
Departamento de Informática

de Sistemas y Computadores

Contention-Aware Scheduling for

SMT Multicore Processors

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

Author

Josué Feliu Pérez

Advisors

Prof. Julio Sahuquillo Borrás

Prof. Salvador V. Petit Mart́ı

February 2017

Doctoral Committee

• Prof. J. Angel Gregorio Monasterio

Universidad de Cantabria, Santander, Spain

• Prof. Manuel E. Acacio Sánchez

Universidad de Murcia, Murcia, Spain

• Prof. Lieven Eeckhout

Universiteit Gent, Ghent, Belgium

iii

Agräıments

Xicotetes decisions, aparentment intranscendents, acaben marcant una vida. En la

meua, una d’aquestes decisions fou entrar al despatx de Julio un 15 de juliol de 2010.

Simplement buscava informació per a fer un projecte final de carrera i poc més que vaig

eixir amb un doctorat planificat.

En primer lloc aquesta tesi té molt que agrair a Julio i Salva. Per confiar en mi en aquelles

primeres reunions de 2010 quan no era més que un estudiant d’enginyeria informàtica.

Per tot el que m’han ensenyat sobre l’arquitectura de computadors i la investigació. I

per tot el treball intenśıssim que ha portat aquesta tesi i, principalment, les publicacions

en les que es basa. Moltes hores extres de treball repartides entre nits, caps de setmana

i vacances. És una obvietat que sense ells aquesta tesi no existiria.

En segon lloc vuic agrair la col·laboració a la resta de professors que han contribüıt

al desenvolupament d’aquesta tesi. A José Duato, per la seva col·laboració en part

dels articles, aix́ı com per ajudar-nos a obtenir la beca amb la que he realitzat aquest

doctorat. A Stijn Eyerman, per l’acollida tan bona que vaig tenir en la Ghent University,

aix́ı com per la seva enorme contribució en la publicació més important d’aquesta tesi.

I a Lieven Eeckhout, pels seus precisos comentaris i col·laboració en part del treball

realitzat.

A continuació vuic agrair a tots els companys que he tingut durant el desenvolupament

de la tesi al grup d’arquitectures paral·leles, destacant aquells amb els que he compartit

més dinars i debats. Amb un ambient de treball tan bo es rendeix molt millor. També

agrair als companys de la Ghent University que em feren sentir com a casa.

Per últim, però no menys important, a la meua famı́lia pel suport que m’han donat. En

especial a ma mare, per exigir sempre arribar un poquet més lluny, i a la qui segurament

també he d’agrair-li totes les hores que va dedicar als meus estudis quan jo era ben

menut. A la meua novia Amparo, per recolzar-me sempre (incloent les dos estades a

Ghent), aix́ı com per aguantar-me en els moment de major estrés, on ha sigut complicat

separar recerca i vida. I finalment als meus amics, que sense saber-ho han contribüıt a

que puga desconnectar el cap de setmana i començar cada dilluns amb forces.

v

Contents

List of Figures xi

List of Tables xv

Abbreviations and Acronyms xvii

Abstract xix

Resumen xxi

Resum xxiii

1 Introduction 1

1.1 Background . 2

1.1.1 Chip Multiprocessor . 2

1.1.2 Simultaneous Multithreading . 4

1.1.3 System Fairness . 6

1.2 Objectives of the Thesis . 7

1.3 Main Contributions of the Thesis . 8

1.4 Thesis Outline . 9

2 Related Work 11

2.1 Main Memory Contention . 12

2.2 Cache Hierarchy Contention . 13

2.2.1 Contention-Aware Scheduling . 13

2.2.2 Resource Partitioning . 15

2.2.3 Performance Models . 16

2.3 SMT Core Contention . 16

3 Scheduling Framework, Experimental Platforms, and
Evaluation Methodology 19

3.1 Scheduling Framework . 20

3.2 Experimental Platforms . 21

3.2.1 Single-Threaded Multicore: Intel Xeon X3320 21

3.2.2 SMT Multicore: Intel Xeon E5645 23

3.2.3 IBM POWER8 System . 24

3.2.3.1 NUMA Effects in the IBM POWER8 25

3.3 Evaluation methodology . 27

vii

Contents viii

3.3.1 Process Selection Methodology . 28

3.3.2 Process Allocation Methodology 29

3.4 Metrics . 31

4 Bandwidth-Aware Scheduling on Multicore Processors 35

4.1 Performance Degradation Analysis . 36

4.1.1 Benchmarks Characterization . 36

4.1.2 Microbenchmark Design . 39

4.1.3 Degradation due to Main Memory Contention 40

4.1.4 Degradation due to L2 Contention 43

4.1.5 Degradation Running in Bandwidth-Aware Scheduling Scenarios . 44

4.2 Memory-Hierarchy Bandwidth-Aware Scheduling 46

4.2.1 Baseline Main Memory Bandwidth-Aware Scheduler 46

4.2.2 Memory-Hierarchy Bandwidth-Aware Scheduler 47

4.2.3 IPC-Degradation Memory-Hierarchy Bandwidth-Aware
Scheduler . 49

4.3 Evaluation Setup . 52

4.3.1 Evaluated Algorithms . 53

4.3.2 Mix Design . 53

4.4 Experimental Evaluation . 55

4.4.1 Performance Evaluation . 55

4.4.2 Profiling the Penalty Coefficient 59

4.5 Summary . 60

5 Bandwidth-Aware Scheduling in SMT Multicores 63

5.1 Performance Degradation Analysis . 64

5.1.1 Effects of L1 Bandwidth on Performance 64

5.1.1.1 Stand-Alone Execution 64

5.1.1.2 Analyzing Interference between Co-Runners 67

5.1.2 Impact of Cache Space Contention on L1 Bandwidth
Consumption . 69

5.1.3 Performance Degradation due to Main Memory Bandwidth
Contention . 71

5.2 SMT Bandwidth-Aware Scheduling . 72

5.2.1 Self-Reliant Main Memory Bandwidth-Aware Process Selection . . 73

5.2.2 L1 Bandwidth-Aware Process Allocation 76

5.2.2.1 Dynamic L1 Bandwidth-Aware Process Allocation Policy 76

5.2.2.2 Static L1 Bandwidth-Aware Process Allocation Policy . . 77

5.3 Evaluation Setup . 78

5.3.1 Evaluated Algorithms . 79

5.3.2 Mix Design . 80

5.4 Experimental Evaluation . 83

5.4.1 Evaluation of the Process Allocation Policies 83

5.4.2 Evaluation of the Process Selection Policies 87

5.4.3 Evaluation of the SMT Bandwidth-Aware Scheduler 90

5.5 Summary . 94

Contents ix

6 Progress-Aware Scheduling to Address Fairness in SMT Multicores 97

6.1 Estimating Progress . 98

6.1.1 Period Length between IPC Estimates 99

6.1.2 Process Interference in Low-Contention Schedules 100

6.1.2.1 Interference between Pairs of Benchmarks 101

6.1.2.2 Cumulative Interference in Low-Contention Schedules . . 103

6.2 Progress-Aware Fair Scheduling . 104

6.2.1 IPC Estimation-Oriented Process Selection 107

6.2.2 Fairness-Oriented Process Selection 107

6.2.3 Process Allocation . 108

6.2.4 Implementation Considerations . 108

6.3 Progress-Aware Perf&Fair Scheduling . 109

6.3.1 IPC Estimation-Oriented Process Selection 110

6.3.2 Performance- & Fairness- Oriented Process Selection 111

6.4 Flexible Progress-Aware Perf&Fair Scheduling:
Trading Fairness for Performance . 112

6.5 Evaluation Setup . 114

6.5.1 Evaluated Algorithms . 114

6.5.2 Mix Design . 115

6.6 Experimental Evaluation . 115

6.6.1 Evaluation of the Progress-Aware Fair Scheduler 117

6.6.1.1 System Fairness Evaluation 117

6.6.1.2 Accuracy of the Isolated IPC Estimations 119

6.6.2 Evaluation of the Progress-Aware Perf&Fair Scheduler 119

6.6.2.1 System Fairness Evaluation 119

6.6.2.2 Performance Evaluation 121

6.6.2.3 Process Completion in a Mix 123

6.6.3 Evaluation of the Flexible Progress-Aware Perf&Fair Scheduler . . 124

6.7 Summary . 126

7 Symbiotic Job Scheduling on the IBM POWER8 129

7.1 Predicting Job Symbiosis . 130

7.1.1 SMT Interference Model . 130

7.1.1.1 Base Component . 132

7.1.1.2 Resource Stall Components 134

7.1.1.3 Miss Components . 134

7.1.2 Model Construction and Slowdown Estimation 136

7.1.3 Obtaining tST CPI stacks in SMT mode 138

7.2 SMT Interference-Aware Scheduler . 141

7.2.1 Reduction of the Cycle Stack Components 141

7.2.2 Selection of the Optimal Schedule 142

7.2.3 Scheduler Implementation . 144

7.3 Evaluation Setup . 145

7.3.1 Evaluated Algorithms . 146

7.3.2 Mix Design . 147

7.4 Experimental Evaluation . 147

Contents x

7.4.1 Model Accuracy . 148

7.4.1.1 Regression Model Accuracy 148

7.4.1.2 Inverse Model Accuracy 150

7.4.2 Symbiotic Scheduler Evaluation . 151

7.4.2.1 System Throughput . 151

7.4.2.2 Per-Application Performance 154

7.4.2.3 Symbiosis Patterns . 157

7.5 Summary . 158

8 Conclusions 161

8.1 Contributions . 162

8.2 Future Directions . 163

8.3 Publications . 166

References 169

List of Figures

1.1 Memory hierarchy of the IBM POWER 5 processor. 3

3.1 Memory hierarchy of the Intel Xeon X3320 processor. 22

3.2 Memory hierarchy of the Intel Xeon E5645 processor. 24

3.3 Logical diagram of the IBM POWER8 and memory subsystem. 26

3.4 Memory latency varying the array size. 26

3.5 Timing chart under the process selection methodology. 29

3.6 Timing chart under the process selection methodology. 30

4.1 IPC for each SPEC CPU2006 benchmark. 37

4.2 TRMM for each SPEC CPU2006 benchmark. 38

4.3 TRL2 for each SPEC CPU2006 benchmark. 38

4.4 IPC degradation due to main memory contention varying the TRMM of
the co-runners. 41

4.5 Analyzed microbenchmarks scenarios. 42

4.6 IPC degradation due to contention in the four studied scenarios. 42

4.7 IPC degradation due to L2 contention varying the TRL2 of the co-runners. 44

4.8 IPC degradation with total TRMM of 30 transactions/microsecond when
running with three co-runners. 45

4.9 Speedup of the MMaS, MHaS, and IDaS schedulers over the native Linux
scheduler. 55

4.10 TRL2 differences between the MMaS and MHaS schedulers in the L2
shared caches. 56

4.11 TRL2 differences between the MMaS and MHaS schedulers in the first 32
seconds of execution of mix 2. 57

4.12 TRL2 difference evolution with time between the MMaS, MHaS, and IDaS
schedulers. 58

4.13 Speedup of the benchmarks of each mix with the IDaS scheduler against
the MHaS scheduler. 59

4.14 Speedups of the IDaS scheduler over the Linux scheduler varying the
penalty coefficient. 60

5.1 IPC for each SPEC CPU2006 benchmark. 65

5.2 TRL1 for each SPEC CPU2006 benchmark. 65

5.3 IPC and RPC evolution over time for a set of benchmarks. 66

5.4 IPC, RPC, WPC, and OPC evolution over time when running a pair of
benchmarks on the same SMT core. 68

xi

List of Figures xii

5.5 L1 MPKI evolution over time when running a pair of benchmarks on the
same SMT core. 70

5.6 IPC degradation due to main memory bandwidth contention. 72

5.7 Speedup of the average IPC of the studied process allocation policies over
the random policy. 84

5.8 Speedup of the harmonic mean of the per-program IPC speedup of the
studied process allocation policies over the random policy. 85

5.9 TRL1 of benchmarks in mix 2 for the Linux, Static, and Dynamic process
allocation policies. 86

5.10 Speedup of the three process selection policies studied with respect to the
random policy using the average IPC metric. 88

5.11 Speedup of the three process selection policies studied with respect to the
random policy using the harmonic mean of the per-program IPC speedup. 88

5.12 Speedup of the three studied process selection policies with respect to the
random policy regarding turnaround time. 89

5.13 Speedup of the proposed BaS scheduler relative to the Linux scheduler
using the average IPC metric. 90

5.14 Speedup of the proposed BaS scheduler relative to the Linux scheduler
using the harmonic mean of the per-program IPC speedup metric. 91

5.15 Speedup of the proposed BaS scheduler over the Linux scheduler using
the turnaround time metric. 92

5.16 Consumed slots in the workloads. The proposed scheduler saves slots in
the green area, while Linux does it in the red area. 93

6.1 IPC deviation when increasing the period length between measures. . . . 99

6.2 Comparison between IPC measured each 200 ms and each 6 s. 100

6.3 Performance degradation due to inter-core interference running pairs of
benchmarks. Each row shows the degradation of a benchmark running
with each co-runner on different cores. 101

6.4 Average main memory and LLC bandwidth. The red and blue lines rep-
resent the thresholds devised on the main memory and LLC bandwidth
to classify the benchmarks as heavy- or light- sharing. 103

6.5 Histogram of the performance degradation on light-sharing schedules. In
brackets, the total number of evaluated schedules. 104

6.6 Unfairness of Linux and the progress-aware Fair scheduling algorithm.
Unfairness is a lower-is-better metric. 117

6.7 Dynamic progress of processes in mix M7 with the Fair and Linux sched-
ulers. 118

6.8 Average, maximum, and minimum accuracy of the isolated IPC estimations.119

6.9 Unfairness achieved by the studied schedulers, including 95% confidence
intervals. Unfairness is a lower-is-better metric. 120

6.10 Speedup of the turnaround time achieved by the studied schedulers over
Linux, including 95% confidence intervals. The line shows the average
main memory bandwidth of the mixes. 121

6.11 Number of remaining processes along the execution of mix 9 with the
studied schedulers. 124

6.12 Unfairness achieved by Perf, Perf&Fair, and Flexible Perf&Fair with 1:0.5,

1:1.5 and 1:3 ratios. Unfairness is a lower-is-better metric. 125

List of Figures xiii

6.13 Speedup of the turnaround time chieved by Perf&Fair, Perf, and Flexible
Perf&Fair, with 1:0.5, 1:1.5 and 1:3 ratios, over Linux. The line shows
the average main memory bandwidth of the mixes. 126

7.1 Overview of the model: first, measured CPI stacks are normalized to ob-
tain probabilities; then, the model predicts the increase of the components
and the resulting slowdown (1.32 for App 1 and 1.25 for App 2). 131

7.2 Estimating the single-threaded CPI stacks from the SMT CPI stacks.
First, SMT CPI stacks (a) are normalized to the SMT CPI (b); next, the
forward model is applied to get an estimate of the slowdown due to inter-
ference (c); then the SMT CPI stacks are adjusted using the estimated
slowdown to obtain more accurate normalized SMT CPI stacks (d); lastly,
the inverse model is applied to obtain the normalized single-threaded CPI
stacks (e). 139

7.3 Forward SMT2 model error distribution. 149

7.4 Forward SMT4 model error distribution. 149

7.5 Inverse SMT2 model error distribution. 150

7.6 Inverse SMT4 model error distribution. 151

7.7 Average system throughput increase of the studied scheduler relative to
the random scheduler when working in the SMT2 mode. 152

7.8 Average system throughput increase of the studied schedulers relative to
the random scheduler when working in the SMT4 mode. 153

7.9 Average ANTT achieved by the Symbiotic, NUMA-aware Symbiotic, Dy-
namic L1 bandwidth-aware, Linux, and random schedulers when working
in the SMT2 mode. 155

7.10 Average ANTT achieved by the Symbiotic, NUMA-aware Symbiotic, Dy-
namic L1 bandwidth-aware, Linux, and random schedulers when working
in the SMT4 mode. 156

7.11 Frequency matrices for two 5-core workloads running in SMT2 mode. . . . 157

7.12 Frequency matrix for a 5-core workload running in SMT4 mode. 158

List of Tables

3.1 Characteristics of the Intel Xeon X3320 system. 22

3.2 Characteristics of the Intel Xeon E5645 system. 23

3.3 Characteristics of the IBM POWER8 system. 25

3.4 Bandwidth reported by the STREAM benchmark for the two NUMA nodes. 27

4.1 Mix composition and IABW of each mix. 54

5.1 Benchmark classification according to their L1 bandwidth requirements. . 80

5.2 Mix composition designed to evaluate the process allocation policies. . . . 81

5.3 Mix composition designed to evaluate the process selection policies and
the entire schedulers. 82

6.1 Mix composition and their average main memory bandwidth consumption.116

7.1 Overview of the measured IBM POWER8 performance counters to collect
cycle stacks. 142

xv

Abbreviations and Acronyms

ANTT Average Normalized Turnaround Time

CMP Chip Multicore Processor

CPI Cycles Per Instruction

DRAM Dynamic Random-Access Memory

IABW Ideal Average BandWidth

IPC Instructions Per Cycle

LLC Last-Level Cache

L1 First-level (cache)

L2 Second-level (cache)

L3 Third-level (cache)

MPKI Misses Per Kilo-Instruction

NUMA Non-Uniform Memory Access

SMT Simultaneous MultiThreading Memory

ST Single-Threaded

PA Process Allocation

PS Process Selection

OATR Online Average Transaction Rate

OS Operating System

QoS Quality of Service

ROB ReOrder Buffer

STP System Throughput

TLB Transaction Lookaside Buffer

UMA Uniform Memory Access

xvii

Abstract

The recent multicore era and the incoming manycore/manythread era generate a lot

of challenges for computer scientists going from productive parallel programming, over

network congestion avoidance and intelligent power management, to circuit design issues.

The ultimate goal is to squeeze out as much performance as possible while limiting power

and energy consumption and guaranteeing a reliable execution. The increasing number

of hardware contexts of current and future systems makes the scheduler an important

component to achieve this goal, as there is often a combinatorial amount of different ways

to schedule the distinct threads or applications, each with a different performance due to

the inter-application interference. Picking an optimal schedule can result in substantial

performance gains.

This thesis deals with inter-application interference, covering the problems this fact

causes on performance and fairness on actual machines. The study starts with single-

threaded multicore processors (Intel Xeon X3320), follows with simultaneous multi-

threading (SMT) multicores supporting up to two threads per core (Intel Xeon E5645),

and goes to the most highly threaded per-core processor that has ever been built (IBM

POWER8). The dissertation analyzes the main contention points of each experimental

platform and proposes scheduling algorithms that tackle the interference arising at each

contention point to improve the system throughput and fairness.

First we analyze contention through the memory hierarchy of current multicore proces-

sors. The performed studies reveal high performance degradation due to contention on

main memory and any shared cache the processors implement. To mitigate such con-

tention, we propose different bandwidth-aware scheduling algorithms with the key idea

of balancing the memory accesses through the workload execution time and the cache

requests among the different caches at each cache level.

The high interference that different applications suffer when running simultaneously on

the same SMT core, however, does not only affect performance, but can also compromise

system fairness. In this dissertation, we also analyze fairness in current SMT multicores.

xix

Abstract xx

To improve system fairness, we design progress-aware scheduling algorithms that esti-

mate, at runtime, how the processes progress, which allows to improve system fairness

by prioritizing the processes with lower accumulated progress.

Finally, this dissertation tackles inter-application contention in the IBM POWER8 sys-

tem with a symbiotic scheduler that addresses overall SMT interference. The symbiotic

scheduler uses an SMT interference model, based on CPI stacks, that estimates the

slowdown of any combination of applications if they are scheduled on the same SMT

core. The number of possible schedules, however, grows too fast with the number of

applications and makes unfeasible to explore all possible combinations. To overcome

this issue, the symbiotic scheduler models the scheduling problem as a graph problem,

which allows finding the optimal schedule in reasonable time.

In summary, this thesis addresses contention in the shared resources of the memory

hierarchy and SMT cores of multicore processors. We identify the main contention points

of three systems with different architectures and propose scheduling algorithms to tackle

contention at these points. The evaluation on the real systems shows the benefits of the

proposed algorithms. The symbiotic scheduler improves system throughput by 6.7%

over Linux. Regarding fairness, the proposed progress-aware scheduler reduces Linux

unfairness to a third. Besides, since the proposed algorithm are completely software-

based, they could be incorporated as scheduling policies in Linux and used in small-scale

servers to achieve the mentioned benefits.

Resumen

La actual era multinúcleo y la futura era manycore/manythread generan grandes retos en

el área de la computación incluyendo, entre otros, la programación paralela productiva o

la gestión eficiente de la enerǵıa. El último objetivo es alcanzar las mayores prestaciones

limitando el consumo energético y garantizando una ejecución confiable. El incremento

del número de contextos hardware de los sistemas hace que el planificador se convierta

en un componente importante para lograr este objetivo debido a que existen múltiples

formas diferentes de planificar las aplicaciones, cada una con distintas prestaciones debi-

do a las interferencias que se producen entre las aplicaciones. Seleccionar la planificación

óptima puede proporcionar importantes mejoras de prestaciones.

Esta tesis se ocupa de las interferencias entre aplicaciones, cubriendo los problemas que

causan en las prestaciones y equidad de los sistemas actuales. El estudio empieza con

procesadores multinúcleo monohilo (Intel Xeon X3320), sigue con multinúcleos con so-

porte para la ejecución simultanea (SMT) de dos hilos (Intel Xeon E5645), y llega al

procesador que actualmente soporta un mayor número de hilos por núcleo (IBM PO-

WER8). La disertación analiza los principales puntos de contención en cada plataforma

y propone algoritmos de planificación que mitigan las interferencias que se generan en

cada uno de ellos para mejorar la productividad y equidad de los sistemas.

En primer lugar, analizamos la contención a lo largo de la jerarqúıa de memoria. Los es-

tudios realizados revelan la alta degradación de prestaciones provocada por la contención

en memoria principal y en cualquier cache compartida. Para mitigar esta contención,

proponemos diversos algoritmos de planificación cuya idea principal es distribuir los ac-

cesos a memoria a lo largo del tiempo de ejecución de la carga y las peticiones a las

caches entre las diferentes caches compartidas en cada nivel.

Las altas interferencias que sufren las aplicaciones que se ejecutan simultáneamente en

un núcleo SMT, sin embargo, no solo afectan a las prestaciones, sino que también pueden

comprometer la equidad del sistema. En esta tesis, también abordamos la equidad en los

actuales multinúcleos SMT. Para mejorarla, diseñamos algoritmos de planificación que

xxi

Resumen xxii

estiman el progreso de las aplicaciones en tiempo de ejecución, lo que permite priorizar

los procesos con menor progreso acumulado para reducir la inequidad.

Finalmente, la tesis se centra en la contención entre aplicaciones en el sistema IBM PO-

WER8 con un planificador simbiótico que aborda la contención en todo el núcleo SMT.

El planificador simbiótico utiliza un modelo de interferencia basado en pilas de CPI que

predice las prestaciones para la ejecución de cualquier combinación de aplicaciones en

un núcleo SMT. El número de posibles planificaciones, no obstante, crece muy rápido

y hace inviable explorar todas las posibles combinaciones. Por ello, el problema de pla-

nificación se modela como un problema de teoŕıa de grafos, lo que permite obtener la

planificación óptima en un tiempo razonable.

En resumen, esta tesis aborda la contención en los recursos compartidos en la jerarqúıa

de memoria y el núcleo SMT de los procesadores multinúcleo. Identificamos los princi-

pales puntos de contención de tres sistemas con diferentes arquitecturas y proponemos

algoritmos de planificación para mitigar esta contención. La evaluación en sistemas reales

muestra las mejoras proporcionados por los algoritmos propuestos. Aśı, el planificador

simbiótico mejora la productividad, en promedio, un 6.7 % con respecto a Linux. En

cuanto a la equidad, el planificador que considera el progreso consigue reducir la inequi-

dad de Linux a una tercera parte. Además, dado que los algoritmos propuestos son

completamente software, podŕıan incorporarse como poĺıticas de planificación en Linux

y usarse en servidores a pequeña escala para obtener los beneficios descritos.

Resum

L’actual era multinucli i la futura era manycore/manythread generen grans reptes en

l’àrea de la computació incloent, entre d’altres, la programació paral·lela productiva o

la gestió eficient de l’energia. L’últim objectiu és assolir les majors prestacions limi-

tant el consum energètic i garantint una execució confiable. L’increment del número de

contextos hardware dels sistemes fa que el planificador es convertisca en un component

important per assolir aquest objectiu donat que existeixen múltiples formes distintes de

planificar les aplicacions, cadascuna amb unes prestacions diferents degut a les inter-

ferències que es produeixen entre les aplicacions. Seleccionar la planificació òptima pot

donar lloc a millores importants de les prestacions.

Aquesta tesi s’ocupa de les interferències entre aplicacions, cobrint els problemes que

provoquen en les prestacions i l’equitat dels sistemes actuals. L’estudi comença amb

processadors multinucli monofil (Intel Xeon X3320), segueix amb multinuclis amb suport

per a l’execució simultània (SMT) de dos fils (Intel Xeon E5645), i arriba al processador

que actualment suporta un major nombre de fils per nucli (IBM POWER8). Aquesta

dissertació analitza els principals punts de contenció en cada plataforma i proposa al-

goritmes de planificació que aborden les interferències que es generen en cadascun d’ells

per a millorar la productivitat i l’equitat dels sistemes.

En primer lloc, estudiem la contenció al llarg de la jerarquia de memòria en els processa-

dors multinucli. Els estudis realitzats revelen l’alta degradació de prestacions provocada

per la contenció en memòria principal i en qualsevol cache compartida. Per a mitigar la

contenció, proposem diversos algoritmes de planificació amb la idea principal de distri-

buir els accessos a memòria al llarg del temps d’execució de la càrrega i les peticions a

les caches entre les diferents caches compartides en cada nivell.

Les altes interferències que sofreixen las aplicacions que s’executen simultàniament en

un nucli SMT, no obstant, no sols afecten a las prestacions, sinó que també poden

comprometre l’equitat del sistema. En aquesta tesi, també abordem l’equitat en els

actuals multinuclis SMT. Per a millorar-la, dissenyem algoritmes de planificació que

xxiii

Resum xxiv

estimen el progrés de les aplicacions en temps d’execució, el que permet prioritzar els

processos amb menor progrés acumulat para a reduir la inequitat.

Finalment, la tesi es centra en la contenció entre aplicacions en el sistema IBM POWER8

amb un planificador simbiòtic que aborda la contenció en tot el nucli SMT. El planifi-

cador simbiòtic utilitza un model d’interferència basat en piles de CPI que prediu les

prestacions per a l’execució de qualsevol combinació d’aplicacions en un nucli SMT. El

nombre de possibles planificacions, no obstant, creix molt ràpid i fa inviable explorar

totes les possibles combinacions. Per resoldre aquest contratemps, el problema de pla-

nificació es modela com un problema de teoria de grafs, la qual cosa permet obtenir la

planificació òptima en un temps raonable.

En resum, aquesta tesi aborda la contenció en els recursos compartits en la jerarquia

de memòria i el nucli SMT dels processadors multinucli. Identifiquem els principals

punts de contenció de tres sistemes amb diferents arquitectures i proposem algoritmes

de planificació per a mitigar aquesta contenció. L’avaluació en sistemes reals mostra

les millores proporcionades pels algoritmes proposats. Aix́ı, el planificador simbiòtic

millora la productivitat una mitjana del 6.7% respecte a Linux. Pel que fa a l’equitat,

el planificador que considera el progrés aconsegueix reduir la inequitat de Linux a una

tercera part. A més, donat que els algoritmes proposats son completament software,

podrien incorporar-se com a poĺıtiques de planificació en Linux i emprar-se en servidors

a petita escala per obtenir els avantatges mencionats.

Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation for the work devel-

oped in this thesis. First, contention points on the memory hierarchy of single-threaded

multicore processors are identified. Next, contention on simultaneous multithreading

multicores is explained. After that, the chapter discusses how contention not only af-

fects performance but also fairness. Finally, the objectives and main contributions of

this thesis are described, and a summary about how the rest of this dissertation deals

with contention on the different processor architectures is presented.

1

Chapter 1. Introduction 2

1.1 Background

1.1.1 Chip Multiprocessor

Multicore processors have become the common implementation for high-performance

microprocessors. A chip multiprocessor (CMP) incorporates additional cores on the

same chip with each technology generation, and has the potential to provide higher

levels of processing performance than its single-core counterparts, while attacking power,

cooling, and package costs problems. These advantages certainly explain the success of

CMPs to such an extent that the use of these systems is currently spread from high

performance to mobile and embedded systems.

One of the main performance bottlenecks in CMPs lies in the interconnection between the

computational cores of the chip and the main memory. The most important component

of this bottleneck has typically been the main memory latency. However, as the number

of cores and their multithreading capabilities increase, the contention for the available

main memory bandwidth becomes a major concern since it might negatively affect the

scalability of current and future manycore designs.

Recent research work has shown that scheduling is a simple and powerful way of address-

ing main memory bandwidth contention. For instance, when the number of available

tasks1 exceeds the number of hardware contexts2, bandwidth-aware scheduling strate-

gies can help to reduce main memory bandwidth contention by avoiding concurrent

execution of memory-hungry applications. These strategies take into account the total

bandwidth required by applications and schedule a set of them to execute concurrently,

ensuring that the accumulated bandwidth requirements of the co-runners3 do not exceed

1In this work the terms task, process, job, program, and application are used as synonyms. With the
exception of Section 8.2, where parallel applications are discussed, thread is also used as synonym of the
above terms.

2A processor has as many hardware contexts as processes it can simultaneously run. In single-threaded
processors, this number is equal to the number of cores. In SMT multicores, the number of hardware
contexts is equal to the number of cores times the number of threads that each core can simultaneously
run.

3The term co-runner is used to refer to the processes that concurrently run, interfering in the shared
resources. In single-threaded processors, all the processes running concurrently are co-runners, regardless
of the core on which they run, since they mainly interfere in the main memory. In SMT processors,
we use the term to refer to the processes simultaneously running on the same core, since the strongest
interference appears among them. Nonetheless, we will put the term in context when it can cause
confusion.

Chapter 1. Introduction 3

the available bandwidth. Otherwise, performance could severely be damaged due to the

interference that arises when accessing main memory.

In order to hide, as much as possible, the large memory latencies that current DRAM

memories present, microprocessor architects are designing processors that implement

huge last level caches (LLC), alongside other microarchitectural mechanisms. These LLC

caches provide higher bandwidth, but they are accessed much more frequently than main

memory, which might shift the primary interference point from the main memory to the

LLC. For instance, the IBM POWER8 processor [1] implements a large L3 cache, with

huge latencies (several tens of cycles), that can be accessed by up to eighty concurrent

threads (in a 10-core POWER8 processor). Thereby, cache contention is a major design

concern and is expected to exacerbate in future microprocessor generations.

Despite the current trend in the cache hierarchy design consists of implementing L1 and

L2 private caches per core, and an L3 cache shared among all the cores, some processors

have also implemented multiple shared caches on different levels of the cache hierarchy.

This is the case, for example, of the Intel Dunnington and IBM POWER5 processors.

The Intel Xeon E7450 is a six-core processor whose L2 cache level is composed of three L2

caches, each one shared by two cores. In a similar way, the IBM POWER5 implements

eight cores and includes multiple L2 and L3 shared caches. Figure 1.1 depicts its memory

hierarchy. The second cache level is composed of four L2 caches, each one shared by

Main memory

L1 L1

L2

L3

L1 L1

L2

Core Core Core Core

L1 L1

L2

L3

L1 L1

L2

Core Core Core Core

Main memory bandwidth

L3 bandwidth

L2 bandwidth

Figure 1.1: Memory hierarchy of the IBM POWER 5 processor.

Chapter 1. Introduction 4

a pair of cores, and the third level implements two L3 caches, which are shared by

four cores. These cache hierarchy designs further allow smart scheduling policies to

reduce cache bandwidth contention by assigning the processes to the cores balancing

the accesses performed to each cache.

In summary, current caches are commonly shared by an increasing number of threads,

which means that bandwidth contention can appear at any level of the cache hierarchy.

Therefore, these potential contention points must be tackled by the scheduling policy in

order to maximize the system performance.

1.1.2 Simultaneous Multithreading

Simultaneous multithreading (SMT) was proposed in 1995 by Tullsen et al. [2] as a way

of improving the utilization and throughput of a single core. SMT, however, increases

the area and power consumption of a core (5% to 20% [3, 4]), mainly due to replicating

some architectural and performance-critical structures. Fortunately, the performance

benefits outweigh these disadvantages and the most prevalent architecture for current

high-end processors is a multicore processor consisting of SMT cores.

Recently, Eyerman and Eeckhout [5] show that a multicore processor consisting of SMT

cores has an additional benefit other than increasing throughput. SMT is flexible when

thread count varies: if thread count is low, per-thread performance is high because only

one or a few threads execute concurrently on one core, whereas if thread count is high, it

can increase throughput by executing more threads concurrently. As such, a multicore

consisting of SMT cores performs as well as or even better than a heterogeneous multicore

that has a fixed proportion of fast big cores and slow small cores.

SMT processors exploit both instruction-level and thread-level parallelism by issuing

instructions from different threads in the same cycle. Thread-level parallelism increases

the chance of issuing instructions, improving the utilization of the issue logic, but at the

same time issued instructions from different threads continuously share core resources.

The deep resource sharing makes threads interfere at several processor structures, which

causes that the performance of SMT cores strongly depends on how these resources

are shared among threads. If at any point of the execution, the demand for a given

resource exceeds what that resource can provide, overall processor performance can be

Chapter 1. Introduction 5

damaged. Thus, scheduling algorithms that smartly allocate applications to cores can

help to alleviate shared resource contention and improve performance and/or fairness in

SMT multicore processors.

Two kinds of shared resources can be distinguished in SMT multicore processors: intra-

core and inter-core resources, which are the shared resources within the core and in the

uncore part of the system, respectively. Shared intra-core and inter-core resources vary

with the processor architecture. The instruction queue, L1 cache, and execution units

are typical examples of shared intra-core resources, while the LLC and main memory

are resources commonly shared among cores.

As we have discussed before, bandwidth through the memory hierarchy is a critical

shared resource in any current multicore system. Unlike single-threaded multicores,

where L1 caches are not shared among processes, in SMT multicores the processes

allocated to the same SMT core share the L1 cache among them. Thus, L1 caches

emerge as a new contention point that should be tackled by bandwidth-aware process

schedulers.

However, L1 bandwidth is not the only contention point in SMT processors. The way

in which threads running on the same SMT core use the multiple shared components

(e.g., execution units, instructions queues, etc.) can make the difference in terms of per-

formance. This fact has also been addressed by several works [6] [7] through scheduling

algorithms for SMT processors, typically known as symbiotic schedulers. These sched-

ulers somehow estimate or measure how well a set of applications are going to co-run on

the SMT processor in order to select the schedules4 that achieve the highest throughput.

In summary, current microprocessors are able to concurrently run several applications,

sharing some processor structures among the co-running processes. In these systems,

selecting which applications to run and on which cores they should run has an impact

on performance because cores deploy resources for which threads compete. As such,

threads can interfere with each other, causing performance variations for other threads.

Smart schedulers should be aware of this issue and reduce the negative interference as

4The term schedule is used to refer to one of the possible combinations of applications and the
allocation of the applications to the cores. Note that not all the running threads share the same resources,
since it depends on which core they are allocated to. For instance, all cores on a chip usually share the
memory system, but a given cache can be shared by a smaller set of cores, and threads on an SMT core
share almost all of the core resources.

Chapter 1. Introduction 6

much as possible by scheduling complementary or symbiotic tasks to share the different

resources.

1.1.3 System Fairness

Sharing is convenient for several processor resources that might present low utilization

when they are private and their usage is restricted to a single process. Moreover, sharing

is an efficient and flexible approach. A single process can make use of the full capacity

of a shared resource when it is the only process running or when the other processes

perform a very scarce use of that resource. Notice that allowing a single process to

achieve the same capacity from a resource would require to over-provision the resource.

These benefits have yield current SMT multicores to share most of their resources.

Hence, processes compete among them at run-time for shared resources and sharing

policies are implemented to regulate their usage. These policies should provide per-

formance and fairness to concurrently running applications. However, designing fair

sharing policies is challenging due to two main issues. First, processes present different

requirements for the multiple shared resources, and second, the shared use of a resource

affects differently the individual performance of distinct processes.

Therefore, while resource sharing allows the processor to achieve higher throughput, it

can certainly affect the system fairness. In this dissertation, a system is considered fair

when all the running processes present the same slowdown with respect to their isolated

execution. The lack of fairness, known as unfairness, causes important undesirable be-

haviors on the system [8] [9] [10]: i) it complicates priority-based scheduling since jobs

with lower priorities can achieve more progress than those with higher priorities, ii) it

makes difficult to guarantee worst-case execution times (WCET), which is particularly

important in embedded systems, iii) it reduces performance predictability, which com-

plicates the analysis and optimization of both hardware and software implementations,

and iv) it enables denial of service attacks.

Despite the current relevance of fairness, it is not commonly acceptable to improve it

at the expense of overall workload performance. However, targeting fairness and per-

formance at the same time is not an easy task. For example, a prevalent approach

to improve performance consists in balancing the memory requests of a multiprogram

Chapter 1. Introduction 7

workload along its execution time [11] [12]. In contrast, to improve fairness, the pro-

cesses with less accumulated progress should be prioritized over processes with superior

progress. Unfortunately, both strategies can easily conflict. In such a case, preference

should be given to one of the targets (performance or fairness), penalizing the other. To

overcome these issues we propose the use of progress-aware schedulers to tackle perfor-

mance and fairness simultaneously.

1.2 Objectives of the Thesis

The main objective of this dissertation is to address contention in the shared resources

of current multicore processors (with different architectures), which affects the perfor-

mance of individual processes and reduces the system throughput and fairness. This

goal requires from identifying, quantifying, and analyzing such contention. Then, based

on the results provided by these studies, we will design, implement, and evaluate mul-

tiple scheduling algorithms, each one aimed at alleviating the interference on different

contention points of a target architecture. Their final goal is to improve both throughput

and fairness of the evaluated systems when running multiprogram workloads formed by

single-threaded applications.

Through the dissertation we sometimes refer to the proposed scheduling algorithms

as schedulers. Nonetheless, our goal is not to replace the scheduler(s) of the Linux

kernel with our algorithms, but to develop new scheduling algorithms that could be

implemented as scheduling policies of the kernel scheduler. In this way, either the user

or the operating system can select these policies to schedule the adequate workloads.

Thereby, our scheduling algorithms do not need to handle all use cases that an operating

system scheduler needs to consider such as short interactive processes, input/output

bounded tasks, or parallel applications, among others.

The dissertation starts with multicore single-threaded processors, where bandwidth con-

tention at the memory system, ranging from the main memory to the shared caches,

strongly affects performance. Next, the study focuses on multicore SMT processors,

where the processes running on the same SMT core share most of the core resources, in-

cluding the execution units and the L1 bandwidth, enabling the design of smart process

Chapter 1. Introduction 8

allocation policies that address contention within the core. All the described experi-

ments are carried out in real systems and the performance and fairness achieved with

the proposed algorithms is compared with respect to Linux..

1.3 Main Contributions of the Thesis

The four major contributions of this thesis are described below:

• We study how bandwidth contention through the cache hierarchy of current mul-

ticore processors affects performance, finding out that not only contention at main

memory, but also on the shared caches, can strongly deteriorate system perfor-

mance. To deal with bandwidth contention along the memory hierarchy, we pro-

pose a memory-hierarchy bandwidth-aware scheduler which evenly dis-

tributes the memory and cache accesses along the workload execution time and

across the available caches, respectively. The scheduling algorithm is further im-

proved by favoring the execution of the processes more sensitive to bandwidth

contention in scenarios with lower bandwidth consumption.

• When the processor implements SMT cores, the L1 cache and bandwidth are

shared by the threads running on the same core, adding a critical contention point.

Our analyses show how the L1 bandwidth utilization of a process is related with its

performance and how both of them are affected by the interference caused by the

L1 utilization of a co-running process. To address L1 bandwidth contention, we

propose an L1 bandwidth-aware process allocation policy that balances

the L1 requests of a workload across the L1 caches of the processor. The policy

is then combined with a memory bandwidth-aware process selection algorithm to

build an entire scheduler that addresses bandwidth contention on each memory

contention point of SMT multicores.

• Interference in the shared resources not only affect performance but also system

fairness, which is also a desirable characteristic. To improve system fairness we

propose a progress-aware scheduler that estimates, at run-time, the progress

made by each process of a multiprogram workload, favoring the execution of the

processes with lower accumulated progress to improve system fairness. In addition,

we also present a progress-aware scheduler that simultaneously addresses fairness

and performance.

