñendo los hilos, buscando los colores que interactuarán con la iluminación y luego cosiéndolos en una urdimbre. También se utiliza tela de arpillera, su estructura de ligamento de tefatán permite un entramado uniforme donde se adhiere la pintura potenciando las cualidades ópticas.

Después de analizar el soporte el formato ‘alfombra’ y ver las dificultades en cuanto a sus dimensiones y elaboración, se buscó ampliar el campo de investigación para observar los colores a otros soportes con cualidades diferentes. Se procuró evitar el formato rectangular del lienzo para dar mayor protagonismo a los colores y así poder buscar la interacción, también con el espacio. Se construyó lienzos con formas diversas, (ejemplos en la figura 31, imágenes tercera, cuarta y quinta). Los lienzos se realizaron con arpillera sobre tabla para no perder el tratamiento cromático que permite la trama utilizando la técnica de *frottage*. Para la iluminación de varios cuadros a la vez se diseñaron lámparas ovaladas, fáciles de montar y desmontar y también un aparato que pudiera sincronizar la iluminación de cada una de ellas (Véase Figura 31). En la imagen sexta aparece la consola de control de iluminación Obey 70. En la imagen novena se puede observar el interior del aparato, compuesto por tres controladores DMX, tres amplificadores y dos transformadores. Este aparato denominado en su conjunto Pulsión puede controlar hasta doce lámparas de amplio espectro luminico, dividirlas en tres secciones de iluminación diferente según los controladores y pueden también ser controladas por conexión MIDI lo que significa poder controlarlas por dispositivos digitales como por ejemplo una consola piano (Figura 33)
Por último se buscó la integración de formas en un cuerpo sólido que coincida con el campo visual del espectador. Para ello se desarrolló el proyecto *Punto Nemo*, construcción de una cúpula percepción cromática. En la figura 32 se detallan algunas imágenes sobre el proyecto. Las piezas desmontables para construir la bóveda se construyeron deformando mediante calor y con un molde las piezas de pvc. (Imagen sexta de la figura 31)

Figura 31. Serie de fotografías sobre el estudio y proceso de observación del color.

Figura 32. Serie de fotografías sobre el estudio y proceso del proyecto *Punto Nemo*
7.2 Anotaciones DMX

Tablas de asignación con los valores digitales para poder secuenciar la iluminación con Obey 70

Asignación Colores teclado piano

<table>
<thead>
<tr>
<th>C</th>
<th>C♯</th>
<th>D</th>
<th>D♯</th>
<th>E</th>
<th>F</th>
<th>F♯</th>
<th>G</th>
<th>G♯</th>
<th>A</th>
<th>A♯</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>Esmeralda</td>
<td>Verde</td>
<td>Verdeillo</td>
<td>Rojo</td>
<td>Bermellón</td>
<td>Amarillo</td>
<td>Naranja</td>
<td>Magenta</td>
<td>Púrpura</td>
<td>Cyan</td>
<td>Violeta</td>
</tr>
</tbody>
</table>

Asignación Bancos Obey 70

<table>
<thead>
<tr>
<th>Bank 1</th>
<th>Bank 6</th>
<th>Bank 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul, Verde</td>
<td>Violeta Púrpura</td>
<td>Esmeralda Cyan</td>
</tr>
<tr>
<td>Bank 2</td>
<td>Bank 7</td>
<td>Bank 12</td>
</tr>
<tr>
<td>Rojo, Magenta</td>
<td>Azul, Verde</td>
<td>Violeta Púrpura</td>
</tr>
<tr>
<td>Bank 3</td>
<td>Bank 8</td>
<td>Bank 13</td>
</tr>
<tr>
<td>Bermellón Naranja</td>
<td>Rojo, Magenta</td>
<td>Blanco</td>
</tr>
<tr>
<td>Bank 4</td>
<td>Bank 9</td>
<td>Bank 14</td>
</tr>
<tr>
<td>AmarilloVerderillo</td>
<td>Bermellón Naranja</td>
<td>Blanco/Lluvia</td>
</tr>
<tr>
<td>Bank 5</td>
<td>Bank 10</td>
<td>Bank 15</td>
</tr>
<tr>
<td>Esmeralda Cyan</td>
<td>AmarilloVerderillo</td>
<td>Ténebre</td>
</tr>
</tbody>
</table>
Tabla composición de Colores

<table>
<thead>
<tr>
<th>N°</th>
<th>B</th>
<th>E</th>
<th>Cla</th>
<th>Nomenclat.</th>
<th>R</th>
<th>G</th>
<th>B</th>
<th>w W</th>
<th>e W</th>
<th>St</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>E</td>
<td>1B</td>
<td>00</td>
<td>00</td>
<td>32</td>
<td>00</td>
<td>180</td>
<td>Azul tenue</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>2</td>
<td>E</td>
<td>1B1</td>
<td>00</td>
<td>00</td>
<td>64</td>
<td>00</td>
<td>180</td>
<td>Azul débil</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>1</td>
<td>3</td>
<td>E</td>
<td>1B ?</td>
<td>00</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>250</td>
<td>Azul Neon</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>1</td>
<td>4</td>
<td>E</td>
<td>1B *</td>
<td>00</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>247</td>
<td>Azul Candil</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>1</td>
<td>5</td>
<td>E</td>
<td>1G</td>
<td>00</td>
<td>25</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde tenue</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>1</td>
<td>6</td>
<td>E</td>
<td>1G1</td>
<td>00</td>
<td>60</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde débil</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1</td>
<td>7</td>
<td>E</td>
<td>1G2</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Verde Neon</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>1</td>
<td>8</td>
<td>E</td>
<td>1G *</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Verde Candil</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>1</td>
<td>9</td>
<td>E</td>
<td>1R</td>
<td>21</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Rojo tenue</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>1</td>
<td>10</td>
<td>E</td>
<td>1R</td>
<td>56</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Rojo débil</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>11</td>
<td>E</td>
<td>1R *</td>
<td>229</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Rojo Neon</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>12</td>
<td>E</td>
<td>1R *</td>
<td>255</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Rojo Candil</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>13</td>
<td>E</td>
<td>1M</td>
<td>32</td>
<td>00</td>
<td>09</td>
<td>00</td>
<td>180</td>
<td>Magenta tenue</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>14</td>
<td>E</td>
<td>1M1</td>
<td>50</td>
<td>00</td>
<td>19</td>
<td>00</td>
<td>180</td>
<td>Magenta débil</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>15</td>
<td>E</td>
<td>1M *</td>
<td>249</td>
<td>00</td>
<td>74</td>
<td>00</td>
<td>250</td>
<td>Magenta Neon</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>16</td>
<td>E</td>
<td>1M *</td>
<td>255</td>
<td>00</td>
<td>77</td>
<td>00</td>
<td>247</td>
<td>Magenta Candil</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>17</td>
<td>E</td>
<td>1Or</td>
<td>30</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Bermellon tenue</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>18</td>
<td>E</td>
<td>1Or1</td>
<td>59</td>
<td>07</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Bermellon débil</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>19</td>
<td>E</td>
<td>1Or ?</td>
<td>206</td>
<td>54</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Bermellon Neon</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>20</td>
<td>E</td>
<td>1Or *</td>
<td>206</td>
<td>54</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Bermellon Candil</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>21</td>
<td>E</td>
<td>1O</td>
<td>30</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Naranja tenue</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>22</td>
<td>E</td>
<td>1O1</td>
<td>59</td>
<td>17</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Naranja débil</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>23</td>
<td>E</td>
<td>1O ?</td>
<td>220</td>
<td>69</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Naranja Neon</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>24</td>
<td>E</td>
<td>1O *</td>
<td>220</td>
<td>69</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Naranja Candil</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>25</td>
<td>E</td>
<td>1Y</td>
<td>15</td>
<td>25</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Amarillo tenue</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>26</td>
<td>E</td>
<td>1Y1</td>
<td>53</td>
<td>37</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Amarillo débil</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>27</td>
<td>E</td>
<td>1Y *</td>
<td>190</td>
<td>167</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Amarillo Neon</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>28</td>
<td>E</td>
<td>1Y *</td>
<td>220</td>
<td>185</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Amarillo Candil</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>29</td>
<td>E</td>
<td>1gY</td>
<td>09</td>
<td>20</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde tenue</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>30</td>
<td>E</td>
<td>1gY1</td>
<td>26</td>
<td>56</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde débil</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>31</td>
<td>E</td>
<td>1gY *</td>
<td>94</td>
<td>151</td>
<td>00</td>
<td>00</td>
<td>250</td>
<td>Verde Neon</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>32</td>
<td>E</td>
<td>1gY *</td>
<td>114</td>
<td>174</td>
<td>00</td>
<td>00</td>
<td>247</td>
<td>Verde Candil</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>33</td>
<td>E</td>
<td>1b6r</td>
<td>00</td>
<td>23</td>
<td>04</td>
<td>00</td>
<td>180</td>
<td>Esmeralda tenue</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>34</td>
<td>E</td>
<td>1b6i</td>
<td>00</td>
<td>49</td>
<td>11</td>
<td>00</td>
<td>180</td>
<td>Esmeralda débil</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>35</td>
<td>E</td>
<td>1b6 ?</td>
<td>00</td>
<td>168</td>
<td>69</td>
<td>00</td>
<td>250</td>
<td>Esmeralda Neon</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>36</td>
<td>E</td>
<td>1b6 *</td>
<td>00</td>
<td>215</td>
<td>86</td>
<td>00</td>
<td>247</td>
<td>Esmeralda Candil</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>37</td>
<td>E</td>
<td>1C</td>
<td>00</td>
<td>10</td>
<td>12</td>
<td>00</td>
<td>180</td>
<td>Cyan tenue</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>38</td>
<td>E</td>
<td>1C1</td>
<td>00</td>
<td>23</td>
<td>26</td>
<td>00</td>
<td>180</td>
<td>Cyan débil</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>39</td>
<td>E</td>
<td>1C ?</td>
<td>00</td>
<td>115</td>
<td>115</td>
<td>00</td>
<td>250</td>
<td>Cyan Neon</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>40</td>
<td>E</td>
<td>1C *</td>
<td>00</td>
<td>182</td>
<td>182</td>
<td>00</td>
<td>247</td>
<td>Cyan Candil</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>41</td>
<td>E</td>
<td>1V</td>
<td>16</td>
<td>00</td>
<td>13</td>
<td>00</td>
<td>180</td>
<td>Violeta tenue</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>42</td>
<td>E</td>
<td>1V1</td>
<td>43</td>
<td>00</td>
<td>33</td>
<td>00</td>
<td>180</td>
<td>Violeta débil</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>43</td>
<td>E</td>
<td>1V ?</td>
<td>158</td>
<td>00</td>
<td>139</td>
<td>00</td>
<td>250</td>
<td>Violeta Neon</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>44</td>
<td>E</td>
<td>1V *</td>
<td>201</td>
<td>00</td>
<td>170</td>
<td>00</td>
<td>247</td>
<td>Violeta Candil</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>45</td>
<td>E</td>
<td>1P</td>
<td>20</td>
<td>00</td>
<td>07</td>
<td>00</td>
<td>180</td>
<td>Púrpura tenue</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>46</td>
<td>E</td>
<td>1P1</td>
<td>42</td>
<td>00</td>
<td>18</td>
<td>00</td>
<td>180</td>
<td>Púrpura débil</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>47</td>
<td>E</td>
<td>1P ?</td>
<td>155</td>
<td>00</td>
<td>109</td>
<td>00</td>
<td>250</td>
<td>Púrpura Neon</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>48</td>
<td>E</td>
<td>1P *</td>
<td>212</td>
<td>00</td>
<td>156</td>
<td>00</td>
<td>247</td>
<td>Púrpura Candil</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>49</td>
<td>E</td>
<td>1b2</td>
<td>00</td>
<td>128</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Azul</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>50</td>
<td>E</td>
<td>1b3</td>
<td>00</td>
<td>125</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Azul fuerte</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>51</td>
<td>S</td>
<td>1B</td>
<td>00</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>235</td>
<td>Azul Tormenta</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>52</td>
<td>S</td>
<td>1B *</td>
<td>00</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>227</td>
<td>Azul Rayo</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>53</td>
<td>F</td>
<td>1G2</td>
<td>00</td>
<td>128</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>54</td>
<td>F</td>
<td>1G3</td>
<td>00</td>
<td>255</td>
<td>00</td>
<td>00</td>
<td>180</td>
<td>Verde fuerte</td>
<td></td>
</tr>
</tbody>
</table>
Intensidad Lumínica

