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Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain

e-mail: marroyo@mat.upv.es, parroyo@mat.upv.es, anamarti@mat.upv.es

and M. D. PÉREZ-RAMOS
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Abstract

Two subgroups X and Y of a group G are said to be conditionally
permutable in G if X permutes with Y g for some element g ∈ G, i.e.,
XY g is a subgroup of G. Using this permutability property new crite-
ria for the product of finite supersoluble groups to be supersoluble are
obtained and previous results are recovered. Also the behaviour of the
supersoluble residual in products of finite groups is studied.
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Two subgroups A and B of a group G are called totally permutable if
every subgroup X of A is permutable with every subgroup Y of B, i.e., XY
is a subgroup of G. In this case, if G = AB we say that G is the totally
permutable product of the subgroups A and B.

This condition was first considered by M. Asaad and A. Shaalan in [4] to
provide criteria for the product of supersoluble groups to be supersoluble.

It is a well-known fact in the theory of groups that the product of two
normal supersoluble subgroups is not necessarily supersoluble and there is
a general interest in finding conditions for positive results. A classical R.
Baer’s result [5] states that if a group G is the product of two normal su-
persoluble subgroups and its derived subgroup G′ is nilpotent, then G is
supersoluble. Later on a vaste research has been leaded by this aim. Asaad
and Shaalan prove in particular that a totally permutable product of super-
soluble subgroups is supersoluble.

In fact their paper has originated a fruitful research on products of groups
whose factors are linked by certain permutability conditions on different
families of subgroups in the factor groups (see [7, 10] for a first approach
to the topic). In particular the structure of totally permutable products of
subgroups has been widely investigated and nowadays much information is
known.

But initially R. Maier in [24] proved that Asaad and Shaalan result is
a particular case of a more general one when considering the class U of
supersoluble groups as a saturated formation (containing U). Later on it
was proved that Maier’s result extends to non-saturated formations which
contain all supersoluble groups ([6]) and totally permutable products of
groups have been deeply studied both in the frameworks of formation theory
(see [7, 10]) as well as in the theory of Fitting classes ([17, 18, 19]).

W. Guo, K. P. Shum and A. N. Skiba in [16] have extended previous re-
sults by considering a weaker condition of subgroups permutability, namely
conditional permutability. More precisely they consider the following con-
cepts:

Definition. Let G be a group. Two subgroups X and Y of G are called
conditionally permutable (c-permutable, for brevity) in G if X permutes
with Y g for some element g ∈ G.

The subgroups X and Y are called completely c-permutable in G if X
permutes with Y g for some element g ∈ 〈X,Y 〉, the subgroup generated by
X and Y .

Such type of permutability conditions has been considered by other au-
thors in extending classical results about the influence of permutability
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properties of certain families of subgroups on the structure of groups; to
be mentioned for instance [25], [21], [3], [15].

In relation to products of groups W. Guo, K. P. Shum and A. N. Skiba
in [16] extend Asaad and Shaalan result on products of supersoluble groups
by weakening permutability to complete c-permutability. More exactly, they
prove the following result (see Section 2, Corollary 2):

Let the group G = AB be the product of supersoluble subgroups A and B.
If every subgroup of A is completely c-permutable in G with every subgroup
of B, then G is supersoluble.

This result has been recently improved by X. Liu, W. Guo, K. P. Shum
in [22] by assuming that subnormal subgroups of each factor are completely
c-permutable with the subgroups of the other factor (see Section 2, Corol-
lary 3). Other related results can be also found in the same reference.

Also a related extension of Asaad and Shaalan result has been obtained
by X. Liu, B. Li, X. Yi in [23] (see Section 2, Corollary 4).

Certainly permutable subgroups are completely c-permutable and these
ones are in turn c-permutable. But easy examples show that these concepts
are all different as we see below in the paper. In particular, it is remarkable
that the property of persistence in intermediate subgroups turns to be a
main difference between c-permutability and complete c-permutability. In
fact complete c-permutability appears when requiring c-permutability to
satisfy this persistence property and becomes a much stronger hypothesis,
as we show next. (See Section 4, Example 4 and Final Remark.)

On the other hand significant structural properties of totally permutable
products of subgroups are missed when considering c-permutability, even
complete c-permutability, instead of permutability. (See Section 4, Exam-
ples 2, 3.)