• Finally, to deal with contention in all the shared resources of SMT multicores,

we propose a symbiotic scheduler. This scheduler uses an SMT interference

model, based on CPI stacks, to estimate the slowdown of a given schedule without

actually running it. Using this model, the symbiotic scheduler can quickly explore

the space of possible schedules and select the optimal one.

1.4 Thesis Outline

This dissertation consists of eight chapters. Chapter 1 has introduced the thesis, objec-

tives, and contributions. Chapter 2 discusses the related work. Chapter 3 presents the

experimental platforms and common aspects of the evaluation methodology. Chapter 4

studies the impact of bandwidth contention through the cache hierarchy and proposes the

Memory-hierarchy bandwidth-aware scheduler. Chapter 5 analyzes how L1 bandwidth

contention affects the performance of SMT multicores and presents the L1 bandwidth-

aware process allocation policy and a bandwidth-aware scheduler for this architecture.

Chapter 6 describes how progress can be estimated at run-time and introduces the

progress-aware schedulers that address fairness and performance. Chapter 7 discusses

the SMT interference models and proposes the Symbiotic scheduler. Finally, Chapter 8

summarizes this thesis, discusses future work, and enumerates the related publications.

Chapter 2

Related Work

This chapter discusses the state-of-the-art and important work related with the topics

covered in this dissertation. First, we introduce the related work regarding main memory

and cache contention on multicore processors. Second, we revise the related work that

deals with contention on SMT and multicore SMT processors. Most related work is

focused on improving system performance. Nonetheless, through the different sections

we also discuss previous work that tackle the addressed contention focusing on fairness

and on performance models that help taking smarter scheduling decisions.

11

Chapter 2. Related Work 12

2.1 Main Memory Contention

Multicore processors can concurrently run multiple processes, which potentially increases

the number of memory accesses performed per unit of time. However, they were intro-

duced without an equivalent growth on the main memory bandwidth. Since the memory

bandwidth in a multicore processor is shared among the co-running processes, when the

requirements of these processes are high, memory contention can rise and affect the

performance significantly. To tackle this problem, important research work focusing on

main memory bandwidth contention has been done.

Antonopoulos et al. [13] [14] propose some of the first scheduling policies based on the

memory bus bandwidth consumption of the processes running at the same time. In [13],

the bus bandwidth consumption values are obtained by modifying the source code of

the running applications, while in [14], less intrusive implementations based on processor

performance counters are explored. In both cases, the proposed policies try to match

the total bandwidth requirements of the co-runners to the peak memory bus bandwidth.

More recently, Xu et al. [11] prove that irregular memory access patterns can produce

fine-grained contention when the required bandwidth is close to the peak bandwidth.

To deal with this situation, they propose the use of the average bandwidth requirements

of the applications instead of the peak bandwidth. Authors estimate the Ideal Average

Bandwidth (IABW) of a workload as the number of main memory accesses divided

by the total execution time. By scheduling the applications to match the IABW each

quantum, contention is greatly reduced.

Other works also deal with main memory bandwidth contention in other contexts. For

instance, Koukis et al. [15] propose an scheduling algorithm addressing symmetric multi-

processing (SMP) clusters, which considers bandwidth contention at the network addi-

tionally to the main memory bandwidth. Pinel et al. [16] also perform main memory

bandwidth-aware scheduling on multicore processors, exploring the trade-off between

energy consumption and execution time to perform green scheduling.

Even though performance is usually the main goal, other works focus on system fair-

ness. To provide fair sharing of the memory resources some works tackle the memory

Chapter 2. Related Work 13

controller. Mutlu et al. [8] propose a memory access scheduler that balances the DRAM-

related slowdown experienced by the co-scheduled processes. A similar approach is fol-

lowed by Nesbit et al. [17], who use concepts from network fair queuing to design a fair

queuing memory system.

Unfortunately, fairly sharing a single resource or a set of resources does not provide

system fairness. Ebrahimi et al. [18] present a global solution and propose achieving

fairness via source throttling, a mechanism that addresses unfairness on the entire mem-

ory system. Authors propose to estimate unfairness in the shared memory system. For

this purpose, they throttle down cores causing unfairness by limiting both the number of

requests and the frequency at which they can be injected into the system. Other works

try to improve system fairness by focusing on process scheduling. For instance, Xu et al.

[19] mainly target main memory bandwidth contention and propose a process scheduler

that monitors the progress of the processes at run-time, which is used to increase the

priority of the processes progressing at a slower pace.

Finally, Subramanian et al. [20] combine performance predictability with fairness-

oriented main memory request scheduling. The authors first present a model that esti-

mates the slowdowns caused by memory interference by modifying the priority scheme

of the memory controller. Then, they use the model as the base of two different memory

request scheduling schemes that provide quality-of-service (QoS) and maximize fairness,

respectively.

2.2 Cache Hierarchy Contention

2.2.1 Contention-Aware Scheduling

As for main memory contention, process scheduling is a simple yet effective way of

addressing cache contention. Knauerhase et al. [21] show that the operating system

(OS) can obtain task behavior data at run-time using performance counters, and use

the gathered information to ameliorate performance variability and more effectively

exploit multicore processor resources with a smart observation-based scheduling policy.

Zhuravlev et al. [22] investigate how contention for shared resources can be mitigated

via process scheduling. Authors propose a classification scheme that determines how

Chapter 2. Related Work 14

the processes affect each other on the shared resources considering contention on the

cache space, memory controller, memory bus, and hardware prefetch. They design a

scheduling algorithm that does not only improve the performance of a workload as a

whole, but it can also improve the quality of service or provide performance isolation

for individual applications.

Regarding memory contention on datacenters, Tang et al. [23] study the impact of shar-

ing memory resources on the performance of datacenter applications. They analyze the

impact of thread-to-core mappings according to the memory behavior of the applications

considering the shared memory resources. Authors found that there is both a sizable

benefit, but a potential performance degradation when improperly sharing resources.

They also present an heuristic-based and an adaptive approach to enhance thread-to-

core assignment of the datacenter applications. Finally, Sato et al. [24] observe that

some threads cause severe performance degradation due to inter-thread cache conflicts

and shortage of capacity on the shared cache. Based on these observations, they pro-

pose a scheduling policy that can prevent multiple threads from requesting a large cache

capacity when sharing a limited cache, hence avoiding severe performance degradation.

Other works address cache contention with different approaches. For instance, Qureshi

et al. [25] observe that memory level parallelism (MLP) benefits differ across cache

misses. Since isolated cache misses have a stronger impact on performance than parallel

cache misses, they propose an MLP-aware cache replacement mechanism that considers

both the MLP-based cost of cache misses and data recency into account. Kaseridis et

al. [26] propose a global solution that tackles the bandwidth contention that arises at

each level of the memory hierarchy. To do this, they rely on additional hardware-based

resource profilers and cache partitioning algorithms to avoid cache contention.

With the main goal of providing fairness to co-running processes, Fedorova et al. [27]

propose a cache-fair scheduling algorithm that gives more execution time to the pro-

cesses that are more affected by unbalanced cache sharing. The goal is to ensure that

the applications run as quickly as they would do under a fair cache allocation, regardless

of how the cache is actually being allocated. In a follow on work, Fedorova et al. [28]

propose the use of the LLC miss rate as a scheduling heuristic that acts as a good

predictor for all types of contention related with the LLC.

Chapter 2. Related Work 15

2.2.2 Resource Partitioning

Another way to tackle cache contention is cache partitioning. In this regard, several

cache partitioning mechanisms have been proposed to mitigate cache contention and

maximize throughput and/or improve fairness among the co-runners. Qureshi et al. [29]

propose utility-based cache partitioning, a run-time mechanism with low overhead that

partitions a shared cache among multiple processes depending on the reduction in cache

misses that each process is likely to obtain for a given amount of cache resources. The

proposed partitioning mechanism targets performance, but authors state that a similar

approach can be used to improve system fairness.

Some cache partitioning proposals also deal with bandwidth contention. Moretó et al.

[30] partition the LLC of CMPs to increase memory level parallelism and reduce workload

imbalance. Cache partitioning algorithms like SHARP [31] and PriSM [32] manage the

LLC cache by using formal control and probability theories, respectively. However, as

pointed out by Sato et al. in [24], cache partitioning mechanisms can severely limit the

overall performance if applications with cache requirements exceeding the cache capacity

are co-scheduled.

Cache partitioning techniques are not only proposed to improve performance, but some

mechanisms try to provide a fair cache access to the processes sharing the same cache

structure. Suh et al. [33] estimate the isolated miss rate of the processes to improve

the partitioning. Kim et al. [34] dynamically partition L2 caches based on metrics that

correlate with execution-time fairness. Later, Chang et al. [35] introduce the use of

multiple time-sharing cache partitions to improve throughput and fairness while main-

taining QoS, by allowing one thread to temporarily shrink the cache capacity assigned

to other threads.

Finally, other proposals are not restricted to cache partitioning and present wider re-

source sharing mechanisms. Nesbit et al. [36] propose a resource sharing mechanism that

provides QoS to the running processes. In particular, authors present an arbiter that

guarantees a minimum bandwidth to each process to provide QoS. A similar mechanism

is designed by Colmenares et al. [37], who implement the Adaptive Resource Centric

Computing (ARCC) in the Tessellation OS. Using ARCC, resources can be distributed

among the processes providing performance isolation and predictability.

Chapter 2. Related Work 16

2.2.3 Performance Models

Performance and/or interference models are also used to enhance the scheduler. This

approach allows the scheduler to take smarter decisions and improve performance and

fairness. Eyerman et al. [38] propose a performance counter architecture for computing

CPI components and develop a performance model for superscalar out-of-order proces-

sors based on these CPI components. Eklov et al. [39] present a method for measuring

application performance and main memory bandwidth utilization as a function of the

available shared cache capacity. Similarly, Casas et al. [40] present a methodology to pre-

dict the performance of an application when the available bandwidth and space through

the memory hierarchy are reduced.

2.3 SMT Core Contention

The importance of intelligently selecting applications that should run together on an

SMT core was recognized quickly after the SMT introduction [6]. The performance

improvement heavily depends on the characteristics of the co-running applications, and

some combinations may even degrade total throughput, for example due to cache trash-

ing [41]. Snavely and Tullsen [6] were the first to propose a mechanism to decide which

applications should run on the same core to obtain maximum throughput. At the

beginning of every scheduler quantum, they shortly execute all (or a subset of) the

possible combinations, and select the best performing combination for the next quan-

tum. Because of the number of possible combinations quickly grows with the number of

applications and hardware contexts, the overhead of sampling the performance quickly

becomes large and/or the fraction of combinations that can be sampled becomes small.

To overcome the sampling overhead, Eyerman and Eeckhout [7] propose model-based

scheduling. A fast analytical model predicts the slowdown each application encoun-

ters when co-scheduled with other applications, and the best performing combination is

selected.

Other authors have also studied the symbiosis between applications with different ap-

proaches. For instance, Čakarević et al. [42] characterize different types of resource

sharing in an UltraSPARC T2 processor and improve the execution of multi-threaded

Chapter 2. Related Work 17

applications with a resource sharing aware scheduler. Acosta et al. [43] show that pro-

cessor throughput is highly dependent on thread allocation and propose an allocation

policy that combines computation and memory bounded processes in each core.

Other studies have explored the use of models and profiling to estimate SMT benefits.

Cazorla et al. [9] propose a novel strategy to allow the operating system to run jobs at

a certain percentage of their maximum speed, regardless of the system load. Moseley et

al. [44] use regression on performance counter measurements to estimate the speedup of

an SMT processor when co-executing two applications. Settle et al. [45] predict job sym-

biosis using offline profiled cache activity maps. More recently, Eyerman et al. propose

a cycle accounting mechanism [46] and a probabilistic symbiotic scheduler [7] for SMT

processors, while Porter et al. [47] estimate the speedup of a multi-threaded application

when enabling SMT, based on performance counter events and machine learning. Mars

et al. [48] use microbenchmarks called bubbles to measure first, the pressure on the mem-

ory subsystem that the applications generate, and second, how much the applications

suffer from different levels of memory contention introduced by the bubbles. Using this

information, obtained during a characterization phase, the complexity of finding good

applications to core allocations is reduced. In a follow-up work, Zhang et al. [49] pro-

pose a similar methodology to predict the interference among threads on an SMT core.

They develop microbenchmarks called rulers that stress different core resources, and by

co-running each application with each ruler in an offline profiling phase, the sensitivity

of each application to contention in each of the core resources is measured.

Finally, other works deal with fairness in SMT fetch policies. Luo et al. [50] and

Eyeraman et al. [51] propose SMT fetch policies that enhance both performance and

fairness considering the pipeline status and memory-level parallelism, respectively.

Chapter 3

Scheduling Framework,

Experimental Platforms, and

Evaluation Methodology

This chapter first presents the scheduling framework designed to facilitate the imple-

mentation of new scheduling algorithms and their evaluation on real systems. Next, the

chapter describes the three experimental platforms used to carry out the experiments

performed in this dissertation. Then, it discusses the evaluation methodologies used

to properly evaluate process selection policies, process allocation policies, and entire

schedulers. Finally, it introduces the metrics used to compare the different schedulers.

19

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 20

3.1 Scheduling Framework

To ease the implementation and evaluation of the scheduling algorithms that this thesis

proposes, we design a scheduling framework. The framework is built as a user-level

program and runs above the Linux operating system scheduler. It makes easier and

faster to implement the proposed scheduling algorithms since they share most of the

code. This framework also allows a fair evaluation by ensuring equal overhead due to

process management or handling of performance counters across the studied scheduling

algorithms. In short, different scheduling policies can be quickly implemented and fairly

compared in the developed environment.

The designed framework schedules the processes in two main steps, which correspond

with the process selection and process allocation policies. The process selection policy

determines which processes should run the next quantum when the set of available pro-

cesses exceeds the number of hardware contexts. Notice that the number of hardware

contexts of a processor corresponds with its number of cores times the number of simul-

taneous threads per core it supports. The implemented process selection policies only

need to select the set of processes that should run on the next quantum (according to

any developed algorithm) and let the framework schedule them. The processes selected

to run are resumed with the SIG CONT signal, while the remaining processes are kept

stopped. Once the quantum expires, the framework stops all the running processes again

with the SIG STOP signal.

The process allocation policy decides on which core each selected process runs. Process

allocation is particularly important when the cores are SMT since the processes assigned

to a given core are going to share critical core resources. Nonetheless, in the case of

multicore single-threaded processors, the process allocation policy can also be used to

balance the bandwidth through the different shared caches. A process allocation policy

only needs to choose the core on which each selected process should run (i.e., it defines

the final schedule), and then the framework is responsible of enforcing this schedule. The

framework uses a process parameter on Linux called core affinities, which establishes

the set of cores on which a process can run. By setting the sched setaffinity attribute of

each process to a single core, the framework enforces the schedule given by the process

allocation policy.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 21

In addition to the different scheduling algorithms proposed in this dissertation and part

of the related work, the scheduling framework implements two scheduling algorithms:

a random scheduler and a Linux-based scheduler. The implementation of the random

scheduler is trivial. Each quantum, the scheduler randomly selects as many processes as

hardware contexts in the experimental platform (process selection). Then, the selected

processes are randomly assigned to the cores (process allocation). To implement the

Linux-based scheduler, the scheduling framework selects all the processes to run on the

next quantum (process selection), and allows the selected processes to be allocated to

any hardware context (process allocation). This setup lets Linux scheduler decide at

every moment which processes should run and the cores where they should be allocated

to.

Finally, the framework also manages the access to hardware performance counters using

the libpfm library, which supports independent measurements for co-running processes

at run-time. The set of supported events depends on the experimental platform, but

typically includes, among many others, the number of unhalted cycles, committed in-

structions, as well as requests and misses for the different caches of the memory hierarchy.

During the development of the work performed in this thesis, libpfm has received several

updates to support the latest architectures and to correct bugs. Hence, the frame-

work has used different versions of the library, from libpfm 3.1 to 4.6. The scheduling

framework allows the user to define the set of events to monitor, and then manages the

configuration of the library and events, reads the counters for the processes that were

run during a quantum, and updates the related scheduling variables. These variables,

generally, are used by the proposed scheduling policies to smartly schedule the processes.

3.2 Experimental Platforms

3.2.1 Single-Threaded Multicore: Intel Xeon X3320

As an example of a multicore processor with single-threaded cores, we use the shared-

memory quad-core Intel Xeon X3320 processor [52]. The main system characteristics

are presented in Table 3.1. The processor implements four single-threaded cores, runs

at 2.5 GHz, and is equipped with 4 GB of DDR2 RAM.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 22

CPU Intel Xeon X3320

Frequency 2.5 GHz

Number of cores 4

Multithreading No

L1 cache Code L1: 4 x 32 KB

Data L1: 4 x 32 KB

L2 cache 2 x 3 MB

Memory 4 GB (2 GB x 2) DDR2

Table 3.1: Characteristics of the Intel Xeon X3320 system.

The operating system of this platform is a Fedora Core 10 Linux distribution with kernel

2.6.29. We installed the perfmon2 patch to provide the system with performance moni-

toring support. Performance counters are managed through the libpfm 3.10.0 library.

Figure 3.1 presents the cache hierarchy of the Intel Xeon X3320. It consists of two 3 MB

L2 caches (LLC), each one shared by a pair of cores. Each core implements a private

L1 cache, with 32 KB for data and 32 KB for instructions. The main memory and

each L2 shared cache of the hierarchy are potential contention points since the caches

of the immediately higher level (L2 and L1, respectively) share the available bandwidth

to access them.

The cache hierarchy of the Intel Xeon X3320 resembles the cache hierarchy implemented

in more recent processors with greater number of cores, and deeper and wider memory

hierarchies, such as the Intel Dunnington processors or the IBM POWER5, whose mem-

ory hierarchy is shown in Figure 1.1. As observed, the higher the number of cores

L1

L2

Main memory

Core

L1

Core

L1

L2

Core

L1

Core

Figure 3.1: Memory hierarchy of the Intel Xeon X3320 processor.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 23

and caches, the higher the number of contention points. Therefore, bandwidth-aware

scheduling algorithms like the ones proposed in this work should provide better per-

formance enhancements on these processors as well as future manycore processors that

could implemented similar memory hierarchies.

3.2.2 SMT Multicore: Intel Xeon E5645

As an example of current SMT multicores we use the Intel Xeon E5645 processor. Table

3.2 presents the main system characteristics. The Intel Xeon E5645 is composed of six

dual-threaded SMT cores. Each core includes two levels of private caches, a 32 KB L1

data cache and a 256 KB L2 cache. A third-level 12 MB cache is shared by the private

L2 caches. The system is equipped with 12 GB of DDR3 RAM and runs at 2.4 GHz. The

Intel Turbo Boost mode is disabled to prevent uncontrolled frequency increases when

only one thread is running on a core. The system has a Fedora Core 10 distribution

installed with Linux kernel 3.11.4, and uses the libpfm 4.3.0 library to handle hardware

performance counters.

Figure 3.2 depicts the memory hierarchy of the Intel Xeon E5645. Notice that L1 caches

are shared by the two hardware threads of each SMT core which can cause L1 cache

contention among the processes running on the same SMT core. Main memory is the

other critical contention point of the hierarchy. It receives the memory requests of all

the running processes and presents higher latency than the L3 cache.

CPU Intel Xeon E5645

Frequency 2.4 GHz

Number of cores 6

Multithreading Yes, up to 2 threads per core

L1 cache Code L1: 6 x 32 KB

Data L1: 6 x 32 KB

L2 cache 6 x 256 KB

L3 cache 12 MB shared,

Memory 12 GB (4 GB x 3) DDR3

Table 3.2: Characteristics of the Intel Xeon E5645 system.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 24

L1

SMT	core

Ht 1 Ht 2

L2

L1

Ht 1 Ht 2

L2

L1

Ht 1 Ht 2

L2

L1

Ht 1 Ht 2

L2

L1

Ht 1 Ht 2

L2

L1

Ht 1 Ht 2

L2

L3

Main memory

Figure 3.2: Memory hierarchy of the Intel Xeon E5645 processor.

3.2.3 IBM POWER8 System

Our third experimental platform is an IBM Power System S812L machine, which consists

of an IBM POWER8 processor with ten cores where each core can execute up to 8

hardware threads simultaneously. Cores can work in single-threaded mode, SMT2 mode,

SMT4 mode, or SMT8 mode. Mode transitions are done automatically by the processor

according to the number of active hardware threads. The high degree of multithreading

is challenging from a scheduling point of view since the sharing degree of most resources

is expected to be high and to generate a great interference.

The remaining features of our IBM POWER8 system are presented in Table 3.3. The

processor implements private L1 data and L2 caches of 64 KB and 512 KB, respectively,

per core and shares a huge 80 MB last level cache. The memory hierarchy closely

resembles the one shown in Figure 3.2 (with ten cores and eight threads per core). The

system has 32 GB of RAM memory and runs at a maximum frequency of 3.7 GHz.

Our setup uses an Ubuntu 14.04 Linux distribution with kernel 3.16.0 and manages

performance counters with the libpfm 4.6.0 library.

We focus our experimental evaluation in SMT2 and SMT4 modes with multiprogram

SPEC CPU2006 workloads. We do not evaluate the SMT8 mode since we did not notice

performance benefits with the Linux scheduler in SMT8 mode over SMT4 mode running

our target workloads. On average across ten 32-application workloads running on four

cores Linux performs, in terms of system throughput (see Section 3.4), slightly better

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 25

CPU IBM POWER8

Frequency 3.7 GHz

Number of cores 10

Multithreading Yes, up to 8 threads per core

L1 cache Code L1: 10 x 32 KB

Data L1: 10 x 64 KB

L2 cache 10 x 512 KB

L3 cache 80 MB

Memory 32 GB (32 GB x 1) DDR3

Table 3.3: Characteristics of the IBM POWER8 system.

(0.9%) in SMT8 mode than in SMT4 mode. However, as the number of cores grows,

the performance benefits are reduced when running in the SMT8 mode and turn into

performance losses. Thereby, on average, across ten 80-application workloads ran on ten

cores, Linux performs 7.8% worse in SMT8 mode than in SMT4 mode. This behavior

should be related to the fact that SPEC benchmarks aim to stress the processor and the

memory subsystem. In contrast, the SMT8 mode is expected to provide performance

benefits to other types of workloads such as multi-threaded scale-out applications that

share a considerable amount of code and present a small memory footprint.

3.2.3.1 NUMA Effects in the IBM POWER8

The IBM POWER8 processor has eight on-chip memory controllers. However, to reduce

costs, our setup only has a single 32 GB DDR3 module connected to one of them. This

apparently minor issue presents strong implications. The IBM POWER8 processor

is implemented as a dual-chip module (DCM) processor but it works as a single chip

processor [53]. More precisely it is built by mounting two chips (chiplets) containing half

the number of cores each. Both chiplets are interconnected by fast local SMP links and

each one implements four memory controllers. Figure 3.3 shows a block diagram of the

processor and the memory subsystem. This design implies that our system includes two

non-uniform memory access (NUMA) nodes. The first node comprises cores 0 to 4, while

the second node contains the remaining five cores. Since the system only includes a single

DRAM module connected to one of the NUMA nodes, the memory performance observed

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 26

M
em

or
y

Co
nt
ro
lle
rs

SMP
A Bus

SMP
X	Bus

PHB	1PHB	0

P8

M
em

or
y

Co
nt
ro
lle
rs

SMP
A Bus

SMP
X	Bus

P8

CDIMM

24	GBps 32	GBps

CDIMM

CDIMM

CDIMM

CDIMM

CDIMM

CDIMM

CDIMM
PHB	0 PHB	1

Figure 3.3: Logical diagram of the IBM POWER8 and memory subsystem.

by the cores varies depending on the node the core belongs to. To confirm this thesis, we

use the LMbench [54] and STREAM [55] benchmarks and measure the DRAM latency

and bandwidth, respectively. These applications aim to stress the memory subsystem

by accessing the elements of data arrays whose size reaches up to 1792 MB.

Figure 3.4 presents the memory latency that the cores of each NUMA node experience

for each tested array size. Memory requests access the array in 128-byte strides, which

matches the POWER8 cache line size. We did not appreciate any latency difference

between cores in the same NUMA node. The latency is identical for both NUMA nodes

when the array fits in the L1, L2, or L3 caches. However, when the array exceeds the

cache size and the main memory is accessed, the cores in the NUMA node 0, where the

0

20

40

60

80

100

120

140

La
te
nc
y	(
ns
)

Array	size	(MB)

NUMA	node	0 NUMA	node	1

Figure 3.4: Memory latency varying the array size.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 27

Function Kernel NUMA node 0 NUMA node 1

Copy a(i) = b(i) 17.7 GB/s 16.8 GB/s
Scale a(i) = q × b(i) 17.3 GB/s 16.5 GB/s
Add a(i) = b(i) + c(i) 24.3 GB/s 22.4 GB/s
Triad a(i) = b(i) + q × c(i) 24.3 GB/s 22.4 GB/s

Table 3.4: Bandwidth reported by the STREAM benchmark for the two NUMA
nodes.

memory slot is plugged in, experience a latency around 20% lower than the cores on the

NUMA node 1.

Regarding memory bandwidth differences between NUMA nodes, Table 3.4 presents the

average bandwidth observed by the five cores in each node when running the STREAM

benchmark. The results, broken down by kernel, show that the cores on the NUMA node

0 are able to consume between 5.1% and 8.5% more memory bandwidth, depending on

the executed kernel. It is also worth noting that the cores on the NUMA node 0 almost

reach the theoretical maximum memory bandwidth, which is 24 GB/s.

Linux seems to be aware of the system being a NUMA system. For instance, the lscpu

command identifies two NUMA nodes, the first one including logical CPUs from 0 to

39, and the second one including logical CPUs from 40 to 791. Since the kernel version

3.8, Linux is able to perform NUMA-aware scheduling [56] and allocates the applications

that more frequently access the main memory to the NUMA node closest to the main

memory, where most of the application data resides. In our system, this NUMA node

is always the node 0, since it is the only one with a DRAM module installed. This

scheduling behavior turns into performance improvements that should be taken into

account in the experimental evaluation.

3.3 Evaluation methodology

All the experiments carried out in this dissertation are performed using benchmarks from

the SPEC CPU2006 benchmark suite, which is a standard suite widely used by indus-

try and academia to evaluate and compare the performance of processors and memory

1Each core of the POWER8 accounts for 8 logical CPUs in Linux. Logical CPUs 0 to 7 identify the
8 threads that can be run in core 0 with SMT8 mode, logical CPUs 8-15 identify those threads of core
1, and so on.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 28

systems. Given the fact that we want to evaluate scheduling algorithms for multicore

processors, the experimental evaluation targets multiprogram workloads composed of

SPEC benchmarks.

3.3.1 Process Selection Methodology

A problem we had to face related with multiprogram workloads composed of SPEC

benchmarks is that the stand-alone execution time of the benchmarks widely varies

among them. While some benchmarks complete their execution within a minute, others

can easily take more than ten minutes to finish. This fact complicates performing an

adequate evaluation of scheduling algorithms. For instance, Xu et al. [11] observed that

a scheduling policy that prioritizes the longest jobs could provide the best turnaround

time in most workloads when the benchmarks experience widely different execution

times. Another important drawback is that benchmarks with different execution time

will have different weights in the mix execution, which might not be correctly reflected

in some performance and fairness evaluation metrics. Finally, it could also limit the

ability of a smart scheduler to perform better scheduling if, for example, a mix quickly

completes the execution of most of its applications and the workload execution continues

with a few processes for a long time.

To overcome these problems, we decide to equalize the execution time of the benchmarks

when running alone [11, 19]. Hence, we measure the number of instructions that each

benchmark completes when running alone in the system during x seconds 2. The bench-

marks with shorter execution time are relaunched, after they finish, until they reach this

this period. We record the number of instructions that each benchmark executes during

the x seconds, and set it as its target number of instructions. From now on, when we

talk of executing or running a benchmark, we refer to the execution of its target number

of instructions. In the experiments, the scheduling framework is in charge of relaunching

the benchmarks that finish before completing their target number of instructions. Then,

the framework also kills them when they reach this number of instructions to conclude

their execution. Proceeding in this way, we avoid the problems that arise when the

applications present widely different execution time.

2The number of seconds varies depending on the experimental system and it is indicated in the
evaluation setup section of each chapter.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 29

Pi

Pi+1

Pn

Workload	launched Workload	finished

…

The	process	is	launched.
The	process	finishes,	but	is	relaunched	to	complete	its	target	number	of	instructions.
The	process	completes	its	target	number	of	instructions,	concluding	its	execution.

Legend:

T1

T2

T3

Figure 3.5: Timing chart under the process selection methodology.

To evaluate process selection policies and entire schedulers, we run multiprogram work-

loads where the number of processes exceeds the number of hardware contexts of the

experimental platform. Otherwise, all the processes could be run each quantum and

process selection would not be required. In addition, to carry out such experiments, we

devise the process selection methodology, which is illustrated in Figure 3.5. As explained

before, a processes does not conclude its execution until it completes its target number

of instructions. Thus, a process can be relaunched (for example, T1 in Figure 3.5) un-

til it completes its target number of instructions. At this point, the frameworks kills

the process and saves per-process metrics such as execution time or individual IPC (for

instance, T2 in Figure 3.5). The experiment continues until the last process of the work-

load finishes (T3 in Figure 3.5). This is the point where the experiment ends and the

framework obtains workload-related metrics such as the turnaround time of the mix or

different IPC-aggregated metrics.

3.3.2 Process Allocation Methodology

The process selection methodology is not adequate to evaluate process allocation poli-

cies. The first change required is the number of applications of the workloads. Process

allocation policies determine on which core each selected process should run and thus

they require that the number of available processes matches (or is below) the number

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 30

of hardware contexts. Thus, to evaluate process allocation policies multiprogram work-

loads should include the same number of processes as hardware contexts the experimental

platform has.

Notice that process allocation policies are particularly interesting for SMT multicores,

since applications running on a given core share most of the core resources and can

strongly interfere. In this context, a more important issue arises (assuming SMT cores

that can run up to two threads): once the first process of the workload finishes, one core

will run a single process, while the other processes will be run in pairs in the remaining

cores. This scenario can artificially increase the performance of the processes running

alone over the ones co-running on the same core. Thereby, it makes the evaluation of

the policies difficult since it might be not possible to identify when the performance

differences come from a smarter process allocation and when they are caused by the

processes running alone on some cores for a fraction of the experiment.

To deal with this problem we devise a new evaluation methodology named process

allocation methodology and illustrated in Figure 3.6. Under this methodology, all the

applications of the workload are kept running until the last one finishes (i.e., it completes

its target number of instructions as described in Section 3.3.1). Hence, the scheduling

framework relaunches the processes that finish to keep the number of running applica-

tions constant during the entire experiment (for example, at T1 in Figure 3.6, where the

dashed line shows the execution of the process after concluding and being re-launched).

Pi

Pi+1

Pn

Workload	launched Workload	finished

…

The	process	is	launched.
The	process	finishes,	but	is	relaunched	to	complete	its	target	number	of	instructions.
The	process	completes	its	target	number	of	instructions,	concluding	its	execution.

Legend:

T1

T2

T3

Figure 3.6: Timing chart under the process selection methodology.

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 31

When the last one finishes, the framework kills all the processes and the experiment

concludes.

Despite the processes are relaunched, we need to measure the per-process performance

metrics when the applications finish for the first time. Since the processes can progress

at different paces, depending on the process allocation performed each quantum, there is

no guarantee that at the end of the workload all the processes would have executed the

same number of instructions. Thus, taking the per-process metrics when a given process

finishes (it completes its target number of instructions) and then relaunch it, solves

the mentioned problems, keeping uniform the number of applications of the workload

and ensuring that the comparison is performed over the same number of instructions

executed by each benchmark.

3.4 Metrics

A wide set of metrics has been used to analyze the performance and fairness of the

proposed scheduling algorithms.

• Turnaround time. It is defined as the maximum turnaround time among the

processes of a given workload (Equation 3.1). This metric measures the elapsed

time since a workload is launched to execution until the last process completes its

execution.

Turnaround time = Max (Turnaround time i) ∀{i} ∈ {1, N} (3.1)

Note that in the context of process scheduling, the turnaround time of a process

is the time since the process is launched until it concludes its execution, including

the time where the process is not scheduled [19]. Otherwise, by pausing threads

contention could be reduced and the turnaround time of the individual processes

improved.

• Average IPC. This is the plain metric to compare throughput and is calculated

as the arithmetic mean of the IPC of all the processes that form the workload

(Equation 3.2). Unfair scheduling strategies may favor this metric if they prioritize

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 32

the execution of those benchmarks with highest IPC [6], so that the total number

of instructions executed increases.

The unfair scenarios, however, are not allowed in our evaluation methodologies. In

the process selection methodology all the applications execute their target num-

ber of instructions. In the process allocation methodology, the applications are

relaunched after they complete their target number of instructions, but the indi-

vidual metrics of the process are obtained at this point. Thus, unfair scheduling

cannot affect the average IPC metric following our methodologies.

Average IPC =

∑N
i=0 IPC i

N
(3.2)

• Harmonic mean of the per-program IPC speedup. Luo et al. [50] propose

taking the harmonic mean of the individual thread speedups across all the applica-

tions of the workload (Equation 3.3), instead of using the arithmetic mean. They

argue that the harmonic mean of speedups can be used as a metric that simulta-

neously captures both performance and fairness, since it tends to be lower when

one or more threads have a significantly lower speedup (there is much variance).

Harmonic mean of IPC speedups =
N∑N

i=0
1

Speedup i

(3.3)

The speedup is defined as shown in Equation 3.4, where IPCTogether is the IPC of

the application running in a schedule and IPCAlone is the IPC of the application

running alone.

Speedup =
IPC Together

IPC Alone
=

Instructions
Turnaround cyclesTogether

Instructions
Turnaround cyclesAlone

(3.4)

• System throughput (STP) is a metric defined by Eyerman and Eeckhout [57] to

quantify the accumulated single-program progress under multiprogram execution.

It is calculated, using Equation 3.5, as the sum of the normalized progress over

isolated execution (i.e., speedup) of all the applications that compose the workload.

STP =
N∑
i=0

Speedup i (3.5)

Chapter 3. Sched. Framework, Exp. Platforms, and Eval. Methodology 33

• Average normalized turnaround time (ANTT). Eyerman and Eeckhout [57]

propose to quantify the user-perceived performance using the ANTT metric. ANTT

is calculated as the arithmetic mean, across all the applications of the workload,

of the turnaround time of each application normalized over its stand-alone execu-

tion. ANTT is essentially a measure of the average per-application performance,

but since it is inversely proportional to the harmonic mean of the per-program IPC

speedup, which tends to be lower when there is much variance, it also incorporates

a notion of fairness. It is a lower-is-better metric.

ANTT =

∑N
i=0

Turnaround time Together
i

Turnaround time Alone
i

N
(3.6)

• Unfairness. Running multiprogram workloads, fairness related metrics are used

to estimate if performance benefits or losses are balanced across all the processes

and do not concentrate only on a few of them. The unfairness metric has been

used in several works [18, 19, 58] and is defined as the maximum slowdown divided

by the lowest slowdown across all the processes (N) of the workload, as shown

in Equation 3.7. The slowdown of a process corresponds with the inverse of the

speedup defined in Equation 3.4. Notice that it is a lower-is-better metric and an

unfairness equal to 1 means that the system is completely fair.

Unfairness =
Max Slowdowni
Min Slowdownj

∀{i, j} ∈ {1, N} (3.7)

Chapter 4

Bandwidth-Aware Scheduling on

Multicore Processors

Several works have identified the main memory bandwidth of current processors as an

important performance bottleneck. This chapter goes further these studies, analyz-

ing the bandwidth contention through the full memory hierarchy of current multicore

processors, and proposing scheduling algorithms to mitigate its negative effects on per-

formance.

This chapter is organized as follows. First, the impact on performance of bandwidth

contention through the memory hierarchy is studied. Next, the Memory-hierarchy

bandwidth-aware scheduling algorithm is proposed to address bandwidth contention.

This scheduler is then improved by favoring the execution of the processes more sen-

sitive to bandwidth contention in less contentious schedules. Finally, the performance

achieved by the proposed schedulers is discussed.

35

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 36

4.1 Performance Degradation Analysis

This section explores the bandwidth contention through the memory hierarchy of current

single-threaded multicore processors. As an example of such architecture, we use a quad-

core Intel Xeon X3320 processor. Please refer to Section 3.2.1 for the most relevant

systems features.

The performance behavior analysis is carried out using the benchmarks of the SPEC

CPU2006 benchmark suite with reference inputs. First, we characterize the benchmarks

when running alone in the experimental platform. Then, we study their performance

degradation due to L2 and main memory bandwidth contention. Finally, we measure

their performance degradation under bandwidth-aware schedulers, which typically sched-

ule the processes to keep a uniform bandwidth utilization during the workload execution.

To carry out the performance degradation analysis, each benchmark is concurrently

launched with synthetic microbenchmarks, measuring the number of execution cycles,

retired instructions, L2 and L1 cache misses. The microbenchmark is designed to in-

ject synthetic traffic in the memory hierarchy and, depending on the requirements, it

can mimic the behavior of either a main memory-bounded or L2-bounded application.

Hence, this microbenchmark design allows us to study different workload conditions by

setting different microbenchmark configurations.

In addition to bandwidth, cache space also acts as an important contention point. Both

bandwidth contention and cache contention contribute to performance degradation.

Nevertheless, the use of cache misses is also a good indicator of how contentious the

cache usage is. The more contentious it is, the more misses occur, which translate into

memory requests to the next level of the memory hierarchy.

4.1.1 Benchmarks Characterization

In order to avoid interference from other co-runners1, each benchmark is character-

ized running alone in the system according to three main performance indexes: IPC,

Transaction Rate on L2 (TRL2), and Transaction Rate on main memory (TRMM), both

1In this chapter the term co-runner refers to all the processes that run concurrently on the multicore
processor.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 37

presented in transactions per microsecond. The transaction rate refers to the number of

transactions occurred at a given level of the memory system. If the memory hierarchy of

the experimental platform included an L3 cache level, it would also become contention

point and the TRL3 should be characterized. Notice that to quantify the TR of a given

cache level, that is, the bandwidth requirements of the running processes in that level,

we need to measure the number of transactions a process experiences between the cache

level and its immediately upper level. Nevertheless, when the processor does not offer

the accounting of such events, the TR can be accurately obtained by measuring the

misses that the processes experience in the upper cache level. For instance, the TRL2 of

a process can be calculated with the number of misses in the L1 cache. This is the case of

the Xeon X3320 processor, and thus we calculate the TR values from the miss values pro-

vided by performance counters. More precisely, together with the unhalted core cycles

event, we use the last level cache misses and L2 rqsts events to measure TRMM and

TRL2, respectively.

Figure 4.1 depicts the IPC for the studied benchmarks, while Figure 4.2 and Figure 4.3

show their TRMM and TRL2, respectively. A high correlation between IPC and TRMM

is observed since the five benchmarks with the lowest IPC (mcf, astar, milc, soplex, and

lbm) present relatively high TRMM values. TRL2 presents a lower impact, although

when it surpasses 40 transactions/microsecond the IPC is usually lower than 1 (mcf,

cactusADM, leslie3d, soplex, gemsFDTD, and lbm), except for libquantum and bwaves.

A given benchmark can be classified as memory-bounded when its TRMM is high enough

0.0

0.3

0.6

0.9

1.2

1.5

1.8

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

IP
C

Figure 4.1: IPC for each SPEC CPU2006 benchmark.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 38

27.6

0
2
4
6
8

10
12
14
16

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

TR
M
M
(tr
an
s./
us
ec
.)

Figure 4.2: TRMM for each SPEC CPU2006 benchmark.

138.6

0

20

40

60

80

100

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

TR
L2
(tr
an
s./
us
ec
.)

Figure 4.3: TRL2 for each SPEC CPU2006 benchmark.

to significantly increase main memory bandwidth contention. In such a case, the bench-

mark will show a low IPC and will potentially affect the IPC of the co-runners. Likewise,

a benchmark is considered to be L2-bounded when its TRL2 can cause L2 bandwidth

contention, which will affect the performance of those applications sharing the same L2.

Note that L2-bounded does not necessarily mean memory-bounded. This is the case

of leslie3d, with a TRL2 by about 80 transactions/microsecond but a TRMM around 2

transactions/microsecond.