<table>
<thead>
<tr>
<th>Visión Escotópica</th>
<th>Visión Fotópica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ténebre</td>
<td>Tenue</td>
</tr>
</tbody>
</table>

Intensidad estroboscópica

<table>
<thead>
<tr>
<th>Neón</th>
<th>Candil</th>
<th>Lluvia</th>
<th>Tormenta</th>
<th>Rayo</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>247</td>
<td>244</td>
<td>235</td>
<td>227</td>
</tr>
</tbody>
</table>

103
Asignación Midi (Nivel I)

<table>
<thead>
<tr>
<th>Escóto.</th>
<th>Valores</th>
<th>B</th>
<th>G</th>
<th>R</th>
<th>M</th>
<th>Or</th>
<th>O</th>
<th>Y</th>
<th>gY</th>
<th>bG</th>
<th>C</th>
<th>V</th>
<th>P</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneb</td>
<td>00-20</td>
<td>115</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>115</td>
<td>115</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>118</td>
<td>119</td>
</tr>
<tr>
<td>Tenue</td>
<td>21-50</td>
<td>01</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Debil</td>
<td>51-80</td>
<td>01</td>
<td>05</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>Neon</td>
<td>81-105</td>
<td>01</td>
<td>06</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>30</td>
<td>34</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Candil</td>
<td>106-125</td>
<td>01</td>
<td>07</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>35</td>
<td>39</td>
<td>43</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>Lluvia</td>
<td>126-155</td>
<td>51</td>
<td>54</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>70</td>
<td>74</td>
<td>78</td>
<td>82</td>
<td>86</td>
<td>90</td>
<td>94</td>
<td>98</td>
</tr>
</tbody>
</table>

Asignación Midi (Nivel II)

<table>
<thead>
<tr>
<th>Fotópico</th>
<th>Valores</th>
<th>B</th>
<th>G</th>
<th>R</th>
<th>M</th>
<th>Or</th>
<th>O</th>
<th>Y</th>
<th>gY</th>
<th>bG</th>
<th>C</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>00-20</td>
<td>48</td>
<td>52</td>
<td>56</td>
<td>60</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>Vivo</td>
<td>21-50</td>
<td>49</td>
<td>53</td>
<td>57</td>
<td>61</td>
<td>65</td>
<td>69</td>
<td>73</td>
<td>77</td>
<td>81</td>
<td>85</td>
<td>89</td>
<td>93</td>
</tr>
<tr>
<td>Fuerte</td>
<td>51-80</td>
<td>50</td>
<td>54</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>70</td>
<td>74</td>
<td>78</td>
<td>82</td>
<td>86</td>
<td>90</td>
<td>94</td>
</tr>
<tr>
<td>Lumin</td>
<td>81-105</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>75</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>c/w W</td>
<td>106-125</td>
<td>100</td>
<td>104</td>
<td>108</td>
<td>112</td>
<td>116</td>
<td>120</td>
<td>124</td>
<td>128</td>
<td>132</td>
<td>136</td>
<td>140</td>
<td>144</td>
</tr>
<tr>
<td>1sW</td>
<td>126-155</td>
<td>102</td>
<td>106</td>
<td>110</td>
<td>114</td>
<td>118</td>
<td>122</td>
<td>126</td>
<td>130</td>
<td>134</td>
<td>138</td>
<td>142</td>
<td>146</td>
</tr>
</tbody>
</table>

Asignación Obey (Escenas)

<table>
<thead>
<tr>
<th>B</th>
<th>G</th>
<th>R</th>
<th>M</th>
<th>Or</th>
<th>O</th>
<th>Y</th>
<th>gY</th>
<th>bG</th>
<th>C</th>
<th>V</th>
<th>P</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneb</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Tenue</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Debil</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Neon</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Candil</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Lluvia</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Mod</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Vivo</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Fuerte</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Lumin</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>c/w W</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
<tr>
<td>1sW</td>
<td>13,1</td>
<td>13,3</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,1</td>
<td>14,3</td>
<td>14,5</td>
<td>14,7</td>
<td>14,9</td>
<td>15,1</td>
<td>15,3</td>
</tr>
</tbody>
</table>

Asignación Midi Chase

<table>
<thead>
<tr>
<th>Chase 1</th>
<th>Chase 2</th>
<th>Chase 3</th>
<th>Chase 4</th>
<th>Chase 5</th>
<th>Chase 6</th>
<th>Blackout</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
</tr>
</tbody>
</table>
7.3 Ponencias

7.3.1 Primera ponencia.

El binomio: luz y pigmento.
Cinética del color. Caminos de expresión en la pintura

Guillermo Bellod Ortuno, Francisco Javier SanMartin

guibellod@yahoo.es; frisanpi@pin.upv.es

Universidad Politécnica de Valencia (Espanha)

Cada matiz de la obra se altera con cada toque que se da en otra parte.

John Ruskin
Resumen:

La pintura de amplio espectro lumínico muestra las capacidades formales que tiene el color en movimiento. Las cualidades aditivas de la luz y las sustractivas del pigmento se interseccionan y dan pie a una gama de colores transitivos. La experiencia visual es en última instancia quien prueba estos colores dependiendo de un proceso neuronal interno del espectador el cual activa un proceso óptico de percepción de cambios de colores.

El uso de iluminación de amplio espectro lumínico junto a una paleta de colores pigmentos sensibles a luz proporciona al observador un amplia relación de colores está amplia relación entre los colores luz y los colores pigmento forman colores transitivos o colores cinéticos. Los colores cinéticos al poner en funcionamiento los mecanismos visuales enseñan principios que rigen la percepción visual como la constancia del color, contraste sucesivo, contraste simultaneo, metamerismo o efecto bezold. C.L. Hardin en ‘Color para filósofos’ con respecto a la constancia del color sugiere que la propiedad de un objeto es una ilusión que se puede medir comprobar testear y predecir. Hardin define este comportamiento como ‘una paradójica ilusión real’ Nuestra memoria visual asocia los colores entre ellos. La experiencia visual proporciona colores de referencia para cada objeto que está en una luz diferente. De la misma manera los pintores impresionistas utilizaban esta habilidad para hacer el control de matices de color. Ellos llamaban colores locales a aquellos colores vistos bajo una luz de mediodía nublado.

En la década de los 90 se introdujeron el color azul y blanco en los sistemas de iluminación led lo que supuso un avance en el control de la iluminación, su rango espectral. Mediante la iluminación led y la pintura de amplio espectro lumínico se estudia el comportamiento de procesos perceptivos, analizando los factores que conllevan cambios cromáticos. Y mediante gráficas, secuenciar las trazas de movimiento de los colores para poder utilizar como referencia a la hora de utilizar el color como elemento dinámico en una obra que pueda recibir diferentes iluminaciones.

Palabras-clave:
light; paintings; color; led lighting

El presente trabajo es un estudio del movimiento del color mediante la iluminación. Un análisis sobre la interacción del color aditivo y el color sustractivo desde la práctica pictórica. Para ello es necesario elaborar unos procedimientos y medidas que delimiten el campo de acción del color y resolver cuestiones que estructuren la investigación como: ¿Qué iluminación aplicar en la pintura? ¿Qué luces y que pigmentos son adecuados para el movimiento del color? ¿Existe un comportamiento cinético en los colores que pueda emplearse en la práctica pictórica? ¿Qué metodología utilizar para potenciar el movimiento del los colores? ¿Cómo representar el movimiento del color? ¿Es posible introducir nuevos valores a partir de la cinética del color en el lenguaje plástico y visual de la Pintura?
La observación mediante juego de colores, color matching

Los colores son sensaciones dadas por un flujo luminoso absorbido por la retina y después procesado por el sistema nervioso. Sentimos el amarillo de un naranja o el verdor de un azul como sensaciones producidas por la percepción. Un proceso por el cual la materia física pasa a la mente (psiqué), correlaciona y compara sensaciones para construir una memoria visual que nos ubique y oriente en la naturaleza visual. Son sensaciones convertidas en estados de percepción y para ello existen varias condiciones. Una condición es la física, el comportamiento de la materia luminica, una condición fisiológica, el funcionamiento del órgano visual y una condición psicológica, el procesamiento neuronal que lleva acabo el acto de percibir.

Conocer el color no es una tarea sencilla depende en última instancia de una sensación, de una observación, una praxis que no podemos eludir. Por este motivo podemos encontrar en la mayoría de estudios sobre color que se han realizado una observación y comparación del color. Los colores se observan, se cotejan y se clasifican, una forma de estudio llamada color matching o juego de colores. Es un proceso psicofísico, relaciona fenómenos psicológicos con fenómenos físicos. La tarea que se ha de realizar es cuantificar patrones, curvas de sensibilidad y umbrales para poder entender la actuación del color.

En el estudio sobre el movimiento del color es necesario primero especificar una metodología y unos materiales a utilizar. Metodología que permita separar los tres elementos influyentes en la percepción, luz, superficie iluminada y observador para poder analizar como se relacionan entre si, caeteris paribus, factores constantes que permiten acercarse al procesamiento visual. En última instancia, cuanto mas control exista de los factores que determinan el color mas cerca estaremos del proceso perceptivo y de poder establecer las causas por las cuales se produce el movimiento del color. El campo de investigación es amplísimo, tanto como luz y materia existen en el universo. El estudio en un campo de actuación concreto ayudará al control de factores. Es necesario un laboratorio específico donde realizar la observación de los colores, un lugar que contenga una fuente de iluminación y una superficie de observación. El entorno de observación debe ser un espacio oscuro, es decir donde la única luz que va a interactuar con la superficie sea la de la lámpara de iluminación. Cualquier luz ajena a la escena, desvirtúa la percepción del observador lo que en luminotecnia se denomina grado de deslumbramiento. Se necesita oscuridad al igual que los músicos necesitan insonorizar sus estudios para que el sonido no se vea contaminado.
Activación de la luz

La iluminación es indispensable en la existencia visual. Es la acción por la cual se transmite la luz y mediante la cual el observador se informa de los objetos, pero no solo de los objetos se recibe información también de la fuente luminica y de los mecanismos de recepción.

A mediados de siglo XIX se empezaron hacer estudios para diferenciar las frecuencias de luz y ver su composición. Goethe pensador alemán realizó múltiples experimentos donde cuestionó el comportamiento psíquico en la percepción y declaró que la luz blanca estaba compuesta por rojo, verde y violeta. Más tarde el físico escocés Maxwell estudio la composición de la luz simplificando su composición al rojo, verde y azul. Gracias a los experimentos que realizó Maxwell con sus propios artilugios, molinetes de colores y la caja de luz (Figura 2). La caja de luz le permitió recomponer la luz y crear colores para ver la composición de los mismos. Permitió simplificar el color a un principio triestimulo logrando cualquier color por medio de la mezcla entre ellos. Con este aparato, camino inverso al prisma de Newton, consiguió demostrar la composición de los colores y desarrolló los principios de la visión del color. El triangulo de Maxwell ha sido precursor de muchos modelos hoy día vigentes, como los modelos de la Commission Internationale d’Éclairage (CIE) y aparatos visuales que funcionan con modelos RGB.

Figura 2. Instrumentos de observación para estudiar el comportamiento del color luz y la visión del color. Caja de Luz y Molinetes de colores diseñados por James Clerk Maxwell.
Fuente: Royalsocietypublishing.org

La mezcla aditiva se consigue mediante la suma de frecuencias. Para poder realizar mezclas de color luz en este trabajo de investigación se ha confeccionado una lámpara y un controlador permitiendo el estudio de la creación de colores. La tecnología LED actualmente aporta las mejores condiciones para poder trabajar con los colores luz. El rojo, el verde y azul permiten la mezcla aditiva desde los primarios, También permite el control de intensidad lo que viene a facilitar el uso de la luz en zona escotópica, zona con poca iluminación y zona fotópica, con mayor iluminación. Desde la oscuridad absoluta a una iluminación de 300 lúmenes, Luminaria y controlador (Figuras 3 y 4) son los instrumentos de control de luz para poder crear diferentes escenas luminicas y trabajar la cinética del color.
Activación del pigmento

El foco de atención donde el observador dirige la mirada y desde donde se recibe la luz es el cuadro, el objeto que alberga la información. La luz llega con todas sus características hasta el cuadro, allí comienza una serie de diferentes propiedades físicas, como la absorción, reflexión y transmisión de la luz, factores que transforman las propiedades hasta llegar a la retina del ojo en forma de imagen. El color luz pasa a ser color reflejado. Ciertas longitudes de onda se reflejan y otras no. Cada vez que se añade un pigmento a una mezcla, se sustrae otro pedazo del espectro a la luz reflejada, en consecuencia el color se vuelve más opaco y oscuro.