To remark that the effect of cache hierarchy bandwidth contention is expected to grow

in future manycore processors where the LLC cache structures are being shared by an

increasing number of cores, most of them implementing multithreading capabilities.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 39

4.1.2 Microbenchmark Design

To analyze the performance degradation that contention causes in a given benchmark, we

designed a synthetic microbenchmark (based on the microbenchmark used in [11]), which

is used as co-runner. This microbenchmark creates contention by injecting synthetic

traffic in an infinite loop. To parametrize the induced contention, the microbenchmark

includes as argument the number of nop instructions that each iteration of the loop

executes. The higher the number nop operations included, the lower the contention

induced.

The designed microbenchmark can mimic the behavior of either a main memory-bounded

or an L2-bounded application. Each iteration of this program executes a memory in-

struction that misses in a target level Li of the memory hierarchy and hits in the next

level Li+1. Thus, the microbenchmark enables the study of how the performance of a

given applications is affected by bandwidth contention at a target level, which is the one

where the memory requests hit (i.e., L2 or main memory in the experimental platform).

To sum up, the microbenchmark is used to evaluate how the IPC of a given benchmark

degrades due to either main memory contention or cache bandwidth contention.

Algorithm 1 presents the core loop of the microbenchmark code. Parameter N refers

to the number of lines of the target cache and must be properly tuned according to

the cache geometry in order to force continuous misses in that level. The STRIDE

parameter controls the number of accessed sets in the cache. In order to precisely

control this number, the array A is allocated using huge pages [59], as explained below.

When using virtual memory, the address translation mechanism translates the virtual

addresses used by the processes into physical addresses to access the caches. Virtual

Algorithm 1 Microbenchmark pseudocode
Require: N, nops, STRIDE

1: char A[N][CACHE LINE SIZE]
2: while (1) do
3: for (i=0; r<100; i+=STRIDE) do
4: A[i][0] = 1;
5: end for
6: for (i=0; i<#nops; i++) do
7: asm(“nop”);
8: end for
9: end while

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 40

addresses can be logically split into virtual page number and page offset. In the address

translation process, the TLB translates the virtual page number to the physical page

number, while the offset of the virtual page is kept for the physical address.

For common 4 KB pages typically used in Linux, the page offset depends on the 12 less

significant bits of the address, while the 20 most significant bits are used to identify the

virtual page. In this way, assuming a 64-byte cache line size, when accessing a cache

with more than 64 sets, a process can not precisely control which set will be accessed

since some bits that identify the set depend on the physical page number provided by

the TLB, which is unknown to the running process. Therefore, the accessed sets are

unpredictable when crossing page boundaries. To deal with this shortcoming, we use

huge pages of 2 MB instead of typical 4 KB pages, which in the experimental platform

allows a user process to determine the cache set that is accessed each iteration just

modifying the page offset.

We configure the stride to access 25% of the cache sets. By using such a stride, the

maximum impact on the L2 miss ratio during the experiments is only about 3%. Note

that accessing a smaller percentage of the cache sets will increase this miss ratio because

more conflicts will arise (the microbenchmark will replace the blocks faster). On the

other hand, accessing a higher percentage implies using smaller strides, which causes the

hardware prefetcher to interfere in the access pattern of the microbenchmark, modifying

its parametrized TR and consequently affecting the experiment results.

To ensure the desired microbenchmarks behavior, loop indexes are mapped to registers

using the C language register keyword and the code is compiled with the -O0 optimiza-

tion flag. The hardware prefetcher is disabled to check that the microbenchmark exhibits

the desired behavior, but it is enabled again to perform the performance degradation

analysis and the experimental evaluation.

4.1.3 Degradation due to Main Memory Contention

To check the performance degradation caused by main memory contention, we designed

two experiments. The first experiment is aimed at checking the impact of the traffic

created by the co-runners on the performance of a given benchmark. The second studies

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 41

how the number co-runners and the core they are launched to affect the performance of

the benchmarks.

The first experiment is designed assuming that the system is fully loaded; that is, each

core is busy running a process. To this end, each benchmark is concurrently launched

with three memory-bounded instances of the microbenchmark. To explore the effects

of having different traffic amounts, the microbenchmark is configured to obtain TRMM

values ranging from 5 to 70 transactions/microsecond for each instance. The highest

value of the range is the maximum number of main memory transactions/microsecond

the microbenchmark can perform in the experimental platform.

Figure 4.4 presents the results of this experiment. As observed, the amount of mem-

ory traffic generated by the microbenchmark can strongly affect the performance of the

applications. In some cases, performance drops exceed 50%. This is the case of mcf,

libquantum, milc, soplex, and lbm, when the three instances of the microbenchmark are

tuned to have a TRMM equal to 70 transactions/microsecond. Few applications, like

hmmer, gamess, nand, or povray, are lightly affected since they show very low trans-

action rate between L2 and main memory. As expected, the lower the TRMM of the

microbenchmark the smaller the performance degradation. However, some benchmarks,

like libquantum, milc, soplex, and lbm, show important performance drops (greater than

or close to 10%) even for a TRMM of the microbenchmark equal to 5 transactions/mi-

crosecond.

0

10

20

30

40

50

60

70

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

IP
C	
de
gr
ad
at
io
n	
(%
)

70	trans./usec. 50	trans./usec. 25	trans./usec. 5	trans./usec.

Figure 4.4: IPC degradation due to main memory contention varying the TRMM of
the co-runners.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 42

Main memory

L2 L2

B M
(a) 1 co-runner,
not sharing L2

Main memory

L2 L2

B M
(b) 1 co-runner,

sharing L2

Main memory

L2 L2

B M
(c) 2 co-runners

M

Main memory

L2 L2

B M
(c) 3 co-runners

M M

Figure 4.5: Analyzed microbenchmarks scenarios.

The second experiment varies the number of co-runners as well as the core on which they

are executed. The microbenchmark instances are launched with a TRMM equal to 50

transactions/microsecond. Figure 4.5 shows the four scenarios analyzed and Figure 4.6

presents the results.

Notice that the benchmarks experience a performance degradation in scenario d similar

to that of scenario c, despite there is one extra instance of the microbenchmark running in

scenario d. This means that memory bandwidth is already saturated with two instances

of the microbenchmark for almost all the studied benchmarks. Regarding the scenarios

with one co-runner (a and b), most benchmarks suffer higher IPC degradation when

the microbenchmark runs on a core that shares the LLC with the core running the

benchmark (scenario b), since in this case the processes are affected by both L2 cache and

main memory bandwidth contention. Only a few memory-bounded benchmarks (milc,

GemsFDTD, and lbm) suffer higher performance degradation when the microbenchmark

0

10

20

30

40

50

60

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

IP
C	
de
gr
ad
at
io
n	
(%
)

Scenario	a Scenario	b Scenario	c Scenario	d

Figure 4.6: IPC degradation due to contention in the four studied scenarios.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 43

does not share the LLC (scenario a). A priori, scenario a should cause lower performance

degradation than scenario b, where the processes share the LLC cache additionally to the

main memory. However, when the LLC cache is not shared and there is not L2 bandwidth

contention, the microbenchmark effectively reaches higher main memory transaction

rates, increasing the contention at this point. This fact explains why some benchmarks

suffer higher performance degradation in scenario a than in scenario b.

In short, some benchmarks suffer additional degradation from the cache hierarchy con-

tention (scenario b) while others are mainly affected by memory bandwidth contention

(scenario a). Therefore, it is critical to consider both of them when scheduling on

machines with a complex memory hierarchy.

4.1.4 Degradation due to L2 Contention

To evaluate the performance degradation caused by L2 contention, the microbenchmark

parameters are tuned to stress the L2 cache but not the main memory. That is, the

memory accesses will miss on the L1 cache and hit on the L2 cache. Since each L2

cache is shared by a pair of cores, experiments focus only on a single L2 cache. Two

processes are launched together, one SPEC benchmark and one L2-bounded instance of

the microbenchmark. Hence, there is no benchmark running on the other pair of cores.

We vary the induced TRL2 of the co-runner from 20 to 290 transactions/microsecond,

which is the maximum value reachable in the platform.

Figure 4.7 shows the performance degradation suffered by the benchmarks in this ex-

periment. As observed, the IPC of some benchmarks like mcf and soplex is strongly

affected (IPC degradation is even higher than 10%) by the traffic created by other pro-

cesses competing for the L2 cache. In addition, twelve benchmarks from twenty seven

have a degradation higher than or close to 5% when they are co-scheduled with an

L2-bounded instance of the microbenchmark with TRL2 equal to 290 transactions/mi-

crosecond. This means that some benchmarks are highly sensitive to the L2 accesses of

the co-runners. In fact, in some benchmarks like bzip2, h264ref, omnetpp, xalancbmk,

or povray the IPC degradation due to L2 contention can be higher than the caused by

main memory contention, when the corresponding benchmark runs concurrently with

one instance of the microbenchmark. For example, the performance degradation of

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 44

0

2

4

6

8

10

12

14
pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

IP
C	
de
gr
ad
at
io
n	
(%
)

290	trans./usec. 160	trans./usec. 75	trans./usec. 20	trans./usec.

Figure 4.7: IPC degradation due to L2 contention varying the TRL2 of the co-runners.

bzip2 caused by main memory contention when running concurrently with one memory-

bounded microbenchmark is 2%, while one L2-bounded microbenchmark can degrade

its performance up to 5%.

Therefore, in this work we claim that, since the current industry trend is to increase

the number of cores as well as their multithreading capabilities, a bandwidth-aware

scheduling policy for each level of the cache hierarchy can help the scheduler to improve

the system performance.

4.1.5 Degradation Running in Bandwidth-Aware Scheduling Scenarios

The last experiment analyzes the IPC degradation suffered by the benchmarks assum-

ing a fixed main memory bandwidth utilization generated by all the processes running

concurrently. The IPC degradation is evaluated for a bandwidth utilization of 30 trans-

actions per microsecond, which is the average IABW of the evaluated mixes (see Sec-

tion 4.3.2). This experiment reproduces the common situation created by state-of-the-art

bandwidth-aware schedulers, which try to achieve a constant bandwidth utilization as

close as possible to the IABW. Therefore, the experiment obtains an IPC degradation

that approaches to the suffered by each benchmark when it is executed under this kind

of schedulers. In order to simulate the described situation, the benchmarks are exe-

cuted concurrently with three instances of the microbenchmark. The TRMM of the

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 45

microbenchmark is tuned to reach an overall amount of 30 memory transactions/mi-

crosecond, considering the benchmark plus the three instances of the microbenchmark.

Figure 4.8 shows the results of this experiment. The observed degradation is highly cor-

related with the TRMM presented by the benchmarks (see Figure 4.3). Benchmarks with

low TRMM are not sensitive to the contention between L2 and main memory since their

main memory accesses are not frequent. In fact, benchmarks with TRMM lower than 2

transactions/microsecond suffer an IPC degradation below 5% (except dealII, bzip2, and

libquantum, although the TRMM of the last two is close to 2 transactions/microsecond).

In contrast, all the benchmarks with TRMM above 2 transactions/microsecond suffer a

higher IPC degradation, which surpasses 10%, with the only exception of astar.

Depending on the degradation level, benchmarks can be classified in two categories. The

little sensitive group includes the processes with an IPC degradation below 5%, which

are little affected by the bandwidth-aware scheduling. On the other hand, benchmarks

with an IPC degradation between 5% and 35% are included in the sensitive category,

since their degradation due to bandwidth-aware scheduling is higher. Note that these

bounds are appropriate since only two benchmarks present degradations between 5%

and 10%.

The degradation observed in this experiment motivates the design of a scheduling al-

gorithm that considers the performance degradation of the processes in this scenario

0

5

10

15

20

25

30

35

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ca
lc
ul
ix

ge
m
sF
DT

D
to
nt
o

lb
m

IP
C	
de
gr
ad
at
io
n	
(%
)

Figure 4.8: IPC degradation with total TRMM of 30 transactions/microsecond when
running with three co-runners.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 46

to achieve higher performance. Such scheduling algorithm is proposed in Section 4.2.3,

and uses the degradation measured in these experiments to execute the processes that

suffer higher degradation in those execution periods with less main memory bandwidth

requirements.

4.2 Memory-Hierarchy Bandwidth-Aware Scheduling

4.2.1 Baseline Main Memory Bandwidth-Aware Scheduler

Numerous schedulers have been proposed dealing with main memory bandwidth con-

tention. Most proposals work as follows. First, they block the running processes, read

performance counters, and update the bandwidth requirements of the processes for the

next quantum from the counter values. Then, the scheduler selects which processes will

be run concurrently during the next quantum according to their expected bandwidth

utilization.

Typically, schedulers have pursued to keep full utilization of the available bandwidth,

by selecting processes trying to match the peak memory bus bandwidth [14]. However,

recent works proved that contention could exist before the bandwidth utilization reaches

the peak bandwidth.

This chapter uses as baseline the scheduler proposed by Xu et al. [11]. This work defines

the IABW using Equation 4.1, which quantifies the main memory bandwidth demand

of a workload. The IABW is calculated as the sum of the number of main memory

transactions performed by all the processes that compose the mix divided by its ideal

execution time. This ideal time refers to the execution time of the mix assuming that

there is no contention when the processes are concurrently executed (i.e,. assuming each

process takes the same execution time as in stand-alone execution). Thus, to calculate

the IABW the scheduler needs to know the stand-alone execution time and TRMM of

the benchmarks to be run.

IABW =

∑P
p=0 (TRp

MM) ∗ T p∑P
p=0 T

p

#cores

(4.1)

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 47

By scheduling jobs whose memory bandwidth requirements approach the IABW, perfor-

mance degradation is reduced since bandwidth utilization is balanced along the workload

execution time, so reducing contention.

4.2.2 Memory-Hierarchy Bandwidth-Aware Scheduler

The performance degradation analysis discussed in Section 4.1.3 and Section 4.1.4 claims

for the necessity of a job scheduling policy that is aware of the available bandwidth in

each potential contention point of the memory hierarchy, and not only of the main

memory bandwidth (as stated in previous proposals). Therefore, the scheduler must

monitor the transaction rates that each process experiences in any level of the memory

hierarchy.

The proposed Memory-hierarchy bandwidth-aware scheduler addresses the target band-

width at each contention point and schedules the processes in n steps (as many as levels

with at least two shared caches in the hierarchy plus the main memory). The strategy

follows a top-down approach, that is, in the first step processes are selected to match

a target main memory bandwidth (upper contention point in Figure 1.1). Then, the

LLC bandwidth is addressed by balancing the transactions of caches in the immediately

higher level (closer to the cores). After that, contention points of the following levels

of the cache hierarchy with at least two shared caches are addressed (if they exist). At

the end, jobs are allocated to cores so that the bandwidth along the cache hierarchy is

balanced. Notice that by using cache bandwidth to guide the scheduling strategy, the

policy also takes into consideration cache space contention implicitly.

Algorithm 2 discusses the pseudocode of the Memory-hierarchy bandwidth-aware sched-

uler. The algorithm can be seen as logically divided in an initialization step and three

phases. In the initialization step the scheduler calculates the IABW of the mix, for

which the stand-alone execution time and TRMM of the benchmarks of the mix must

be provided to the scheduler.

In the first phase (lines 3 to 8), until all the processes have completed their execution,

the scheduler repeats the following steps. First of all, the scheduler stops the processes

running during the last quantum and updates their TR values. To calculate the TR

values, the scheduler uses the performance counters to gather for every process running

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 48

Algorithm 2 Memory-hierarchy bandwidth-aware scheduler
Require: Benchmarks submitted with execution time and TRMM in stand-alone execution

1: IABW =
∑P

p=0 (TRp
MM)∗Tp∑P

p=0 Tp

#cores

2: while there are unfinished jobs do
3: Block the executing processes and place them at the queue tail
4: for each process P executed in the last quantum do
5: for each cache level L do
6: Update TR for process P in cache level L
7: end for
8: end for
9: BWRemain =IABW

10: Select the process P head at the queue head

11: BWRemain− =TRP head
MM , CPURemain = #cores−1

12: while CPURemain > 0 do
13: select the process P that maximizes
14: FITNESS(p) = 1∣∣∣ BWRemain

CPURemain
−TRP

MM

∣∣∣
15: BWRemain − = TRP

MM , CPURemain −−
16: end while
17: for each level i in the cache-hierarchy with shared caches beginning from the LLC do

18: AVG TR(Li)=
∑

TRL(i)

#Caches at Li

19: for each cache in level Li do
20: BWRemain = AVG TR(Li), CPURemain = # cores sharing the cache
21: while CPURemain > 0 do
22: From the remaining processes selected to share the immediately lower memory

level, select the process P that maximizes
23: FITNESS(p) = 1∣∣∣ BWRemain

CPURemain
−TRP

Li

∣∣∣
24: BWRemain− = TRP

Li, CPURemain −−
25: end while
26: end for
27: end for
28: Unblock the processes, and allocate them in the chosen core
29: Sleep during the quantum
30: end while

during the last quantum its number of main memory and cache misses as well as the

number of executed cycles. The TR values reached during a given quantum are used

by the scheduler as predicted TR requirements for the next quantum. In particular,

in our experimental platform, for each process, TRMM and TRL2 are updated with

the gathered values to predict the bandwidth requirements of main memory and L2,

respectively. Once the TRs are updated, the processes are inserted at the tail of the

processes queue.

In the process selection phase (lines 9 to 16), the processes to be scheduled for the next

quantum are selected attending to their main memory bandwidth requirements. In line

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 49

9, the scheduler initializes BWRemain to the target IABW and CPURemain to the number

of cores in the experimental platform. Then, the process located at the queue head is

selected to avoid process starvation, while the remaining processes are selected according

to the fitness function [13, 14] (lines 12 to 16). This function quantifies, for each process,

the gap between the predicted TR of the process and the remaining bandwidth divided

by the number of processes that still need to be selected (CPURemain). The process that

maximizes the fitness function is selected to run during the next quantum, updating

BWRemain and CPURemain accordingly, until the number of selected processes reaches

the number of cores. The result of this step is the list of the processes that will be

executed during the next quantum.

Finally, in the process allocation phase (lines 17 to 27), the algorithm deals with bal-

ancing the contention for bandwidth at the shared levels of the cache hierarchy (e.g., L3

and L2 in Figure 1.1). To this end, for each level Li, the required TR of all caches at

Li−1 level is estimated and averaged considering the number of caches at Li level (line

18). Then, for each cache, BWRemain and CPURemain are set to the average TR and the

number of cores sharing that cache, respectively (line 20). Next, processes are assigned

to each cache structure at Li level according to the fitness function, as done with the

main memory bandwidth (lines 21 to 25). Notice that by using the proper inputs, the

fitness function can be directly used at any cache level of the memory hierarchy. The

loop ends when it reaches the highest level with shared caches (i.e., L2 in the experimen-

tal platform) where it selects two processes for each L2 cache, which can subsequently

be allocated to any of the two cores sharing the L2 cache.

4.2.3 IPC-Degradation Memory-Hierarchy Bandwidth-Aware

Scheduler

The analysis of the performance degradation under bandwidth-aware scheduling scenar-

ios (Section 4.1.5) helps providing useful information to enhance scheduling and allo-

cation decisions. As mentioned above, the Memory-hierarchy bandwidth-aware sched-

uler calculates the IABW of the mix, and then tries to schedule the processes for the

next quantum to approach an overall bandwidth utilization as close as possible to the

IABW. The IPC-degradation memory-hierarchy bandwidth-aware scheduler improves

the scheduling decisions using the benchmark classification performed in Section 4.1.5.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 50

This classification arranges the benchmarks as sensitive and little sensitive, depending

on whether they suffer significant performance degradation or not when scheduled with

other processes where the overall TRMM is close to the IABW. As observed in Figure

4.8, the performance degradation experienced by processes in this situation widely differs

among them, so a smart scheduler can use this information to increase the performance.

The key idea of the proposed technique consists in favoring the performance of sensitive

benchmarks. To this end, when a sensitive benchmark is selected to run during the

next quantum, the scheduler selects its co-runners to reach an estimated main memory

bandwidth consumption below the IABW. To compensate this variation, little sensitive

benchmarks will be scheduled to execute in situations where the total bandwidth utiliza-

tion is above the IABW. Nevertheless, since the most sensitive processes are executed

in favorable situations, a global performance increase is expected.

To incorporate this technique in the scheduling algorithm, a penalty coefficient is in-

cluded. This coefficient is defined as a proportional part of the IPC degradation suffered

by each benchmark. Different coefficient values were checked to maximize the perfor-

mance (see Section 4.4.2), resulting the best penalty coefficient as a fifth of the process

IPC degradation for sensitive benchmarks and zero for little sensitive benchmarks.

Algorithm 3 presents the proposed scheduler considering the performance degradation

of the processes in bandwidth-contention aware scheduling scenarios. It extends the

Memory-hierarchy bandwidth-aware scheduler presented before (Algorithm 2). The dis-

cussion focusses on the differences between both algorithms, which are highlighted in

red color, and how they affect the scheduling that the new scheduler performs. Note

that the first scheduling phase (lines 2 to 8), which gathers the performance counts, and

the process allocation phase (lines 17 to 27) have not been modified.

In the initialization step, the scheduler calculates the swelled IABW (SIABW), which

replaces the IABW as the target main memory bandwidth utilization to be achieved in

each quantum. The SIABW is calculated in a similar way to the IABW, but adding

the penalty coefficient of each process to its average TRMM . By including the penalty

coefficient of the processes, the calculated SIABW of a mix is higher than the IABW.

To select the processes that will be executed in the next quantum (lines 9 to 15), the

algorithm starts setting BWRemain to the SIABW (line 9). As Algorithm 2 does, the

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 51

Algorithm 3 IPC-degradation memory-hierarchy bandwidth-aware scheduler
Require: Benchmarks submitted with execution time and TRMM in stand-alone execution, and

penalty coefficients.

1: SIABW =
∑P

p=0 (TRp
MM+PenaltyCoefp)∗Tp∑P

p=0 Tp

#cores

2: while there are unfinished jobs do
3: Block the executing processes and place them at the queue tail
4: for each process P executed in the last quantum do
5: for each cache level L do
6: Update TR for process P in cache level L
7: end for
8: end for
9: BWRemain = SIABW

10: Select the process P head at the queue head
11: BWRemain− = (TRP head

MM + PenaltyCoefP head), CPURemain = #cores−1
12: while CPURemain > 0 do
13: select the process P that maximizes

14: FITNESS(p) = 1∣∣∣ BWRemain
CPURemain

−(TRP
MM+Penalty Coefp)

∣∣∣
15: BWRemain− = (TRP

MM+PenaltyCoefP), CPURemain −−
16: end while
17: for each level i in the cache-hierarchy with shared caches beginning from the LLC do

18: AVG TR(Li)=
∑

TRL(i)

#Caches at Li

19: for each cache in level Li do
20: BWRemain = AVG TR(Li), CPURemain = # cores sharing the cache
21: while CPURemain > 0 do
22: From the remaining processes selected to share the immediately lower memory

level, select the process P that maximizes
23: FITNESS(p) = 1∣∣∣ BWRemain

CPURemain
−TRP

Li

∣∣∣
24: BWRemain− = TRP

Li, CPURemain −−
25: end while
26: end for
27: end for
28: Unblock the processes, and allocate them in the chosen cores
29: Sleep during the quantum
30: end while

process at the queue head is the first selected to run the next quantum to avoid pro-

cess starvation (line 10). Note that after a process is selected, BWRemain is updated

subtracting the TRMM of the process plus its penalty coefficient (line 11).

The penalty coefficient will be subtracted from the BWRemain for every selected pro-

cess (line 15) and allows the sensitive processes to reserve some additional bandwidth

(equal to their penalty coefficient) that will not be effectively used. The effect of this

action is that, when selecting sensitive benchmarks, the overall bandwidth contention

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 52

will be lower, thus favoring their execution. This also means that little sensitive bench-

marks will run in scenarios with higher main memory bandwidth consumption, but their

performance is less affected by this increased contention.

The remaining processes are selected, until the number of cores is reached, according

to the new fitness function (line 14). The function has been modified to consider the

penalty coefficient of the processes as an extra bandwidth requirement. Thus, a process

should have a TRMM plus its penalty coefficient as close as possible to the remaining

bandwidth per remaining core to be selected. From a practical point of view, the change

in the fitness functions restricts the selection of sensitive processes by increasing their

bandwidth requirements to be selected.

A simple example can help to clarify how the changes affect scheduling. Let’s assume

that there is one available core and BWRemain is 3 trans./usec. The two candidate

processes are libquantum and bwaves, which present a TRMM of 3 and 2 trans./usec.,

respectively. As can be observed in Figure 4.8, libquantum is a sensitive process and its

penalty coefficient is by 2.5. Conversely, bwaves is little sensitive and thus its penalty

coefficient is zero. Without considering penalty coefficients, such as in Algorithm 2,

libquantum is a perfect fit since its TRMM matches the BWRemain. However, considering

the penalty coefficients bwaves achieves higher fitness and would be the selected process.

This is done because libquantum is sensitive and the algorithm tries to execute it when

the bandwidth consumption is lower to favor its execution. In this case, libquantum

would be a perfect fit when BWRemain is by 5.5 trans./usec.

In summary, the IPC-degradation memory-hierarchy bandwidth-aware scheduler runs

the sensitive benchmarks in execution periods and with co-runners where the main

memory transaction rate is lower, favoring their performance. On the other hand, little

sensitive processes run in scenarios with higher main memory transaction rate, but they

do not suffer additional performance degradation for this situation.

4.3 Evaluation Setup

The evaluation of the proposed algorithms is performed in the Intel Xeon X3320 system

(see Section 3.2.1). To ensure a fair comparison of different scheduling policies, all the

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 53

evaluated algorithms are implemented in the scheduling framework (see Section 3.1).

The experimental evaluation is carried out following the process selection evaluation

methodology, described in Section 3.3.1, which does not relaunch the applications after

they complete their target number of instructions. In this chapter, the target number

of instructions for each SPEC CPU2006 benchmark is set to the number of instructions

each benchmark executes running alone for 120 seconds, and the scheduler quantum is

fixed to 200 milliseconds. The performance evaluation is focussed on the turnaround

time of the mixes, which measures the time required to complete the execution of the

workloads (see Section 3.4 for further details about the metric).

4.3.1 Evaluated Algorithms

The experimental evaluation considers the following scheduling algorithms.

• Linux: the default Linux Completely Fair Scheduler (CFS).

• Baseline Main memory bandwidth-aware (MMaS): the scheduler proposed

by Xu et al. [11].

• Memory-hierarchy bandwidth-aware (MHaS): our proposed scheduler that

considers the bandwidth requirements along the memory hierarchy to reduce band-

width contention.

• IPC-degradation memory-hierarchy bandwidth-aware (IDaS): our pro-

posed scheduler that, in addition to mitigate bandwidth contention through the

memory hierarchy, favors the execution of the sensitive applications.

4.3.2 Mix Design

To evaluate the effectiveness of the proposal we design a set of ten mixes. Mixes 1 to 7

contain a number of benchmarks twice as large as the number of cores, while mixes 8 to

10 triple this value. Table 4.1 presents the mixes and their associated IABW. The studied

mixes present IABWs between 20 and 40 transactions/microsecond. Notice that this is

the range where bandwidth-aware schedulers enable higher performance enhancements.

There are benchmarks with poor memory requirements that present a limited number of

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 54

misses in both L1 and L2 caches. Hence, if the mix is built only using benchmarks with

this behavior, the contention will be low, thus avoiding the necessity of the proposed

scheduling policies. As opposite, if all the benchmarks in a mix have a high TRMM ,

the schedulers will be forced to launch memory-bounded benchmarks together, leaving

little room to improve performance. Therefore, a good mix should include a subset of

memory-bounded benchmarks mingled with a subset of benchmarks with low memory

requirements.

Mixes Benchmarks IABW

Mix 1 GemsFDTD, H264ref, Hmmer, Lbm, Lbm, Mcf, 34.45

Tonto, Xalancbmk

Mix 2 Astar, Calculix, GemsFDTD, H264ref, Hmmer, Lbm, 23.46

Mcf, Tonto

Mix 3 Astar, GemsFDTD, Hmmer, Lbm, Lbm, Mcf, 37.13

Tonto, Xalancbmk

Mix 4 Astar, CactusADM, GemsFDTD, Lbm, Lbm, Mcf, 39.37

Tonto, Xalancbmk

Mix 5 Astar, Bwaves, CactusADM, Lbm, GemsFDTD, Mcf, 26.37

Tonto, Xalancbmk

Mix 6 Astar, DealII, GemsFDTD, H264ref, Lbm, Mcf, 24.31

Namd, Sjeng

Mix 7 CactusADM, GemsFDTD, Mcf, Milc, Lbm, Leslie3d, 26.32

Tonto, ZeusMP

Mix 8 Astar, Bzip2, DealII, Gcc, GemsFDTD, H264ref, 29.45

Lbm, Lbm, Mcf, Mcf, Namd, Sjeng

Mix 9 Astar, Bwaves, CactusADM, CactusADM, DealII, Lbm, 31.14

Lbm, Mcf, Soplex, Tonto, Xalancbmk, ZeusMP

Mix 10 Astar, Bwaves, CactusADM, DealII, GemsFDTD, Lbm, 29.81

Lbm, Mcf, Milc, Sjeng, Tonto, Xalancbmk

Table 4.1: Mix composition and IABW of each mix.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 55

4.4 Experimental Evaluation

4.4.1 Performance Evaluation

Figure 4.9 shows the speedup achieved by MMaS and both proposed schedulers, MHaS

and IDaS, over the native Linux scheduler considered as baseline. As observed, regard-

less of the workload, the proposals always provide better performance than the main

memory-bandwidth aware scheduler. For MMaS, the achieved speedup widely varies

across mixes, ranging from 1.6% to 5.2%, with an average speedup of 3.6%, showing

it can improve the performance of the studied mixes with respect to Linux, as stated

in [11]. For MHaS, the achieved speedup ranges from 3.4% to 7.3%, averaging 5.4%.

These results show that a scheduler considering the contention across the memory hier-

archy can improve the performance of a scheduler that only considers the main memory

contention. The achieved speedup is further improved by IDaS, whose speedup ranges

from 3.7% to 9.6%, averaging 6.6%. The average speedup achieved by IDaS almost

doubles the average speedup achieved by MMaS. Furthermore, in half of the mixes (2,

6, 8, 9, and 10), IDaS triples the speedup of MMaS. The main reason behind the per-

formance of MHaS is that it balances the transactions across contention points along

the cache hierarchy. Since the experimental platform has two shared L2 caches, the

scheduler allocates jobs to cores taking into account that L1 misses must evenly access

both L2 caches. In this way, the L2 bandwidth contention is reduced, which turns into

performance enhancements.

0

2

4

6

8

10

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 AVG

Sp
ee
du

p	
(%
)

MMaS MHaS IDaS

Figure 4.9: Speedup of the MMaS, MHaS, and IDaS schedulers over the native Linux
scheduler.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 56

To estimate how well this balancing works, we measured the TRL2 accessing both L2

caches and calculated their difference. Figure 4.10 presents the results. The histogram

represents the frequency of the TRL2 difference between both L2 caches for MMaS and

MHaS. Results are presented in intervals of 25 transactions per microsecond. The bigger

the lower intervals (i.e., smaller difference), the better the accesses are balanced between

L2 caches.

For example, if we compare MMaS bar versus MHaS bar in mix 1, we can observe that

in MMaS, 40% of time (bottom bar) the TRL2 difference between both L2 caches is less

than 25 transactions/microsecond. The immediately upper bar indicates that by 30% of

times the difference falls in the range [25, 50] and so on. In contrast, for MHaS, the [0, 25]

interval frequency increases up to 50% of time, resulting in better TRL2 distribution and

better performance.

Results show a strong correlation between the frequency distribution and the speedup.

For instance, mixes 2, 6, 8, and 10 present the widest distribution variation between both

schedulers, which translates in the highest speedup variations. This can be appreciated

in the lowest interval, that is [0, 25], in mix 2, but also in the reduction of the intervals

above 50 transactions/microsecond in mixes 6, 8, and 10.

To provide a sound understanding of why TR balancing improves the performance, let’s

look inside the dynamic execution of a mix. In particular, let’s focus on mix 2 where

MHaS improves by 50% the speedup achieved by MMaS. Figure 4.11 shows the TRL2

0%

20%

40%

60%

80%

100%

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

M
M
aS

M
Ha

S

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10

Fr
ec
ue
nc
y

[0, 25] [25, 50] [50, 75] [75, 100] [100,	∞)

Figure 4.10: TRL2 differences between the MMaS and MHaS schedulers in the L2
shared caches.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 57

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32

TR
	 L2
di
ff
er
en
ce
	(t
ra
ns
./
us
ec
.)

Time	(s)

MMaS MHaS

Figure 4.11: TRL2 differences between the MMaS and MHaS schedulers in the first
32 seconds of execution of mix 2.

difference of each quantum during the first 32 seconds of execution for both schedulers.

The plot shows that the TRL2 difference for MMaS is usually higher than for MHaS. An

even more important observation is that the peaks of this difference, which cause most

of the contention are reduced by MHaS, both in number and size.

Figure 4.12 presents the dynamic TRL2 differences using the MMaS, MHaS, and IDaS

schedulers during the first 275 seconds of execution of mix 2. TRL2 differences, which

are mainly caused by the mcf benchmark appear before in MHaS than in MMaS. Notice

that this speedup is not achieved at the expense of increasing the peak heights, since the

heights are reduced too. This effect is improved by IDaS that places the peaks ahead

of MHaS. Moreover, TRL2 differences among most peaks are also improved. Looking

at the IDaS plot, it can be appreciated that in many intervals the TRL2 difference falls

always below 50 transactions/microsecond. Notice that the difference usually falls above

this value in MMaS.

Finally, to compare the benefits of IDaS against MHaS, we measured the percentage

of benchmarks in each mix that reduce their execution time (speedup) and those that

enlarge it (slowdown). Figure 4.13 shows the results. The first two intervals with

negative values in the range refer to slowdown while the remaining ones (positive values)

refer to benchmarks favored by IDaS. As observed, 9 of 10 mixes are benefited by the

IDaS scheduler. Moreover, six mixes present by 60% of their benchmarks favored by the

IDaS policy. The penalty coefficient included in IDaS cause the sensitive benchmarks

to execute in scenarios with less contention. Thus, these benchmarks present speedup.

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 58

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275

TR
L2

d
if
fe

re
n
ce

 (
t/

u
se

c)

Time (s)

MMaS

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275

TR
L2

d
if
fe

re
n
ce

 (
t/

u
se

c)

Time (s)

MHaS

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275

TR
L2

d
if
fe

re
n
ce

 (
t/

u
se

c)

Time (s)

IDaS

Figure 4.12: TRL2 difference evolution with time between the MMaS, MHaS, and
IDaS schedulers.

On the other hand, little sensitive benchmarks are executed in scenarios with higher

bandwidth contention, slowing down their execution but with a low impact on the overall

performance.

Mix 4 is the only mix where the percentage of benchmarks with slowdown is higher

than the percentage of benchmarks with speedup. Even in this mix, the execution time

using the IDaS scheduler is better than using the MHaS scheduler. Notice that the

individual speedups of the benchmarks do not take into account the fact that at the end

of the mix execution, some benchmarks can be executed when the number of processes

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 59

0%

20%

40%

60%

80%

100%

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10

Fr
ec
ue
nc
y

[-5, -2.5] [-2.5, 0] [0, 2.5] [2.5, 5] [5, ∞)

Figure 4.13: Speedup of the benchmarks of each mix with the IDaS scheduler against
the MHaS scheduler.

is lower than the number of cores. When this situation is long enough, IPC of individual

benchmarks is improved since there is less contention, but the mix execution time will

not necessarily be improved.

4.4.2 Profiling the Penalty Coefficient

In Section 4.1.5, we discussed that each benchmark suffers different performance degra-

dation when scheduled in the scenarios typically promoted by bandwidth-aware sched-

ulers. To check this degradation, the IPC of each benchmark was measured when

the overall main memory transaction rate was 30 transactions/microsecond, and the

benchmarks were classified in two categories: sensitive and little sensitive, depending

on whether they show high or low IPC degradation, respectively, when running in this

scenario. Based on the observed results, a penalty coefficient with the aim of favoring

the execution of the sensitive processes is defined (see Section 4.2.3).

The penalty coefficient is defined as directly proportional to the performance degradation

of the benchmarks. To check where the highest performance is achieved, we profiled this

coefficient for values falling in between 5% and 30% of the performance degradation.

Figure 4.14 presents the speedups of the IDaS scheduler over Linux, with different values

for the penalty coefficient. The figure shows that, on average, the maximum performance

is obtained with a penalty coefficient of 20%. This coefficient is also the best one in five

mixes (1, 3, 7, 8, and 10) and it is close to the best value in the remaining mixes. The

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 60

0

1

2

3

4

5

6

7

8

9

10

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 AVG

Sp
ee
du

p	
(%
)

0% 5% 10% 15% 20% 25% 30%

Figure 4.14: Speedups of the IDaS scheduler over the Linux scheduler varying the
penalty coefficient.

largest difference with the maximum performance appears in mix 5 and it is only around

0.3%.

4.5 Summary

This chapter has addressed cache sharing contention in typical multicore processors, and

has proven that the system performance can drop due to bandwidth contention located

at different levels of the memory hierarchy. Since bandwidth contention in shared caches

is expected to grow in future microprocessor generations with a higher number of cores,

and wider and deeper memory hierarchies, we claim that process schedulers should be

aware of the bandwidth contention through the cache hierarchy to prevent significant

performance loses when running multiprogram workloads.

To deal with this performance concern, in this chapter we have proposed two scheduling

algorithms for generic multicore processors. The Memory-hierarchy bandwidth-aware

scheduler selects the processes taking into account the main memory bandwidth to

reduce the global contention, and then follows a top-down multi-level approach that

takes n steps (as many as cache levels with at least two shared caches) to plan a glob-

ally balanced schedule for the next quantum. The IPC-degradation memory-hierarchy

bandwidth-aware scheduler enhances the first algorithm, favoring the execution of the

Chapter 4. Bandwidth-Aware Scheduling on Multicore Processors 61

processes that are more sensitive to main memory bandwidth contention on schedules

with lower main memory bandwidth utilization.

Experimental results show that, compared to the native Linux scheduler, the achieved

speedups range from 3.4% to 7.3% and from 3.7% to 9.6%, for the former and lat-

ter scheduling algorithms, respectively. The average speedup for the IPC-degradation

memory-hierarchy bandwidth-aware scheduler is by 6.6%, which almost doubles the

speedup achieved by a state-of-the-art memory-contention aware scheduler.

The work discussed in this chapter has been published in [60], [61], and [12].

Chapter 5

Bandwidth-Aware Scheduling in

SMT Multicores

Contention aware schedulers have been extensively used to mitigate the performance

degradation caused by bandwidth interference on the memory hierarchy of multicore

processors. However, since the L1 cache is implemented within the core pipeline and

not shared with other cores, it has been left out of the scope of all these works. Never-

theless, simultaneous multithreading cores share the L1 bandwidth among the threads

running on the same core, which turns L1 bandwidth into a potential contention point.

This chapter analyzes the impact of L1 bandwidth contention on the performance and

proposes a process allocation policy to deal with this contention point, and an entire

scheduler for SMT multicores that addresses bandwidth contention at main memory and

the L1 cache.

This chapter is organized as follows. First, the potential performance degradation due to

L1 bandwidth contention is studied. Next, the proposed SMT bandwidth-aware sched-

uler, which consists of the Self-reliant main memory bandwidth aware process selection

policy and the Dynamic L1 bandwidth-aware process allocation policy, is presented.

Finally, the performance evaluation results of both proposed policies and the entire

scheduler are discussed.

63

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 64

5.1 Performance Degradation Analysis

This chapter analyzes bandwidth contention on current SMT multicores, with particular

emphasis on L1 bandwidth contention. The experiments of this chapter have been

performed in a six-core dual-threaded Intel Xeon E5645 processor, as an example of

a current SMT multicore. More details of the experimental platform can be found in

Section 3.2.2.

5.1.1 Effects of L1 Bandwidth on Performance

Current microprocessors usually deploy a cache hierarchy organized in two or three levels

of caches. The first-level cache, the closest one to the processor, is the most frequently

accessed one. Consequently, L1 caches are critical for performance and thus, they are

designed to provide fast access and high bandwidth.

This section analyzes the relation between L1 bandwidth consumption and processor

performance. First, the dynamic behavior in stand-alone execution is analyzed. Then,

we study how two co-runners1 interact each other on their respective performance and

L1 bandwidth consumption.

5.1.1.1 Stand-Alone Execution

As a first step to investigate the possible relation between the bandwidth utilization

of the L1 cache and the overall processor performance, we measured the average L1

transaction rate (TRL1) and the IPC achieved by each process. To avoid interferences

of other applications each benchmark was run alone.