Desde la antigüedad, la alquimia ha sido la ciencia que ha tratado de controlar los efectos de sustracción de los materiales. Procurando los colores a la industria y a las artes. Muchos de ellos a partir de una proceso de extracción y depuración de minerales y plantas, otros sintéticos creados desde la composición química. Durante el siglo XIX de los 20 pigmentos que utilizaban en común la paleta impresionista 12 eran de origen sintético. Supuso una proliferación en los recursos pictóricos y un comienzo por intentar acercarse a la naturaleza del color. Los impresionistas fueron un movimiento artístico que destacaron por tener en común el interés de de plasmar la imagen a partir de la naturaleza de la luz. Elegiendo temas sugerentes para la investigación y utilizando recursos visuales y pictóricos que potencien la naturaleza del color y la luz. Comprendieron que la naturaleza visual funciona según el proceso de percepción. Los
El camino hacia la luz mediante la pintura tuvo su máximo exponente en Seurat. Pintor impresionista, el cual sumó a la técnica impresionista la utilización de la mezcla óptica utilizando la síntesis aditiva. Seurat se autodenominó impresionista-luminista. El puntillismo era su técnica y mediante ella proporcionaba viveza a la superficie, pero no era suficiente para garantizar la luminosidad y la cromaticidad conseguida con la mezcla aditiva. Los puntos de complementarios pareados tendían a crear una impresión de grisura y no de luminosidad. Los comienzos de Seurat quedaron truncados por su temprana muerte, dejando quizás inconcluso un capítulo en la historia del Arte, un capítulo que marcaba la evolución de la búsqueda de la luz en la pintura.
La activación del color

La posibilidad que otorga la interacción entre mezclas aditivas y sustractivas propone un campo nuevo de colores. Estos colores dependen del equilibrio entre ambas capacidades, sin embargo, es la visión, en última instancia, la que asigna que cualidades de luz y de pigmento debe llevar para consumar la percepción del color. El comportamiento entre ambos no siempre tiene un resultado visible. Existen cambios entre la relación de la luz y del pigmento que no siempre proporcionan resultados perceptivos, esto es debido a características del sistema visual neuronal. Los cambios lumínicos no siempre producen resultados visibles apareciendo los colores metámeros, colores que son iguales bajo diferente iluminación. La pintura de amplio espectro lumínico utiliza este recurso metamérico como un elemento más para la formación y relación entre colores. La fluorescencia proporciona al pigmento la capacidad de emitir luz. Dependiendo del equilibrio entre pigmentos (fluorescentes y sustractivos) y de las luces se consiguen determinados colores.

23 Dos o más estímulos luminosos que físicamente tengan composiciones de frecuencias diferentes pueden activar al mismo receptor. Esto es lo que llaman el principio de Univariancia. Las frecuencias son reconducidas según los tres tipos de receptores enviando la misma señal neuronal. Debido a este principio existen los colores metámeros, colores que se ven iguales bajo determinada luz. Encontramos ejemplos en la naturaleza, existen colores como algunos verdes compuestos por frecuencias diferentes que se ven iguales a plena luz del sol y no conseguimos diferenciarlos. Sin embargo cuando se cambia a otra iluminación se estimulan receptores diferentes para cada verde y podemos diferenciarlos. También ocurre cuando incluimos una luz ultravioleta podemos observar matices en los colores que nos permiten diferenciarlos. El principio metamérico es una cualidad que se emplea en las tres dimensiones del color tanto en la luminosidad, en la saturación como en el matiz. Esto indica que no hay ninguna luz completamente verdadera. Atribuímos a luz del sol, su capacidad de ofrecer la información más verídica pero al igual que la luz de medio día nos parece cegadora y nos resta sensibilidad. Una luz compuesta por muchas frecuencias nos puede impedir diferenciar ciertos matices de color.

24 Las capacidades del pigmento de emitir luz mediante la utilización de la luminiscencia. La fluorescencia es una sustancia capaz de absorber las radiaciones electromagnéticas de ondas de corta frecuencia imperceptibles como la luz ultravioleta y capaz de reflejarlas en forma de luz visible en una longitud de onda diferente. El pigmento emite un color prácticamente en la oscuridad dando la sensación de ser el color el propio emisor.
Práctica I

Mezcla aditiva y sustractiva en el espectro

El trabajo realizado es una muestra gráfica de las diferentes posibilidades del pigmento ante la luz. Para formar el muestrario, se han sido elegidos 24 colores, primarios secundarios terciarios y cuaternarios. Según la CIE el observador medio distingue entorno a 30 matices de color, por lo que ampliar a más colores lo único que conllevará es a una difícil comprobación e identificación de los colores. La paleta esta formada por 12 pigmentos cuidadosamente mezclados. Pigmentos específicos que garantizan matices y luminosidad mas vibrante que con la mezcla de primarios.

El siguiente paso es definir el círculo cromático aditivo y buscar una representación del espectro luminico que registre los colores luz. En este caso si que vamos a partir de los colores primarios rojo, azul y verde. Un total de 12 colores a los que añadiremos el blanco como referencia y el ultravioleta. La intensidad de luz blanca elegida. Un blanco equienergético, con la misma composición de azul, rojo y verde. La luz marcará el límite de la zona escotópica y fotópica.

La mezcla de luces es importante para obtener como resultado la interacción de los círculos. El círculo cromático aditivo junto al círculo cromático formarán un juego de colores. Una secuenciación del círculo sustractivo por cada uno de sus 12 estados de iluminación, formando una composición cromático-cinético. La forma representativa es un poliedro toroidal, donde un círculo gira entorno a otro círculo. Sin embargo para poder representar de una manera más gráfica la composición cromático-cinético en vez de utilizar el poliedro hemos desarrollado su representación mediante un círculo, creando así el círculo cromático cinético (Figura 7). Un mapa de colores donde radialmente se determinan los factores del pigmento y concéntricamente la luz formando en la interrelación un total de 288 colores.

En la Figura 7 se distribuyen dos círculos cromático-cinético, el de la izquierda con activos fluorescente y el de la derecha sin activos. Los colores a la derecha adquieren luminosidad y en algunos casos cambian el matiz cromático influenciado por la radiación ultravioleta. Dependiendo de la carga de fluorescente la luminosidad en la zona escotópica será mayor o menor. Se ha buscado que la mezcla de pigmentos sustractivos y pigmentos fluorescentes estén en el mismo grado de cromaticidad.
En el estudio de la cinética del color mediante círculos cromático cinéticos, el movimiento es tratado desde la iluminación. La cinética del color estudia la traza que genera el movimiento en el color, buscando transiciones bien sean como producto de mezclas aditivas o sustractivas o ambas.
Figura 9. Representación de la luminosidad de 12 pigmentos sin activos a través del espectro de luz. La gráfica es un análisis de la capacidad de reflectancia y absorción del pigmento. Iluminación medida con CIE Lab PhotoShop.

En el círculo cromático cinético, el movimiento de los factores luz y pigmento generan unas posiciones concretas de colores las cuales son predecibles. Movimientos registrados en un mapa de referencia (Figura 7) que según su relación testifican el grado de luz y de colores, facilitando lo que se denomina constancia del color. Constancia del color es una capacidad desarrollada por el sistema visual y neuronal para comparar la información sobre longitudes de onda procedentes de todas las partes de una escena. La constancia del color se debe a un proceso de adaptación cromática. Este mecanismo no se percibe a nivel retiniano sino en la corteza visual primaria definiendo los colores con mayor ajuste en las células complejas e hipercomplejas. Los impresionistas utilizan la constancia del color utilizando referencias en la luz para asignar los matices de color y poder controlar el color con rigurosidad denominando al color visto a plena luz del sol como color local. El color blanco es el principal punto de referencia debido a que refleja integras las cualidades de la luz. Así el ojo busca en una escena visual los colores blancos para estructurar el resto de colores.

Cualquier color forma parte de un sistema de referencia si se conoce su cinética, la capacidad de movimiento dentro del espectro, como aparece en la Figura 7 donde se estudia su movimiento, se puede establecer el color y posibles contrastes que el cambio de iluminación plantea en una escena.

Práctica II
Cinética en los Procesos Opuestos

El resultado cinético produce una alteración en el índice de cromaticidad. La composición espectral varía pudiendo cambiar drásticamente la luminosidad. Los receptores en el órgano visual son estimulados dentro un rango de actuación (Figura 11), debido a los procesos opuestos. Cuanto más se active los procesos opuestos, mayor cinética del color resultará.