Figure 5.1 and Figure 5.2 depict both average IPC and TRL1 of the SPEC CPU2006

benchmarks. At a first glance, a certain correlation can be observed between both

metrics since most benchmarks with high IPC also present high TRL1, and conversely,

benchmarks with low IPC also experience low TRL1. However, benchmarks with similar

IPCs can widely differ in their L1 transaction rates (e.g., gobmk and hmmer), and

vice versa, benchmarks with close TRL1 can diverge in the achieved IPC (e.g., dealII

1The term co-runner is used in this chapter to refer to the processes that run simultaneously on the
same core.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 65

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ge
m
sF
DT

D
lb
m

IP
C

Figure 5.1: IPC for each SPEC CPU2006 benchmark.

0

300

600

900

1200

1500

1800

2100

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ge
m
sF
DT

D
lb
m

TR
L1
(tr
an
s./
us
ec
.)

Figure 5.2: TRL1 for each SPEC CPU2006 benchmark.

and gemsFDTD). Thus, although certain similarities appear among both performance

indicators, there is no clear evidence about the connection between them.

Nevertheless, it is well known that the benchmark behavior can widely vary over the

execution time. Thus although some divergences can appear on the average values, one

should look for further insights in the dynamic values of both metrics at run-time.

Figure 5.3 depicts the results of the first 200 seconds of the execution of a representative

subset of benchmarks. Each plot presents, for a given benchmark, the IPC and the

number of instructions that perform a L1 data cache read per cycle (RPC). Notice that

the number of reads does not correspond with the number of loads in the x86 ISA.

Some instructions (e.g., arithmetic) can access to the cache since an instruction operand

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 66

0

0.5

1

1.5

2

0 25 50 75 100 125 150 175 200

In
st

ru
ct

io
n

s
p

er
 c

yc
le

Time (s)

IPC RPC

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(a) Perlbench

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(b) Bzip2

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(c) Mcf

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(d) Hmmer

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(e) Sjeng

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(f) H264ref

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(g) Astar

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(h) Xalancbmk

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(i) Bwaves

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(j) CactusADM

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(k) DealII

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(l) GemsFDTD

Figure 5.3: IPC and RPC evolution over time for a set of benchmarks.

(source or destination) can be a memory location. Note that the RPC of the processes

is strongly related with their L1 bandwidth consumption.

The presented plots help detect the strong connection between RPC and IPC metrics.

As observed, both metrics show an almost identical shape during the entire execution

time across all the benchmarks. The metrics follow the same trend (rises and drops)

in a synchronized way. This means that a high (or a low) IPC is typically correlated

with high (or low) L1 bandwidth consumption. Note that, as soon as the L1 bandwidth

starts to decrease (or increase), the performance of the process follows the same trend.

The finding that both IPC and RPC for a process follow a so synchronized and correlated

trend has important connotations. It implies that when a process shows high perfor-

mance during a running period, it will certainly show high L1 bandwidth consumption.

And vice versa, if a process is consuming a small amount of L1 bandwidth then its IPC

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 67

is expected to be low. Therefore, to allow processes achieve their best performance they

must be run so that they can get the highest bandwidth consumption. To favor such

scenarios, changes in the process allocation should be allowed dynamically at run-time,

since some benchmarks present phases with widely different L1 bandwidth requirements.

5.1.1.2 Analyzing Interference between Co-Runners

In single-threaded cores, all the available L1 bandwidth is used by the same process. In

contrast, in current SMT processors, those threads running concurrently on the same

core compete for the available L1 bandwidth. Therefore, their performances suffer since,

as shown above, the IPC of a process depends on the L1 bandwidth it uses.

This section analyzes how sharing the L1 bandwidth limits the application performance.

To this end, multiple experiments running different couples of benchmarks on a single

dual-threaded core were performed. Results show that whatever the pair of benchmarks

launched to run concurrently is, the achieved IPC and L1 bandwidth are significantly

lower for both co-runners than those obtained in stand-alone execution. These perfor-

mance drops are caused, among others, by the L1 bandwidth constraints. Nevertheless,

to clearly appreciate the impact of limited bandwidth on performance, the L1 bandwidth

utilization of the benchmarks that run concurrently must fulfill two key characteristics.

First, at least one benchmark with high L1 bandwidth requirements must be included

to accentuate the impact of the contention on performance. Second, at least one of the

co-runners must present a non-uniform bandwidth utilization along its execution time.

Otherwise, no significant insights will be appreciated on the resultant plot.

Figure 5.4 presents the results of the described experiment for three pairs of benchmarks

during the execution interval ranging from 30 to 130 seconds. For analysis purposes,

each plot shows the dynamic evolution of the IPC of a given benchmark, and then

differentiates between the RPC, the number of instructions that perform a L1 data cache

write per cycle (WPC), and other instructions per cycle (OPC), which is calculated as

the total number of instructions minus the number of instructions that perform a read

or a write in the L1 cache. Each pair of benchmarks is presented by a figure on the

top row of plots and the corresponding one in the bottom row. The pairs of processes

that simultaneously run on the same core are cactusADM with h264ref (Figure 5.4a),

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 68

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st

ru
ct

io
n

s
p

er
 c

yc
le

Time (s)

IPC RPC WPC OPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

cactusADM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

bzip2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

bwaves

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

h264ref

(a) CactusADM with h264ref

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

h264ref

(b) Bzip2 with h264ref

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30 50 70 90 110 130

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

hmmer

(c) Bwaves with hmmer

Figure 5.4: IPC, RPC, WPC, and OPC evolution over time when running a pair of
benchmarks on the same SMT core.

bzip2 with h264ref (Figure 5.4b), and bwaves with hmmer (Figure 5.4c). Note that the

benchmarks on the top row present non-uniform L1 bandwidth utilization in stand-alone

execution (see Figure 5.3), while the ones in the bottom row show uniform L1 bandwidth

utilization when running alone.

Several observations can be appreciated in this figure that can help design process allo-

cation policies. First, when a pair of processes runs concurrently on the same core, its

IPC and L1 bandwidth consumption significantly drop with respect to that achieved in

stand-alone execution. Although such a drop was expected, it is interesting to notice

that in some cases this drop is above 40% (e.g., bwaves or cactusADM, see Figure 5.3i

and Figure 5.3j, respectively), which shows the importance of the L1 contention point.

The second observation is that the IPC and RPC of each process are strongly related

with that of its co-runner. In particular, when an applications experiences a drop in the

IPC, a positive side effect occurs in the co-runner, which turns into an increase in its

number of retired instructions.

A deeper look into the plots reveals more precisely how the co-runners affect each other.

For instance, lets focus on the couple cactusADM and h264ref. The most interesting

effect is the one caused by cactusADM on the behavior of h264ref. The decreasing

trend in the IPC of cactusADM, in isolated execution, causes a synchronized increasing

trend in the IPC of h264ref when they run concurrently on the same core. Note that

in isolation, h264ref shows a uniform IPC. However, the key aspect lies in the RPC,

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 69

that is, the L1 bandwidth consumption. As the number of committed instructions in

cactusADM is reduced, so does its RPC, which causes a reduction in the L1 bandwidth

consumed by the process. In this way, there is more L1 bandwidth available to h264ref,

which turns into an increase in its RPC. The IPC improvement is not exclusively caused

by the increase in RPC since WPC and OPC also grow. Nonetheless, experimental

results show that RPC is usually the component with highest weight on the overall

IPC and presents the most similar shape to the IPC curve among the different studied

components.

A similar behavior is observed with the other two pairs of benchmarks. The IPC of

h264ref when running with bzip2 grows synchronized with the IPC drop of bzip2. Al-

though all the IPC components (RPC, WPC, and OPC) rise, RPC increase is that

presenting the greatest magnitude. Similarly, in the last pair of benchmarks, bwaves

and hmmer, the drops of the IPC, and particularly RPC, of bwaves leaves more L1

bandwidth available to hmmer, which takes advantage of this bandwidth to improve its

IPC.

In summary, although multiple microprocessor components are shared in an SMT pro-

cessor, L1 bandwidth contention can strongly drop the performance of the processes and

become the major performance bottleneck. To reduce such a bottleneck, this chapter

focuses on L1 bandwidth-aware process allocation policies.

5.1.2 Impact of Cache Space Contention on L1 Bandwidth

Consumption

The impact of memory resource consumption (bandwidth and space) on shared caches

has been addressed in previous work [39, 40], with the aim of estimating the perfor-

mance of applications when the memory resources are being shared between different

processes and thus, their availability is reduced with respect to stand-alone execution.

Previous approaches rely on microbenchmarks, which are synthetic benchmarks that

are run concurrently with the target application, but on distinct cores. This way makes

performance interferences only to appear on the studied shared resource. Unfortunately,

these approaches are not suitable to study space contention on L1 caches in SMT pro-

cessors, since the microbenchmark and the application should be run on the same core

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 70

in order to share the same L1 cache; consequently, performance interferences other than

L1 cache space rises.

Unlike previous work, this section tries to provide insights about how L1 cache space

contention affects the cache performance of a given benchmark, which turns into a re-

duction of the L1 bandwidth consumption, without microbenchmarks. For this purpose,

we analyze how the L1 misses per kilo instruction (L1 MPKI) of two processes running

simultaneously on the same core increases over isolated execution. We use this metric

because it is only affected by cache space. That is, neither pipeline resources contention

nor cache bandwidth consumption significantly affect the L1 MPKI of a given process.

As example, Figure 5.5 depicts the L1 MPKI corresponding to the co-runners of Figure

5.4c, both when they run simultaneously on the same core and in stand-alone execution.

Notice that X-axis represents the number of committed instructions instead of time

to match, in the figure, the stand-alone execution of each process with its concurrent

execution.

Results show that the L1 MPKI of both processes rises when they run simultaneously

due to space contention. As a result of the increase in the L1 MPKI, the out-of-order

execution engine cannot hide most of the L1 miss penalty (i.e., latency of extra L2 cache

accesses). This fact, jointly with SMT pipeline contention, slows down the execution

time. Therefore, IPC and RPC, that is, L1 bandwidth consumption, decrease.

This conclusion can be confirmed by the fact that L1 MPKI rises and drops in Figure

5.5 are synchronized with reductions and increases, respectively, of the L1 bandwidth

consumption in Figure 5.4c. In summary, bandwidth variation takes into account both

0

20

40

60

0 2E+10 4E+10 6E+10 8E+10 1E+11

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

Bwaves	running	with	hmmer Bwaves	alone

(a) Bwaves

0

20

40

60

0 2E+10 4E+10 6E+10 8E+10 1E+11

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

Hmmer	running	with	bwaves Hmmer	alone

(b) Hmmer

Figure 5.5: L1 MPKI evolution over time when running a pair of benchmarks on the
same SMT core.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 71

L1 bandwidth and cache space contention; therefore, bandwidth utilization can serve as

a good indicator of performance degradation due to L1 cache contention.

5.1.3 Performance Degradation due to Main Memory Bandwidth

Contention

The goal of this section is not to perform an in-depth study of the performance degrada-

tion caused by main memory bandwidth contention, but to provide an overall overview of

how this contention affects the performance of the processes in the current experimental

platform. The performed analysis will motivate the use of a main memory bandwidth-

aware process selection policy. A deeper study of the effects of bandwidth contention

through the memory hierarchy on performance has been presented in Chapter 4.

To check the performance degradation caused by main memory bandwidth contention

we configure the microbenchmark presented in Section 4.1.2 to achieve a main mem-

ory transaction rate (TRMM) of 55 transactions/microsecond in stand-alone execution.

This microbenchmark is designed to minimize cache space contention, distributing the

occupied space among the cache sets, so that the measured performance degradation is

caused by bandwidth contention. The performance degradation that each benchmark

suffers has been analyzed when it runs concurrently with one and five instances of the

microbenchmark, respectively. The former experiment evaluates a situation with only

one microbenchmark, which emulates one memory-bounded application running on a

different core. The latter experiment evaluates the scenario with highest main mem-

ory bandwidth contention. In this case, the system executes six processes (one on each

core): the studied benchmark and five instances of the microbenchmark. Because of the

high TRMM of the designed microbenchmark, we guarantee that these five instances are

enough to entirely consume the available main memory bandwidth.

Figure 5.6 shows the performance degradation of the benchmarks in the devised experi-

ment. When running with only one memory-bounded instance of the microbenchmark,

the highest performance degradation observed is around 45% in xalancbmk, but it is

smaller than 10% in half of the benchmarks. However, when running with five in-

stances, performance degradation increases dramatically to the extent that half of the

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 72

0

10

20

30

40

50

60

70

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k

hm
m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k

bw
av
es

ga
m
es
s

m
ilc

ze
us
m
p

gr
om

ac
s

ca
ct
us
AD

M

le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ge
m
sF
DT

D

lb
m

IP
C	
de
gr
ad
at
io
n	
(%
)

1	MM-bounded	co-runner 5	MM-bounded	co-runner

Figure 5.6: IPC degradation due to main memory bandwidth contention.

benchmarks suffer a degradation above 30% and five of them exceed 50%. Such degra-

dations show the convenience of using a process selection based on the main memory

bandwidth requirements of the processes.

5.2 SMT Bandwidth-Aware Scheduling

With multiprogram workloads and different levels of resource sharing, task scheduling

is usually carried out in two phases. In the first phase, called process selection, the

set of processes to be executed in the next quantum is selected. In the second phase,

called process allocation, each selected process is mapped to a hardware context of the

processor. In an SMT multicore, all the processes selected to be run in the next quantum

will share main memory bandwidth but, as mentioned above, only the subset of processes

assigned to a given core will share its L1 bandwidth. Thus, each scheduling phase is

responsible for a resource sharing level.

Algorithm 4 SMT bandwidth-aware scheduler (BaS)

1: Update the bandwidth requirements for the next quantum of each process p executed in the
previous quantum:
- Gather consumed L1 bandwidth (TRp

L1)
- Gather consumed main memory bandwidth (TRp

MM)
2: Process selection - Aware of main memory bandwidth requirements
3: Process allocation - Aware of L1 bandwidth requirements

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 73

Algorithm 4 presents the main steps of the proposed SMT bandwidth-aware scheduler

(BaS). In the first step, performance counters are accessed to collect, for each individ-

ual process that was run during the last quantum, its number of L1 and main memory

accesses, as well as its number of executed cycles. To this end, events perf count hw

cache l1d.access, off-core response 0.any data.local DRAM, and unhalted core cycles are

measured. The collected values are used to calculate the transaction rates per microsec-

ond on main memory (TRMM) and L1 cache (TRL1) performed by each process.

The bandwidth utilization of a given process during the last quantum is used as the

predicted bandwidth utilization for its next execution quantum. Such a simple prediction

has shown adequate accuracy. For example, the L1 bandwidth utilization during a given

quantum differs on average, for all the SPEC CPU2006 benchmarks, about 5.5% from

the utilization in the previous one.

Finally, the process selection and allocation steps, which are aware of the main mem-

ory and L1 bandwidth requirements of the processes, respectively, guide the scheduling

decisions based on the predicted bandwidth utilization of the processes at their corre-

sponding level of the memory hierarchy. In the proposed scheduler, the process selection

phase follows the Self-reliant main memory bandwidth-aware process selection policy

discussed in Section 5.2.1, while the Dynamic L1 bandwidth-aware process allocation

policy presented in Section 5.2.2 is used to allocate the processes to the cores.

5.2.1 Self-Reliant Main Memory Bandwidth-Aware Process Selection

As discussed in Chapter 4, when running multiprogram workloads with significant mem-

ory requirements, main memory bandwidth contention causes an important performance

degradation. Section 5.1.3 explored main memory bandwidth contention in the SMT

multicore processor used as experimental platform in this chapter. The performed ex-

periments showed that such a degradation can even exceed 50% the IPC of the processes,

which illustrates the magnitude of this contention point. Therefore, it is interesting to

design a process selection policy that is aware of the main memory bandwidth require-

ments of the processes to mitigate these performance drops.

The main goal of the devised process selection policy is to evenly distribute the amount

of main memory accesses that all the processes of the workload perform throughout its

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 74

complete execution. By balancing the memory transactions along the execution time,

the policy tries to minimize the contention in the main memory access, and prevents

most of the memory transactions to be performed in a subset of the quanta suffering high

contention, while the memory is much less stressed in other quanta. The proposed policy

shares the key idea of distributing the memory accesses along the execution time with the

scheduler proposed by Xu et al. [11]. The same idea was also followed in the Memory-

hierarchy bandwidth-aware scheduler presented in Section 4.2.2. Nevertheless, while

both proposals require prior knowledge of the main memory bandwidth requirements of

the processes before running them, the policy we devise in this chapter does not require

any prior information.

To balance main memory transactions across execution time, the proposed policy makes

use of the Online Average Transaction Rate (OATR). The OATR is calculated as the

average main memory bandwidth utilization (BWMM) of the processes of the workload,

multiplied by the number of hardware contexts (#CPUs) of the experimental platform

(see line 2 of Algorithm 5). The OATR defines the overall main memory bandwidth

that should be used at the next quantum in order to evenly distribute the transactions

along the execution time. Hence, it is used as the target main memory bandwidth, such

as the IABW proposed by Xu et al. [11] is used in Section 4.2.1.

The main difference of the OATR with the IABW is that while the latter is fixed before

mix execution (it is calculated offline with prior information about the main memory re-

quirements and execution time of the processes), the OATR changes dynamically during

the workload execution based on the changes in the average main memory bandwidth

utilization of the processes. As the execution progresses, the OATR reaches a value that

is more realistic than the IABW since it is calculated using the bandwidth utilization

gathered while the processes run concurrently. In contrast, the IABW is calculated from

the bandwidth utilization measured in stand-alone execution. Note that Xu et al. ac-

tually correct this issue using a polynomial regression method, which is not required by

the OATR.

Algorithm 5 presents the pseudocode of the Self-reliant main memory bandwidth-aware

process selection policy proposed. The scheduling steps closely resemble the ones per-

formed by Algorithm 2, with the main difference of using the OATR instead of the

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 75

Algorithm 5 Self-reliant main memory bandwidth-aware process selection policy

1: Update the BWp
MM for each process p of the workload

2: Calculate the OATR: OATR =
∑N

p=0 BWp
MM

N ∗#CPUs

3: BWRemain = OATR
4: Select the process P head at the queue head

5: BWRemain− =TRP head
MM , CPURemain = #CPUs− 1

6: while CPURemain > 0 do
7: select the process P that maximizes
8: FITNESS(p) = 1∣∣∣ BWRemain

CPURemain
−TRP

MM

∣∣∣
9: BWRemain − = TRP

MM , CPURemain −−
10: end while

IABW as the target main memory bandwidth utilization. The first step of the algo-

rithm updates the average main memory bandwidth utilization of the processes that

have run during the last quantum. Next, in line 2 the OATR for the next quantum is

calculated using the BWMM of all the processes of the workload and then, BWRemain

is set to the OATR (line 3).

The next scheduling steps match the ones performed by Algorithm 2 form line 10 to

16. In short, the algorithm selects as many processes as hardware contexts are available

in the system. Processes are selected using the fitness function which quantifies, for

each process, the gap between its predicted main memory transaction rate for the next

quantum (TRp
MM) and the average bandwidth remaining for each unallocated hard-

ware contexts (BWRemain/CPURemain). The process with the best fit is the one that

maximizes the fitness function. After selecting a process, BWRemain and CPURemain are

update accordingly. This loop is repeated until no more hardware contexts are available.

Please, refer to Section 4.2.2 for further details of the scheduling algorithm.

Due to the lack of previous information, the scheduler has to face a cold start the first

quanta of the execution of a new workload, since it has no prior information about the

processes. Besides the average main memory transaction rate of the processes can take

a few quanta to reach a dependable value, which can increase the length of such cold

start. To mitigate a possible negative impact on performance, we propose to let Linux

drive the scheduling decisions during a few quanta at the beginning of the execution,

while the proposed scheduler collects enough bandwidth utilization information of the

processes. We found experimentally that a short period of about thirty quanta (over

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 76

executions that last more than five thousand quanta) is large enough to avoid significant

performance losses.

5.2.2 L1 Bandwidth-Aware Process Allocation

5.2.2.1 Dynamic L1 Bandwidth-Aware Process Allocation Policy

The analysis presented in Section 5.1.1 illustrates that the high L1 bandwidth utilization

of the processes can cause important bandwidth contention and performance degradation

when two applications run simultaneously on the same core. Thereby, the allocation of

the processes to the cores strongly impacts on the throughput the system can achieve.

In addition, the L1 bandwidth requirements of the processes can widely vary over their

execution. Thus, the thread to core allocation should be dynamically adapted to the

changes fn the L1 bandwidth utilization to achieve the highest performance. To address

these issues, this section proposes a dynamic process allocation policy that is aware of the

L1 bandwidth requirements of the processes. Note that, despite guiding the allocation

of processes to cores based on L1 bandwidth, the proposed policy addresses overall SMT

contention.

The key idea of the process allocation policy consists in balancing the overall L1 band-

width utilization of the running processes among all the processor cores. Hence, the

policy tries to promote thread to core mappings that do not saturate the available L1

bandwidth of some cores while this bandwidth is underused in others. Notice that the

process allocation policy assumes that the number of processes to be allocated matches

the number of hardware contexts.

Algorithm 6 presents the pseudocode of the proposed Dynamic L1 bandwidth-aware pro-

cess allocation policy. Since the experimental platform supports simultaneous execution

of only two threads in each core, finding the thread to core assignment that achieves the

optimal balance of L1 bandwidth consumption among cores is simplified. For instance,

processes can be ordered according to their TRL1
2 (line 1). Notice that the maximum

number of processes that must be sorted each time the policy is executed is equal to

2 The RPC used to study the effects of L1 bandwidth contention on performance could be used in
this algorithm since it is basically the same metric expressed in different units. However, the algorithm
uses TRL1 for consistency reasons.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 77

Algorithm 6 Dynamic L1 bandwidth-aware process allocation policy
1: Sort the selected processes in ascending TRL1

2: while there are unallocated processes do
3: Select the processes Phead and Ptail with maximum and minimum TRL1

4: Allocate Phead and Ptail to the same core
5: end while

the number of hardware contexts, which limits the computational cost of sorting the

processes. Such overhead has been measured experimentally and is negligible compared

with the quantum length and the benefits provided by a good thread to core assign-

ment. The threads with highest and lowest L1 bandwidth requirements are assigned to

the same core (lines 3 and 4). This rule is iteratively applied to obtain the remaining

pairs of co-runners.

If the SMT processor supports the execution of three or more threads, it is possible to

balance the L1 bandwidth requirements following a similar approach to that explained in

Algorithm 2 (Section 4.2.2) to distribute the selected processes among the shared caches

of a given cache level. Thereby, the algorithm would calculate the cumulative TRL1 of

all the processes that have been selected to run in the next quantum and would divide

this value by the number of cores. Then, the processes could be properly allocated

to the cores in order to balance TRL1 differences among L1 caches using the fitness

function [13, 14], which is also described in Section 4.2.2.

Finally, to remark that the number of process migrations among cores is not limited by

the proposed policy. In spite of an overhead is incurred when migrating the architectural

state of the process and extra time is wasted warming up the L1 cache, we found that

such overhead is negligible when working with long quanta like the ones used by modern

operating systems [62].

5.2.2.2 Static L1 Bandwidth-Aware Process Allocation Policy

A static version of the process allocation policy can also be implemented. This version,

referred to as Static L1 bandwidth-aware process allocation policy, follows the same

algorithm as the dynamic policy. However, it uses the average L1 bandwidth utilization

of the processes when running alone, instead of the dynamically updated TRL1 used in

the dynamic policy. Therefore, it does not need to read performance counters at the

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 78

end of the quanta to update the TRL1 of the processes, but the average TRL1 of the

processes in stand-alone execution must be provided as an input parameter.

A potential advantage that the static policy presents, is the fact that it uses the average

TRL1 of the processes, measured in a profiling phase where the processes run alone in the

system, thus avoiding interference from other co-runners. When the processes present

a uniform L1 bandwidth shape, the average L1 bandwidth utilization obtained without

interference can be a better estimate of the requirements of the processes than the TRL1

measured with co-runners interference.

Nevertheless, the dynamic policy presents two strong advantages with respect to the

static policy. First, it should provide better L1 bandwidth balancing since it is able to

react to non-uniform demands of L1 bandwidth. For instance, L1 bandwidth require-

ments of benchmarks like astar or mcf can be properly addressed. That is, the dynamic

policy can allocate to the same core astar, when it presents low L1 bandwidth require-

ments, together with a process with high L1 bandwidth consumption. Later, when astar

increases its bandwidth utilization, the policy can change its co-runner to a process with

lower bandwidth requirements. Second, the dynamic policy is more practical than the

static one since it does not require prior information of the processes.

5.3 Evaluation Setup

The experimental evaluation has been carried out in an Intel Xeon E5645 system (see Sec-

tion 3.2.2). The proposed algorithms are implemented in the scheduling framework

(see Section 3.1) to evaluate their effectiveness. Notice that this framework allows us

to evaluate either the policies in an isolated way or combined. When evaluating the

policies in isolation, the scheduling policy (process selection or process allocation) that

is not being analyzed is set to the Linux policy.

We follow the process allocation evaluation methodology to study the process allocation

policies and the process selection evaluation methodology to evaluate the process selec-

tion policies and the BaS scheduler. Please, refer to Section 3.3 for further details on

the evaluation methodologies. The target number of instructions of the SPEC CPU2006

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 79

benchmarks is set to the number of instructions they complete running alone during

200 seconds, and the quantum length is set to 200 milliseconds.

A wide set of metrics has been analyzed for evaluation purposes. First, we use the

average IPC of the threads as a pure performance metric, and the harmonic mean of

the per-program IPC speedup to give a notion of fairness to the analysis. In addition

to these IPC-related metrics, the turnaround time of the mixes has also been evaluated.

See Section 3.4 for further details on these metrics.

5.3.1 Evaluated Algorithms

The experimental evaluation studies, first, the process allocation and process selection

policies in isolation. Next, the Dynamic L1 bandwidth-aware process allocation and the

Self-reliant main memory bandwidth-aware process selection policies are combined to

build the proposed SMT bandwidth-aware scheduler. The multiple policies considered

in the performed experiments are listed below.

Process selection policies:

• Random: a random process selection algorithm that selects a random subset of

processes to be run each quantum.

• Linux: the policy used by the default Linux Completely Fair Scheduler (CFS). In

short, the CFS scheduler tries to give all the processes the same CPU utilization.

• Main memory bandwidth-aware (Memory BW): the main memory bandwidth-

aware scheduler proposed by Xu et al. [11], which has been discussed in Sec-

tion 4.2.1.

• Self-reliant main memory bandwidth-aware (Self-reliant BW): the pro-

posed process selection algorithm, described in Section 5.2.1. Unlike the Mem-

ory BW, which needs to know the memory requests that each process is going to

perform, the Self-reliant BW policy does not require any preliminary information

of the processes.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 80

Process allocation policies:

• Random: a policy that randomly assigns the processes to the cores.

• Linux: the process allocation performed by the default Linux Completely Fair

Scheduler (CFS). One of the actions that the CFS takes to maximize performance

consists in avoiding constant process migrations keeping the affinity of the pro-

cesses to the core where they are running.

• Dynamic: the proposed Dynamic L1 bandwidth-aware process allocation policy,

presented in Section 5.2.2.1.

• Static: the proposed Static L1 bandwidth-aware process allocation policy, pre-

sented in Section 5.2.2.2.

5.3.2 Mix Design

To evaluate the process allocation policies we need a set of mixes where the number

of processes matches the number of hardware contexts of the experimental platform.

To design an interesting set of workloads, we classify the benchmarks in four groups

according to their average L1 bandwidth requirements in stand-alone execution. Ta-

ble 5.1 presents this classification. Benchmarks with higher L1 bandwidth utilization

can potentially induce higher degradation in the co-runner and, at the same time, they

can suffer a strong degradation due to L1 bandwidth constraints. Thus, it is critical to

Classification Benchmarks

Extreme L1 bandwidth h264ref, bwaves, gamess

High L1 bandwidth perlbench, bzip2, hmmer, libquantum,

leslie3d, namd, dealII, gemsFDTD

Medium L1 bandwidth gcc, gobmk, sjeng, astar,

xalancbmk, zeusMP, povray, lbm

Low L1 bandwidth mcf, omnetpp, milc, gromacs,

cactusADM, soplex

Table 5.1: Benchmark classification according to their L1 bandwidth requirements.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 81

allocate them sharing the core with the appropriate co-runners to enhance performance.

Otherwise, significant performance losses can appear.

Based on the benchmark classification, mixes are distinguished by the number of bench-

marks with extreme L1 bandwidth requirements they include. The balanced mixes are

formed with half the benchmarks belonging to the extreme L1 bandwidth category.

These workloads can potentially offer higher benefits with a good process allocation

Mixes Benchmarks

Mix 1 gamess, h26ref, milc, omnetpp

Mix 2 bwaves, cactusADM, h26ref, soplex

Mix 3 bwaves, gamess, mcf, milc

Mix 4 bwaves, gamess, namd, soplex

Mix 5 bzip2, h26ref, lbm, xalancbmk

Mix 6 gemsFTDTD, gromacs, mcf, perlbench

Mix 7 bwaves, gamess, h26ref, mcf, milc, omnetpp

Mix 8 bwaves, cactusADM, gamess, h26ref, milc, soplex

Mix 9 bwaves x2, gromacs, h26ref, omnetpp, soplex

Mix 10 bzip2, gamess, gromacs, h26ref, mcf, soplex

Mix 11 astar, dealII, gamess, leslie3d, mcf, sjeng

Mix 12 gobmk, gromacs, libquantum, perlbench, xalancbmk, zeusMP

Mix 13 bwaves, gamess, gromacs, h26ref x2, mcf, milc, omnetpp

Mix 14 bwaves, gcc, gamess x2, h26ref, mcf, omnetpp, xalancbmk

Mix 15 bwaves x2, cactusADM, gamess, gromacs, h26ref, mcf, soplex

Mix 16 bwaves, bzip2, gamess, gromacs, h26ref, mcf, omnetpp, sjeng

Mix 17 bwaves, gobmk, h26ref, libquantum, mcf, omnetpp, perlbench, sjeng

Mix 18 astar, bzip2, gobmk, h26ref, namd, omnetpp, perlbench, sjeng

Mix 19 bwaves x2, gamess x2, gobmk, gromacs, h26ref x2, lbm, mcf,

omnetpp, sjeng

Mix 20 astar, bwaves x2, cactusADM, gamess x2, h26ref x2, mcf,

omnetpp, soplex, xalancbmk

Mix 21 bwaves x2, bzip2, gamess x2, gobmk, gromacs, h26ref x2, mcf,

sjeng, zeusMP

Mix 22 dealII, gamess x2, gobmk, gromacs, h26ref x2, lbm, libquantum,

omnetpp, soplex x2

Mix 23 bwaves, bzip2, gamess, gobmk, hmmer, h26ref, mcf, omnetpp,

perlbench, sjeng, soplex, zeusMP

Mix 24 bzip2, cactusADM, gamess, gromacs, hmmer, h26ref, leslie3d,

mcf, namd, omnetpp, sjeng, soplex

Table 5.2: Mix composition designed to evaluate the process allocation policies.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 82

since each benchmark with extreme L1 bandwidth demand can be allocated to a differ-

ent core to run with a benchmark with lower L1 bandwidth requirements. Non-balanced

mixes are formed with less extreme benchmarks than the number of cores. Since more

applications can present intermediate bandwidth requirements, lower differences between

allocations policies are expected.

We designed a wide variety of mixes consisting of up to twelve applications. In order

to force that all the cores run two processes simultaneously, each mix is run on half the

Mixes Benchmarks

Mix 1 3 x Bwaves, 2 x CactusADM, DealII, 3 x Gamess, 2 x GemsFDTD, Hmmer,

2 x H264ref, 3 x Leslie3d, Lbm, 2 x Libquantum, Mcf, Milc, Povray, ZeusMP

Mix 2 3 x Bwaves, 3 x Gamess, GemsFDTD, Gromacs, Hmmer, 3 x H264ref,

2 x Leslie3d, 2 x Lbm, 2 x Libquantum, Mcf, Milc, Omnetpp, Perlbench,

Xalancbmk, Povray

Mix 3 Bwaves, Bzip2, CactusADM, DealII, Gamess, Gcc, GemsFDTD, Gobmk,

Gromacs, Hmmer, H264ref, Lbm, Libquantum, Leslie3d, Mcf, Milc, Namd,

Perlbench, Povray, Omnetpp, Sjeng, Soplex, Xalancbmk, ZeusMP

Mix 4 Astar, 3 x Bwaves, 2 x CactusADM, 2 x Gamess, GemsFDTD, Gobmk,

Gromacs, 2 x H264ref, Lbm, Leslie3d, 2 x Libquantum, Mcf, 2 x Milc, Omnetpp,

Povray, Sjeng, ZeusMP

Mix 5 Bwaves, CactusADM, DealII, Gamess, Gcc, 3 x GemsFDTD, Gromacs,

H264ref, 3 x Mcf, 2 x Milc, Namd, 3 x Lbm, Libquantum, 3 x Leslie3d, ZeusMP

Mix 6 2 x Astar, 2 x Bzip2, 2 x Gcc, 2 x Gobmk, 2 x Hmmer, 2 x H264ref,

2 x Libquantum, 2 x Mcf, 2 x Omnetpp, 2 x Perlbench, 2 x Sjeng, 2 x Xalancbmk

Mix 7 2 x Bwaves, 2 x CactusADM, 2 x DealII, 2 x Gamess, 2 x Gromacs, 2 x Lbm,

2 x Leslie3d, 2 x Milc, 2 x Namd, 2 x Povray, 2 x Soplex, 2 x ZeusMP

Mix 8 Astar, 2 x Bwaves, CactusADM, DealII, 2 x Gamess, Gcc, GemsFDTD,

Gobmk, Gromacs, Hmmer, H264ref, Lbm, Libquantum, 2 x Mcf, Milc, 2 x Namd,

Omnetpp, Perlbench, Povray, Soplex

Mix 9 3 x Bwaves, CactusADM, 3 x Gamess, Gcc, GemsFDTD, Gromacs, Hmmer,

3 x H264ref, Lbm, Libquantum, Mcf, 2 x Milc, Namd, Omnetpp, Sjeng, Soplex,

ZeusMP

Mix 10 3 x Bwaves, Bzip2, DealII, Gamess, GemsFDTD, Gromacs, Hmmer, H264ref,

2 x Lbm, 2 x Leslie3d, 2 x Libquantum, Mcf, Milc, Namd, Omnetpp, 2 x Perlbench,

Povray, Xalancbmk

Mix 11 3 x Bwaves, Bzip2, CactusADM, DealII, 2 x Gamess, GemsFDTD, Gobmk,

Gromacs, Hmmer, 2 x H264ref, 2 x Leslie3d, Libquantum, Mcf, Milc, Namd,

Omnetpp, Perlbench, Povray, Sjeng

Mix 12 3 x Bwaves, Bzip2, CactusADM, 3 x H264ref, 3 x Gamess, Gcc, GemsFDTD,

Gobmk, Gromacs, 2 x Lbm, 2 x Leslie3d, 2 x Libquantum, Mcf, Milc, Namd,

Table 5.3: Mix composition designed to evaluate the process selection policies and
the entire schedulers.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 83

number of cores that applications the mix contains. Table 5.2 presents the composition

of the mixes used to evaluate the process allocation policies.

In the experiments where the process selection policies are considered (either isolated

or as a part of an entire scheduler), we require a set of workloads whose the number

of processes exceeds the number of hardware contexts. To this end, we design a set of

twelve mixes, where each mix consists of twenty four benchmarks, that is, the number

of processes doubles the available hardware contexts. The large number of processes

of each workload, and the fact that we are attacking bandwidth contention at both L1

and main memory makes it difficult to classify the workloads in homogeneous groups.

Therefore, the mixes have been built including a subset of benchmarks with high L1

bandwidth requirements, a subset of benchmarks with high main memory bandwidth

requirements, and a bigger subset with benchmarks showing intermediate requirements

of both bandwidths. The composition of each mix is presented in Table 5.3.

5.4 Experimental Evaluation

First, we analyze the performance benefits provided by both proposed Dynamic L1

bandwidth-aware process allocation policy and Self-reliant main memory bandwidth-

aware process selection policy in isolation. Then, we study the performance of both

policies together, that is the SMT bandwidth-aware scheduler, with respect to Linux.

The plotted results in all the experiments correspond to the average values of twenty

executions and 95% confidence intervals.

5.4.1 Evaluation of the Process Allocation Policies

The performance of the proposed dynamic and static L1 bandwidth-aware process al-

location policies is evaluated and compared to Linux. A wide set of mixes has been

evaluated for a different number of cores, ranging from two cores (four applications) to

six cores (twelve applications). For each number of cores, we used both balanced and

non-balanced mixes with different L1 bandwidth demands.

Figure 5.7 presents the speedup of the average IPC achieved by the proposed policies

and Linux for each mix over the random process allocation policy, which has been used

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 84

as baseline. With XE we refer to a non-balanced mix with X extreme benchmarks; e.g.,

1E means only one extreme benchmark.

Compared to Linux, the proposed policies achieve better performance across all the

twenty-four evaluated mixes. While the dynamic and static process allocation policies

provide speedups higher than 5% in seventeen and fifteen mixes, respectively, Linux only

surpasses this value in four mixes. On the contrary, the speedup of Linux falls around

or below 2% in six mixes, while this only occurs in one mix with the dynamic and static

policies.

As observed, the dynamic policy performs better, on average, than the static one. Sig-

nificant differences can be appreciated in some mixes like 2, 3, 8, 12, 16, and 24. The

major differences appear when the mix includes benchmarks showing a non-uniform

shape in their L1 bandwidth requirements. For instance, mix 2 includes bwaves and

cactusADM, which present a non-uniform shape. On the contrary, mix 1 shows minor

differences since all benchmarks present an almost uniform shape in their L1 bandwidth

consumption. The only exception in which the static policy provides significant benefits

over the dynamic one is in mix 6. The reason is that this mix includes gemsFDTD,

whose L1 bandwidth utilization varies so fast (see Figure 5.3l) that the dynamic policy

is not able to accurately predict the bandwidth requirement for the next quantum.

As expected, the policies offer higher performance when running balanced workloads. As

the number of extreme threads drops in a mix, the achieved speedup is on average smaller

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Balanced 1E 0E Balanced 2E 1E 0E Balanced 3E 2E 1E Balanced 4E 3E 2E

4	threads 6	threads 8	threads 12	threads

Sp
ee
du

p	
(%
)

Linux	PA Static	PA Dynamic	PA

Figure 5.7: Speedup of the average IPC of the studied process allocation policies over
the random policy.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 85

since L1 bandwidth contention is reduced. Nonetheless, performance differences among

mixes are also due to non-extreme benchmarks characteristics. For example, mix 20

includes one and five benchmarks with medium and low L1 bandwidth demand, respec-

tively; while mix 21 includes one, three, and two benchmarks with high, medium, and

low L1 bandwidth consumption, respectively. Since bandwidth differences among possi-

ble pairs can be higher in mix 20 than in mix 21, one should expect major performance

benefits from appropriate process mappings in this mix. Thus, even in non-balanced

workloads noticeable performance benefits can be achieved (e.g., 12, 16, 22, 23, and 24).

Notice too that confidence intervals of Linux are considerably larger than those of the

dynamic and static policies. This is due to the fact that Linux does not consider L1

bandwidth to perform the allocation. Therefore, its thread to core mappings, and con-

sequently their corresponding performance, greatly vary among different instances of

the experiment. On the other hand, the confidence intervals for the devised policies are

usually below 0.1%, ensuring that the achieved speedups are stable among executions.

Looking at Figure 5.8, which shows the speedups using the harmonic mean of the per-

program IPC speedup, the same conclusions can be drawn. The speedup values are

slightly reduced, however, differences between the speeupds of the dynamic and static

policies are wider (e.g., mixes 3, 7, 17, and 24). Considering that this metric captures

both performance and fairness, one can conclude that the Dynamic L1 bandwidth-aware

process allocation policy is the best evaluated policy

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Balanced 1E 0E Balanced 2E 1E 0E Balanced 3E 2E 1E Balanced 4E 3E 2E

4	threads 6	threads 8	threads 12	threads

Sp
ee
du

p	
(%
)

Linux	PA Static	PA Dynamic	PA

Figure 5.8: Speedup of the harmonic mean of the per-program IPC speedup of the
studied process allocation policies over the random policy.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 86

Average values, however, do not reflect what is happening over time. To provide insights

and a sound understanding about how the different policies work with time, lets analyze

the behavior of mix 2. In this mix, the static policy significantly improves the perfor-

mance of Linux and, at the same time, the dynamic policy considerably improves the

performance of the static one. Figure 5.9 shows the dynamic TRL1 of each benchmark

during the complete execution of mix 2 under the studied allocation policies.