26 Edwin Herbert Land, físico estadounidense demostró los cálculos que lleva a cabo el ‘Retinex’ (como llamó Land al sistema formado por la retina del ojo y el córtex cerebral) para lograr la constancia de color. Land demostró con muchos de sus experimentos visuales, la facilidad que el cerebro es ‘engañoado’ al percibir los colores. Es decir, los colores que vemos dependen en parte de las relaciones mutua en un mismo contexto y hasta cierto punto de los colores que esperamos ver.
En el ejercicio práctico de cinética realizado (Figuras 10 y 12) se ha buscado realzar el sistema de procesos opuestos potenciando la interpolación entre colores. El canal rojo-verde es estimulado mediante la mezcla sustractiva y aditiva. A través de la interpolación de un gradiente entre el verde y el rojo se crea una transición de movimiento. La mezcla aditiva de los dos colores produce el amarillo, un resultado más luminoso. La mezcla entre pigmentos, mezcla de rojo y verde es demasiado sustractiva, prácticamente negra. Para mantener una luminosidad y un cambio cromático constante es necesario que las mezclas sean con diferentes pigmentos que aporten luminosidad y la cromaticidad apropiada. Los colores utilizados para el gradiente rojo-verde deben de aportar luminosidad y el matiz exacto marcado por el gradiente. Naranjas, amarillos y verde cinabrio o permanente ayudan a crear la transición sin oscurecerla. Otra mezcla sustractiva que cambia la luminosidad notablemente es en la interpolación del rojo y el azul. El gradiente entre el rojo y el azul, su correspondiente mezcla es demasiado oscura para crear un trazado cinético óptimo entre ellos (Figura 10). Por lo que es necesario dar luminosidad manteniendo el equilibrio de cromaticidad. La única manera es incorporando blanco a la mezcla, aunque solo se puede hacer sutilmente pues en seguida se puede notar alterada la pureza y el matiz del violeta. El blanco al ser la mezcla de los tres colores primarios desplaza su matiz y en vez de ser violeta lo desplaza hacia un violeta marronáceo, un gris, consecuencia del efecto Bezold. En el video adjunto se expone el movimiento de los colores.

Figura 10. Ejercicio sobre Cinética del color. La primera fotografía es un montaje de tres posiciones luminicas, azul, violeta y roja
La relación que existe entre la luz y los objetos que percibimos cambian al someterlos a diferentes iluminaciones. Luces naturales y artificiales pasan constantemente por los objetos formando un mapa de colores en nuestra percepción. Según C. L. Hardin esta propiedad es la de ilusión. Los objetos se perciben como ilusiones pero particularmente estables ilusiones pues la ilusión es comprobada comparada y prevista por la percepción. La cinética del color estudia esta ilusión. La relación de los colores entre sí.

La pintura de amplio espectro lumínico propone una nueva cosmogonía en la imagen, diferentes percepciones del color, que cuestionan la imagen en sí mismo. Cual es la imagen mental que queda de la obra tras los diferentes cambios de iluminación. Quizás todas o ninguna o nuevos conceptos relativos a la constancia del color también existan, quizás deberíamos hablar de la constancia de la imagen o el ente de la obra.

Leonardo Da Vinci en su tratado de pintura a cerca del color comenta sobre las posibilidades del color. “Si ponemos cristales de colores delante del cuadro los colores variarían entre ellos”. Estas reflexiones dejan una puerta abierta que solo la tecnología siglos después ha otorgado sentido a realizarlo. Gracias a los avances en iluminaciones podemos activar la pintura como imagino Leonardo.
Referencias bibliográficas

7.3.2 Segunda ponencia

‘Dinámica del Color en la figuración pictórica’ expuesto en el XI Congreso Nacional del Color llevado acabo en la ciudad de Orense en el mes de Julio de 2016.

Dinámica del Color en la figuración pictórica.

Guillermo Bellod Ortuño

Departamento de Pintura. Universidad Politécnica de Valencia.

Resumen

Estudio sobre las propiedades dinámicas del color en el contexto de la creación de obra pictórica. Interacción entre iluminación y soporte pictórico proponiendo un campo de investigación en la experiencia visual. Pintura estimulada por medio de iluminación propone una serie de procesos perceptivos. El color percibido se pone a disposición de factores que pueden ser articulados, fomentando la interacción de características tanto físicas, fisiológicas como estéticas, inherentes al color. La interacción entre colores-luz y los colores-materia potencian características dinámicas en el color. El color se pone al servicio del claroscuro lumínico por medio de la dinámica del color, lo que podríamos denominar claroscuro cromático, con el cual se puede configurar formalmente creando no solo dinamismo sino una imagen coherente que sobrevive a los cambios de luz. La iluminación de amplio espectro lumínico lleva a nuevos planteamientos en la representación figurativa así como a nuevos caminos en la expresión visual y plástica. El cuadro Tiferet se ha escogido como el campo de investigación de estos aspectos donde desarrollaremos el estudio del metamerismo como principio estructurador.

1 Dinámica del color

La pintura de amplio espectro lumínico es una pintura realizada con el objetivo de ser visualizada con diferentes ambientes lumínicos, es decir por medio de iluminación controlada que estimula la superficie pictórica y con ella el proceso de percepción visual. Eso significa que el color percibido se pone a disposición de factores que pueden ser articulados, fomentando la interacción de características tanto físicas, fisiológicas como estéticas, inherentes al color. Por consiguiente se establece el tratamiento del color como un elemento formal dinámico dentro de la configuración de la obra.

2 Antecedentes

En toda manifestación artística formada por luz y materia, el color es un elemento formal de primer orden; un fenómeno psicofísico que implica directamente al espectador haciéndolo partícipe de la experiencia visual. La dinámica del color es tratada desde diferentes campos artísticos ofreciendo diferentes cualidades y principios estéticos. El tratamiento del color mediante proyección de luz es el medio con carácter espacio-temporal donde el color mejor evidencia los efectos dinámicos. En el tratamiento de este medio encontramos una larga lista de artilugios y obras de arte cinético que han supuesto tanto singulares experiencias ópticas como un descubrimiento en recursos dinámicos del color. El cine en primera instancia fue incorporando avances tecnológicos y también al lenguaje cinematográfico elementos narrativos como por ejemplo en la animación japonesa [1]. Sin embargo el desarrollo de la dinámica del color en el campo matérico de la pintura ha tenido un carácter virtual, es decir el movimiento es aparente no real, utilizando recursos como la interacción simultanea y contrastes
para buscar el mayor dinamismo. La utilización de los principios cromáticos por los impresionistas, la independencia del color por los post-impresionistas, movimientos de vanguardia como el Orfismo o posteriormente el Op Art han centrado su búsqueda en lograr combinaciones de colores y formas con la finalidad de conseguir dinamismo en la obra.

La dinámica del color ha supuesto un importante objetivo dentro de la carrera hacia la independencia y la autonomía del color. Una independencia respecto a otros elementos gráficos como la línea y el claroscuro con los cuales durante siglos, el color había sido la parte accesoria. El color llega así a alcanzar su máxima expresión de independencia en obras de abstracción como en el movimiento Color field o en obras más recientes de artistas como Anish Kapoor [2] y Olafur Eliasson [3]

3 Dinámica del color en la figuración

Con la pintura de amplio espectro lumínico se pretende fusionar las cualidades de la proyección del color-luz y el las cualidades del color-pigmento estableciendo una dialéctica entre la luz y la materia que que dé cómo resultado la actividad de los colores. No obstante, la interacción de los colores no solo estimula las sensaciones de color, también potencia aspectos formales, que en el caso de existir una composición figurativa ayuda a su determinación.

En el cuadro Tiféret “Fig. 1” La figuración es el objetivo principal que mediante la interacción del color trata de construir el volumen y el claroscuro necesario. Los colores del objeto en función de la luz que reciben producen un cambio de luminosidad, es decir un claroscuro dinámico, cada color-luz activa determinadas frecuencias que son reflejadas selectivamente por los colores-pigmento generando como resultado unos colores transitos que varían de luminosidad.