Notice that the plots of the Linux and static process allocation policies are quite similar

during the first 250 seconds. According to the TRL1 curves, one can deduce that h264ref

and cactusADM were running on one core and bwaves and soplex on the other one.

Around second 250, Linux changes the process to core mapping and starts running

together h264ref and bwaves. This can be deduced because the rises in the TRL1 curve

of h264ref are synchronized with the drops of bwaves. However, notice that in spite of

200

500

800

1100

1400

1700

0 50 100 150 200 250 300 350

TR
 L1

(tr
an

s/u
se

c)

Time (s)

bwaves h264ref soplex cactusADM

(a) Linux process allocation

200

500

800

1100

1400

1700

0 50 100 150 200 250 300 350

TR
 L1

(tr
an

s/u
se

c)

Time (s)

bwaves h264ref soplex cactusADM

(b) Static L1 bandwidth-aware process allocation

200

500

800

1100

1400

1700

0 50 100 150 200 250 300 350

TR
 L1

(tr
an

s/u
se

c)

Time (s)

bwaves h264ref soplex cactusADM

(c) Dynamic L1 bandwidth-aware process allocation

Figure 5.9: TRL1 of benchmarks in mix 2 for the Linux, Static, and Dynamic process
allocation policies.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 87

this process to core mapping yields to lower performance, Linux keeps it until the end

of the execution.

Unlike the previous policies, the dynamic process allocation policy usually selects as

co-runners bwaves and cactusADM, which according to the observed TRL1 is the best

choice. As observed, bwaves obtains regular peaks around 1500 transactions/microsec-

ond, while the maximum TRL1 does not surpass 1400 transactions/microsecond in the

other two process allocation policies. Finally, when bwaves experiences sharp drops in

its TRL1 curve, the dynamic policy benefits h264ref, which at that point, is the process

with higher L1 bandwidth utilization. Consequently, the L1 bandwidth consumption

rises of h264ref that occur during drops of bwaves bandwidth consumption are higher

than those obtained by soplex in the static policy, thus, increasing the overall perfor-

mance.

Finally, to remark that the performance of the proposed policies scale well with the

number of threads. Nevertheless, the number of accesses to main memory is expected

to grow with the number of threads. Thus, it may happen that LLC and main memory

contention grow and create new contention points. In such a case, the proposed alloca-

tion policies could be combined with main memory and LLC bandwidth-aware selection

policies to tackle them.

5.4.2 Evaluation of the Process Selection Policies

In this section, the performance of the designed Self-reliant main memory bandwidth-

aware process selection policy (Self-Reliant BW) is compared to that achieved by both

a main memory bandwidth-aware process selection policy based on Xu’s scheduler [11]

(Memory BW) and the Linux policy implemented in the CFS scheduler. This compari-

son assumes as a baseline the performance of the random process selection policy.

Figure 5.10 and Figure 5.11 present the speedups achieved by Linux, Memory BW, and

Self-Reliant BW relative to the random policy regarding IPC-based metrics. Results

in terms of the the average IPC metric (Figure 5.10) show that Memory BW and Self-

reliant BW improve the performance of Linux and the random policy. The speedups

achieved by Memory BW and Self-reliant BW usually fall in between 3% and 5%, being

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 88

0

1

2

3

4

5

6

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12

Sp
ee
du

p	
(%
)

Linux	PS Memory_BW	PS Self-Reliant_BW	PS

Figure 5.10: Speedup of the three process selection policies studied with respect to
the random policy using the average IPC metric.

0

2

4

6

8

10

12

14

16

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12

Sp
ee
du

p	
(%
)

Linux	PS Memory_BW	PS Self-reliant_BW	PS

Figure 5.11: Speedup of the three process selection policies studied with respect to
the random policy using the harmonic mean of the per-program IPC speedup.

higher for Memory BW in all the mixes but two. With regard to Linux, it achieves much

lower speedups and only mix 8 exceeds 2%.

Figure 5.11 depicts the speedups of the policies regarding the harmonic mean of the

per-program IPC speedup. The benefits achieved with this metric are much higher

for the three evaluated policies with respect to the random policy, which indicates that

Linux, Memory BW, and Self-reliant BW perform a much fairer process selection. Mem-

ory BW achieves the best results, showing the highest speedup in eight mixes and an

average speedup of 11.4% across all the evaluated mixes. Close to this performance,

Self-reliant BW achieves the best speedup in four mixes, with an average speedup about

11%. Linux achieves the worst speedup with an average value of 8.7% over the random

policy.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 89

0

3

6

9

12

15

18

21

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12

Sp
ee
du

p	
(%
)

Linux	PS Memory_BW	PS Self-reliant_BW	PS

Figure 5.12: Speedup of the three studied process selection policies with respect to
the random policy regarding turnaround time.

Finally, Figure 5.12 presents the speedups regarding the turnaround time of the mixes.

Results show that all the process selection policies widely improve the performance of

the random policy with speedups that usually exceed 12%. The reduction in the time re-

quired to complete the execution of the mixes shows the significance of the main memory

bandwidth contention point and how smart policies can mitigate such contention and

improve performance. Comparing the the evaluated policies, results suggest that Linux

performs worse than Memory BW and Self-reliant BW, since it achieves significantly

lower speedup in mixes like 2, 3, 6, or 10. Regarding Memory BW and Self-reliant BW,

we can see that Self-reliant BW achieves better performance than Memory BW in eight

mixes. In addition, the average speedup for the evaluated mixes is 12.6% and 12.8%,

for Memory BW and Self-reliant BW, respectively, which shows that Self-reliant BW

performs slightly better in terms of turnaround time.

The achieved speedups regarding the turnaround time help explain the relatively low

speedups observed with the average IPC metric. Notice that the random process se-

lection policy significantly enlarges the execution time of the mixes, which causes the

distribution of the overall main memory accesses in a longer interval, so reducing con-

tention. In this way, the processes see their performance improved and the average IPC

of the mix is enhanced, but it is not a desirable behavior since it is achieved at the

expense of a higher turnaround time.

In summary, the three process selection policies evaluated significantly improve the per-

formance of the random policy, with speedups that usually exceed 10% regarding the

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 90

harmonic mean of the per-program IPC speedup and turnaround time metrics. Among

the policies, the best results are obtained with Memory BW and Self-reliant BW that

perform better than Linux across all the evaluated mixes. However, notice that Self-

reliant BW is able to achieve performance comparable to (if not better than) that

achieved by Memory BW, despite the fact the latter policy uses bandwidth informa-

tion obtained in prior executions of the processes to calculate the IABW. This can be

explained by the fact that the bandwidth information used by Memory BW is gathered

in stand-alone execution and, despite being representative of the bandwidth require-

ments of the processes, it loses some accuracy when running with co-runners because it

does not consider the interference that affect their bandwidth utilization.

5.4.3 Evaluation of the SMT Bandwidth-Aware Scheduler

This section analyzes the performance of the proposed SMT bandwidth-aware scheduler

(BaS) with respect to Linux. Figure 5.13 and Figure 5.14 present the performance

benefits reached using the IPC-based metrics. Figure 5.13 shows the speedup of the

average IPC achieved in each mix and the geometric mean across all the studied mixes.

BaS improves Linux in all mixes, with speedups ranging from above 3.0% to close to

7.0%, and with nine of twelve mixes achieving over 4.0% speedup and five exceeding

5.0%. Since average IPC is a performance focused metric, the results show that BaS

0

1

2

3

4

5

6

7

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12 Geom.	
Mean

Sp
ee
du

p	
(%
)

Figure 5.13: Speedup of the proposed BaS scheduler relative to the Linux scheduler
using the average IPC metric.

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 91

0

1

2

3

4

5

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12 Geom.	
Mean

Sp
ee
du

p	
(%
)

Figure 5.14: Speedup of the proposed BaS scheduler relative to the Linux scheduler
using the harmonic mean of the per-program IPC speedup metric.

effectively addresses bandwidth contention at the L1 cache and main memory, which

results in a significant performance increase.

Figure 5.14 compares the speedups with the harmonic mean of the per-program IPC

speedup metric. BaS achieves speedups ranging from around 2.0% to 4.5% with respect

to Linux. Although they are slightly reduced compared to those obtained with the

average IPC metric, they show that, in addition to improve its performance, the proposed

scheduler works fairer than Linux.

Figure 5.15 presents the speedup achieved by BaS regarding the turnaround time. The

plot shows that BaS shortens the execution time of all the evaluated mixes with speedups

over 2.0%, with the only exception of mix 9. Five mixes achieve a speedup between 3.0%

and 4.0%. The wider confidence intervals in the turnaround time speedups are caused

by the high variability of the turnaround time of the mixes in Linux. For instance, the

typical deviation of the turnaround time of different executions of mix 2 in Linux triples

the one obtained by BaS.

Notice that when dealing with bandwidth contention, the improvements achieved in

throughput, as the average IPC speedups, do not directly correspond to reductions

in the turnaround time of the mixes. In fact, when the turnaround time of the mix

is shortened bandwidth contention rises, since the same number of memory or cache

accesses are concentrated in a shorter period of time. This situation can cause some

policies to achieve higher throughput but also longer execution time. Therefore, it is

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 92

0

1

2

3

4

M	1 M	2 M	3 M	4 M	5 M	6 M	7 M	8 M	9 M	10 M	11 M	12 Geom.	
Mean

Sp
ee
du

p	
(%
)

Figure 5.15: Speedup of the proposed BaS scheduler over the Linux scheduler using
the turnaround time metric.

important to observe that BaS scheduling policy improves both metrics at the same

time.

Unfortunately, the turnaround time does not take into account the fact that at the

end of the mix execution the number of running processes will probably be lower than

the number of hardware contexts of the processor, and these free hardware contexts

could be used to run other workloads. To consider them in the evaluation, we measure

the consumed slots, that is the accumulated number of hardware contexts used in each

quantum required to complete the execution of a given workload. Notice that consumed

slots could be more meaningful than turnaround time, since it gives lower weight to the

quanta where the number of running processes is lower than the number of hardware

contexts.

Figure 5.16 presents the evolution of the consumed slots during the execution of the

studied mixes, which shows how the hardware contexts are released earlier with BaS

than with Linux. The plot for each mix presents the number of consumed slots in the y-

axis, that is, the number of threads running at each quantum. It ranges from twelve, the

maximum number of threads that can run simultaneously in the experimental platform

(six dual-threaded cores), to zero, which is the point where the workload execution

finishes.

The plots show that the benefits provided by BaS, which are colored in green, go beyond

the reduction in turnaround time. The proposed scheduling policy usually finishes the

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 93

0

5

10

680 700 720 740 760 780 800 820 840

Co
ns
um

ed
slo

ts

Time	(s)

SMT BaS	scheduler Linux	scheduler

0

2

4

6

8

10

12

720 740 760 780 800 820 840

C
on
su
m
ed

sl
ot
s

Time (s)

(a) Mix 1

0

2

4

6

8

10

12

680 700 720 740 760 780 800 820 840

C
on
su
m
ed

sl
ot
s

Time (s)

(b) Mix 2

0

2

4

6

8

10

12

600 620 640 660 680 700 720 740 760

C
on
su
m
ed

sl
ot
s

Time (s)

(c) Mix 3

0

2

4

6

8

10

12

620 660 700 740 780 820

C
on
su
m
ed

sl
ot
s

Time (s)

(d) Mix 4

0

2

4

6

8

10

12

660 700 740 780 820 860 900 940

C
on
su
m
ed

sl
ot
s

Time (s)

(e) Mix 5

0

2

4

6

8

10

12

600 620 640 660 680 700 720 740 760

C
on
su
m
ed

sl
ot
s

Time (s)

(f) Mix 6

0

2

4

6

8

10

12

640 660 680 700 720 740 760 780

C
on
su
m
ed

sl
ot
s

Time (s)

(g) Mix 7

0

2

4

6

8

10

12

640 660 680 700 720 740 760

C
on
su
m
ed

sl
ot
s

Time (s)

(h) Mix 8

0

2

4

6

8

10

12

600 640 680 720 760 800

C
on
su
m
ed

sl
ot
s

Time (s)

(i) Mix 9

0

2

4

6

8

10

12

680 700 720 740 760 780 800 820 840

C
on
su
m
ed

sl
ot
s

Time (s)

(j) Mix 10

0

2

4

6

8

10

12

580 600 620 640 660 680 700 720 740

C
on
su
m
ed

sl
ot
s

Time (s)

(k) Mix 11

0

2

4

6

8

10

12

640 680 720 760 800 840

C
on
su
m
ed

sl
ot
s

Time (s)

(l) Mix 12

Figure 5.16: Consumed slots in the workloads. The proposed scheduler saves slots in
the green area, while Linux does it in the red area.

processes that form a workload earlier, allowing the scheduler to put some cores into a

low power state or use them to run a different workload. Notice that an early completion

of the processes can only be achieved without enlarging the execution time of the mixes

if the bandwidth contention along the memory hierarchy is reduced, which is the main

goal of the proposed scheduler.

For instance, Figure 5.16b, Figure 5.16k, and Figure 5.16l present the evolution of the

consumed slots of mixes 2, 11, and 12, which showed the highest speedups with the

previous metrics. As observed, BaS significantly reduces the number of slots required

to complete the execution of the mixes. On the other hand, Figure 5.16a, Figure 5.16d,

and Figure 5.16i present the consumed slots plots for some mixes that showed the lowest

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 94

speedups in the metrics previously studied. Even in these cases, BaS is able to bring for-

ward the completion of the processes with respect to Linux, saving a noticeable amount

of execution slots. Note that in mix 1 (Figure 5.16a), although Linux saves more execu-

tion slots from, approximately, second 740 to second 760 (bounded by the area shaded

in red color), BaS saves a higher number of slots through the overall execution, which

compensates this loss. With a lower magnitude, the same effect can also be observed in

mix 9 and mix 11.

5.5 Summary

This chapter has addressed bandwidth contention on current SMT multicore proces-

sors, mainly focusing on how L1 bandwidth contention affects the performance of the

processes running simultaneously on an SMT core. Two interesting findings have been

made relative to L1 bandwidth contention: i) performance and L1 bandwidth consump-

tion of a given process follow the same shape over the execution time regardless of the

process runs in stand-alone execution or with co-runners, and ii) when two processes run

simultaneously on an SMT core, its L1 bandwidth is insufficient to fit the requirements

of both processes, and the implicit drops in the L1 bandwidth and IPC of a process

trigger the opposite effect in the co-runner.

To deal with the observed L1 bandwidth contention, we propose a process allocation

policy with the goal of balancing the L1 requests among the processor cores, which

reduces contention and increases performance. The devised process allocation policy

dynamically reads performance counters to update the L1 bandwidth requirements of

the processes and adapts the process allocation according to the phase behavior of the

applications.

Since main memory bandwidth contention can drop the performance up to 50% on the

experimental platform, we combine the Dynamic L1 bandwidth-aware process allocation

policy with a process selection algorithm that is aware of main memory bandwidth

contention. The proposed process selection policy distributes the main memory accesses

of the processes of a workload along its execution time by selecting the processes on

each quantum that match a target main memory bandwidth utilization. Unlike previous

Chapter 5. Bandwidth-Aware Scheduling in SMT Multicores 95

proposals, the target main memory bandwidth utilization to reach in each quantum is

obtained at run-time without any preliminary information of the processes to be run.

Experimental evaluation with on Intel Xeon E5645 processor has shown that the Dy-

namic L1 bandwidth-aware process allocation policy significantly improves the perfor-

mance with respect to the process allocation performed by Linux, which in many cases

is unable to improve the performance of a random policy further than 1%. In contrast,

the proposed policy achieves speedups as high as 10% over the random scheduler and

doubles the speedups obtained by Linux in most evaluated mixes. Regarding the SMT

bandwidth-aware scheduler, which addressed both main memory and L1 bandwidth con-

tention, it achieves performance benefits up to 6.7%, with a geometric mean of speedups

by 4.6% with respect to Linux.

The work discussed in this chapter has been published in [63], [64], and [65].

Chapter 6

Progress-Aware Scheduling to

Address Fairness in SMT

Multicores

Most scheduling algorithms are exclusively focused on performance, giving fairness a

secondary or even inexistent role. This chapter concentrates on progress-aware sched-

ulers to address system fairness. These schedulers estimate, at run-time, the progress

made by the processes with respect to their isolated execution, which allows calculating

the actual unfairness of a mix execution. Based on these estimates, processes with lower

accumulated progress can be prioritized to improve system fairness.

This chapter is organized as follows. First, we discuss how progress can be estimated

and identify the possible sources that cause inaccuracy when estimating it on SMT

multicores. Next, two progress-aware scheduling algorithms are proposed. The first

one is completely focused on maximizing fairness, while the second one simultaneously

addresses both fairness and performance. Finally, the fairness and performance achieved

with the proposed scheduling algorithms is evaluated.

97

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 98

6.1 Estimating Progress

Accurately estimating how a process progresses at run-time with respect to its isolated

execution is the key point to provide fairness. Progress estimations are particularly

challenging in SMT multicores due to the constant resource sharing among the processes

running on the same SMT core. Such resource sharing triggers an interference that

strongly and distinctly affects the performance of different processes. This interference

is the main cause that lead the systems to be highly unfair. As an example of an SMT

multicore, this chapter uses the system with the six-core dual-threaded Intel Xeon E5645

processor as experimental platform in the performed experiments.

To estimate the progress made by the processes, we use Equation 6.1, which accumu-

lates, for the elapsed quanta, the ratio between the measured IPC that a process achieves

when running concurrently with other processes (IPC i
co−runners) and the estimated IPC

that such a process would have achieved in isolation (IPC i
alone) during the same quan-

tum. The former is directly measured from the committed instructions and execution

cycles gathered with performance counters. The difficulty lies in estimating isolated

performance.

Progress =

Q∑
i=0

IPC i
co−runners

IPC i
alone

(6.1)

To estimate the stand-alone IPC of a process, we propose to arrange a low-contention

schedule aimed at minimizing performance interference among the scheduled processes.

The IPC of a target process is measured during the execution of the devised low-

contention schedule and used as estimate of its stand-alone performance for the n fol-

lowing quanta in which the process is scheduled. During these quanta, a scheduling

algorithm can increase system fairness by prioritizing processes with lower accumulated

progress.

Two main reasons can cause deviations in the IPC estimates: i) the stand-alone IPC is

assumed valid for a too long period (number of quanta), and ii) thread interference is

higher than expected in the devised low-contention schedules. Below these two deviation

sources are analyzed.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 99

6.1.1 Period Length between IPC Estimates

Defining the period length between IPC estimates represents a trade-off between esti-

mation accuracy and fairness. The longer the interval, the higher the number of quanta

where a given IPC estimate is assumed valid, hence inaccuracy potentially rises. Con-

versely, the shorter the interval, the higher the number of quanta devoted to IPC esti-

mations; thus, the fewer the quanta used to address fairness.

This section analyzes the accuracy of IPC estimates varying the period length between

estimates. The study compares, for each benchmark, the average deviation (along its

complete execution) of the IPC estimates with respect to the real IPC of each quantum.

Figure 6.1 presents the average and maximum deviations across all the SPEC CPU2006

benchmarks when ranging the period length between IPC estimates from one to eight

seconds. Green and red lines show the average and maximum deviations, respectively,

across all the benchmarks. Average values are relatively low (below 2%) for periods

shorter than eight seconds. Maximum deviation, however, grows faster as the period

between IPC estimates is enlarged. Nonetheless, results show that reasonable accuracy

can be achieved by estimating the stand-alone IPC of the benchmarks at relatively long

periods of time.

To provide further insights in this claim, Figure 6.2 compares the dynamic IPC evolution

of a subset of benchmarks measured at 200 milliseconds and 6 seconds periods. When the

process presents uniform IPC, like hmmer, practically no difference is observed between

0

4

8

12

16

1 2 3 4 5 6 7 8

IP
C	
de
vi
at
io
n	
(%
)

Period	length	(s)

Maximum	deviation Average	 deviation

Figure 6.1: IPC deviation when increasing the period length between measures.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 100

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

Period	=	200	ms Period	=	6	s

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(a) Hmmer

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(b) Xalancbmk

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125 150 175 200

In
st
ru
ct
io
ns
	p
er
	c
yc
le

Time	(s)

(c) CactusADM

Figure 6.2: Comparison between IPC measured each 200 ms and each 6 s.

both sampling periods (in spite that the 6 seconds period is 30× longer than the shorter

one), while slight differences can be observed with processes with different phases of

execution like xalancbmk or cactusADM.

Furthermore, these values were obtained running processes alone in the system, however,

processes experience a slower (or much slower) progress running with a co-runner on the

same SMT core. Therefore, longer periods might be considered in the devised scheduling

algorithm (see Section 6.2.4).

6.1.2 Process Interference in Low-Contention Schedules

This section studies the performance interference that raises among processes in the

shared resources. The analysis first considers only pairs of benchmarks running on an

SMT core; then, the schedule is extended with more benchmarks (running on several

cores) to analyze the impact of overall interference on individual performance. If the

interference is prudent, then the stand-alone IPC may be estimated in schedules with

multiple applications achieving reasonable accuracy.

As mentioned above, two levels of interference are distinguishable in an SMT multicore:

intra- and inter-core. Intra-core interference is caused due to sharing critical core re-

sources for performance like the L1 cache, the dispatch width, the instructions queues,

or the execution units. This interference only appears among the processes that run

in the same SMT core. In contrast, inter-core interference can be caused by any other

process running in the multicore processor since they share the main memory and the

cache hierarchy (the L3 cache in our target system).

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 101

Intra-core interference impacts more strongly on performance since a wider set of re-

sources, including L1 caches and execution units, are shared among the processes run-

ning concurrently on the same core. Two processes that perform scarce use of inter-core

resources can run concurrently without noticeable performance degradation. However,

intra-core interference causes any two processes running simultaneously on the same

SMT core to significantly reduce their performance. Therefore, to estimate the stand-

alone IPC of a process it needs be scheduled alone on a core, avoiding intra-core inter-

ference. From now on, this section focuses on the performance interference that raises

among processes running on different cores.

6.1.2.1 Interference between Pairs of Benchmarks

First, the analysis focuses on inter-core interference between pairs of benchmarks. To

carry out this study, all possible couples of benchmarks are run, each benchmark on a

distinct core, and their individual performance is compared to that achieved in isolation.

pe
rlb
en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu
an
tu
m

h2
64
re
f

om
ne
tp
p

as
ta
r

xa
lan

cb
m
k

bw
av
es

ga
m
es
s

m
ilc

ze
us
M
P

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
alI
I

so
pl
ex

po
vr
ay

ge
m
sF
DT
D

lb
m

perlbench 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0% 1% 1% 0% 1% 0% 0% 1% 0% 0% 1%
bzip2 0% 0% 1% 6% 0% 0% 0% 8% 0% 4% 3% 3% 8% 0% 9% 3% 0% 2% 7% 0% 1% 6% 0% 8% 9%
gcc 0% 1% 3% 8% 1% 0% 1% 10% 1% 6% 4% 5% 11% 0% 11% 5% 1% 3% 9% 0% 1% 8% 0% 10% 10%
mcf 0% 0% 3% 24% 2% 2% 1% 28% 3% 15% 13% 17% 29% 0% 29% 4% 2% 6% 24% 0% 5% 13% 0% 28% 32%

gobmk 0% 0% 0% 1% 0% 0% 0% 4% 1% 1% 0% 2% 2% 0% 4% 2% 1% 2% 3% 1% 0% 3% 0% 4% 4%
hmmer 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 0% 0% 3% 0% 2% 1% 0% 0% 2% 0% 0% 1% 0% 1% 3%
sjeng 0% 0% 0% 1% 0% 0% 3% 6% 3% 1% 4% 4% 6% 3% 6% 4% 3% 4% 6% 3% 3% 5% 3% 6% 6%

libquantum 0% 0% 0% 0% 0% 0% 0% 1% 0% 2% 0% 0% 2% 0% 1% 1% 0% 0% 0% 0% 0% 2% 0% 4% 4%
h264ref 0% 0% 0% 4% 0% 0% 0% 6% 0% 2% 1% 3% 6% 0% 11% 2% 0% 1% 8% 0% 1% 6% 0% 10% 6%

omnetpp 1% 6% 7% 15% 3% 3% 3% 17% 5% 14% 10% 13% 17% 2% 18% 11% 4% 10% 16% 1% 4% 15% 0% 19% 19%
astar 1% 4% 5% 12% 2% 2% 3% 14% 3% 10% 17% 17% 14% 5% 22% 15% 7% 5% 21% 6% 3% 20% 1% 22% 23%

xalancbmk 0% 4% 7% 21% 2% 2% 2% 25% 3% 15% 14% 19% 28% 1% 28% 10% 2% 6% 23% 1% 4% 24% 0% 27% 30%
bwaves 0% 0% 0% 1% 0% 0% 0% 1% 0% 1% 1% 0% 9% 8% 9% 8% 8% 8% 9% 8% 8% 1% 8% 9% 9%
gamess 0% 0% 0% 1% 0% 1% 0% 1% 0% 0% 0% 1% 1% 0% 1% 1% 0% 0% 0% 0% 0% 1% 0% 1% 1%

milc 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 1% 1% 2% 0% 25% 24% 24% 24% 3% 24% 24% 24% 24% 25% 25%
zeusMP 1% 1% 1% 2% 0% 0% 1% 2% 0% 1% 1% 1% 2% 0% 2% 10% 8% 8% 9% 8% 8% 9% 0% 9% 9%
gromacs 0% 0% 2% 2% 0% 0% 1% 2% 0% 1% 2% 1% 2% 0% 2% 1% 1% 1% 3% 0% 1% 1% 0% 3% 3%

cactusADM 0% 1% 3% 8% 1% 0% 0% 9% 0% 6% 4% 5% 9% 0% 9% 5% 0% 4% 9% 0% 1% 8% 0% 10% 10%
leslie3d 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 20% 18% 18% 19% 18% 20% 20%
namd 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 1% 0% 0% 1% 0% 2% 1%
dealII 0% 0% 0% 1% 0% 0% 0% 2% 0% 1% 1% 0% 2% 0% 1% 0% 0% 0% 1% 0% 1% 1% 0% 2% 2%
soplex 2% 4% 6% 19% 3% 3% 3% 20% 5% 13% 11% 15% 21% 1% 19% 11% 2% 7% 17% 1% 4% 20% 0% 21% 24%
povray 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 1% 1% 0% 1%

gemsFDTD 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 1% 0% 2% 2%
lbm 0% 4% 23% 6% 0% 0% 0% 8% 0% 3% 2% 5% 11% 0% 9% 2% 0% 1% 7% 0% 1% 8% 0% 11% 36%

Figure 6.3: Performance degradation due to inter-core interference running pairs of
benchmarks. Each row shows the degradation of a benchmark running with each co-

runner on different cores.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 102

Figure 6.3 presents the results. Each row shows the performance degradation of a

benchmark caused by any possible co-runner. For instance, bzip2 suffers a performance

drop by 6% when running with mcf, while the performance of mcf is not reduced when

it is executed with bzip2. Similarly, each column depicts the performance degradation a

benchmark induces to each co-runner. For instance, among all the possible co-runners,

libquantum causes the highest performance drop (by 28%) to mcf.

The performance degradation level is highlighted in the table with different colors. A

cell (X,Y) colored in green, orange, or red, means that process Y affects the performance

of process X less than 5%, between 5% and 10%, or more than 10%, respectively.

Depending on how benchmarks affect the performance of their co-runners, they can be

classified in two main categories: heavy-sharing and light-sharing. The former category

includes benchmarks that strongly affect the performance (i.e., above 10%) of a sig-

nificant subset of the possible co-runners. Examples of benchmarks belonging to this

category are mcf, libquantum, and omnetpp. The light-sharing category includes those

benchmarks that scarcely affect the performance of the co-runners since they make a

scarce use of the shared resources. This category includes benchmarks in columns that

mostly show cells colored in green.

Note that for any target benchmark, a wide set of co-runners impacting its performance

less than 5% can be found. For example, perlbench can be coupled to estimate its stand-

alone IPC with any other benchmark since the maximum performance degradation it

suffers is by 1%. Following the same rule, astar can be paired with perlbench, bzip2, gcc

or gobmk, among others, but not with mcf or omnetpp.

A scheduler could use the above offline analysis to predict the performance interference.

However, this way is unfeasible from a practical point of view. In contrast, our ap-

proach consists in classifying benchmarks as heavy-sharing or light-sharing at run-time,

depending on their phase behavior. After a wide set of experiments analyzing distinct

performance counters, we found that the bandwidth consumption of the uncore shared

resources, that is, main memory and LLC, is appropriate to perform this classification.

At a first glance, it might be expected that processes with either high LLC or main

memory bandwidth consumption fall on the heavy-sharing category since they are likely

to interfere their co-runners performances. Conversely, processes that perform a scarce

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 103

0

10

20

30

40

50

60

0

5

10

15

20

25

30

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k
hm

m
er

sje
ng

lib
qu

an
tu
m

h2
64

re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm

k
bw

av
es

ga
m
es
s

m
ilc

ze
us
M
P

gr
om

ac
s

ca
ct
us
AD

M
le
sli
e3
d

na
m
d

de
al
II

so
pl
ex

po
vr
ay

ge
m
sF
DT

D
lb
m

LL
C	
ba

nd
w
id
th
	(t
ra
ns

./
us
ec

.)

M
M
	b
an
dw

id
th
	(t
ra
ns
./u

se
c.)

Main	memory	bandwidth LLC	bandwidth

Figure 6.4: Average main memory and LLC bandwidth. The red and blue lines
represent the thresholds devised on the main memory and LLC bandwidth to classify

the benchmarks as heavy- or light- sharing.

use of these resources are unlikely to interfere with co-runners, so they could be classified

as light-sharing.

Figure 6.4 depicts the average main memory and LLC bandwidth consumption of the

benchmarks in stand-alone execution. As observed, all the benchmarks whose LLC

bandwidth utilization is above 19.0 transactions/microsecond or whose main memory

bandwidth utilization is above 3.5 transactions/microsecond belong to the heavy-sharing

category. Otherwise, they fall in the light-sharing category. Notice that these thresholds

are estimated in stand-alone execution, and the cache interference when the processes

run concurrently can cause cache misses to grow. Thus, it is likely that processes with

bandwidth utilizations close to the thresholds (e.g., gcc or cactusADM) end up exceeding

them when running concurrently with other processes.

6.1.2.2 Cumulative Interference in Low-Contention Schedules

The previous section analyzed the interference in low-contention schedules composed

only of a pair of co-runners. However, to avoid significant throughput losses when IPC

estimates are required, the number of light-sharing benchmarks executing in a low-

contention schedule should be as high as possible.

To analyze the cumulative interference in low-contention schedules consisting of more

than two co-runners, the performance of all possible groups of three, four, five, and six

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 104

0%

20%

40%

60%

80%

100%

Avg Max Avg Max Avg Max Avg Max

Triplets	(165) Quartets	(330) Quintets	(462) Sextets	(462)

Fr
eq
ue
nc
y

[0, 1%] [1%, 3%] [3%, 5%]

Figure 6.5: Histogram of the performance degradation on light-sharing schedules. In
brackets, the total number of evaluated schedules.

light-sharing benchmarks has been explored. Figure 6.5 depicts the results. Looking at

the average performance slowdown (Avg. bar), it can be observed that the interference

is acceptable even in large groups. For instance, more than 85% of all the possible 6-

process schedules (i.e., 462 sextets) present an average slowdown below 1%. The Max bar

refers to the slowdown of the benchmark suffering the highest slowdown in the schedule.

As expected, it grows as the number of processes of the schedules rises. However, only

by 10% of the benchmarks in the 6-process schedules present a maximum performance

degradation falling in between 3% and 5%.

To sum up, these results show that the low-contention schedules used to obtain IPC

estimates are not restricted to a small number of processes, but good accuracy can be

achieved even when the schedule disposes of at least one process per core. This finding

is important because being forced to run schedules with a few processes when a new

IPC estimate were required could strongly affect the system throughput.

6.2 Progress-Aware Fair Scheduling

The progress-aware Fair scheduling algorithm is designed to allow all the processes to

achieve the same progress over the mix execution. Since the impact of interference on

individual process performance widely differs across the studied processes, each process

requires a distinct execution time to achieve the same progress. In other words, processes

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 105

with higher performance degradation induced by co-runners require more quanta of

execution than processes with lower performance degradation to make the same progress.

In addition, as explained above, the scheduler needs to use some quanta periodically

to estimate the isolated performance of each process, used to calculate their progress

at run-time. These quanta can affect both fairness and performance due to scheduling

constraints when creating low-contention schedules. For instance, in low-contention

schedules light-sharing processes are prioritized over heavy-sharing processes regardless

of their accumulated progress.

Hence, the algorithm implements two different process selection policies: IPC estimation-

oriented and fairness-oriented. The former applies when any process needs to estimate its

isolated IPC and a low-contention schedule is required. The latter guides the schedul-

ing to improve fairness and applies when all the processes have valid IPC estimates.

Algorithm 7 presents the pseudocode of the proposed scheduling algorithm, which dif-

ferentiates between both process selection policies: IPC estimation-oriented (lines 1 to

9) and fairness-oriented (lines 10 to 16).

Performance counters play an essential role to implement the proposal and are used to

dynamically compute the IPC and bandwidth utilization of the processes. The IPC of the

processes is used to estimate their progress, while the main memory and LLC bandwidth

utilization of the last executed quantum are used to determine at run-time if the process

belongs to the light- or heavy- sharing category, as explained in Section 6.1. Finally, the

L1 bandwidth utilization of the processes is used to guide the process allocation. For

this purpose, the evens instructions retired, unhalted core cycles, offcore response 0.any

data.local dram (main memory accesses), offcore response 0.any data.local cache (LLC

accesses), and perf count hw cache l1d.access (L1 accesses) are gathered.

The IPC estimate of each process is kept valid for a certain number n of quanta (see

Section 6.2.4). A saturating counter is assigned to each process P to account the elapsed

quanta and is updated each quantum the process is scheduled. When any counter

saturates, the scheduler executes the IPC estimation-oriented process selection, and

the counter is reset. Otherwise, the fairness-oriented process selection determines the

schedules for the following quantum. These two policies and the process allocation

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 106

policy are described in the following section. Then, the implementation parameters are

discussed.

The proposed algorithm could be extended to support user-defined priorities (i.e., Linux

nice priorities) if required. Priorities can be established based on the progress made

by each process similar to how the Linux CFS scheduler uses the nice value to weight

the proportion of processor a process is to receive [66]. In this context, a process with

higher priority should progress faster than a process with a lower priority. Thus, process

priorities could be implemented by allowing a process to progress n% faster than others,

where n depends on the nice value.

Algorithm 7 Progress-aware Fair scheduling algorithm
1: Update IPC and bandwidth utilization for each process P run in the last quantum.

PROCESS SELECTION

2: if the IPC estimation of any process P has expired then

IPC ESTIMATION-ORIENTED

3: Reserve P to an entire core.
4: if P is a light-sharing process then
5: while IPC estimation of any light-sharing process PLS is close to expire

and there are free cores do
6: Reserve PLS to an entire core.
7: end while
8: end if
9: Select as many light-sharing processes as available hardware threads,

prioritizing those with lower progress.
10: else

FAIRNESS-ORIENTED

11: Calculate the average progress of the processes of the mix.
12: while a process PLP is progressing below the average do
13: Allocate PLP to an entire core.
14: end while
15: Select as many processes as available hardware threads

prioritizing those with lowest progress.
16: end if

PROCESS ALLOCATION

17: Allocate the threads that reserved an entire core to a core
18: Sort the remaining selected processes in ascending BWL1

19: while there are unallocated processes do
20: Allocate the processes Phead and Ptail to the same core
21: end while

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 107

6.2.1 IPC Estimation-Oriented Process Selection

The IPC estimation-oriented process selection (lines 2 to 10 of Algorithm 7) is triggered

when a valid IPC estimate is required (line 1) for any process P . A low-contention

scenario is scheduled to avoid intra-core and minimize inter-core interference. The former

interference is removed by running P alone on an entire core. For now, an entire core is

reserved for the process (line 2); the final core will be assigned by the process allocation

policy. Inter-core interference is minimized by only including light-sharing processes in

the schedule. If P itself is a light-sharing process (line 3), and there are other light-

sharing processes whose IPC estimates are close to expire (see Section 6.2.4), then each

of them also reserves an individual core (line 5). This way allows multiple IPC estimates

to be obtained during the same quantum.

After that, the remaining cores are filled with light-sharing processes. In particular,

as many light-sharing processes as available hardware contexts are scheduled (line 8).

For the sake of fairness, the scheduler prioritizes the light-sharing processes that have

experienced less accumulated progress. Moreover, if there are not enough light-sharing

processes in the workload, the exceeding hardware contexts are left free, since selecting

heavy-sharing processes could create bandwidth contention and affect the accuracy of

the IPC estimates that are being performed during the quantum. The selected processes

will be smartly allocated to cores in pairs to reduce the SMT intra-core interference in

the process allocation step.

6.2.2 Fairness-Oriented Process Selection

As a rule of thumb, to improve fairness, the scheduling algorithm selects those processes

with lowest accumulated progress to run the following quantum (line 14). In the Intel

Xeon E5645 processor used as experimental platform, with six dual-threaded cores, the

twelve processes with lowest progress are selected. Nonetheless, to maximize fairness,

the process selection policy checks in a prior step if the progress of any process is falling

behind the others. To this end, the scheduler computes the average progress of all the

processes of the mix (line 10). Then, it is checked if the progress of any process is by

5% below the average (line 11). If there are processes in this situation, the scheduler

reserves an entire core to each of them (line 12). Running them along on a core speedups

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 108

their individual progress since alone execution in the core is faster than SMT execution,

where two processes are simultaneously run on the same core. After that, the algorithm

proceeds selecting the remaining processes with lower accumulated progress.

Although it is not shown in the algorithm, note that even when working in the fairness-

oriented process selection policy, unprompted scenarios can be leveraged to estimate

isolated IPCs. For instance, if a schedule only includes light-sharing processes, the

isolated performance can be estimated for those processes individually allocated to an

entire core to boost their performance and compensate their lower accumulated progress,

regardless of the deadline of their current IPC estimate.

6.2.3 Process Allocation

After the process selection has been performed by the IPC estimation-oriented process

selection policy, some processes will require to run alone on a core. Thus, the first step

of the process allocation assigns all these processes to entire cores (line 21). After that,

the remaining processes are allocated using the Dynamic L1 bandwidth-aware process

allocation policy (see Section 5.2.2), which reduces the interference between processes

by allocating them to cores so that the L1 bandwidth is evenly distributed among the

L1 caches. To this end, the processes are sorted in a list in ascending L1 bandwidth

order (line 22). Then, the processes placed at the head and tail of the list are removed

from it and allocated together to the same core. This action is performed iteratively

until the list is empty (lines 23 to 25).

6.2.4 Implementation Considerations

The proposed algorithm relies on several parameters that must be tuned to provide

the best results. Depending on the values of these parameters the schedulers can: i)

maximize fairness with no performance consideration, ii) prioritize fairness over (but

without compromising) performance. We focus our study on the second case because we

do not want to improve fairness at the expense of performance. Different values for each

parameter have been evaluated. This section presents and discusses the values used to

evaluate the proposal, analyzing their advantages and disadvantages.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 109

The maximum period between two standalone IPC estimates has been empirically set to

8 seconds, that is fourty 200 ms quanta (n = 40). Experimental results show that shorter

periods can enhance fairness, but strongly affecting performance. Conversely, longer

intervals negatively affect fairness without providing significant performance benefits.

In the algorithm implementation, we also consider that an IPC estimation is close to

expire when the number of quanta a process has been scheduled since its last estimation

is half the maximum number of quanta between estimates (n = 20).

Main memory and LLC bandwidth thresholds to discern between light- and heavy-

sharing processes are set to 3.5 and 19.0 transactions/microsecond, respectively, since

these values offer a good trade-off between fairness and performance. Higher thresh-

olds include more benchmarks classified as light-sharing even if they are not (i.e., they

introduce considerable contention). As a consequence, more contention than expected

can be generated, affecting the accuracy of the estimates and thus, system fairness can

be compromised. On the contrary, lower thresholds classify more processes as heavy-

sharing. However, in this case, performance may be affected since a higher number of

heavy-sharing processes limits scheduling flexibility.

The last parameter used in the algorithm determines when a given process is unfairly

progressing slower than the others. As explained before, when this situation occurs,

the process progressing slower is allocated alone on a core to accelerate its progress,

so avoiding inter-core interference. We consider that a process is progressing too slow

when its progress differs above 5% from the average progress of the processes of the mix.

Using a higher threshold would enlarge the accepted unfairness before taking scheduling

decisions to reduce it. Conversely, a lower threshold would trigger the progress correction

too frequently, affecting the system performance.

6.3 Progress-Aware Perf&Fair Scheduling

Unlike the progress-aware Fair proposal (from now on Fair), the progress-aware Perf&Fair

scheduling algorithm confronts a twofold goal: reducing unfairness while enhancing per-

formance. On the one hand, to lessen unfairness it estimates the progress made by each

process and prioritizes the processes with lower accumulated progress, following the same

idea of Fair. On the other hand, to improve performance, it minimizes main memory

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 110

and L1 cache bandwidth contention (see Chapter 5). The difficulty to accomplish both

goals lies on finding the way to schedule processes so that both goals do not conflict on

the scheduling decisions.

Perf&Fair follows a similar structure as Fair, implementing two distinct process selection

policies referred to as IPC estimation-oriented and performance- & fairness- oriented.

The former policy applies when any process needs to estimate its isolated IPC, and

closely resembles the same process selection policy of Fair. The latter guides the sched-

uler to enhance performance and fairness, and applies when all the processes have valid

IPC estimates. This process selection policy represents the main difference between both

progress-aware scheduling algorithms. As discussed in Section 6.2.4, the IPC estimates

for each process are kept valid for 40 quanta, because this interval offers a good trade-off

between IPC estimation accuracy and overhead due to IPC estimations.

As discussed for Fair, Perf&Fair uses performance counters to i) measure the IPC of the

processes and estimate their progress, ii) dynamically classify the processes as light- or

heavy-sharing, and iii) guide scheduling decisions based on the bandwidth consumption

of the processes at the different levels of the memory hierarchy. Unlike Fair, Perf&Fair

also considers main memory bandwidth contention to select the processes to be run each

quantum in the performance- & fairness- oriented process selection.

Algorithm 8 presents the pseudocode of the progress-aware Perf&Fair scheduler, which

presents two process selection policies: IPC estimation-oriented (lines 3 to 9) and

performance- & fairness- oriented (lines 11 to 26). The Dynamic L1 bandwidth-aware

process allocation policy (discussed in Section 6.2.3) is used to allocate the processes to

the cores (lines 27 to 31). Below, the two process selection policies are discussed.

6.3.1 IPC Estimation-Oriented Process Selection

The IPC estimation-oriented process selection policy in Perf&Fair has the same goal and

works as the IPC estimation-oriented process selection policy of Fair (see Section 6.2.1).

The main difference is that the estimation quantum length is set to 100 milliseconds. By

halving the quantum length, the accuracy of the estimations is slightly reduced, which

affects fairness, but more performance benefits can be achieved. Notice that even for a

quantum length of 100 ms there is a minor scheduling overhead.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 111

Algorithm 8 Progress-Aware Perf&Fair scheduler
1: Update IPC and bandwidth utilization for each process P run in the last quantum

PROCESS SELECTION

2: if the IPC estimation of any process P has expired then

IPC ESTIMATION-ORIENTED (Qlength=100 ms)

3: Reserve an entire core to P
4: if P is a light-sharing process then
5: while IPC estimation of any light-sharing process PLS is close to expire

and there are free cores do
6: Reserve an entire core to PLS

7: end while
8: end if
9: Select as many light-sharing processes as available

hardware threads, prioritizing those with lower progress
10: else

PERFORMANCE- & FAIRNESS- ORIENTED (Qlength=200 ms)

11: Calculate OATR =
∑N

p=0 Avg BWp
MM

N ×#CPUs

12: Set BWRemain = OATR, CPURemain = #CPUs

13: Set MaxP = Maximum progress ∀ PX ∃ Process queue
14: while CPURemain > 0 do
15: if ∃ processes with Progress(Pi) + 1 < MaxP then
16: ∀ Pi with Progress(Pi) + 1 < MaxP do
17: Select the process P that maximizes

18: FITNESS(p) = 1∣∣∣ BWRemain
CPURemain

−BWp
MM

∣∣∣
19: else
20: ∀ Pi do
21: Select the process P that maximizes

22: FITNESS(p) = 1∣∣∣ BWRemain
CPURemain

−BWp
MM

∣∣∣
23: end if
24: Update BWRemain− = BW p

MM , CPURemain −−
25: end while
26: end if

PROCESS ALLOCATION

27: Allocate the threads that reserved an entire core to a core
28: Sort the remaining selected processes in ascending BWL1

29: while there are unallocated processes do
30: Allocate the processes Phead and Ptail to the same core
31: end while

6.3.2 Performance- & Fairness- Oriented Process Selection

In order to improve performance without sacrificing fairness, processes must be care-

fully selected. The main idea behind this process selection policy consists in selecting

the processes following a performance approach but preventing, as much as possible,

unfairness from growing.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 112

Regarding performance, the algorithm calculates first the Online Average Transaction

Rate (OATR) to select the processes for the following quantum (see Section 5.2.1).

The OATR and the number of hardware contexts are initially assigned to the variables

BWRemain and CPURemain, respectively (line 12). As in previous scheduling algorithms,

these variables are iteratively updated as processes are selected to be run in the next

quantum (line 24).

To prevent unfairness from growing, the algorithm restricts the process selection (when

it is possible) to the processes whose current progress is so low that if they were run

in the next quantum (Qi+1), their progress after Qi+1 should not exceed the current

maximum progress (i.e., at the end of quantum Qi) among all the processes of the mix.

To do that, the algorithm determines the maximum progress MaxP achieved among

the running processes (line 13). Since the progress during a quantum is defined as

IPCco−runners / IPCalone, the maximum increase of progress that a process can experi-

ence in a quantum is 1. Based on this fact, only processes whose progress differ more

than one unit from MaxP are considered as schedulable at this point (line 16). Among

the processes that fulfill the previous condition, the fitness function determines which

ones are finally selected (lines 17 and 18) attending to their main memory bandwidth

utilization to improve performance (see Section 4.2.2).

When the number of processes that fulfill the progress condition (line 16) is below the

number of hardware contexts, all these processes are directly selected to run on the

following quantum, updating the BWRemain and CPURemain variables. The remain-

ing processes, until the number of hardware contexts is reached, are selected by using

the fitness function (as explained before), but considering all the remaining processes

regardless of their accumulated progress (lines 20 to 22).

6.4 Flexible Progress-Aware Perf&Fair Scheduling:

Trading Fairness for Performance

In spite of addressing fairness in addition to performance, Perf&Fair reaches noticeable

performance compared to the Linux scheduler and the performance-oriented bandwidth-

aware scheduling algoirthm proposed in Section 5.2 we will refer to it as Perf). With

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 113

low bandwidth requirements, Perf&Fair even improves Perf. However, when the average

main memory bandwidth utilization of the workload is very high, Perf achieves higher

performance. Thus, when running these workloads with Perf&Fair, it may be desirable

to trade fairness for performance.

In part, Perf performs better than Perf&Fair due to the fact that Perf does not consider

fairness at all and exclusively deals with bandwidth contention to improve performance.

Conversely, Perf&Fair applies some constraints every quantum to prevent unfairness

from growing, which reduces its ability to deal with bandwidth contention and achieve

higher performance. In addition, to address fairness Perf&Fair devotes some quanta

to estimate the performance that the processes achieve running in isolation, which are

used to compute the progress that the processes make during the workload execution.

Unfortunately, estimation quanta also affect negatively the performance since during

these quanta the number of scheduled processes is lower than the number of available

hardware contexts.

The straightforward solution to allow Perf&Fair to offer different levels of performance/-

fairness is to modify the constraint that prevents processes that could exceed the maxi-

mum accumulated progress to be selected to run on the next quantum. This constraint

(∀ Pi with Progress(Pi) + k < MaxP) is checked in lines 15 and 16 of Algorithm 8,

where k = 1. Notice that by lowering the k value (from 1 to 0), the process selection

becomes less restrictive in terms of fairness and the algorithm is able to select among

more processes. Under no progress constraints (i.e., k < 0), the scheduling algorithm

addresses main memory bandwidth contention considering all the available processes,

exactly as Perf. The main problem that this approach presents is that while the con-

straint is not removed (i.e., k ≥ 0), the algorithm requires from performance estimates

to account the progress of the processes. Because of estimation quanta achieve lower

performance, this approach achieves less performance than Perf, which does not require

from estimation quanta, thus making the above solution not practical.

Therefore, in order to let Perf&Fair to perform closer to Perf, it should not only select the

processes similarly as Perf, but it should also reduce the number of estimation quanta.

To achieve this behavior, we propose to combine bursts of quanta scheduled under the

Perf&Fair scheduling algorithm (with the original constraint k = 1 and including its

estimation quanta) with bursts of quanta scheduled under the Perf algorithm (neither

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 114

considering fairness nor scheduling estimation quanta). Note that before beginning a

burst of quanta scheduled with the Perf&Fair algorithm, we reset the stored per-process

progress information. The enhanced algorithm, which we call Flexible Perf&Fair, can

trade fairness for performance by setting the relative length of the bursts scheduled

under each algorithm.

6.5 Evaluation Setup

The experimental evaluation has been performed in the Intel Xeon E5645 system (see

Section 3.2.2), and the proposed algorithms have been implemented in the scheduling

framework described in Section 3.1.

We follow the process selection evaluation methodology (see Section 3.3.1), setting the

target number of instructions for each SPEC CPU2006 benchmark to the number of

instructions they execute running alone in the system during 100 seconds. Quantum

length is set to 200 milliseconds, except for IPC estimation-oriented process selection

quanta in Perf&Fair, where quantum length is set to 100 milliseconds. The overhead

arising from the scheduling algorithms is negligible considering the quantum lengths

at which scheduling is performed. Overall overhead, including process selection, pro-

cess allocation and progress accounting, as well as processes and performance counters

management, is by 0.1 milliseconds. Note that it is below 0.1% of the quantum length.

Since fairness can be achieved at the cost of performance, it should not be evaluated in

isolation but performance metrics should also be considered. The turnaround time of

the mixes has been used as performance indicator in this chapter, while the unfairness

metric is used to estimate if performance benefits or losses are balanced across all the

processes and do not concentrate only on a few of them. Please, refer to Section 3.4 for

further details of the metrics and their calculation.

6.5.1 Evaluated Algorithms

The experimental evaluation takes into account the following scheduling algorithms.

• Linux: the default Linux Completely Fair Scheduler (CFS).

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 115

• Performance-oriented bandwidth-aware (Perf) the bandwidth-aware schedul-

ing algorithm for SMT multicores, presented in Section 5.2.

• Progress-aware Fair (Fair): the progress-aware scheduling algorithm proposed

in Section 6.2, which exclusively tries to maximize fairness.

• Progress-aware Perf&Fair (Perf&Fair): the progress-aware scheduling algo-

rithm proposed in Section 6.3, which simultaneously addresses performance and

fairness.

• Flexible progress-aware Perf&Fair (Flexible Perf&Fair): the progress-

aware scheduling algorithm proposed in Section 6.4, which can be configured to

achieve different trade-offs between performance and fairness.

• Oracle scheduler (Oracle): the Perf&Fair scheduling algorithm enhanced with

offline information. It uses stand-alone IPC traces to compute the progress of the

processes and the IABW (see Section 4.2.1), which is used as target bandwidth

utilization for each quantum.

6.5.2 Mix Design

A set of thirteen mixes composed of twenty-four SPEC CPU2006 benchmarks has been

designed to evaluate the proposed algorithms. Each mix consists of a variety of light-

and heavy-sharing benchmarks. The number of heavy-sharing processes in the workloads

ranges from 9 to 17. Table 6.1 presents the mixes used in the experimental evaluation,

sorted by their associated average main memory bandwidth consumption (BWMM).

6.6 Experimental Evaluation

First, the experimental evaluation focuses on Fair. We compare the fairness that the

proposed algorithm and Linux achieve, and analyze how the progress of the processes

evolve over the workload execution time. We also study the accuracy of the IPC es-

timations. Next, we perform a wider evaluation where the fairness and performance

achieved by Perf&Fair is compared to that of Linux, Perf, Fair, and Oracle. Finally,

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 116

we evaluate Flexible Perf&Fair to check how it can trade fairness for performance, and

how this trade-off is particularly interesting in the workloads where the main memory

bandwidth consumption is high.

Mixes Benchmarks BWMM

Mix 1 Astar x2, Bzip2 x2, Gcc x2, Gobmk x2, Hmmer x2, H264ref x2, 47.1

Libquantum x2, Mcf x2, Omnetpp x2, Perlbench x2, Sjeng x2,

Xalancbmk x2

Mix 2 Astar, Bwaves, CactusADM , DealII, Gamess x2, Gcc, Gobmk x2, 53.8

Gromacs, Hmmer x2, H264ref x2, Libquantum, Mcf x2, Milc,

Namd x2, Omnetpp, Perlbench, Povray, Sjeng

Mix 3 Bwaves, Bzip2 x2, Gamess x2, Gobmk x2, Gromacs x2, Hmmer x2, 58.1

H264ref x2, Lbm, Leslie3d, Mcf, Namd x2, Milc, Omnetpp,

Perlbench x2, Sjeng, Soplex

Mix 4 Bwaves , CactusADM, DealII , Gamess x2, GemsFDTD, 75.6

Gobmk x2, Gromacs x2, Hmmer x2, H264ref x2, Lbm, Leslie3d,

Libquantum , Mcf, Milc, Namd x2, Perlbench, Sjeng, Soplex

Mix 5 Astar, Bwaves x2, CactusADM , DealII, Gamess x2, Gobmk, 89.8

Gromacs, Hmmer, H264ref, Lbm, Leslie3d, Libquantum, Mcf, Milc,

Namd, Omnetpp, Perlbench, Sjeng, Soplex x2, Xalancbmk, ZeusMP

Mix 6 Bwaves, Bzip2, CactusADM, DealII, Gamess, Gcc, GemsFDTD, Gobmk, 90.7

Gromacs, Hmmer, H264ref, Lbm, Leslie3d, Libquantum, Mcf, Milc,

Namd, Omnetpp, Perlbench, Sjeng, Soplex x2, Xalancbmk, ZeusMP

Mix 7 Astar, Bwaves x2, CactusADM, DealII, Gamess x2, Gcc, 96.9

GemsFDTD, Gobmk, Gromacs, Hmmer, H264ref, Libquantum,

Mcf x2, Milc , Namd x2, Lbm, Omnetpp, Perlbench, Soplex x2

Mix 8 Bwaves x3, Bzip2, CactusADM x2, DealII, Gamess x2, GemsFDTD, 98.0

Gobmk, Gromacs, Hmmer, H264ref x2, Leslie3d x2, Libquantum, Mcf,

Milc, Namd, Omnetpp, Perlbench, Sjeng

Mix 9 Astar, Bwaves x2, CactusADM, Gcc, GemsFDTD, Gobmk x2, 115.4

Gromacs x2, Lbm, Leslie3d, Libquantum x2, Mcf, Milc, Sjeng x2,

Soplex x2, Xalancbmk x2, ZeusMP

Mix 10 Bwaves x3, CactusADM, Gamess x3, Gcc, GemsFDTD, Gromacs, 115.9

Hmmer, H264ref x3, Lbm, Libquantum, Mcf, Milc x2, Namd, Omnetpp,

Sjeng, Soplex, ZeusMP

Mix 11 Astar, Bwaves x2, Gamess x3, GemsFDTD, Gromacs, Hmmer, 130.7

H264ref x3, Lbm x2, Leslie3d x3, Libquantum x2, Mcf, Milc,

Perlbench, Soplex, Xalancbmk

Mix 12 Bwaves x2, CactusADM x2, DealII x2, Gamess x2, GemsFDTD x2, 131.1

Gromacs x2, Lbm x2, Leslie3d, Milc x2, Namd x2, Soplex x2,

ZeusMP x3

Mix 13 Bwaves x2, DealII x2, Gamess, GemsFDTD, Gromacs, H264ref, 131.8

Lbm x2, Leslie3d x2, Libquantum x2, Mcf x2, Milc, Namd, Omnetpp,

Perlbench x3, Povray, Xalancbmk

Table 6.1: Mix composition and their average main memory bandwidth consumption.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 117

6.6.1 Evaluation of the Progress-Aware Fair Scheduler

6.6.1.1 System Fairness Evaluation

This section evaluates the fairness of the progress-aware Fair scheduler in comparison

with Linux. Figure 6.6 depicts the unfairness, in percentage, presented by both Fair and

Linux across the evaluated mixes. For each mix, the figure presents the average values

of twenty executions with both schedulers and 95% confidence intervals.

Fair performs fairer than Linux across all the studied mixes. Unfairness with Fair ranges

in a relatively narrow interval, from 1.08 to 1.16, with an average by 1.12, using Fair.

In contrast, Linux unfairness ranges in a much wider interval, from 1.19 to 1.44, with

an average by 1.32. This means that under Linux, the slowest process progresses on

average by 32% slower than the fastest one. These values seem high and inappropriate

in many real systems. Compared to Linux, Fair reduces unfairness, on average, by a

3× factor under the studied mixes. In addition, the presented 95% confidence intervals

show the steadiness of the unfairness values through multiple executions of each mix.

Taking into account that mixes have been sorted by the number of heavy-sharing pro-

cesses they include, results suggest that, in general, Linux achieves lower unfairness

when contention is low. On the contrary, the unfairness reached by Fair tends to be

more uniform, regardless of the number of heavy-sharing processes included in a given

1

1.1

1.2

1.3

1.4

1.5

M	3 M	4 M	2 M	8 M	5 M	1 M	7 M	6 M	12 M	10 M	13 M	11 M	9 Avg

Un
fa
irn

es
s

Linux	scheduler Progress-Aware	 Fair	scheduler

Figure 6.6: Unfairness of Linux and the progress-aware Fair scheduling algorithm.
Unfairness is a lower-is-better metric.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 118

mix. Therefore, we can conclude that the higher the contention, the higher the fairness

benefits that Fair provides with respect to Linux.

Figure 6.7 focuses on mix 7 to illustrate how unfairness evolves over the mix execution.

Average, maximum, and minimum progress achieved by the processes for Linux and

Fair are plotted. Remark that in this figure, real progress is plotted since it is calculated

and not estimated (only to show how the progress evolves, not to guide the scheduling

decisions) for each process as the ratio between committed instructions and the target

number of instructions to be committed.

Results depict how Linux unfairness grows with time. For instance, when the first

process of the mix finishes at second 280 under Linux, the process with lowest progress

has only completed by 40% of its execution. In contrast, Fair handles progress more

uniformly across all the processes. At second 340, when the first process finishes, the

process with lowest progress has committed about 75% of its instructions. Moreover,

there is a bigger gap between the maximum and minimum progress with Linux for most

of the execution time.

0%

20%

40%

60%

80%

100%

0 100 200 300 400

Ac
um

m
ul
at
ed
	p
ro
gr
es
s

Execution	time	(s)

Fair	scheduler	AVG
Linux	scheduler	AVG

Fair	scheduler	MAX
Linux	scheduler	MAX

Fair	scheduler	MIN
Linux	scheduler	MIN

Figure 6.7: Dynamic progress of processes in mix M7 with the Fair and Linux
schedulers.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 119

0.80

0.85

0.90

0.95

1.00

M	3 M	4 M	2 M	8 M	5 M	1 M	7 M	6 M	12 M	10 M	13 M	11 M	9

Ac
cu
ra
cy

Figure 6.8: Average, maximum, and minimum accuracy of the isolated IPC
estimations.

6.6.1.2 Accuracy of the Isolated IPC Estimations

Accurate IPC estimates are required to improve fairness. If these estimates are in-

accurate, the computed progress will differ from the actual progress, which will yield

unfairness to grow.

Figure 6.8 presents the average, maximum, and minimum IPC accuracy across the

twenty four processes of each mix. Results show that average IPC accuracy ranges

from 95% to 98%, which confirms that the proposed mechanism is able to correctly esti-

mate isolated performance of the processes in schedules. Notice that by 100% accuracy

is always achieved by at least one process of each mix. This is due to the fact that

some processes present a uniform IPC across its execution time, which helps obtaining

accurate estimates. Regarding maximum deviation from the real IPC, accuracy ranges

from 82% to 93%.

6.6.2 Evaluation of the Progress-Aware Perf&Fair Scheduler

6.6.2.1 System Fairness Evaluation

Figure 6.9 depicts the unfairness presented by Linux, Perf, Fair, Perf&Fair, and Oracle

across the studied mixes. Perf reaches extremely high levels of unfairness (geometric

mean by 2.49), which means that the last process finishes its execution by 2.5× later

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 120

than the first process. Notice that the rule included in Perf to avoid process starvation

is not able to keep unfairness at a reasonable level.

Linux is the second one with highest unfairness. Under Linux six mixes present an

unfairness around 1.40 and a geometric mean by 1.32. Although much lower than that

shown by Perf, this level of unfairness still seems high and might be inappropriate in

some systems. In contrast, executions with Fair do not surpass an unfairness of 1.20,

reaching the worst unfairness in mix 5, with a value of 1.17. Fair exhibits an average

unfairness of 1.12, approximately 2.8× lower than the unfairness shown by Linux.

Perf&Fair shows similar unfairness as that of Fair. Unfairness only surpasses 1.20 in

four mixes and the geometric mean is by 1.18%. The achieved unfairness makes a

big difference with respect to that achieved by Linux, where all the mixes surpass an

unfairness of 1.20 (except mix 4). In addition, the geometric mean of the unfairness is

reduced from 1.32 to 1.18.

Finally, by using offline traces of the stand-alone performance of the processes, Oracle

performs nearly completely fair, reaching an average unfairness by 1.03. The results of

Oracle show that despite not being exclusively focused on improving fairness, Perf&Fair

can perform nearly completely fair when the progress estimates are completely accurate.

In other words, addressing performance additionally to fairness in the process selection

does not affect the optimal unfairness that the progress-aware Perf&Fair scheduling

algorithm is able to achieve.

1.0

1.4

1.8

2.2

2.6

3.0

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 Mix	11 Mix	12 Mix	13 Geo	M

Un
fa
irn

es
s

Perf	schedulerOracle	scheduler
Fair	scheduler

Linux	scheduler
Perf&Fair	scheduler

Figure 6.9: Unfairness achieved by the studied schedulers, including 95% confidence
intervals. Unfairness is a lower-is-better metric.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 121

6.6.2.2 Performance Evaluation

Figure 6.10 presents the speedup of the turnaround time achieved by Perf, Fair, Perf&Fair,

and Oracle over Linux. Considering all the evaluated mixes, Perf&Fair reaches the high-

est geometric mean of speedup (5.6%), followed by Perf (5.0%), and Fair (2.2%). Two

important observations can also be done at a first glance.

First, it is interesting to observe that, even though the main focus of Fair is on system

fairness, it improves the turnaround time reached by Linux in all the studied mixes.

This improvement is above 3.5% in five mixes, and by 2.2% on average, but shows that

fairness can be improved without sacrificing performance. The reason that explains

the performance benefits over Linux is that Fair allows all the processes to progress at

similar rate, and consequently, reduces the fraction of time at the end of the execution,

where the processor is running less processes than hardware contexts are available. In

addition, it also uses the Dynamic L1 bandwidth-aware process allocation policy to

allocate the processes to the cores which, as shown in Section 5.4.1, provides important

performance benefits.

Second, it can be observed that, in spite of reaching an unfairness close to Fair, Perf&Fair

achieves speedups closer to Perf than to Fair. In fact, it enhances the speedups achieved

with the Fair in all the mixes.

0

20

40

60

80

100

120

140

0

2

4

6

8

10

12

14

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 Mix	11 Mix	12 Mix	13 Geo	M

M
ai
n	
m
em

or
y	
ba
nd

w
id
th

Sp
ee
du

p	
(%
)

Oracle	scheduler Perf	scheduler Pr-Aw	Fair	scheduler
Pr-Aw	Perf&Fair	scheduler Avg	MM	BW	of	the	mix

Figure 6.10: Speedup of the turnaround time achieved by the studied schedulers over
Linux, including 95% confidence intervals. The line shows the average main memory

bandwidth of the mixes.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 122

The figure also plots the average BWMM of the mixes (solid line and secondary y-axis),

which helps understand the achieved results. Note that the studied mixes are sorted

in increasing average BWMM order. Mixes can be divided in three main groups that

present different behavior according to their average BWMM .

When the average BWMM is relatively low (below 80 transactions/microsecond), though

still significant, bandwidth contention and progress unbalancing similarly affect the turn-

around time of the mixes. This is because, at the end of an unbalanced execution, the

number of available processes is less than the number of hardware contexts during a

significant number of quanta, which penalizes the turnaround time. In addition, since

the bandwidth contention is not as high as in other workloads, the benefits of a bet-

ter main memory bandwidth management decrease and can be canceled due to highly

unbalanced executions. In these scenarios, a fairer scheduler, through a better progress

balancing, can reduce the number of quanta where there are less available processes than

hardware contexts and reduce the turnaround time. In fact, it can be observed that Fair

reaches speedups that are very similar to that obtained with Perf, despite they sched-

ule processes following a completely different strategy. Moreover, Perf&Fair effectively

combines both performance and fairness approaches and, by concurrently mitigating

bandwidth contention while keeping unfairness under control, it improves the speedups

achieved by both Perf and Fair.

As the average memory bandwidth required by the mixes grows, bandwidth contention

becomes a major performance limiter, which translates into larger turnaround times.

When the bandwidth falls in between 80 and 120 transactions/microsecond, Perf ben-

efits enough from the bandwidth contention to improve performance over Fair. In this

scenario, Perf&Fair still reaches speedups closely resembling Perf, since it is still able

to address bandwidth contention while keeping a good progress balancing among the

processes.

In the most memory-bounded mixes studied, with above 120 transactions/microsecond,

Perf greatly improves performance over Fair. In this case, Perf&Fair widely improves

the results of both Fair and Linux, but it is not able to reach speedups as high as those

achieved by Perf because it also deals with unfairness. Therefore, it cannot devote all

the selected processes to maximize performance.

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 123

Regarding Oracle, by using offline traces it further enhances the performance of Perf&Fair,

despite the benefits are not too large on some workloads (e.g., mix 2 and mix 3). The

use of traces also allows Oracle to improve Perf in workloads with low and medium main

memory bandwidth utilization because it achieves a better progress balancing. In the

workloads with he highest main memory bandwidth utilization, Oracle reaches speedups

very close to Perf but slightly below, since the former scheduler is partially constrained

by fairness requirements.

Finally, it should be emphasized that the progress-aware Perf&Fair scheduling algorithm

addresses both performance and fairness without requiring from offline traces. Thus,

if both metrics are considered together, this scheduler is the one that behaves more

satisfactorily. Moreover, the algorithm is flexible enough by design and can be tuned to

provide different trade-offs between performance and fairness (see Section 6.6.3).

6.6.2.3 Process Completion in a Mix

To provide insights on the obtained turnaround time and unfairness results, we focus

the analysis on mix 9, where the scheduling algorithms present widely different results.

Figure 6.11 shows how the number of processes of mix 9 evolve over time when this mix is

executed under the studied algorithms. The plot starts at second 150, where no process

has yet finished, and shows how the execution of the processes is being completed. The

time at which the last process of the 24-task mix finishes its execution determines its

turnaround time. Perf shows the shortest turnaround time, closely followed by the

Perf&Fair, then Fair, and finally Linux, which shows the largest turnaround time. On

the other hand, unfairness is determined as the ratio between the time at which the first

and the last processes of the mix complete their execution. As observed, Fair achieves

the lowest unfairness, followed by Perf&Fair, Linux, and Perf.

The figure also illustrates the importance of fairness or progress balancing on the turn-

around time of the mix. For instance, Linux is the scheduler that earliest completes the

execution of the first twelve processes, but the last that completes the execution of the

whole mix. This means that in this execution Linux leads the system to a low loaded

state (i.e., with less applications than hardware contexts) earlier than the other schedul-

ing algorithms (by second 325). However, this behavior is at the cost of system fairness,

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 124

0

4

8

12

16

20

24

150 170 190 210 230 250 270 290 310 330 350 370 390 410

Nu
m
be
r	o

f	r
em

ai
ni
ng
	p
ro
ce
ss
es

Time	(s)

Linux	scheduler Perf	scheduler
Pr-Aw	Fair	scheduler Pr-Aw	Perf&Fair	scheduler

Figure 6.11: Number of remaining processes along the execution of mix 9 with the
studied schedulers.

since Linux takes longer time to complete the last five processes of the workload, even

if at this point each process is already running alone on a different core. Another obser-

vation is that Perf completes the first process as soon as second 162, which yields the

system to the highest unfairness. Finally, regarding the Perf&Fair curve it is interesting

to observe how, despite having a turnaround time close to Perf, it presents a process

completion curve resembling that of Fair.

6.6.3 Evaluation of the Flexible Progress-Aware Perf&Fair Scheduler

Figure 6.12 presents the unfairness achieved by Perf, the original Perf&Fair scheduler,

and Flexible Perf&Fair varying the relative length of the performance quanta bursts. We

use the notation X:Y to refer to a Flexible Perf&Fair that schedules X-hundred cycles

under the Perf&Fair scheduling algorithm, followed by Y-hundred cycles scheduled under

the Perf algorithm.

As expected, the original Perf&Fair achieves the lowest unfairness across all the evaluated

mixes, with a geometric mean by 1.18%. On the contrary, Perf shows the highest

unfairness (geometric mean by 2.49). By increasing the length of the performance quanta

bursts, Flexible Perf&Fair varies the achieved unfairness between the original Perf&Fair

and Perf. For experimental purposes, we keep constant the number of quanta bursts

(i.e., 100) devoted to the original Perf&Fair and vary the number of quanta devoted

to performance (50, 150, and 300). With 50 performance quanta bursts (ratio 1:0.5),

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 125

1.0

1.4

1.8

2.2

2.6

3.0

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 Mix	11 Mix	12 Mix	13 Geo	M

Un
fa
irn

es
s

Perf&Fair	scheduler
Flexible	Perf&Fair	scheduler	1:3

Flexible	Perf&Fair	scheduler	1:0.5 Flexible	Perf&Fair	scheduler	1:1.5
Perf	scheduler

Figure 6.12: Unfairness achieved by Perf, Perf&Fair, and Flexible Perf&Fair with
1:0.5, 1:1.5 and 1:3 ratios. Unfairness is a lower-is-better metric.

the geometric mean of the unfairness is by 1.37 and grows up to 1.68 and 1.87 when

the length of the performance quanta bursts is increased to 150 (1:1.5) and 300 (1:3)

performance quanta, respectively.

Figure 6.13 presents the speedup of the turnaround time achieved by Perf, the original

Perf&Fair, and Flexible Perf&Fair with 1:0.5, 1:1.5 and 1:3 ratios. The figure also plots

the average main memory bandwidth consumption (BWMM) of the mixes (solid line and

secondary y-axis). The studied mixes are sorted in increasing average BWMM order.

As explained above, including performance quanta bursts should improve performance

when the average BWMM is high, because in these mixes Perf performs better than the

original Perf&Fair.

If we observe the mixes with higher main memory bandwidth utilization (mixes 11, 12,

and 13), we can see how the inclusion of longer performance quanta bursts allows Flex-

ible Perf&Fair to improve its performance and approach the performance achieved by

Perf. When the average bandwidth utilization falls in between 80 and 120 transaction-

s/microsecond (mixes 5 to 10), the original Perf&Fair already performs similarly to Perf.

In this scenario, the inclusion of performance quanta bursts slightly affect the achieved

performance. Nonetheless the trend that by using longer performance quanta bursts the

achieved performance approaches to that of Perf is preserved. Finally, in the mixes with

lower bandwidth consumption, the original Perf&Fair performs better than Perf since

progress balancing is also an important factor to improve performance. In these mixes,

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 126

0

20

40

60

80

100

120

140

0

3

6

9

12

15

Mix	1 Mix	2 Mix	3 Mix	4 Mix	5 Mix	6 Mix	7 Mix	8 Mix	9 Mix	10 Mix	11 Mix	12 Mix	13 Geo	M

M
ai
n	
m
em

or
y	
ba
nd

w
id
th

Sp
ee
du

p	
(%
)

Perf&Fair	scheduler
Flexible	Perf&Fair	sched.	1:3

Flexible	Perf&Fair	scheduler	1:0.5
Perf	scheduler

Flexible	Perf&Fair	scheduler	1:1.5
Avg	MM	BW	of	the	mix

Figure 6.13: Speedup of the turnaround time chieved by Perf&Fair, Perf, and Flexible
Perf&Fair, with 1:0.5, 1:1.5 and 1:3 ratios, over Linux. The line shows the average

main memory bandwidth of the mixes.

the inclusion of performance quanta bursts reduces the performance achieved with Flex-

ible Perf&Fair, approaching to that of Perf. The only exception is mix 1, where the best

performance is reached when performance bursts of 50 quanta are considered.

To sum up, by including (longer) performance quanta bursts, where estimation quanta

are also avoided, the behavior of Flexible Perf&Fair gradually resembles that of Perf.

This approach offers the users the chance of trading fairness for performance. Exper-

imental results show that this trade-off is only beneficial when the workloads present

high memory bandwidth consumption since this is the only scenario where Perf performs

better than the progress-aware Perf&Fair scheduling algorithm.

6.7 Summary

Fairness-aware scheduling is gaining importance in multicore systems to guarantee cor-

rect management of process priorities, quality of service, and worst case execution times,

among others. A simple approach, such as allocating the same execution time and re-

sources to the running processes in a multiprogram workload does no longer provide

fairness because of the unpredictable interference on the shared resources of current

systems.

This chapter has presented two progress-aware scheduling algorithms for SMT multi-

cores. The main challenge they present lies on dynamically and accurately estimate,

Chapter 6. Progress-Aware Scheduling to Address Fairness in SMT Multicores 127

at run-time, the progress of each process over isolated execution. To accomplish it,

the proposed algorithms periodically create low-contention schedules where the isolated

performance of the processes can be estimated. First, we propose the progress-aware

Fair scheduling algorithm, whose main target lies on maximizing system fairness. This

goal is achieved by prioritizing the processes with lower accumulated progress. Second,

we propose the progress-aware Perf&Fair scheduling algorithm, which simultaneously

addresses performance and fairness. This is done by scheduling the processes to bal-

ance the bandwidth consumption among the available resources and over the execution

time of the workload, but preventing unfairness from growing giving priority to the

processes with lower accumulated progress. Furthermore, Perf&Fair can be tuned to

provide different trade-offs between performance and fairness.

Experimental results obtained in an Intel Xeon E5645 system with six dual-threaded

SMT cores show that both schedulers accomplish their goals. Fair reduces unfairness

by a 3× factor with respect to Linux, while still achieving slight performance benefits

over it (by 2.2%). Perf&Fair also meets its two-fold goal. Regarding performance, it

achieves speedups of the turnaround time of the mixes that slightly enhance the per-

formance of the SMT bandwidth-aware (performance-oriented) scheduler proposed in

Section 5.2, with the only exception of workload with extreme main memory band-

width requirements. Across the evaluated workloads, the speedup of Perf&Fair and

this performance-oriented scheduler over Linux are on average by 5.6% and 5.0%, re-

spectively. The key is that such a level of performance is achieved while unfairness is

reduced from a geometric mean of 2.49 and 1.33 for the performance-oriented and Linux

schedulers, respectively, to only 1.18 in the proposed progress-aware Perf&Fair schedul-

ing algorithm. Finally, Flexible Perf&Fair can be used to achieve different trade-offs of

performance and fairness, increasing the performance of Perf&Fair when the bandwidth

contention is very high.

The work discussed in this chapter has been published in [67] and [68].

Chapter 7

Symbiotic Job Scheduling on the

IBM POWER8

The number of hardware contexts quickly grows generation after generation in the preva-

lent architecture for high-end processors, which is a multicore processor consisting of

SMT cores. The scheduler is a critical component of these systems, since there is often a

combinatorial amount of different ways to schedule multiple applications, each one with

different performance due to interference among applications.

This chapter addresses this scheduling problem and proposes a symbiotic job scheduler.

This scheduler leverages the existing cycle accounting mechanism of modern processors

to build a model that estimates the interference between applications. The use of this

model allows the scheduler to evaluate the possible combinations of applications and

select the optimal one.

This chapter is organized as follows. First, we present the SMT-interference model that

estimates job symbiosis theoretically, and discuss their construction on a real system.

Then, we present the symbiotic job scheduler, which uses the proposed SMT-interference

model. Finally, we describe the evaluation setup and present the experimental evaluation

results.

129

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 130

7.1 Predicting Job Symbiosis

The symbiotic job scheduler presented in this chapter for a multicore processor consisting

of SMT cores is based on a model that estimates job symbiosis. The model predicts,

for any combination of applications, how much slowdown each of the applications would

experience if they were co-run on the same SMT core. It is fast, which enables the

symbiotic scheduler to explore all possible combinations (or at least a very large subset of

them), and only requires inputs that are readily obtainable using performance counters.

Our model implementation tackles the IBM POWER8 system because it implements an

extensive performance counter architecture, including a built-in mechanism to measure

CPI stacks, on which the proposed model is based. Besides, its high core count also

makes the scheduling problem more challenging. Nonetheless, the proposed interference

model could be adapted to other CMP architectures with SMT cores that provide a

similar cycle accounting mechanism such as an Intel Xeon server [69].

7.1.1 SMT Interference Model

The model we present in this section is based on the model proposed by Eyerman and

Eeckhout [7], which leverages CPI stacks to predict job symbiosis. A CPI stack (or

breakdown) divides the execution cycles of an application on a processor into various

components, quantifying how much time is spent or lost due to different events, see

Figure 7.1 on the left. The base component reflects the ideal CPI in the absence of miss

events and resource stalls. The other CPI components account for the lost cycles, where

the processor is not able to commit instructions due to different resource stalls and miss

events.

The SMT symbiosis model uses the CPI stack of an application when executed in single-

threaded (ST) mode, and then predicts the slowdown by estimating the increase of the

components due to interference, see Figure 7.1 on the right. Eyerman and Eeckhout [7]

estimate interference by interpreting normalized CPI components as probabilities and

calculating the probabilities of events that cause interference. For example, if an appli-

cation spends half of its cycles fetching instructions, and another application one third

of its execution time, there is a 1/6 probability that they want to fetch instructions at

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 131

0

0.5

1

1.5

2

2.5

App 1 App 2

Base

Resource

Miss

0

0.2

0.4

0.6

0.8

1

B R M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

App 1 App 2

B' R' M'

Measured single-thread

CPI stacks

Predicted normalized

SMT CPI stacks

model

CPI

Predicted slowdown

ed
App 1 App 2

 Normalized single-

threaded CPI stacks

Figure 7.1: Overview of the model: first, measured CPI stacks are normalized to
obtain probabilities; then, the model predicts the increase of the components and the

resulting slowdown (1.32 for App 1 and 1.25 for App 2).

the same time, which incurs a delay because the fetch unit is shared. However, Eyerman

and Eeckhout use novel hardware support [46] to measure the ST CPI stack components

during multi-threaded execution, which is not available in current processors.

Interestingly, the IBM POWER8 has a built-in cycle accounting mechanism, which

generates CPI stacks both in ST and SMT mode. However, this accounting mechanism

is different from the cycle accounting mechanisms proposed by Eyerman et al. for

SMT cores [46], which means that the model proposed in [7] cannot be used readily.

Some of the components relate to each other to some extent (e.g., the number of cycles

instructions are dispatched in [46] versus the number of cycles instructions are committed

for the IBM POWER8), but provide different values. Other counters are not considered

a penalty component in one accounting mechanism, while they are accounted for in the

other mechanism, and vice versa. For example, following [46], a long-latency instruction

only has a penalty if it is at the head of the reorder buffer (ROB) and the ROB gets

completely filled (halting dispatch), while for the IBM POWER8 accounting mechanism,

the penalty starts from the moment that the long-latency instruction inhibits committing

instructions, which could be long before the ROB is full. On the other hand, the entire

miss latency of an instruction cache miss is accounted as a penalty in [46], while for the

IBM POWER8 accounting mechanism, the penalty is only accounted from the moment

the ROB is completely drained (which means that the penalty could be zero if the

miss latency is short and the ROB is almost full). Furthermore, some POWER8 CPI

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 132

components are not well documented, which makes it difficult to reason about which

events they actually measure.

Because of these differences, we develop a new model for estimating the slowdown caused

by co-running threads on an SMT core. The model uses regression, which is more em-

pirical than the purely analytical model by Eyerman and Eeckhout [7], but its basic

assumption is similar: we normalize the CPI stack by dividing each component by the

total CPI, and interpret each component as a probability. We then calculate the prob-

abilities that interfering events occur at the same time, which causes some delay that

is added to the CPI stack as interference. The components are divided into three cat-

egories: the base component, the resource stall components, and the miss components.