El planteamiento del cuadro Tiféret está basado en un concepto de figuración realista-naturalista añadiéndole una necesaria visualización dinámica del color para su formación integral. Una concepción clásica en cuanto al punto de vista del observador y a la representación formal de los objetos, recreación escénica, visión de cuadro-ventana que fomenta la perspectiva y la ilusión figurativa. Buscando la fusión entre el dibujo y el color, en la estructura interna de las cosas los aspectos formales que potencian la visión naturalista. Los objetos son construidos o diseñados en función de una anatomía tanto externa como interna del cuadro para poder producir la sensación de ilusiónismo, generando un oxímoron “idealizada realidad” o “realizado ideal” cuestionando el objeto de representación. Tema de gran interés en los primeros tratados de arte que cuestionaban la representación mediante la idealización [4]

Para conseguir la fusión y la integración del dibujo y el color, cada cambio lumínico tiene que mantener la coherencia formal respecto a los aspectos morfológicos de la representación de tal manera que al producirse cambios de iluminación sobre el cuadro, la figuración propuesta mantenga las características formales necesarias sin que se vea afectada la presencia de los objetos representados. La dinámica del color propone perspectivas diferentes, dilatando o comprimiendo mediante las sensaciones cromáticas, algunas de ellas enfatizando aspectos tridimensionales. Se presenta el objeto en forma de “armonías espacio-temporales”.por medio de interacciones formales dadas no solo mediante contrastes simultáneos sino también por contrastes sucesivos. Una de las “armonías espacio-temporales” más icónicas se forma utilizando los cambios de iluminación a una velocidad en la cual los colores dejan de ser referencia pasando a formar parte de la persistencia retiniana consiguiendo un resultado perceptivo de efecto holográfico. La dinámica del color realza aspectos formales respecto al volumen. De esta manera se aniquila la propia esencia sugestiva del color, del color simbólico para dar lugar a la activación de la imagen, el “ente del cuadro”. Un estado perceptivo donde se da una fuerte actividad presencial de los objetos. [5] Matisse encontraba en las leyes del color, la razón compositiva de sus obras. La dinámica del color en la figuración encuentra en la fusión formal la razón compositiva. El color deja de tener un valor sugestivo único, de identificación única, para ser estructurador de las formas, sirviéndose de todas las posibles cualidades perceptivas que genera. De esta manera surge el interés formal en cuanto a la
determinación figurativa. No solo los colores están a disposición del cuadro proporcionándoles autonomía sino todo el conjunto formal propone una autonomía.

4 Aspectos metodológicos

La luz incide sobre los objetos, diferentes luces con diferentes posibilidades, unas mas fias otras mas cálidas, iluminan los objetos modificando su aspecto. El observador recibe una inconstante percepción del color que el cambio de luz proporciona. Debido de asimiliar con ayuda de un procesamiento neuronal que lleva a lo que llamamos percepción visual. Los colores se relacionan y se asignan colores a los objetos. Según C.L Hardin esta propiedad es la de ilusión. Los objetos se perciben como ilusiones pero particularmente estables ilusiones pues la ilusión es comprobada comparada y prevista por la percepción

Para poder trabajar con el color es necesario una metodología que permita separar los tres elementos influyentes en la percepción, luz, superficie iluminada y observador para poder analizar como se relacionan entre sí, caeteris paribus, factores constantes que permiten acercarse al procesamiento visual. En última instancia, cuanto mas control exista de los factores que determinan el color más cerca estaremos del proceso perceptivo y de poder establecer las causas por las cuales se produce el movimiento del color.

Existen cambios entre la relación de la luz y del pigmento que no siempre proporcionan resultados perceptivos, esto es debido a características del sistema visual neuronal. Los cambios lumínicos no siempre producen resultados visibles apareciendo los colores metámeros, colores que son iguales bajo diferente iluminación. La pintura de amplio espectro lumínico utiliza este recurso metámerico como un elemento más para la formación y relación entre colores. La fluorescencia proporciona al pigmento la capacidad de emitir luz. Dependiendo de las mezclas de pigmentos (fluorescentes y sustractivos) y de las luces se consiguen determinados colores que se activan con más o menos luminosidad. Los círculos cromático-cinético “Fig 2” es una muestra de colores donde poder apreciar la transición de los colores ante diferentes luces

![Figura 2: Círculos cromático-cinético. Izquierda con activos fluorescentes. Derecha sin activos. Concéntricamente el espectro de colores-luz, Radialmente los colores-pigmento. Colores iluminados con luz escotópica 12 colores-luz,(círculo central inferior). Los 24 colores de ambos círculos con la luz blanca equienergética forman el círculo central superior (tendencia a colores metámeros)](image)

El volumen de las figuras principalmente está conseguido teniendo en cuenta las diferentes posiciones lumínicas. Si la luz es totalmente verde el color rojo pigmento actuará de negro y si la luz es roja y el pigmento verde viceversa. Lo que indica que para crear el claroscuro, se deberá calibrar los cambios de luz con la luz de la escena, mantener un equilibrio que respete a las figuras. En la “Fig 3” vemos en la iluminación violeta de la imagen derecha los colores oscuros pertenecen a los verdes y amarillos mientras que con la luz cyan, se mitiga el contraste con verdes y aparece el de la gama de rojos. En luces intermedias se equilibran los contrastes. Con la luz blanca aparecen el equilibrio cromático.

27 Dos o más estímulos luminosos que físicamente tengan composiciones de frecuencias diferentes pueden activar al mismo receptor. Esto es lo que llaman el principio de Univariancia y activa los colores metámeros [7]
La figuración está construida con relieves en craquelados y esgrafíados buscando en las texturas la mezcla óptica y preservando algunos colores en su pureza. Los craquelados forman una capa epitelial buscando la naturaleza tanto de las hojas, serpientes, tronco, ramas y tierra. El tamaño del craquelado varía para cada representación. El color interno de los objetos es fluorescente dando una sensación de retener la luz, sobretodo cuando se encuentra en zona escotópica donde los fluorescentes ganan protagonismo. (Véase Figura 4)

Figura 4: Fotografía de detalle de craquelados.

5 Conclusión

La dinámica del color en la figuración es un planteamiento técnico, abierto a diferentes estéticas y con ello a poder generar diferentes discursos y narrativas visuales. El comportamiento poliédrico del color activa una maleable visión de la realidad, un punto de vista relativista de las formas, podríamos decir que con connotaciones quánticas en el sentido de realidad ambivalente. El color se convierte en una herramienta virtual al depender de un funcionamiento superior que le haga real y propone un acontecimiento. El color es una cualidad espacio-temporal que activa mecanismos en la percepción visual que más allá de hacernos dudar de las formas nos ayuda a comprenderlas.

Agradecimientos: A los profesores del Departamento de Pintura de la Universidad Politécnica de València, D. Francisco Javier SanMartín y D. Joel Mestre.

Bibliografía

 https://www.youtube.com/watch?v=9CdGjajHL1A

http://olafureliasson.net/archive/artwork/WEK108988/colour-experiment-no-68-cyanometer/slideshow

https://vimeo.com/120224111

8. Resumen
8.1 Resumen castellano

La presente tesis expone el color como elemento formal dinámico con la capacidad de formar parte del lenguaje visual dentro de un contexto concreto, el tratamiento pictórico. Una investigación sobre el color y sus diferentes aportaciones al lenguaje plástico y visual. Por un lado, un estudio sobre la dinámica del color el cual determina los factores del proceso perceptivo tanto físicos, como fisiológicos, investigando el desarrollo de las cualidades dinámicas del color que ayuden a formar un marco conceptual. Y por otro lado desde la praxis, se presentan ensayos donde habilitar métodos, técnicas y conceptos que permitan el desarrollo de la dinámica del color en el lenguaje plástico, incorporando el movimiento del color al discurso pictórico y a la comunicación visual.

Se ha tratado de acotar dentro de un campo de investigación específico del color, el soporte pictórico. En él, hemos desarrollado tres proyectos con la finalidad de controlar las capacidades dinámicas del color, haciendo pruebas, reproduciendo experiencias y extrayendo conclusiones que ayuden a desarrollar métodos y conceptos aplicados a la dinámica del color dentro del proceso pictórico.

Cada uno de los estudios corresponde a objetivos diferentes sin embargo son complementarios dentro del proceso comunicativo. En un primer estudio se analizan las posibilidades dinámicas del color desde su dimensión física, investigando la interacción entre el color luz y el color pigmento. Se contextualiza la actividad de la luz y del pigmento en diferentes momentos históricos que han aportado valores a los fundamentos del color.