The model for each category is discussed in the following paragraphs. For now, let us

assume that we have the ST CPI stacks at our disposal, measured offline using a single-

threaded execution on the IBM POWER8 machine. This assumption will no longer

be necessary in Section 7.1.3. The stack is normalized by dividing each component by

the total CPI, see Figure 7.1. We denote B the normalized base component, Ri the

component for stalls on resource i, and Mj the component for stalls due to miss event j

(e.g., instruction cache miss, data cache miss, or branch misprediction). We seek to find

the CPI stack when this application is co-run with other applications in SMT mode, for

which the components are denoted with a prime (B′, R′i, M
′
j).

7.1.1.1 Base Component

The base component in the IBM POWER8 cycle component stack is the number of cycles

(or fraction of time after normalization) where instructions are committed. It reflects the

fraction of time the core is not halted due to resource stalls or miss events. During SMT

execution, the dispatch, execute, and commit bandwidth are shared between threads,

meaning that even without miss events and resource stalls, threads interfere with each

other and cause other threads to wait.

We find that the base component in the CPI stack increases when applications are

executed in SMT mode compared to ST mode. This is because multiple threads can

now commit instructions in the same cycle, so each thread commits fewer instructions per

cycle, meaning that the number of cycles that a thread commits instructions increases.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 133

The magnitude of this increase depends on the characteristics of the other threads. If

the other threads are having a miss or resource stall, then the current thread can use

the full commit bandwidth. If the other threads can also commit instructions, then

there is interference in the base component. So, the increase in the base component

of a thread depends on the base component fractions of the other threads: if the base

components of the other threads are low, there is less chance that there is interference

in this component, and vice versa.

We model the interference in the base component using Equation 7.1. For a given thread

j, Bj represents its base component when running in ST mode (the ST base component),

while B′j identifies the SMT base component of the same thread.

B′j = αB + βBBj + γB
∑
k 6=j

Bk + δBBj

∑
k 6=j

Bk (7.1)

The parameters αB through δB are determined using regression, see Section 7.1.2. αB

reflects a potential constant increase in the base component in SMT mode versus ST

mode, e.g., through an extra pipeline stage. Because we do not know if such a penalty

exists, we let the regression model find this out. The βB term reflects the fact that the

original ST base component of a thread remains in SMT execution. It would be intuitive

to set βB to one (i.e., the original ST component does not change), but the next terms,

which model the interference, could already cover part of the original component, and

this parameter then covers the remaining part. It can also occur that there is a constant

relative increase in the base component, independently of the other applications. In

that case, βB is larger than 1. γB is the impact of the sum of the base components of

the other threads. δB specifically models extra interactions that might occur when the

current thread (thread j) and the other threads have big base components, similar to the

probabilistic model of Eyerman et al. [7] (a multiplication of probabilities). Although

not all parameters have a clear meaning, we keep the regression model fairly general to

be able to accurately model all possible interactions.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 134

7.1.1.2 Resource Stall Components

A resource stall causes the core to halt because a core resource (e.g., functional unit,

issue queue, or load/store queue) is exhausted or busy. In the IBM POWER8 cycle

accounting, a resource stall is counted if a thread cannot commit an instruction because

it is still executing or waiting to execute on a core resource (i.e., not due to a miss event).

By far, the largest component we see in this category is a stall on the floating-point unit,

i.e., a floating-point instruction is still executing when it becomes the oldest instruction

in the ROB. This can have multiple causes: the latency of the floating-point unit is

relatively large, there are a limited number of floating-point units, or some of them are

not pipelined. We expect a program that executes many floating-point instructions to

present more stalls on the floating-point unit, which is confirmed by our experiments.

Along the same line, we expect that when co-running multiple applications with a large

floating-point unit stall component, the pressure on floating-point units will increase

even more. Our experiments show that in this case, the floating-point stall component

per application indeed increases. Therefore, we propose the following model to estimate

the resource stall component in SMT mode (Rj,i represents the ST stall component on

resource i for thread j):

R′j,i = αRi + βRiRj,i + γRi

∑
k 6=j

Rk,i + δRiRj,i

∑
k 6=j

Rk,i (7.2)

Similar to the base component model, α indicates a constant offset that is added due

to SMT execution (e.g., extra latency). β indicates the fraction of the single-threaded

component that remains in SMT mode, while the term with γ models the fact that

resource stalls of the other applications can cause resource stalls in the current appli-

cation, even if the current application originally had none. The last term models the

interaction: if the current application already has resource stalls, and one or more of the

other applications too, there will be more contention and more stalls.

7.1.1.3 Miss Components

Miss components are caused by instruction and data cache misses at all levels, as well

as by branch mispredictions. In contrast to resource stall components, a miss event

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 135

of a thread does not directly cause a stall for the other threads. For example, if one

thread has an instruction cache miss or a branch misprediction, the other threads can

still fetch instructions. Similarly, on a data cache miss for one thread, the other threads

can continue executing instructions and access the data cache. One exception is that a

long-latency load miss (e.g., a last-level cache miss) can fill up the ROB with instructions

of the thread causing the miss, leaving fewer or no ROB entries for the other threads.

As pointed out by Tullsen et al. [70], this is a situation that should be avoided, and

we suspect that current SMT implementations (including the IBM POWER8) have

mechanisms to prevent this from happening.

However, misses can interfere with each other in the branch predictor or cache itself. For

example, a branch predictor entry that was updated by one thread can be overwritten by

another thread’s branch behavior, which can lead to higher or lower branch miss rates.

Similarly, a cache element belonging to one thread can be evicted by another thread

(negative interference) or a thread can put data in the cache that is later used by another

thread if both share data (positive interference). Furthermore, cache misses of different

threads can also contend in the lower cache levels and the memory system, causing

longer miss latencies. Because we only evaluate multiprogram workloads consisting of

single-threaded applications, which do not share data, we see no positive interference in

the caches.

To model this interference, we propose a model similar to that of the previous two

components:

M ′j,i = αMi + βMiMj,i + γMi

∑
k 6=j

Mk,i + δMiMj,i

∑
k 6=j

Mk,i (7.3)

Although the model looks exactly the same, the underlying reasoning is slightly different.

α again relates to fixed SMT effects (e.g., cache latency increase). The β term is the

original miss component of that thread, while the γ term indicates that an application

can get extra misses due to interference caused by misses of the other applications. We

also add a δ interaction term: an application that already has a lot of misses will be

more sensitive to extra interference misses and contention in the memory subsystem if

it is combined with other applications that also have a lot of misses.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 136

7.1.2 Model Construction and Slowdown Estimation

The model parameters are determined by linear regression based on experimental train-

ing data. This is a less rigorous approach than the model presented in [7], which is built

almost completely analytically, but as explained before, this is due to the fact that the

cycle accounting mechanism is different and partially unknown.

SMT processors share most of their internal resources, which are fully available for

an application running alone in ST mode. This resource sharing can be implemented

either by applying dynamic sharing or partitioning techniques. For instance, resources

such as the ROB or the arithmetic units, among others, are dynamically shared in the

IBM POWER8 while other internal resources, like instruction buffers, register renaming

tables, or load/store buffers are partitioned [1]. If the resources are shared, interference

among the threads can rise. On the contrary, if the resources are partitioned there is no

interference among threads, but the performance gap between the ST and SMT modes

can grow since a given thread cannot use the resources allocated to another thread.

In addition, other characteristics such as instruction dispatch restrictions, prefetching,

or branch prediction capabilities also differ among ST and the different SMT modes,

further increasing the gap between ST and SMT performance.

Taking the previous rationale into account, and considering that the goal of the model is

to estimate the interference between applications, we determine the SMT CPI stacks of

the applications running in a schedule from their CPI stacks running in the same SMT

mode and including the statically partitioned structures, but without interference on

the shared resources caused by other co-running applications. These CPI stacks will be

referred to as throttled -ST (tST) CPI stacks and, from a practical point of view, replace

the ST CPI stacks used in Section 7.1.1 to discuss the interference model. Thus, with the

methodology presented in this chapter, the SMT CPI stacks on a 2-application schedule

(SMT2 CPI stacks) will be estimated from the tST CPI stacks of the applications in

SMT2 mode. Similarly, SMT4 CPI stacks would be predicted from tST CPI stacks of

applications executed in SMT4 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 137

The SMT modes are automatically set by the IBM POWER8 depending on the num-

ber of threads running on a core and therefore, the tST CPI stacks cannot be ob-

tained when the applications are executed alone. To solve this problem, we imple-

ment a nop-microbenchmark, which is constantly performing nop operations. The nop-

microbenchmark is intended to force the processor to work in the desired SMT mode

while introducing negligible interference at the shared core resources. Thus, it is de-

signed with the opposite goal of other microbenchmarks [48, 49], which are used to

introduce contention in the shared resources. Note that obtaining tST CPI stacks is

only required to determine the model parameter values, but does not affect how the

model and the scheduler work during normal execution.

To train the model, we first run all benchmarks alone in each SMT mode (see Section 7.3

for the benchmarks we evaluate), and collect the tST CPI stacks every scheduler quan-

tum (100 ms). To run an application in SMT2 or SMT4 modes, it is scheduled on a

core with one or three instances of the nop-microbenchmark, respectively. We keep track

of the instruction count per quantum to determine which part of the program is being

executed in each quantum (we evaluate single-threaded programs with a bounded total

instruction count). We also normalize each CPI stack to its total CPI.

Next, we execute all possible 2-benchmark mixes and a large and representative set of

4-benchmark mixes on a single core1. Notice that the number of possible 4-benchmark

mixes exponentially grows with the number of benchmarks and evaluating all of them

would take too much time. During these executions, we also collect per-thread CPI

stacks and instruction counts for each quantum. Next, we normalize each SMT CPI

stack to the previously collected tST CPI of the same instructions. We normalize to

the tST CPI because we want to estimate the slowdown each application gets versus its

execution alone in the same SMT mode, which equals the SMT CPI divided by the tST

CPI (see the last graph in Figure 7.1). This is also in line with the methodology in [7].

Because the performance of an application differs between tST and SMT executions due

to co-runner interference, and the quanta are fixed time periods, the instruction counts

do not exactly match between both executions. To solve this problem, we interpolate

the tST CPI stacks between two quanta to ensure that tST and SMT CPI stacks are

1The interference model used by the symbiotic scheduler are built with the data collected from all
benchmarks. However, leave-p-out cross-validation is performed to evaluate their accuracy. See Section
7.4.1 for further details.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 138

covering approximately the same instructions. Once the model has been constructed, we

can use it to estimate the SMT CPI stacks from the tST CPI stacks for any combination

of applications. We first calculate each of the individual components using Equations

7.1 to 7.3, and then add all of the components. The resulting number will be larger

than one, and indicates the slowdown the application encounters when executed in that

combination (see Figure 7.1 on the right). This information is used to select combinations

with minimal slowdown (see Section 7.2).

7.1.3 Obtaining tST CPI stacks in SMT mode

Up to now, we assumed that we have the tST CPI stacks available. This is not a practical

assumption, since it would require to keep all of the per-quantum tST CPI stacks in a

profile. This is a large overhead for a realistic scheduler. An alternative approach is

to periodically get the tST CPI stacks (sampling), and assume that the measured CPI

stack is representative for the next quanta. Because programs exhibit varying phase

behavior, it requires to resample at periodic intervals to capture this phase behavior.

Sampling tST execution incurs performance overhead, because it has to temporarily stop

other threads to obtain the tST CPI stacks, and it can also be inaccurate if the program

exhibits fine-grained phase behavior. Moreover, this approach is not easily applicable

since the model uses the isolated performance in the SMT modes, which will require to

execute the nop-microbenchmark during sampling periods.

Instead, we propose to estimate the tST CPI stacks during SMT execution, similar to

the cycle accounting technique described in [46]. However, the technique in [46] requires

hardware support that is not available in current processors. To obtain the tST CPI

stacks during SMT execution on a current processor, we propose to measure the SMT

CPI stacks and ‘invert’ the model: estimating tST CPI stacks from SMT CPI stacks.

Once these estimations are obtained, the scheduler applies the ‘forward’ model (i.e.,

the model described in the previous sections) on the estimated tST CPI stacks per

application to estimate the potential slowdown for thread-to-core mappings that are

different from the current one. By continuously rebuilding the tST CPI stacks from

the current SMT CPI stacks, the scheduler can detect phase changes and adapt its

schedule to improve performance. Note that, the proposed approach does not require

any sampling phase and thus, it does not incur any performance overhead.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 139

Inverting the model is not as trivial as it sounds. The ‘forward’ model calculates the nor-

malized SMT CPI stacks from the normalized tST CPI stacks. As stated in Section 7.1.1,

both stacks are normalized to the single-threaded CPI. However, without profiling, the

tST CPI is unknown in SMT mode, which means that the SMT components normalized

to the tST CPI (B′, R′i and M ′j in Equations 7.1 to 7.3) cannot be calculated. Neverthe-

less, we can calculate the SMT CPI components normalized to the multi-threaded CPI

(see Figure 7.2b). By definition, the sum of these components equals one, which means

that they are inaccurate estimates for the SMT components normalized to the tST CPI,

because the latter add to the actual slowdown, which is higher than one (see the last

graph in Figure 7.1).

Because we do not know the tST CPI, the model cannot be inverted in a mathematically

rigorous way, which means we have to use an approximate approach. We observe that the

SMT components normalized to SMT CPI are a rough estimate for the tST components

0

0.5

1

1.5

2

2.5

3

App 1 App 2

Base
Resource
Miss

0
0.2
0.4
0.6
0.8

1
1.2
1.4

App 1 App 2

(a) Measured SMT
CPI stacks

(b) Normalized
SMT CPI stacks

(c) Predicted normalized
SMT CPI stacks

forward
model

0
0.2
0.4
0.6
0.8

1
1.2
1.4

App 1 App 2
(d) Adjusted normalized

SMT CPI stacks

estimated
slowdown

0
0.2
0.4
0.6
0.8

1

App 1 App 2

B R M

(e) Predicted normalized

inverse
model

CPI

0

0.2

0.4

0.6

0.8

1

App 1 App 2

B R M̂ ̂ ̂

̂ ̂ ̂ ̂ ̂ ̂

single-threaded CPI
stacks

slowdown
B' R' M'

x estimated slowdown

1
0

Figure 7.2: Estimating the single-threaded CPI stacks from the SMT CPI stacks.
First, SMT CPI stacks (a) are normalized to the SMT CPI (b); next, the forward
model is applied to get an estimate of the slowdown due to interference (c); then the
SMT CPI stacks are adjusted using the estimated slowdown to obtain more accurate
normalized SMT CPI stacks (d); lastly, the inverse model is applied to obtain the

normalized single-threaded CPI stacks (e).

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 140

normalized to the tST CPI (B, Ri and Mj), for two reasons. First, both normalized CPI

stacks add to one. Second, if all the components experience the same relative increase

between the tST and SMT executions (e.g., all components are multiplied by 1.3), then

the SMT CPI stack normalized to the SMT CPI would be exactly the same as the tST

stack normalized to the tST CPI. Obviously, this is usually not the case, but intuitively,

if a tST stack has a relatively large component, it is expected that this component will

also be large in the SMT stack, so the relative fraction should be similar.

Therefore, a first-order estimation of the tST CPI stack is to take the SMT CPI stack

normalized to the SMT CPI (see Figure 7.2b). The resulting tST CPI stack component

estimations are however not accurate enough to be used in the scheduler. Nonetheless,

by applying the ‘forward’ model to these first-order single-threaded CPI stack estima-

tions (see Figure 7.2c), a good initial estimation of the slowdown each application has

experienced in SMT mode can be provided. This slowdown estimation can be used

to renormalize the measured SMT CPI stacks by multiplying them with the estimated

slowdown (see Figure 7.2d). This gives new, more accurate estimates for the SMT CPI

stacks normalized to the tST CPI (B′, R′i and M ′j).

Next, we mathematically invert the model to obtain new estimates for the tST CPI stacks

(see Figure 7.2e). The mathematical inversion involves solving a set of equations. For two

threads, we have two equations per component (one for each of the two threads), which

both contain the two unknown single-threaded components, so a set of two equations

with two unknowns must be solved (similar to four threads: four equations with four

unknowns). Due to the multiplication of the single-threaded components in the δ term,

the solution for two threads is in the form of the solution of a quadratic equation. For

four threads, the inversion cannot be done analytically. We therefore decide to set δ

to zero and train the model omitting this component of the model equation, which

simplifies the formulas. This does not lead to a significant decrease in accuracy. The

sum of the resulting estimates for the single-threaded normalized components (B, Ri and

Mj) usually does not exactly equal one. Thus, the estimation can be further improved

by renormalizing them to their sum.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 141

7.2 SMT Interference-Aware Scheduler

In this section, we describe the implementation of the symbiotic scheduler that uses

the proposed interference model to improve the processor throughput. The goal of

the symbiotic scheduler is to divide n applications over c (homogeneous) cores, being

n > c, in order to optimize the overall throughput. Each core supports at least dnc e

thread contexts using SMT. Note that we do not consider the problem of selecting n

applications out of a larger set of runnable applications, we assume that this selection

has already been made or that the number of runnable applications is smaller than or

equal to the number of available thread contexts. The scheduler implementation involves

several steps which we discuss in the next sections.

7.2.1 Reduction of the Cycle Stack Components

The most detailed cycle stack that the performance monitoring unit (PMU) of the IBM

POWER8 can provide involves the measurement of 45 events. However, the PMU only

implements six thread-level counters. Four of these counters are programmable, and

the remaining two measure the number of completed instructions and non-idle cycles.

Furthermore, most of the events have structural conflicts with other events and cannot

be measured together. As a result, 19 time slices or quanta are required to obtain the

full cycle stack. Requiring 19 time slices to update the full cycle stack means that, at

the time the last components are updated, other components contain old data (from up

to 18 quanta ago). Since the scheduler uses 100 milliseconds quanta, this issue would

make the symbiotic scheduler less reactive to phase changes in the best scenario, and

completely meaningless in the worst case.

An interesting characteristic of the CPI breakdown model is that is built up hierarchi-

cally, starting from a top level consisting of five components and multiple lower levels

where each component is split up into several more detailed components [71]. For exam-

ple, the completion stalls event of the first level, which measures the completion stalls

caused by different resources, is split in several sub-events in the second level, which

measure, among others, the completion stalls due to the fixed-point unit, the vector-

scalar unit, and the load-store unit. To improve the responsiveness of the scheduler and

to reduce the complexity of calculating the model, we measure only the events that form

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 142

Counter Explanation

PM GRP CMPL Cycles where this thread committed instructions. This is the base
component in our model.

PM CMPLU STALL Cycles where a thread could not commit instructions because they
were not finished. This counter includes functional unit stalls, as
well as data cache misses.

PM GCT NOSLOT CYC Cycles where there are no instructions in the ROB for this thread,
due to instruction cache misses or branch mispredictions.

PM CMPLU STALL THRD Following a completion stall (PM CMPLU STALL), the thread
could not commit instructions because the commit port was being
used by another thread. This is a commit port resource stall.

PM NTCG ALL FIN Cycles in which all instructions in the group have finished but
completion is still pending. The events behind this counter are not
clear in [71], but it is non-negligible for some applications.

Table 7.1: Overview of the measured IBM POWER8 performance counters to collect
cycle stacks.

the top level of the cycle breakdown model. This reduces the number of time slices to

measure the model inputs to only two. The measured events are indicated in Table 7.1.

Note that the PM CMPLU STALL covers both resource stalls and some of the miss

events. Because the underlying model for both is essentially the same, this is not a

problem. Although the accuracy of the model could be improved by splitting up this

component, our scheduler showed worse performance because of having to predict job

symbiosis with old data for many of the components.

7.2.2 Selection of the Optimal Schedule

The scheduler uses the measured CPI stacks and the model to schedule the applications

among cores. To simplify the scheduling decision, we make the following assumptions:

• The interference in the resources shared by all cores (shared LLC, memory con-

trollers, memory banks, etc.) is mainly determined by the characteristics of all

applications running on the processor, and not so much by the way these applica-

tions are scheduled onto the cores. This observation is also made by Radojković

et al. [72]. As a result, with a fixed set of runnable applications, scheduling has no

impact on the inter-core interference and the scheduler should not take them into

account.

• The IBM POWER8 cores implement an issue queue divided in two symmetric

halves. Some of the execution pipelines, such as the fixed-point, floating-point,

vector, load, and load-store pipelines are similarly split into two sets. In the SMT

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 143

modes, the threads can only issue instructions to a single half of the issue queue [1].

Thus, two 4-application schedules such as ABCD and ACBD may reach different

performance since in the first case, application A is sharing some of the execution

pipelines with application B, and in the second case it shares these pipelines with

application C. We have experimentally checked that the performance difference

of these schedules is on average 0.9% across 50 application combinations. There-

fore, we assume that they perform equally and they do not need to be evaluated

individually.

Even with these simplifications, the number of possible schedules is usually too large to

perform an exhaustive search. The number of schedules considering n applications and

c cores equals n!
c!(n

c
!)

c (assuming n is a multiple of c). For scheduling 16 applications

on 8 cores in SMT2 mode, there are already more than 2 million possible schedules.

To efficiently cope with the large number of possible schedules, we use a technique

proposed by Jiang et al. [73]. The technique models the scheduling problem for two

applications per core as a minimum-weight perfect matching problem, which can be

solved in polynomial time using the blossom algorithm [74].

When scheduling for higher SMT modes (e.g., SMT4), the number of possible combi-

nations becomes prohibitive for even a relatively low number of cores. For example,

to schedule 20 applications on 5 cores in SMT4, there are more than 2 billion possible

combinations. In addition, the scheduling problem for more than two applications per

core cannot be modeled as a minimum-weight perfect matching problem. In fact, Jiang

et al. also prove that this problem becomes NP-complete as soon as n
c > 2.

To address this issue, we use the hierarchical technique also proposed by Jiang et al. [73].

Using this approach, the applications are first divided into pairs, and these pairs are

then combined to quadruples, using the blossom algorithm at both levels. Next, a local

optimization step rearranges applications in each pair of quadruples to obtain better

performance. While this technique is not guaranteed to give the optimal solution, Jiang

et al. [73] show it to perform well in a setup where applications need to be scheduled in

a clustered architecture, where each cluster shares a cache.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 144

In summary, the scheduler does the following steps at the beginning of each time slice

to schedule the application in SMT4 mode. To schedule applications in SMT2 mode,

steps 4 and 5 are ommited.

1. Collect the SMT CPI stacks for all applications over the previous time slice.

2. Use the inverted model to get an estimate of the tST CPI stacks for each applica-

tion.

3. Use the SMT2 forward model to predict the performance of each 2-application

combination, and use the blossom algorithm to find the optimal schedule.

4. Use the SMT4 forward model to predict the performance of each 4-application

combination, combining the pairs of applications selected in the previous step,

and use the blossom algorithm to find a close to optimal schedule.

5. Apply the local optimization to each pair of 4-application combinations selected

in the previous step to further improve the selected schedule.

6. Run the best schedule for the next time slice.

7.2.3 Scheduler Implementation

Normally, workload execution and scheduling work (evaluating the performance of the

possible schedules and selecting the best one) are performed in a serial way. In other

words, the applications do not run while the process selection is being performed. How-

ever, depending on the number of possible schedules that need to be evaluated, this

serialization could cause a considerable overhead. For instance, scheduling applications

in SMT2 mode incurs a negligible overhead, which is clearly compensated by the speedup

reached by selecting the optimal schedules. In contrast, when scheduling four or more

applications per core, the explosion in the number of possible schedules can easily cause

that the benefits achieved by running better schedules end up being canceled out by the

overhead of evaluating and selecting these schedules.

To avoid this overhead, we let applications run in parallel with the scheduler while it

evaluates the possible schedules and selects the one that will be executed in the next

quantum. In order to avoid the workload to slow down the scheduling step, we choose

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 145

to devote one of the cores exclusively to the scheduler. This design decision implies

that while the scheduler obtains the schedule for the next quantum, the number of

runnable applications is higher than the number of available hardware contexts. During

this period, we let Linux perform the task scheduling. As soon as the schedule for

the next quantum is determined, the application are allocated on the cores accordingly

and executed using the c cores. The (lower) throughput achieved during the fraction

of the workload execution where the application run on c − 1 cores is included in the

performance results presented for the symbiotic scheduler.

To sum up, with the proposed implementation the scheduler works as follows. When

a quantum expires, the scheduler stops the processes and gathers the counts of the

monitored events. Then, it launches the processes on n − 1 cores and runs on the

remaining core to obtain the best schedule for the next quantum. When such a schedule

is selected the scheduler allocates each process to its assigned core, sets the performance

counters, and sleeps during the quantum length.

7.3 Evaluation Setup

The experiments are carried out in a 10-core IBM POWER8 machine. The detailed sys-

tems characteristics are described in Section 3.2.3. The IBM POWER8 can execute up

to eight hardware threads simultaneously. Nonetheless, as we explain in Section 3.2.3,

we focus the evaluation in the SMT2 and SMT4 modes. We target multiprogram work-

loads composed of single-threaded application and running on the SMT8 mode reduces

the system throughput over lower SMT modes.

We follow the process allocation evaluation methodology described in Section 3.3.2. Fol-

lowing this methodology, we reduce the amount of variation in the benchmark execution

times during the experiments, and ensure that we compare the same part of the execu-

tion of each application and that the workload is uniform during the full experiment.

The target number of instructions for each benchmark is set to the number of instruc-

tions they run during 120 seconds in isolated execution, and the scheduler quantum to

100 milliseconds.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 146

Our target metric is total system throughput (STP). Nonetheless, to provide a more

solid performance evaluation, we also evaluate the average normalized turnaround time

(ANTT) of the workloads, which provides insight into the per-application performance

reached by each scheduler. See Section 3.4 for further details about the evaluated met-

rics.

7.3.1 Evaluated Algorithms

To evaluate the Symbiotic scheduler, we compare the following schedulers, implemented

in our scheduling framework (see Section 3.1).

1. Random: applications are randomly distributed across the execution contexts.

Each time slice, a new schedule is randomly determined.

2. Linux: the default Completely Fair Scheduler (CFS) in Linux. As discussed

in Section 3.2.3.1, the CFS scheduler performs NUMA-aware scheduling in our

experimental platform and allocates the applications with higher main memory

requirements closer to the memory controller.

3. Dynamic L1 bandwidth-aware: this scheduler balances the L1 bandwidth re-

quirements of the applications across the cores at run-time. To measure the L1

bandwidth utilization of the processes, the event perf count hw cache l1d is gath-

ered. See Section 5.2.2 for further details.

4. Symbiotic: our proposed Symbiotic job scheduler, which uses the SMT inter-

ference model and considerers the processor as a uniform memory access (UMA)

system. It can schedule the applications in the SMT2 and SMT4 modes.

5. NUMA-aware Symbiotic: a variant of the Symbiotic scheduler that is aware

of the NUMA behavior of the system. The selected schedules are allocated to

the cores considering the main memory bandwidth utilization. This is done by

measuring the main memory requests of the applications at run-time using per-

formance counters (event pm data all from memory), and allocating the pairs or

quartets of applications with higher memory bandwidth utilization to the cores of

the NUMA node 0, the one where the memory module is plugged in (see Section

3.2.3.1).

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 147

Notice that the aim of the NUMA-aware optimization is not to perform sophisticated

NUMA-aware scheduling, but to provide a fair comparison with the (NUMA-aware)

Linux scheduler. For this purpose, the basis of both NUMA-aware schedulers is the same:

measure the memory accesses of the applications and allocate the most memory-intensive

applications to the NUMA node where the physical memory is installed. Without the

NUMA optimization, the benefits of selecting better schedules (the purpose of the sym-

biotic scheduler) can be hidden in case memory-intensive applications were allocated to

cores of the NUMA node more distant to the DRAM module. This issue can become an

important limitation of the symbiotic scheduler over Linux, as the experimental results

will show.

7.3.2 Mix Design

We use all of the SPEC CPU2006 benchmarks that we were able to compile for the

IBM POWER8 to evaluate our scheduler (21 out of 29). Benchmarks are run with the

reference input set. We evaluate 100 random workloads overall. 50 workloads are devised

to evaluate the SMT2 mode and their number of applications doubles the number of

considered cores. Thus, they range from 12 applications when the study considers 6

cores to 20 applications when considering 10 cores. The remaining 50 workloads aim to

evaluate the SMT4 mode, and include four application per core. Thus, the number of

applications ranges from 24 to 40, when the experiments consider from 6 to 10 cores.

7.4 Experimental Evaluation

We now evaluate how well the scheduler performs compared to the default Linux sched-

uler and prior work. Before showing the scheduler results, we first evaluate the accuracy

of the interference prediction models devised for the SMT2 and SMT4 modes. Then, the

system throughput, the per-application performance, and the stability of the selected

schedules are analyzed for the SMT2 and SMT4 modes.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 148

7.4.1 Model Accuracy

To study the accuracy of the models, we analyze the error deviation of the predicted

CPI stacks with respect to the measured CPI stacks. The evaluation needs to be done in

two steps since it is not possible to measure both the tST and SMT CPI stacks together

in the same quantum. In a preliminary step, we measure the per-quantum tST CPI

stacks of the applications offline, keeping them in a profile with their instruction counts.

These tST CPI stacks will be used to check the model accuracy. Next, we run the

combinations of applications. The SMT CPI stacks of the applications when running

the different combinations are predicted before each quantum starts from their profiled

tST CPI stacks. When the quantum expires, the predicted SMT CPI stacks for the

schedule are compared against the measured SMT CPI stacks. As done in the model

construction, the tST CPI stacks of consecutive quanta are interpolated, if needed, to

ensure that the profiled tST CPI stacks closely match the same instructions as the SMT

CPI stacks. We explore all possible combinations of applications in SMT2 mode and

a very large set of combinations in SMT4 mode, considering multiple time slices per

combination to capture the phase behavior.

We use the leave-p-out cross-validation methodology to evaluate the accuracy of the

proposed interference models. More precisely, leave-two-out cross validation and leave-

four-out cross validation are used to measure the error of the SMT2 and SMT4 models,

respectively. For each possible pair of applications, leave-two-out cross validation builds

a model using the data from the remaining nineteen applications, and then evaluates

the model error when predicting the SMT CPI stacks for the pair of applications left

out to build the model. The average absolute error and error histograms are obtained

combining the errors measured for each pair of applications with the model built leaving

them out. The same steps are performed to evaluate the SMT4 model, but leaving out

4-application combinations. Notice that in this case, the training data set is significantly

reduced with respect to the model built using all applications.

7.4.1.1 Regression Model Accuracy

Figure 7.3 and Figure 7.4 show the histograms of the errors of the interference prediction

models (the ‘forward’ models) for the SMT2 and SMT4 modes, respectively. They show

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 149

the deviation committed when predicting the per-application slowdown from the tST

CPI stacks of the applications to be co-run.

Since there are fewer applications interfering with each other on SMT2 schedules than on

SMT4 schedules, it is to be expected that the SMT2 interference model is more accurate

than the SMT4 model. On average, the deviation is by 7.6% and 11.5% for the SMT2

and SMT4 models, respectively. Note that for the SMT2 model, 45% of the deviations

is within [−5%, 5%] (29% for the SMT4 model).

0%

5%

10%

15%

20%

25%

30%

Fr
eq
ue
nc
y

Error	intervals

Figure 7.3: Forward SMT2 model error distribution.

0%

5%

10%

15%

20%

Fr
eq
ue
nc
y

Error	intervals

Figure 7.4: Forward SMT4 model error distribution.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 150

7.4.1.2 Inverse Model Accuracy

The inverse models estimate the tST CPI stacks from the SMT CPI stacks of the ap-

plications when running concurrently on a schedule. By definition, the tST CPI stacks

add to one. Since the last step of our model inversion approach is a normalization, the

predicted stacks will also add to one. Thus, the accuracy of the inverse model cannot

be measured by comparing the CPI stacks as a sum of their components.

Figure 7.5 and Figure 7.6 show the distribution of the error for the inverse models

obtained when predicting the completion stalls component for the SMT2 and SMT4

modes, respectively. Completion stalls is the largest component and clearly dominates

the CPI stack. It presents the highest average absolute error, which makes it a good

estimate to evaluate the accuracy of the inverse model. The average absolute errors

for the completion stalls component are 9.3% and 15.1%, in SMT2 and SMT4 modes,

respectively. Notice that these average absolute error values do not highly differ from

that obtained with the forward model. Finally, the frequency where the errors fall in

the range [−5%, 5%] also reaches similar frequencies to that of the forward model, being

47% and 24%, respectively, in SMT2 and SMT4 modes.

0%

5%

10%

15%

20%

25%

30%

Fr
eq
ue
nc
y

Error	intervals

Figure 7.5: Inverse SMT2 model error distribution.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 151

0%

5%

10%

15%

20%

Fr
eq
ue
nc
y

Error	intervals

Figure 7.6: Inverse SMT4 model error distribution.

7.4.2 Symbiotic Scheduler Evaluation

Now that we have shown that the interference prediction models are accurate, we evalu-

ate the performance of our proposed Symbiotic scheduler that uses the models to obtain

better schedules. We also analyze the impact of symbiotic scheduling on per-application

performance and study the stability of the selected schedules.

7.4.2.1 System Throughput

Figure 7.7 and Figure 7.8 present the system throughput increase achieved by the Sym-

biotic, NUMA-aware Symbiotic, Linux, and Dynamic L1 bandwidth-aware scheduling

algorithms over the random scheduler when running in SMT2 and SMT4 modes, respec-

tively. The speedups are averaged per core count, ranging from 6 to 10 cores. For each

core count and scheduler, the bars represent the average speedup for a set of ten different

workloads that are run 15 times, plotting 95% confidence intervals. As mentioned in

Section 7.3, the number of applications of the SMT2 and SMT4 workloads doubles and

quadruples, respectively, the number of cores considered in the experiment.

The results include the negligible overhead incurred by the symbiotic schedulers, mainly

the time needed to gather the event counts from the performance counters and update

the scheduling variables. As explained in Section 7.2.3, the applications are kept running

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 152

while the schedules for the next quantum are being obtained, which allows the scheduler

to avoid the process selection overhead.

SMT2 mode. Figure 7.7 shows that the Symbiotic and NUMA-aware Symbiotic sched-

ulers distinctly outperform all other schedulers. On average, across all core counts and

workloads, the Symbiotic scheduler performs 12.1% better than the random scheduler,

5.2% better than the default Linux scheduler, and 4.6% better than the Dynamic L1

bandwidth-aware scheduler. The maximum benefits are achieved on the 7-core work-

loads, where the system throughput increase of the Symbiotic scheduler over the random

and Linux schedulers is as high as 13.1% and 7.4%, respectively.

By taking into account the main memory accesses performed by each application to

deal with the NUMA effects on our experimental platform, the NUMA-aware Symbiotic

scheduler improves the performance achieved by the Symbiotic scheduler. On average,

across the studied workloads, it performs 13.5% better than the random scheduler,

6.7% better than Linux, 5.9% better than the Dynamic L1 bandwidth-aware scheduler,

and 1.3% better than the Symbiotic scheduler. With respect to Linux, it achieves a

maximum average performance benefit of 11.0% on 6-core workloads. The comparison

of the NUMA-aware Symbiotic scheduler against Linux is the best one to highlight the

performance benefits provided by symbiotic scheduling since both schedulers implement

similar NUMA-aware optimizations.

Regarding Linux, its performance benefits present an ascendant trend with the number

of cores, but get somehow stabilized above 8 cores. The L1 bandwidth-aware scheduler

0

4

8

12

16

6 7 8 9 10

Sp
ee
du

p	
(%
)

Number	of	cores

Linux Dynamic	L1	bandwidth-aware Symbiotic NUMA-aware	Symbiotic

Figure 7.7: Average system throughput increase of the studied scheduler relative to
the random scheduler when working in the SMT2 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 153

follows the opposite trend, and its performance benefits tend to decrease with the num-

ber of cores. These behaviors are clearly related with their scheduling algorithms. On

the one hand, Linux monitors the memory behavior and tries to reduce memory con-

tention, which is more beneficial when there are more applications and therefore more

possible contention. In addition, Linux also performs NUMA-aware scheduling and tries

to allocate the applications with higher memory requirements on the cores of the NUMA

node 0 (see Section 3.2.3.1 for further details). In some cases, Linux even decides to

pause threads, especially on the cores belonging to the NUMA node 1 (the farthest from

the main memory modules) and when there are a lot of memory-intensive applications.

On the other hand, the Dynamic L1 bandwidth-aware scheduler deals with L1 band-

width contention, which plays a more important role when the number of applications

is lower and main memory contention is not the main performance bottleneck. Anyway,

both schedulers clearly perform worse than our proposed symbiotic schedulers.

SMT4 mode. Figure 7.8 depicts the STP increase of the studied schedulers in the

SMT4 mode. In this SMT mode, the NUMA-aware Symbiotic scheduler greatly improves

all other schedulers across all thread counts. The NUMA-aware Symbiotic scheduler

performs, on average, 16.2% better than the random scheduler, 5.9% better than the

Linux scheduler, and 5.3% better than the Symbiotic scheduler.

The achieved speedups grow, in general, with the number of cores as so do the speedups

of the Symbiotic scheduler, since there is higher interference and more difference be-

tween the best and worst schedules. However, NUMA-aware scheduling extraordinarily

0

4

8

12

16

20

6 7 8 9 10

Sp
ee
du

p	
(%
)

Number	of	cores

Linux L1	bandwidth-aware Symbiotic NUMA-aware	Symbiotic

Figure 7.8: Average system throughput increase of the studied schedulers relative to
the random scheduler when working in the SMT4 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 154

enhances the throughput for 6- and 7-core workloads, which somehow breaks the trend.

The reasons that explains the big improvements for these workloads, is that with only

one or two cores belonging to the NUMA node 1, the node with lower memory perfor-

mance, a NUMA-aware scheduler is able to allocate all memory intensive applications

on the cores of the NUMA node 0, the node with higher memory performance. In the

workloads devised for higher number of cores, more cores from the NUMA node 1 are

considered, and not all the memory intensive applications can be allocated to the NUMA

node 0. Notice that same behavior is observed for Linux. An interesting observation is

that NUMA-aware scheduling has a stronger impact on the performance of the SMT4

mode. This effect can be related with several issues. For instance, sharing the ROB

with four threads can increase the penalty of a long-latency memory access. In addition,

SMT4 workloads include more applications and thus, demand more memory bandwidth

than SMT2 workloads.

Regarding the Symbiotic scheduler, it is really interesting to observe that its system

throughput increase uniformly grows for all core counts from 6 to 10 cores. It performs

better than Linux in 8-, 9-, and 10-core workloads, but worse in 6- and 7-core workloads

where, as we have explained before, its NUMA unawareness strongly affects its perfor-

mance. Meanwhile, the system throughput increase for the Linux scheduler follows a

decreasing trend when the number of cores grows from 6 to 10. This is another indica-

tive of the fact that NUMA-aware scheduling is critical for 6- and 7-core workloads, but

reduces its importance as more cores are considered in the experiments. Finally, the Dy-

namic L1-bandwidth aware scheduler achieves the lowest performance benefits, and does

not improve Linux. One of the reasons that explains its lower performance is that each

process receives a smaller share of the resources when running in the SMT4 mode, which

moves the main performance bottlenecks and the L1 bandwidth is no longer a critical

resource. In addition, its performance for higher core counts is clearly constrained due

to not performing NUMA-aware scheduling.

7.4.2.2 Per-Application Performance

Although the main goal of the proposed symbiotic scheduling is to maximize the system

throughput, we also evaluate its impact on the average normalized turnaround time

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 155

metric. Figure 7.9 and Figure 7.10 depict the ANTT achieved by the Symbiotic, NUMA-

aware Symbiotic, Linux, Dynamic L1 bandwidth-aware, and random schedulers when

running the evaluated workloads for the SMT2 and SMT4 modes, respectively. The

bars represent the average ANTT of the different schedulers across the ten workloads

evaluated for each number of cores, plotting 95% confidence intervals. Notice that ANTT

is a lower-is better-metric.

SMT2 results. Figure 7.9 shows that the Symbiotic and NUMA-aware Symbiotic

schedulers clearly reach the lowest ANTT values across all evaluated workloads, followed

by the Dynamic L1 bandwidth-aware scheduler and Linux. The symbiotic schedulers

reach the highest differences over Linux and the random scheduler when the number of

cores ranges from 6 to 8. For instance, the NUMA-aware Symbiotic scheduler achieves

an ANTT 8.6% lower than Linux across these workloads. Between both symbiotic

schedulers, the NUMA-aware version achieves the lowest ANTT across all core counts.

Results show that, as a side effect, by reducing interference as much as possible to max-

imize system throughput, the symbiotic schedulers also reduce the average normalized

turnaround time of the applications.

Regarding Linux and the Dynamic L1 bandwidth-aware scheduler, the same trends

observed on the system throughput appear with the ANTT metric. The L1 bandwidth-

aware scheduler reaches lower ANTT than Linux on workloads for 6 and 7 cores, and

Linux improves the ANTT over the Dynamic L1 bandwidth-aware scheduler for larger

1.0

1.2

1.4

1.6

1.8

2.0

2.2

6 7 8 9 10

AN
TT

Number	of	cores

Random Linux Dynamic	L1	bandwidth-aware Symbiotic NUMA-aware	Symbiotic

Figure 7.9: Average ANTT achieved by the Symbiotic, NUMA-aware Symbiotic,
Dynamic L1 bandwidth-aware, Linux, and random schedulers when working in the

SMT2 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 156

workloads. As explained before, this is due to the fact that Linux addresses memory

bandwidth contention, which grows with the number of cores, and the Dynamic L1

bandwidth-aware scheduling algorithm deals with L1 bandwidth contention, which is

more critical for lower core counts.

SMT4 results. Figure 7.10 shows that the NUMA-aware Symbiotic scheduling algo-

rithm is the one that achieves the best per-application performance, according to the

ANTT metric, in the SMT4 mode. The performance benefit is high over the random

scheduler, specially as the workloads run on a higher number of cores. For instance, on

the 10-core workloads, the NUMA-aware Symbiotic scheduler achieves an ANTT 14.7%

lower than the random scheduler. The difference with Linux is negligible except on the

9- and 10-core workloads, where the NUMA-aware Symbiotic scheduler is 3.7% and 6.6%

better, respectively.

Regarding the Symbiotic scheduler, it reaches high ANTT on workloads from 6 to 8

cores (only better than the random and Dynamic L1 bandwidth-aware schedulers). As

discussed before this behavior is due to the fact that this scheduler is not aware of the

NUMA effects on the IBM POWER8, which particularly affects the workloads for these

numbers of cores.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

6 7 8 9 10

AN
TT

Number	of	cores

Random Linux Dynamic	L1	bandwidth-aware Symbiotic NUMA-aware	Symbiotic

Figure 7.10: Average ANTT achieved by the Symbiotic, NUMA-aware Symbiotic,
Dynamic L1 bandwidth-aware, Linux, and random schedulers when working in the

SMT4 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 157

7.4.2.3 Symbiosis Patterns

The Symbiotic scheduler constantly re-evaluates the optimal schedule, which means that

it adapts to phase behavior, updating the combinations of applications that are run

together. If there is no phase change behavior, a static schedule would suffice, avoiding

the overhead of recalculating the schedules. Figure 7.11 and Figure 7.12 present the

frequency matrices of the schedules selected by the Symbiotic job scheduler for two

5-core workloads in SMT2 mode and a 5-core workload in SMT4 mode, respectively.

The frequency matrices are symmetric matrices that represent the percentage of quanta

where each combination of applications is scheduled on one core. The darker the color

of the cell, the more frequently the associated pair of applications runs together on the

same core.

SMT2 mode. The two matrices of Figure 7.11 represent two distinct behaviors that

we have observed in the Symbiotic scheduler runs. The frequency matrix of workload

5 1 shows a workload where two couples of applications are scheduled on the same core

very frequently (h264ref is scheduled with libquantum and milc with bwaves, in 66% and

70% of the time slices, respectively). This high frequency suggests that the applications

present high symbiosis (e.g., a memory-bound application with a cpu-bound application)

and a constant phase behavior. A different behavior is observed in the matrix of workload

5 2, where there is not a predominant pair of applications that is usually scheduled

together, but all the applications are scheduled with multiple co-runners. This pattern

occurs when the applications present phase behavior that changes the symbiosis of the

applications, which makes it important to adapt the schedules to the current phase.

bzip
2
h264re

f

gc
c

m
ilc

lib
quan

tu
m

m
cf

bw
av

es

ga
m

ess

xa
lan

cb
m

k

le
sli

e3d

bzip2

h264ref

gcc

milc

libquantum

mcf

bwaves

gamess

xalancbmk

leslie3d

so
ple

hm
x

na
m

er

li
m

d
b ca
quan

xa
ct

usA
tu

m

l
ze

an
cb

DM

usm
m

k

go
b

p

lb
m

m
k

m
cf

soplex

hmmer

namd

libquantum

cactusADM

xalancbmk

zeusmp

gobmk

lbm

mcf

Workload 5_1 Workload 5_2

Figure 7.11: Frequency matrices for two 5-core workloads running in SMT2 mode.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 158

le
sl
ie
3d

lib
qu

an
tu

m

xa
la
nc

bm
k

ca
ct
us

A
D
M

h2
64

re
f

bw
av

es

so
pl
ex

sj
en

g

xa
la
nc

bm
k

m
ilc

ze
us

m
p

go
bm

k

lb
m

m
cf

bw
av

es

ca
ct
us

A
D
M

gc
c

lib
qu

an
tu

m

xa
la
nc

bm
k

as
ta

r

leslie3d

libquantum

xalancbmk

cactusADM

h264ref

bwaves

soplex

sjeng

xalancbmk

milc

zeusmp

gobmk

lbm

mcf

bwaves

cactusADM

gcc

libquantum

xalancbmk

astar

Figure 7.12: Frequency matrix for a 5-core workload running in SMT4 mode.

SMT4 mode. The frequency matrix of Figure 7.12 also shows the application behav-

iors described for the two SMT2 frequency matrices. For instance, from the group of

applications cactusADM (two times), h264ref, sjeng, and gobmk four of them are usually

scheduled together on the same SMT core. Another group of jobs formed by applica-

tions leslie3d, libquantum (two times), and gcc also tends to be scheduled on the same

SMT core. This behavior is expected for applications that exhibit low phase behavior

and high symbiosis among them. The other applications, either do not present high

symbiosis with any application of the workload or they show a high phase behavior that

makes them run on schedules with several applications through their execution.

7.5 Summary

This chapter has addressed the problem of scheduling multiprogram workloads on highly-

threaded processors. This is a very hot and important problem, since scheduling has a

considerable impact on these scenarios. First, because there are many possible ways of

scheduling the applications and, second because each possible schedule can achieve very

different performance due to the inter-application interference in the shared resources of

the SMT cores. To solve these problems we propose a symbiotic scheduler.

Chapter 7. Symbiotic Job Scheduling on the IBM POWER8 159

The proposed scheduler is based on a model that estimates job symbiosis. The model

predicts for any combination of applications, how much slowdown each of the applica-

tions would experience if they were concurrently run on an SMT core. It is based on

CPI stacks and the parameters of the model are tailored to CPI components and not

to particular applications. These parameters are obtained using regression in an offline

training phase. Thus, assuming that the training set is diverse enough, there is no need

to re-train the model to schedule new applications.

The symbiotic scheduler uses the interference model to quickly explore the space of

possible schedules and selects the optimal schedule for the next quantum. Unfortunately,

the number of possible schedules grows too fast with the number of hardware contexts.

For instance, there are more than 2 billion of possible ways of scheduling 20 applications

on 5 cores supporting four threads per core. To address this issue, the scheduling is

modeled as a minimum-weight perfect matching graph problem that can be solved in

polynomial time.

The experimental evaluation, carried out on an IBM POWER8 server, shows that the

Symbiotic scheduler improves system throughput over the Linux scheduler. On average

across 6- to 10-core workloads the throughput increase is by 6.7% and 5.9% in the SMT2

and SMT4 modes, respectively. Despite our current implementation is designed for the

IBM POWER8, the symbiotic scheduler could be adapted to other CMP architectures

with SMT cores that provide a similar cycle accounting mechanism, e.g., an Intel Xeon

server [69]. This only requires a one-time training step. The scheduler can also support

heterogeneous architectures, by creating different models for the various core types.

The work discussed in this chapter has been published in [75].

Chapter 8

Conclusions

This thesis has addressed the problem of scheduling multiprogram workloads on current

single-threaded and SMT multicore processors. Experiments have considered three re-

cent commercial processors and the proposed schedulers have been designed to adapt

to the particular characteristics of each specific architecture. First, we have proposed

multiple bandwidth-aware scheduling algorithms that tackle the bandwidth contention

points of the memory hierarchy. Next, progress-aware schedulers have been devised

to deal with the unfairness that resource sharing causes in SMT multicores. Finally,

this dissertation has presented a symbiotic scheduler that uses SMT interference models

based on CPI stacks to estimate the performance of the possible schedules with the goal

of selecting the best one.

In this chapter, the main contributions of these proposals are summarized, followed by a

discussion about future work, and an enumeration of the scientific publications related

with this dissertation.

161

Chapter 8. Conclusions 162

8.1 Contributions

In Chapter 4, a memory-hierarchy bandwidth-aware scheduling algorithm has been pre-

sented to deal with the bandwidth contention that arises at the different contention

points of the memory hierarchy of current multicore single-threaded processors. The

algorithm has been designed after finding that LLC bandwidth contention can even

achieve a stronger impact on performance than main memory bandwidth contention on

some scenarios. This situation is exacerbated by the industry trend of increasing the

number of cores and multithreading capabilities, which will put even more pressure on

the memory system of future multicore and manycore processors. The proposed sched-

uler pursues to evenly distribute the memory accesses over the workload execution time,

and balances the accesses among the different caches of a given cache level when it im-

plements shared caches. This is done by selecting the processes to achieve a certain main

memory bandwidth utilization in the quantum and by allocating the selected processes

to the proper cores depending on which cores share each cache, respectively. The algo-

rithm is further improved to favor the execution of processes with higher performance

degradation on less bandwidth-contentious scenarios. The experimental evaluation of

the proposed schedulers shows that the turnaround time of multiprogram mixes can be

reduced over Linux by 6.6% on average across the evaluated mixes.

In Chapter 5, we have proposed a bandwidth-aware scheduling algorithm for multicore

processors consisting of SMT cores. Unlike single-threaded processors, SMT multicores

implement L1 caches that are shared by the threads that simultaneously run on each

core, creating a new potential contention point. The experimental analysis performed in

this contention point illustrates its importance, since the performance and L1 bandwidth

of the processes are strongly related at run-time. To address L1 bandwidth contention,

we propose a Dynamic L1 bandwidth-aware process allocation policy that mitigates

the contention by allocating the processes to the cores so that the L1 accesses are bal-

anced among the L1 caches of the processor. Such a process allocation policy is then

combined with a main memory bandwidth-aware process selection policy to build an

entire scheduler that deals with bandwidth contention on SMT multicores. The exper-

imental evaluation shows that the proposed SMT bandwidth-aware scheduler improves

throughput over Linux by 4.6% on average across the studied mixes.

Chapter 8. Conclusions 163

In Chapter 6, progress-aware schedulers have been introduced as an effective way to keep

track of how the processes of a multiprogram workload progress at run-time. SMT mul-

ticores are able to concurrently run several applications, but this parallelism is reached

sharing most of the processor resources among several processes. Depending on how

the processes are scheduled, distinct processes can achieve widely different progresses

at run-time, which can strongly affect the system fairness. Two progress-aware sched-

ulers are proposed in this chapter. The progress-aware Fair scheduler exclusively ad-

dresses system fairness, prioritizing the processes with lower accumulated progress. The

progress-aware Perf&Fair scheduler simultaneously deals with fairness and performance

to provide fair executions trying to achieve the highest performance. The experimental

evaluation shows that unfairness can be reduced to a third with respect to Linux when

only system fairness is addressed. Furthermore, when simultaneously targeting fairness

and performance, Perf&Fair reduces unfairness to a half while improving the turnaround

time of the studied mixes by 5.6% on average with respect to Linux.

Finally, a symbiotic job scheduler is proposed in Chapter 7. This Symbiotic scheduler

uses an SMT interference model to guide the scheduling decisions. The model is based

on CPI stacks and estimates the performance of the possible schedules, considering the

contention in all the shared resources of SMT cores. Due to the exponential number

of possible schedules, even with our fast model, evaluating all possible schedules would

cause a non-negligible overhead. To avoid this problem, the Symbiotic scheduler models

the scheduling problem as a minimum-weight perfect matching graph problem that can

be solved in polynomial time. The experimental evaluation shows that the symbiotic

job scheduler is able to improve the system throughput, on average, by 6.7% and 5.9%

over Linux in the SMT2 and SMT4 modes, respectively.

8.2 Future Directions

As for future work, we plan to extend our scheduling algorithms and propose new

strategies to fit the requirements of a wider broad of systems. For example, parallel

applications are gaining importance and weight on the high-performance workloads that

small-scale servers typically run, and clearly require scheduling strategies that greatly

differ from those strategies used to schedule sequential applications. Another example is

Chapter 8. Conclusions 164

represented by mobile systems, where power consumption is a major concern and can be

addressed with the appropriate scheduling algorithms. Lastly, scheduling is also useful

to make a convenient use of some new features that recent processors implement such

as cache partitioning.

A path we are starting to explore consists of scheduling parallel applications on cur-

rent multicore multi-threaded processors, but also future manycore systems. Parallel

programs divide their calculations into multiple threads that are executed concurrently,

which speeds up their execution time significantly. However, in order to keep the shared

data consistent and to guarantee the necessary dependencies, synchronization among

threads is needed. Synchronization makes threads wait until other threads have finished

some part of their execution. Accelerating a parallel program is therefore not straight-

forward, because speeding up a non-critical thread just makes it wait for longer and does

not decrease the total program execution time. Similarly, performance variations be-

tween threads can make an originally balanced parallel program unbalanced, increasing

the execution time of the program due to the slowest thread.

On the prevalent architecture nowadays, which is a multicore processor consisting of

SMT cores, performance variation can be high due to interference in shared resources,

but at the same time there is a lot of freedom in manipulating per-thread performance

by changing the combinations of threads that execute together on a core. As such, the

scheduler should try to reduce performance variations among threads in case of balanced

parallel programs, as well as speeding up critical threads when there is unbalance on the

work each threads performs. Therefore, a scheduling proposal tailoring parallel applica-

tions demands for distinct and specific strategies tailored to improve their performance

and/or fairness.

Other systems that require from new scheduling strategies are mobile systems. These

systems usually work powered by batteries, which means that they typically have to face

heavy power constrains. Obviously, these power constrains influence the microprocessor

design; hence, current mobile systems tend to implement heterogeneous processors, such

as the big.LITTLE architecture [76]. This architecture implements two different kind of

cores on the same chip. On the one hand, big cores offer high-performance but are power-

hungry. As opposite, small cores present a much lower power consumption but their

performance is also smaller. Since the set of applications to run and their characteristics

Chapter 8. Conclusions 165

as well as the available power change dynamically, deciding which processes should run

on the big and small cores at runtime is a task that perfectly fits a process scheduler.

An additional problem that arises in mobile systems is that some tasks demand for

certain levels of quality of service (e.g., multimedia applications) and others should

directly meet hard-real time constraints (e.g., network communications to manage phone

calls). Optimizing quality of service for a certain power-budget, on scenarios with very

different kinds of applications that present distinct temporary requirements (some of

them provably needing to meet real-time constraints), and running on an heterogeneous

architecture is a challenging and very relevant problem nowadays.

Finally, scheduling is also required to take advantage of advanced characteristics of

current and future processors. Cache partitioning is a good example in current sys-

tems. The latest Intel processors offer the possibility to assign ways of the cache to the

processes, limiting the cache space that each process can access. In this scenario, the

scheduler can decide whether a process should receive more or less cache to maximize

the performance and/or fairness. Looking at a close future, the dark silicon era will re-

strict the number of transistors that can be powered on at a given time to guarantee the

thermal design power (TDP) constraints of future processors. Based on this prediction,

some researches are exploring the design of processors implementing different execution

pipelines (or hardware accelerators) to speedup the parts of the processes that suit the

characteristics for which each pipeline is designed. In this scenario, schedulers can take

control of which applications should run and which pipelines should be used at a given

time to meet the performance, energy, and fairness requirements. We think that this

kind of scheduling is going to be a hot topic in the coming years.

In summary, scheduling algorithms, tailored to the processor architecture, are required in

current systems and will potentially gain more relevance in future processors to achieve

the greatest performance, energy efficiency, and fairness, under different power con-

straints and running different kind of applications.

Chapter 8. Conclusions 166

8.3 Publications

The following papers related with this dissertation were submitted and accepted for

publication in different international journals and conferences with peer review.

Journals:

• J. Feliu, S. Petit, J. Sahuquillo, and J. Duato. Cache-Hierarchy Contention Aware

Scheduling in CMPs. IEEE Transactions on Parallel and Distributed Systems

(TPDS), volume 25, issue 3, pages 581-590, 2014.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Bandwidth-Aware On-Line Schedul-

ing in SMT Multicores. IEEE Transactions on Computers (TC), volume 65, issue

2, pages 422-434, 2016.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Perf&Fair: a Progress-Aware Sched-

uler to Enhance Performance and Fairness in SMT Multicores. IEEE Transactions

on Computers (TC), to appear in. DOI: 10.1109/TC.2016.2620977

Conferences:

• J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit. Symbiotic Job Scheduling on

the IBM POWER8. In Proceedings of the IEEE 22nd International Symposium

on High Performance Computer Architecture (HPCA), pages 669-680, Barcelona,

Spain, 2016. This publication received a HiPEAC Paper Award.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. L1-Bandwidth Aware Thread

Allocation in Multicore SMT Processors. In Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages

123-132, Edinburgh, Scotland, 2013.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Addressing Fairness in SMT Mul-

ticores with a Progress-Aware Scheduler. In Proceedings of the IEEE 29th Inter-

national Parallel and Distributed Processing Symposium (IPDPS), pages 187-196,

Hyderabad, India, 2015.

Chapter 8. Conclusions 167

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Understanding Cache Hierarchy

Contention in CMPs to Improve Job Scheduling. In Proceedings of the IEEE 26th

International Parallel and Distributed Processing Symposium (IPDPS), pages 508-

519, Shanghai, China, 2012.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Addressing Bandwidth Contention

in SMT Multicores Through Scheduling. In Proceedings of the 28th International

Conference on Supercomputing (ICS), page 167, Munich, Germany, 2014.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Using Huge Pages and Performance

Counters to Determine the LLC Architecture. In Proceedings of the 2013 Interna-

tional Conference on Computational Science (ICCS), pages 2557-2560, Barcelona,

Spain, 2013.

In addition, other related papers have been published in international summer schools

and domestic conferences:

• J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit. Improving Throughput on the

IBM POWER8 with a Symbiotic Scheduler. In Proceedings of the 12th Inter-

national Summer School on Advanced Computer Architecture and Compilation

for High-Performance and Embedded Systems (ACACES), pages 201-204, Fiuggi,

Italy, 2016.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Planificación Considerando el Ancho

de Banda de la Jerarqúıa de Cache. In Actas de las XXIII Jornadas de Paralelismo

(JP), pages 472-477, Elx, Spain, 2012.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Planificación Considerando Degradación

de Prestaciones por Contención. In Actas de las XXIV Jornadas de Paralelismo

(JP), pages 62-67, Madrid, Spain, 2013.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Ubicación de Procesos Considerando

el Ancho de Banda de L1 en Procesadores Multinúcleo SMT. In Actas de las XXV

Jornadas de Paralelismo (JP), pages 343-352, Valladolid, Spain, 2014.

• J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Planificación Orientada a Equidad

Considerando el Progreso en Multinúcleos SMT. In Actas de las XXVI Jornadas

de Paralelismo (JP), pages 118-126, Córdoba, Spain, 2015.

Chapter 8. Conclusions 168

• J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit. Planificación Simbiótica de

Procesos en el IBM POWER8. In Actas de las XXVII Jornadas de Paralelismo

(JP), pages 315-324, Salamanca, Spain, 2016.

All works listed above are exclusively related with this thesis. The specific contributions

of the Ph.D. candidate reside mostly in the design and implementation of the proposed

algorithms, as well as the execution of the performed experiments, the analysis and

discussion of the results, the writing of the paper drafts describing the work, and the

presentation of the papers in the conferences. Along these processes, the co-authors

have repeatedly provided useful hints and advices, which the Ph.D. candidate has then

applied to make the work evolve into its final version.

References

[1] B. Sinharoy, J.A. Van Norstrand, R.J. Eickemeyer, H.Q. Le, J. Leenstra, D.Q.

Nguyen, B. Konigsburg, K. Ward, M.D. Brown, J.E. Moreira, D. Levitan, S. Tung,

D. Hrusecky, J.W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach,

T. Karkhanis, and K.M. Fernsler. IBM POWER8 Processor Core Microarchitecture.

IBM Journal of Research and Development, 59(1):2:1–2:21, Jan 2015.

[2] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maxi-

mizing On-Chip Parallelism. In Proceedings of the 22nd Annual International Sym-

posium on Computer Architecture (ISCA), pages 392–403, 1995.

[3] J. Burns and J.-L. Gaudiot. SMT Layout Overhead and Scalability. IEEE Trans-

actions on Parallel and Distributed Systems (TPDS), 13(2):142–155, Feb 2002.

[4] Y. Li, K. Skadron, D. Brooks, and Z. Hu. Performance, Energy, and Thermal

Considerations for SMT and CMP Architectures. In Proceedings of the 11th Inter-

national Symposium on High-Performance Computer Architecture (HPCA), pages

71–82, 2005.

[5] S. Eyerman and L. Eeckhout. The Benefit of SMT in the Multi-Core Era: Flex-

ibility Towards Degrees of Thread-Level Parallelism. In Proceedings of the 19th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 591–606, 2014.

[6] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for Simultaneous Multi-

threaded Processor. In Proceedings of the 9th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 234–244, 2000.

169

References 170

[7] S. Eyerman and L. Eeckhout. Probabilistic Job Symbiosis Modeling for SMT Pro-

cessor Scheduling. In Proceedings of the 15th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 91–102, 2010.

[8] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors. In Proceedings of the 40th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pages 146–160, 2007.

[9] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez,

and M. Valero. Predictable Performance in SMT Processors: Synergy Between the

OS and SMTs. IEEE Transactions on Computers, 55(7):785–799, July 2006.

[10] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Memory

Service in Multi-Core Systems. In Proceedings of 16th USENIX Security Symposium

on USENIX Security Symposium, pages 18:1–18:18, 2007.

[11] D. Xu, C. Wu, and P.-C. Yew. On Mitigating Memory Bandwidth Contention

through Bandwidth-Aware Scheduling. In Proceedings of the 19th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages

237–248, 2010.

[12] J. Feliu, S. Petit, J. Sahuquillo, and J. Duato. Cache-hierarchy contention aware

scheduling in CMPs. IEEE Transactions on Parallel and Distributed Systems, 25

(3):581–590, March 2014.

[13] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou. Scheduling

Algorithms with Bus Bandwidth Considerations for SMPs. In Proceedings of the

32nd International Conference on Parallel Processing (ICPP), pages 547 –554, 2003.

[14] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou. Realistic Work-

load Scheduling Policies for Taming the Memory Bandwidth Bottleneck of SMPs. In

Proceedings of the 11th International Conference on High Performance Computing

(HiPC), pages 286–296, 2004.

[15] E. Koukis and N. Koziris. Memory and Network Bandwidth Aware Scheduling

of Multiprogrammed Workloads on Clusters of SMPs. In Proceedings of the12th

References 171

International Conference on Parallel and Distributed Systems (ICPADS), pages

345–354, 2006.

[16] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan. Memory-Aware Green Scheduling

on Multi-core Processors. In Proceedings of the 39th International Conference on

Parallel Processing Workshops, pages 485–488, 2010.

[17] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory

Systems. In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 208–222, 2006.

[18] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throttling:

a Configurable and High-Performance Fairness Substrate for Multi-Core Memory

Systems. In Proceedings of the 15th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS), pages 335–346,

2010.

[19] D. Xu, C. Wu, P.-C. Yew, J. Li, and Z. Wang. Providing Fairness on Shared-

Memory Multiprocessors via Process Scheduling. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International Conference on Measurement

and Modeling of Computer Systems, pages 295–306, 2012.

[20] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE: Provid-

ing Performance Predictability and Improving Fairness in Shared Main Memory

Systems. In 19th International Symposium on High Performance Computer Archi-

tecture (HPCA), pages 639–650, 2013.

[21] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS Observations to

Improve Performance in Multicore Systems. IEEE Micro, 28(3):54–66, may 2008.

[22] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-

tention in multicore processors via scheduling. In Proceedings of the 15th Interna-

tional Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), pages 129–142, 2010.

[23] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M.-L. Soffa. The impact of

memory subsystem resource sharing on datacenter applications. In Proceedings of

the 38th Annual International Symposium on Computer Architecture (ISCA), 2011.

References 172

[24] M. Sato, I. Kotera, R. Egawa, H. Takizawa, and H. Kobayashi. A Cache-Aware

Thread Scheduling Policy for Multi-Core Processors. In Proceedings of the 6th Inter-

national Conference on Parallel and Distributed Computing and Networks (PDCN),

pages 109 –114, 2009.

[25] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-Aware

Cache Replacement. In Proceedings of the 33rd Annual International Symposium

on Computer Architecture (ISCA), pages 167–178, 2006.

[26] D. Kaseridis, J. Stuecheli, Jian Chen, and L. K. John. A bandwidth-aware memory-

subsystem resource management using non-invasive resource profilers for large CMP

systems. In Proceedings of the 16th International Symposium on High Performance

Computer Architecture (HPCA), pages 1 –11, 2010.

[27] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Performance Isolation on

Chip Multiprocessors via an Operating System Scheduler. In Proceedings of the

16th International Conference on Parallel Architectures and Compilation Tech-

niques (PACT), pages 25–38, 2007.

[28] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for shared

resources on multicore processors. Commun. ACM, 53(2):49–57, feb 2010.

[29] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches. In

Proceedings of the 39th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 423–432, 2006.

[30] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. Transactions on High-

Performance Embedded Architectures and Compilers III. chapter Dynamic cache

partitioning based on the MLP of cache misses, pages 3–23. 2011.

[31] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP Control: Controlled Shared

Cache Management in Chip Multiprocessors. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 517–

528, 2009.

References 173

[32] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic Shared Cache Man-

agement (PriSM). In Proceedings of the 39rd Annual International Symposium on

Computer Architecture (ISCA), pages 428–439, 2012.

[33] G.E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme for

Memory-Aware Scheduling and Partitioning. In Proceedings of the 8th International

Symposium on High Performance Computer Architecture (HPCA), pages 117–128,

2002.

[34] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip

multiprocessor architecture. In Proceedings of the 13th International Conference on

Parallel Architectures and Compilation Techniques (PACT), pages 111–122, 2004.

[35] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. In

Proceedings of the 21st Annual International Conference on Supercomputing (ICS),

pages 242–252, 2007.

[36] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual Private Caches. In Proceedings of

the 34th Annual International Symposium on Computer Architecture (ISCA), pages

57–68, 2007.

[37] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moreto, D. Chou, B. Gluz-

man, E. Roman, D. B. Bartolini, N. Mor, K. Asanovic, and J. D. Kubiatowicz.

Tessellation: Refactoring the OS Around Explicit Resource Containers with Con-

tinuous Adaptation. In Proceedings of the 50th ACM/EDAC/IEEE International

Conference on Design Automation Conference (DAC), pages 1–10, 2013.

[38] S. Eyerman, L. Eeckhout, T. Karkhanis, and J.E. Smith. A Performance Counter

Architecture for Computing Accurate CPI Components. In Proceedings of the 11th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 175–184, 2006.

[39] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache Pirating: Mea-

suring the Curse of the Shared Cache. In Proceedings of the 40th International

Conference on Parallel Processing (ICPP), pages 165–175, 2011.

References 174

[40] M. Casas and G. Bronevetsky. Active Measurement of Memory Resource Con-

sumption. In Proceedings of the IEEE 25th International Parallel and Distributed

Processing Symposium (IPDPS), pages 995–1004, 2014.

[41] S. Hily and A. Seznec. Contention on 2nd Level Cache May Limit the Effectiveness

of Simultaneous Multithreading. In [Research Report] RR-3115, INRIA, 1997.

[42] V. Čakarević, P. Radojković, J. Verdú, A. Pajuelo, F. J. Cazorla, M. Nemirovsky,

and M. Valero. Characterizing the Resource-Sharing Levels in the UltraSPARC T2

Processor. In Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 481–492, 2009.

[43] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero. Thread to Core Assignment in

SMT On-Chip Multiprocessors. In Proceedings of the 21st International Symposium

on Computer Architecture and High Performance Computing (SBAC-PAD), pages

67–74, 2009.

[44] T. Moseley, J.L. Kihm, D.A. Connors, and D. Grunwald. Methods for Modeling

Resource Contention on Simultaneous Multithreading Processors. In Proceedings

of the 23th International Conference on Computer Design (ICCD), pages 373–380,

2005.

[45] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural Support for

Enhanced SMT Job Scheduling. In Proceedings of the 13th International Conference

on Parallel Architectures and Compilation Techniques (PACT), pages 63–73, 2004.

[46] S. Eyerman and L. Eeckhout. Per-Thread Cycle Accounting in SMT Processors.

In Proceedings of the 14th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 133–144, 2009.

[47] L. Porter, M. A. Laurenzano, A. Tiwari, A. Jundt, W. A. Ward, Jr., R. Campbell,

and L. Carrington. Making the Most of SMT in HPC: System- and Application-

Level Perspectives. ACM Transactions on Architecture and Code Optimization

(TACO), 11(4):59:1–59:26, jan 2015.

[48] J. Mars, L. Tang, R. Hundt, K. Skadron, and Mary L. Soffa. Bubble-Up: Increas-

ing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations. In

References 175

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 248–259, 2011.

[49] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. SMiTe: Precise QoS Prediction

on Real-System SMT Processors to Improve Utilization in Warehouse Scale Com-

puters. In Proceedings of the 44th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 406–418, 2014.

[50] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness in

SMT Processors. In Proceedings of the IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pages 164–171, 2001.

[51] S. Eyerman and L. Ecckhout. A Memory-Level Parallelism Aware Fetch Policy

for SMT Processors. In Proceedings of the 13th International Symposium on High

Performance Computer Architecture (HPCA), pages 240–249, 2007.

[52] G. Varghese, J. Sanjeev, T. Chao, S. Ken, D. Satish, S. Scott, N. Ves, K. Tanveer,

S. Sanjib, and S. Puneet. Penryn: 45-nm Next Generation Intel Core 2 Processor.

In IEEE Asian Solid-State Circuits Conference, pages 14–17, 2007.

[53] A. B. Caldeira, V. Haug, M. E. Kahle, C. D. Maciel, M. Sanchez, and S. Y. Sung.

IBM Power Systems S812L and S822L Technical Overview and Introduction. IBM

Redbooks, 2014.

[54] L. W. McVoy and C. Staelin. lmbench: Portable Tools for Performance Analysis. In

Proceedings of 5th USENIX Security Symposium on USENIX Security Symposium,

pages 279–294, 1996.

[55] J. McCalpin. STREAM benchmark. Link: www.cs.virginia.edu/stream/ref.html,

1995.

[56] J. Corbet. NUMA Scheduling Progress. Link: https://lwn.net/Articles/568870/,

2013.

[57] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram

workloads. IEEE Micro, 28(3):42–53, 2008.

[58] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-to-

Core Mapping Policies to Reduce Memory Interference in Multi-Core Systems. In

References 176

Proceedings of the 119h International Symposium on High-Performance Computer

Architecture (HPCA), pages 107–118, 2013.

[59] K. Yotov, K. Pingali, and P. Stodghill. Automatic Measurement of Memory Hierar-

chy Parameters. In Proceedings of the 5th ACM SIGMETRICS/PERFORMANCE

Joint International Conference on Measurement and Modeling of Computer Sys-

tems, pages 181–192, 2005.

[60] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Understanding cache hierarchy

contention in CMPs to improve job scheduling. In Proceedings of the IEEE 23th

International Parallel and Distributed Processing Symposium (IPDPS), pages 508–

519, 2012.

[61] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Using Huge Pages and Perfor-

mance Counters to Determine the LLC Architecture. In International Conference

on Computational Science (ICCS), pages 2557 – 2560, 2013.

[62] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F. Wenisch,

and S. Mahlke. Composite Cores: Pushing Heterogeneity Into a Core. In Proceed-

ings of the 42th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 317–328, 2012.

[63] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. L1-Bandwidth Aware Thread Al-

location in Multicore SMT Processors. In Proceedings of the 22nt International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages

123–132, 2013.

[64] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Addressing Bandwidth Contention

in SMT Multicores Through Scheduling. In Proceedings of the 28th Annual Inter-

national Conference on Supercomputing (ICS), pages 167–167, 2014.

[65] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Bandwidth-Aware On-Line Schedul-

ing in SMT Multicores. IEEE Transactions on Computers, 65(2):422–434, February

2016.

[66] R. Love. Linux kernel development. Pearson Education, 2010.

References 177

[67] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Addressing Fairness in SMT Mul-

ticores with a Progress-Aware Scheduler. In Proceedings of the IEEE 26th Inter-

national Parallel and Distributed Processing Symposium (IPDPS), pages 187–196,

2015.

[68] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Perf&Fair: a Progress-Aware Sched-

uler to Enhance Performance and Fairness in SMT Multicores. To appear in IEEE

Transactions on Computers, 2017. doi: 10.1109/TC.2016.2620977.

[69] A. Nowak, D. Levinthal, and W. Zwaenepoel. Hierarchical Cycle Accounting: a New

Method for Application Performance Tuning. In Proceedings of the IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS),

pages 112–123, 2015.

[70] D. M. Tullsen and J. A. Brown. Handling Long-latency Loads in a Simultaneous

Multithreading Processor. In Proceedings of the 34th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO)), pages 318–327, 2001.

[71] IBM Knowledge Center, Analyzing application performance on Power Sys-

tems servers, 2015. URL https://www-01.ibm.com/support/knowledgecenter/

linuxonibm/liaal/iplsdkusetools.htm.

[72] P. Radojkovic, V. Cakarevic, J. Verdu, A. Pajuelo, F. J. Cazorla, M. Nemirovsky,

and M. Valero. Thread assignment of multithreaded network applications in mul-

ticore/multithreaded processors. IEEE Transactions on Parallel and Distributed

Systems, 24(12):2513–2525, Dec 2013.

[73] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and Approximation of Opti-

mal Co-scheduling on Chip Multiprocessors. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages

220–229, 2008.

[74] J. Edmonds. Maximum Matching and a Polyhedron with 0, l-Vertices. J. Res. Nat.

Bur. Standards B, 69(1965):125–130, 1965.

[75] J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit. Symbiotic Job Scheduling on

the IBM POWER8. In Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA), pages 669–680, 2016.

https://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkusetools.htm
https://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkusetools.htm

References 178

[76] Samsung Electronics. Samsung Primes Exynos 5 Octa for ARM big.LITTLE Tech-

nology with Heterogeneous Multi-Processing Capability. Press release, 2013.

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Abstract
	Resumen
	Resum
	1 Introduction
	1.1 Background
	1.1.1 Chip Multiprocessor
	1.1.2 Simultaneous Multithreading
	1.1.3 System Fairness

	1.2 Objectives of the Thesis
	1.3 Main Contributions of the Thesis
	1.4 Thesis Outline

	2 Related Work
	2.1 Main Memory Contention
	2.2 Cache Hierarchy Contention
	2.2.1 Contention-Aware Scheduling
	2.2.2 Resource Partitioning
	2.2.3 Performance Models

	2.3 SMT Core Contention

	3 Scheduling Framework, Experimental Platforms, and Evaluation Methodology
	3.1 Scheduling Framework
	3.2 Experimental Platforms
	3.2.1 Single-Threaded Multicore: Intel Xeon X3320
	3.2.2 SMT Multicore: Intel Xeon E5645
	3.2.3 IBM POWER8 System
	3.2.3.1 NUMA Effects in the IBM POWER8

	3.3 Evaluation methodology
	3.3.1 Process Selection Methodology
	3.3.2 Process Allocation Methodology

	3.4 Metrics

	4 Bandwidth-Aware Scheduling on Multicore Processors
	4.1 Performance Degradation Analysis
	4.1.1 Benchmarks Characterization
	4.1.2 Microbenchmark Design
	4.1.3 Degradation due to Main Memory Contention
	4.1.4 Degradation due to L2 Contention
	4.1.5 Degradation Running in Bandwidth-Aware Scheduling Scenarios

	4.2 Memory-Hierarchy Bandwidth-Aware Scheduling
	4.2.1 Baseline Main Memory Bandwidth-Aware Scheduler
	4.2.2 Memory-Hierarchy Bandwidth-Aware Scheduler
	4.2.3 IPC-Degradation Memory-Hierarchy Bandwidth-Aware Scheduler

	4.3 Evaluation Setup
	4.3.1 Evaluated Algorithms
	4.3.2 Mix Design

	4.4 Experimental Evaluation
	4.4.1 Performance Evaluation
	4.4.2 Profiling the Penalty Coefficient

	4.5 Summary

	5 Bandwidth-Aware Scheduling in SMT Multicores
	5.1 Performance Degradation Analysis
	5.1.1 Effects of L1 Bandwidth on Performance
	5.1.1.1 Stand-Alone Execution
	5.1.1.2 Analyzing Interference between Co-Runners

	5.1.2 Impact of Cache Space Contention on L1 Bandwidth Consumption
	5.1.3 Performance Degradation due to Main Memory Bandwidth Contention

	5.2 SMT Bandwidth-Aware Scheduling
	5.2.1 Self-Reliant Main Memory Bandwidth-Aware Process Selection
	5.2.2 L1 Bandwidth-Aware Process Allocation
	5.2.2.1 Dynamic L1 Bandwidth-Aware Process Allocation Policy
	5.2.2.2 Static L1 Bandwidth-Aware Process Allocation Policy

	5.3 Evaluation Setup
	5.3.1 Evaluated Algorithms
	5.3.2 Mix Design

	5.4 Experimental Evaluation
	5.4.1 Evaluation of the Process Allocation Policies
	5.4.2 Evaluation of the Process Selection Policies
	5.4.3 Evaluation of the SMT Bandwidth-Aware Scheduler

	5.5 Summary

	6 Progress-Aware Scheduling to Address Fairness in SMT Multicores
	6.1 Estimating Progress
	6.1.1 Period Length between IPC Estimates
	6.1.2 Process Interference in Low-Contention Schedules
	6.1.2.1 Interference between Pairs of Benchmarks
	6.1.2.2 Cumulative Interference in Low-Contention Schedules

	6.2 Progress-Aware Fair Scheduling
	6.2.1 IPC Estimation-Oriented Process Selection
	6.2.2 Fairness-Oriented Process Selection
	6.2.3 Process Allocation
	6.2.4 Implementation Considerations

	6.3 Progress-Aware Perf&Fair Scheduling
	6.3.1 IPC Estimation-Oriented Process Selection
	6.3.2 Performance- & Fairness- Oriented Process Selection

	6.4 Flexible Progress-Aware Perf&Fair Scheduling: Trading Fairness for Performance
	6.5 Evaluation Setup
	6.5.1 Evaluated Algorithms
	6.5.2 Mix Design

	6.6 Experimental Evaluation
	6.6.1 Evaluation of the Progress-Aware Fair Scheduler
	6.6.1.1 System Fairness Evaluation
	6.6.1.2 Accuracy of the Isolated IPC Estimations

	6.6.2 Evaluation of the Progress-Aware Perf&Fair Scheduler
	6.6.2.1 System Fairness Evaluation
	6.6.2.2 Performance Evaluation
	6.6.2.3 Process Completion in a Mix

	6.6.3 Evaluation of the Flexible Progress-Aware Perf&Fair Scheduler

	6.7 Summary

	7 Symbiotic Job Scheduling on the IBM POWER8
	7.1 Predicting Job Symbiosis
	7.1.1 SMT Interference Model
	7.1.1.1 Base Component
	7.1.1.2 Resource Stall Components
	7.1.1.3 Miss Components

	7.1.2 Model Construction and Slowdown Estimation
	7.1.3 Obtaining tST CPI stacks in SMT mode

	7.2 SMT Interference-Aware Scheduler
	7.2.1 Reduction of the Cycle Stack Components
	7.2.2 Selection of the Optimal Schedule
	7.2.3 Scheduler Implementation

	7.3 Evaluation Setup
	7.3.1 Evaluated Algorithms
	7.3.2 Mix Design

	7.4 Experimental Evaluation
	7.4.1 Model Accuracy
	7.4.1.1 Regression Model Accuracy
	7.4.1.2 Inverse Model Accuracy

	7.4.2 Symbiotic Scheduler Evaluation
	7.4.2.1 System Throughput
	7.4.2.2 Per-Application Performance
	7.4.2.3 Symbiosis Patterns

	7.5 Summary

	8 Conclusions
	8.1 Contributions
	8.2 Future Directions
	8.3 Publications

	References