Sin embargo para el estudio de la actividad del color ha sido necesario controlar desarrollar las capacidades de la luz mediante la creación de lámparas de amplio espectro lumínico que articulen a su vez las capacidades de los pigmentos. Ambos componentes producen una misma actividad, la dinámica del color, el objeto a estudiar en cuestión, donde la luz y los pigmentos se establecen como parámetros del movimiento del color. A partir de estos instrumentos de trabajo se realizan una serie de experimentos delimitando las condiciones lumínicas, materiales a utilizar, mezclas aditivas y sustractivas e interacción de ambas, exposiciones de muestras y representaciones donde se visualicen las trazas de movimiento, así como tratamientos de color desde procesos opuestos y tratamientos para hacer más dinámico el color como la utilización de la fluorescencia y los colores metámeros. Con todo ello se crea un marco de referencia para la dinámica del color donde interactuar y unas posibilidades técnicas para expresar los colores mediante el control de la luz y el control de la paleta de colores.

La fluorescencia supone dentro de los principios dinámicos del color, un nexo entre las cualidades lumínicas y las cualidades matéricas, entre las cualidades de emisión y recepción de la luz. Desde las primeras experiencias con la fluorescencia han sido las mismas preguntas con diferentes matices las que han ido contestando las necesidades del sistema dinámico del color ¿Qué iluminación aplicar en la pintura? ¿Qué luces y que pigmentos son adecuados? ¿Se puede fusionar con técnicas y procesos que ya conozca? ¿Qué metodología utilizar para potenciar los efectos? ¿Cómo representa el color en este medio? ¿Es posible introducir nuevos valores a partir de nuevas técnicas?
En un segundo estudio estas capacidades adquiridas se ponen a disposición del lenguaje pictórico aplicándolo en el entorno de creación artística. Se desarrolla un proyecto de pintura denominado “Pintura de amplio espectro lumínico” o también “Pintura WSL”. Tipología de pintura basada en la interacción de la luz con la materia. La pintura de amplio espectro lumínico trata la imagen en función del control de la iluminación y el comportamiento de los materiales. La interacción entre la luz y los pigmentos proponen un campo de investigación en la obra como proceso comunicativo.

En el segundo estudio La dinámica del color en la figuración hemos tratado de establecer una aplicación práctica al sistema que proporciona el uso de los colores-luz y los colores-pigmento, tanto a la hora de tratar una imagen mediante la pintura como de presentar la obra. Para ello, se ha analizado los aspectos de dos obras realizadas bajo el sistema de iluminación de amplio espectro lumínico, respondiendo a cuales son los motivos fundamentales a la hora de elegir la figuración para su representación. La incorporación de conceptos como Ultrarealismo del autor Raúl Chavarrí ha significado una toma de conciencia en los principios en los que el pintor se puede apoyar al representar la realidad. A partir de crear conceptos como la esencia de la realidad encontramos un sistema de valores para desarrollar la representación. El ejemplo ha sido la creación de la capa “epitelial “en las obras Tiféret y Oniricathsub. Mediante la utilización de craquelados estableciendo técnicas pictóricas que cumplan varias funciones. El principal objetivo visual ha sido la jerarquización de colores en función de los elementos gráficos que construyen la figuración. Los colores dependiendo de la proporción de agentes fluorescentes en su composición y de su diferente cromaticidad expresan unos valores de luminosidad con mayor o menor intensidad constituyendo un ‘claroscuro dinámico’ en las figuras ante los cambios lumínicos. El comportamiento poliérdico del color activa una maleable visión de la realidad, un punto de vista relativista de las formas. El color como cualidad espacio-temporal activa mecanismos en la percepción visual que más allá de hacernos dudar de las formas, nos ayudan a comprenderlas. El color deja de ser el atributo de sugestión por el cual identificamos a las figuras y pasa a tener un comportamiento formal. Estas capacidades dinámicas se ponen a disposición del lenguaje pictórico.

No solo el planteamiento técnico y creativo ha sido importante en este proyecto sino también en como presentar la obra pues este sistema visual implica un diseño en la presentación de la obra. La presentación de la obra es un aspecto importante en su configuración, atañe al propio concepto de la obra y lo que significa la dinámica del color en esta tipología pictórica. Se abre una vía para el observador, a indagar en la percepción a través de la presentación de la obra. Se plantea un performance pictórico, una dimensión de actuación de los elementos gráficos buscando la sincronía entre la plástica y lo visual a través del color. En un tercer estudio se realiza un proyecto atendiendo principalmente al aspecto perceptivo de la dinámica del color. Se realiza el diseño de una cúpula perceptiva la cual permita el estudio de aspectos como la relación entre el espectador y la obra a nivel perceptivo, el desarrollo del lenguaje visual a partir de la exposición de pintura WSL y la utilización de la cúpula como soporte pictórico. En este apartado se ha buscado también reflejar la importancia de diseñar no solo la composición espacial de la obra sino su composición temporal. Los colores pasan a formar parte del movimiento por lo que dependen de la progresión, en que orden se preceden y suceden. Percepción espacio-temporal que configura la actuación del color. Hemos podido comprobar la relatividad de los colores dependiendo de su ubicación, cambiando su percepción al igual que una nota musical varía su sensación según el lugar donde se encuentre.

28 Acrónimo en ingles, Wide Spectrum Lighting
Por lo que el control temporal permite el análisis de la interacción de los colores y de la formación de post-imágenes.

A partir de estos tres proyectos, el objetivo consiguiente ha sido facilitar el tratamiento de la dinámica del color como elemento formal en la composición de la imagen buscando abrir nuevas vías en valores expresivos y estéticos.

8.2 Resumen en valenciano

La present tesi exposa el color com a element formal dinàmic amb la capacitat de formar part del llenguatge visual dins d'un context concret, el tractament pictòric. Una investigació sobre el color i les seues diferents aportacions al llenguatge plàstic i visual. D'una banda, un estudi sobre la dinàmica del color el qual determina els factors del procés perceptiu tant físics, com fisiològics, investigant el desenvolupament de les qualitats dinàmiques del color que ajuden a formar un marc conceptual. I per un altre costat des de la praxi, es presenten assajos on habilitar mètodes, tècniques i conceptes que permeten el desenrotllament de la dinàmica del color en el llenguatge plàstic, incorporant el moviment del color al discurs pictòric i a la comunicació visual. S'ha tractat de fitar dins d'un camp d'investigació específic del color, el suport pictòric.

En ell, hem desenrotllat tres projectes amb la finalitat de controlar les capacitats dinàmiques del color, fent proves, reproduint experiències i extraient conclusions que ajuden a desenrotllar mètodes i conceptes aplicats a la dinàmica del color dins del procés pictòric. Cada un dels estudis correspon a objectius diferents no obstant això són complementaris dins del procés comunicatiu. En un primer estudi s'analitzen les possibilitats dinàmiques del color des de la seua dimensió física, investigant la interacció entre el color llum i el color pigment. Es contextualitza l'activitat de la llum i del pigment en diferents moments històrics que han aportat valors als fonaments del color. No obstant, això per a l'estudi de l'activitat del color ha sigut necessari controlar les capacitats de la llum per mitjà del desenvolupament creatiu de llums d'ampli espectre lumínic que articulen al seu torn les capacitats dels pigments.

Ambdós components produïxen una mateixa activitat, la dinàmica del color, l'objecte a estudiar en qüestió, on la llum i els pigments s'establixen com a paràmetres del moviment del color. A partir d'estos instruments de treball es realitzen una sèrie d'experiments delimitant les condicions lumíniques, materials a utilitzar, mescles additives i subtractives e interacció d'ambdós, exposicions de mostres i representacions on es visualitzen les traces de moviment, així com tractaments de color des de processos oposats i tractaments per a fer més dinàmic el color com la utilització de la fluorescència i els colors metàmers. Amb tot això, es creua un marc de referència per a la dinàmica del color on interactuar i unes possibilitats tècniques per a expressar els colors per mitjà del control de la llum i el control de la paleta de colors.

La fluorescència suposa dins dels principis dinàmics del color, un nexe entre les qualitats lumíniques i les qualitats matèriques, entre les qualitats d'emissió i recepció de la llum. Des de les primeres experiències amb la fluorescència han sigut les mateixes preguntes amb diferents matisos les que han anat contestant
les necessitats del sistema dinàmic del color. Quina il·luminació aplicar en la pintura? Quines llums i que pigments són adequats? Es pot fusionar amb tècniques i processos que ja conegue? Quina metodologia utilitzar per a potenciar els efectes? Com representa el color en este mig? És possible introduir nous valors a partir de noves tècniques?

En un segon estudi estes capacitats adquirides es posen a disposició del llenguatge pictòric aplicant-ho en l'entorn de creació artística. Es desenrotlla un projecte de pintura denominat "Pintura d'ampli espectre luminico" o també Pintura WSL. Tipologia de pintura basada en la interacció de la llum amb la matèria. La pintura d'ampli espectre luminic tracta la imatge en funció del control de la il·luminació i el comportament dels materials. La interacció entre la llum i els pigments proposen un camp d'investigació en l'obra com a procés comunicatiu. En el segon estudi, ‘La dinàmica del color en la figuració’ hem tractat d'establir una aplicació pràctica al sistema que proporciona l'ús dels colors-llum i els colors-pigment, tant a l'hora de tractar una imatge per mitjà de la pintura com de presentar l'obra.

Per a això, s'ha analitzat els aspectes de dos obres realitzades davall el sistema d'il·luminació d'ampli espectre luminic, responent a quals són els motius fonamentals a l'hora de triar la figuració per a la seua representació. La incorporació de conceptes com ‘Ultrarealism’ de l'autor Raúl Chavarrí ha significat una presa de consciència en els principis en què el pintor es pot recolzar al representar la realitat. A partir de crear conceptes com ‘l'essència de la realitat’ trobem un sistema de valors per a desenrotllar la representació. L'exemple ha sigut la creació de la capa "epitelial "en les obres Tiféret i Oniricaths. Per mitjà de la utilització de craqueladors establint tècniques pictòriques que complissen diverses funcions. El principal objectiu visual ha sigut la jerarquizació de colors en funció dels elements gràfics que construixen la figuració.

Els colors depenent de la proporcion d'agents fluorescents en la seua composició i del seu diferent cromaticidad expressen uns valors de lluminositat amb major o menor intensitat constituint un 'claro-obscur dinàmic' en les figures davant dels canvis luminics. El comportament polièdric del color activa una mal·leable visió de la realitat, un punt de vista relativista de les formes. El color com a qualitat espai-temporal activa mecanismes en la percepció visual que més enllà de fer-nos dubtar de les formes, ens ajuden a comprendre-les. El color deixa de ser l'atribut de suggestió pel qual identifiquem a les figures i passa a tindre un comportament formal. Estes capacitats dinàmiques es posen a disposició del llenguatge pictòric.

No sols el plantejament tècnic i creatiu ha sigut important en este projecte sinó també en com presentar l'obra perquè esté sistema visual implica un disseny en la presentació de l'obra. La presentació de l'obra és un aspecte important en la seua configuració, afecta el propi concepte de l'obra i el que significa la dinàmica del color en esta tipologia pictòrica. S'obri una via per a l'observador, a indagar en la percepció a través de la presentació de l'obra. Es planteja un performance pictòric, una dimensió d'actuació dels elements gràfics buscant la sincronia entre la plàstica i el visual a través del color. En un tercer estudi es realizta un projecte atenent principalment a l'aspecte perceptiu de la dinàmica del color. Es realizta el disseny d'una cúpula perceptiva la qual permeta l'estudi d'aspects com la relació entre l'esperador i l'obra a nivell perceptiu, el desenrotllament del llenguatge visual a partir de l'exposició de pintura WSL i la utilització de la cúpula com a suport pictòric. En este apartat s'ha buscat també reflectir la importància

29 Acrònim en anglès, Wide Spectrum Lighting
de dissenyar no sols la composició espacial de l'obra sinó la seua composició temporal. Els colors passen a formar part del moviment pel que depenen de la progressió, en que orde es precedixen i succeïxen. Percepció espai-temporal que configura l'actuació del color. Hem pogut comprovar la relativitat dels colors depenent de la seua ubicació, canviant la seua percepció igual que una nota musical varia la seua sensació segons el lloc on es trobe. Pel que el control temporal permet l'anàlisi de la interacció dels colors i de la formació de post-imatges.

A partir d'estos tres projectes, l'objectiu consegüent ha sigut facilitar el tractament de la dinàmica del color com a element formal en la composició de la imatge buscant obrir noves vies en valors expressius i estètics.

8.3 Resumen en inglés

This thesis presents the color as a dynamic formal element with the ability to be part of the visual language within a specific context, the pictorial treatment. An investigation into the color and its various contributions to plastic and visual language. On the one hand, a study on the color dynamics which determines the factors of both physical perceptual process, as physiological, researching the development of the dynamic qualities of color that help form a conceptual framework. And on the other side from the practice, which enable testing methods, techniques and concepts that enable the development of the dynamics of color in the visual language, incorporating the movement of color into a pictorial speech and visual communication.

It has tried to narrow within a specific research field of color, pictorial support. In it, we have developed three projects in order to control the dynamic color capabilities, testing, replicating experiences and drawing conclusions that help develop methods and concepts applied to the dynamics of color in the painting process.

Each of the studies corresponds to different goals but they are complementary in the communication process. In a first study the dynamic possibilities of color are analyzed from its physical dimension, investigating the interaction between light color and color pigment. An approach to activity light and the pigment in different historical moments that have contributed values to the basics of color.

However for studying the activity of color it has been necessary to control the skills of light through the creative development of broad spectrum light lamps that also they will promote pigments skills. Both components produce the same activity, the color dynamics, in order to study in question, where the light and pigments are set as color motion parameters. From these work tools, a series of experiments delimiting lighting conditions, materials used, additive and subtractive mixing and interaction of both, exhibits samples and representations where traces of movement are displayed, and color treatments are performed from opposite processes and treatments to make more dynamic color as the use of fluorescence and metameric colors. With all this a framework for dynamic color which interact possibilities and techniques to express the colors by controlling light and control the color palette.

The fluorescence assumed inside the dynamic principles of color, a link between the lighting qualities and material qualities, between emission and reception qualities of light. From the first experiences with
fluorescence have been the same questions with different nuances that have been answering the needs of dynamic color lighting system. What light does apply in the paint? What lights and pigments are suitable? May you merge with techniques and processes you already know? What does methodology used to potentiate the effects? How does colour represent in this medium? Is it possible to introduce new values from new techniques?

In a second study these acquired skills are made available by applying the pictorial language in the environment of artistic creation. a painting project called "Wide spectrum light painting" or "painting WSL. Type of painting based on the interaction of light with matter. The wide spectrum light painting develops images based lighting control and behavior of materials. The interaction between light and pigments propose a research field in the work as communicative process.

In the second study, ‘The dynamics of color in the figuration’ have tried to establish a practical application system provided by the use of color-light and color-pigment, both when treating an image by painting and present work. To do this, we analyzed aspects of two works performed under the illumination wide spectrum lighting system, answering what are the main reasons for choosing figuration for representation. Incorporating concepts such as Ultra-realism of the author Raul Chavarrí has meant an awareness on the principles on which the painter can be supported to represent reality.

From creating concepts as ‘the essence of reality’ we find a value system to develop representation. The example has been the creation of ‘epithelial layer’ in Tifferet and Oniricathsub works. Using crackle painting technique that meet various functions. The main objective has been the visual hierarchy of colors depending on the graphic elements that build figuration. The colors depending on the ratio of fluorescent agents in their composition and chromaticity express different brightness values with greater or lesser intensity forming a 'dynamic chiaroscuro' in the figures before the luminance changes. The color set a polyhedral behavior, a malleable point of view from the reality, a relativistic point of view of forms. The color and spatiotemporal quality actives mechanisms in visual perception beyond to doubt about forms, help us understand them. The color ceases to be the attribute of suggestion by which we identify the figures and happens to have a formal behavior. These dynamic capabilities are made available pictorial language.

Not only the technical and creative approach has been important in this project but also in how to present the work as this implies a visual system design in the presentation of the work. The presentation of the work is an important aspect of its configuration, it concerns the very concept of the work and what the dynamics of color in this pictorial type. A way for the observer opens, to investigate the perception through the presentation of the work. A pictorial performance arises, a dimension of action in graphic elements seeking synchrony between the plastic and visual through color.

In a third study, a project serving mainly the perceptual aspect of color dynamics is performed. The design of a perceptual dome which allows the study of aspects such as the relationship between the viewer and the work to perceptual level, development of visual language from the painting WSL exhibition and the use of the dome as a pictorial support. This section has also sought to reflect the importance of designing not only the spatial composition of the work but its temporary composition. The colors become part of the movement so dependent progression, in that order before and after it.
Spatiotemporal perception that shapes the performance of color. We have seen the relativity of colors depending on their location, changing its perception as a musical note changes its sense depending on where you are. As timing control allows analysis of the interaction of the colors and the appearance of post-images.

From these three projects, the underlying objective has been to facilitate the treatment of the dynamics of color as a formal element in the image composition looking to open new ways in expressive and aesthetic values.