This paper is devoted to the study of c-permutability in relation to prod-
ucts of groups and supersolubility. In Section 2 we prove that the aforesaid
Asaad and Shaalan result and its extension by Guo, Shum and Skiba remain
true in the following more general form for c-permutability (Corollary 1):

Let the group G = AB be the product of supersoluble subgroups A and
B. If every subgroup of A is c-permutable in G with every subgroup of B,
then G is supersoluble.

In fact this result is obtained as a consequence of an even stronger result
(Theorem 1) by considering a weaker permutability hypothesis, called NS-
permutability (see Definition 1 and Lemma 2). This way also the above-
mentioned recent results by Liu, Guo and Shum and by Liu, Li and Yi
(Corollaries 3 and 4, respectively) follow as consequences of Theorem 1.
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In Section 3 we study the behaviour of the supersoluble residual in prod-
ucts of groups within this framework. We recall that the supersoluble resid-
ual GU of a group G is the smallest normal subgroup of G such that the
factor group G/GU is supersoluble. We prove in Theorem 2 that if the
group G = AB is the totally c-permutable product of the subgroups A and
B (i.e., every subgroup of A is c-permutable in G with every subgroup of
B), then GU = AUBU . Example 1 shows that this result is not further
true for NS-permutable products of subgroups. We also apply Theorem 2
to obtain a local version for p-supersolubilty of Corollary 1 which extends
again previous results (Corollary 5).

We shall adhere to the notation used in [12], in particular σ(G) denotes
the set of all primes dividing the order of the group G. For subgroups X,A
of a group G, we denote 〈XA〉 = 〈xa : x ∈ X, a ∈ A〉; in particular, 〈XG〉
is the normal closure of X in G.

2 Products of supersoluble groups

We introduce first NS-permutable products of subgroups and gather condi-
tional permutability concepts. Then we apply them to study products of
supersoluble groups.

Definition 1. Two subgroups A and B of a group G are said to be NS-
permutable if they satisfy the following conditions:

• Whenever X is a normal subgroup of A and p ∈ σ(B), there exists a
Sylow p-subgroup Bp of B such that X permutes with Bp.

• Whenever Y is a normal subgroup of B and p ∈ σ(A), there exists a
Sylow p-subgroup Ap of A such that Y permutes with Ap.

(In particular it follows that A permutes with B.)
Moreover, if G = AB, we say that G is an NS-permutable product of the

subgroups A and B.

Definition 2 ([15, 16]). Let G be a group.
Two subgroups X and Y of G are called conditionally permutable (c-

permutable, for brevity) in G if X permutes with Y g for some element g ∈ G.
If the group G = AB is the product of subgroups A and B such that

every subgroup of A is c-permutable in G with every subgroup of B, we will
say that G = AB is the totally c-permutable product of the subgroups A and
B.
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The subgroups X and Y are called completely c-permutable in G if X
permutes with Y g for some element g ∈ 〈X,Y 〉, the subgroup generated by
X and Y .

Lemma 1. [11] Let the group G = HK be the product of subgroups H and
K. If L�H and L ≤ K, then L ≤ CoreG(K) .

Proof. It follows easily since L ≤ 〈LG〉 = 〈LHK〉 = 〈LK〉 ≤ CoreG(K).

Theorem 1. Let the group G = AB be the NS-permutable product of the
subgroups A and B. If A and B are supersoluble, then G is supersoluble.

Proof. Assume that the result is false and let G = AB be a counterexample
of minimal order. In particular, A 6= 1 and B 6= 1. We split the proof into
two steps:
Step 1. G is a soluble primitive group, Soc(G) is a p-group for the largest
prime p dividing |G| and G/Soc(G) is supersoluble.

Let 1 6= N be a normal subgroup of G. It is easily checked that
G/N = (AN/N)(BN/N) is the NS-permutable product of the supersolu-
ble subgroups AN/N and BN/N . The choice of G implies that G/N is
supersoluble. If N1 and N2 are distinct minimal normal subgroups of G, it
follows that G ∼= G/(N1 ∩N2) is supersoluble, a contradiction. Then G has
a unique minimal normal subgroup, which is also not contained in Φ(G),
the Frattini subgroup of G. Consequently G is a primitive group of type 1.

We consider the largest prime p dividing |G|. Without loss of generality
we may assume that p divides |A|. Let Ap be the Sylow p-subgroup of A
(since A is a supersoluble, we notice that Ap is normal in A). Let X be
a minimal normal subgroup of A such that X ≤ Ap. Then X is a cyclic
group of order p. By hypothesis we deduce that X permutes with B since
X permutes with some Sylow subgroup of B for each prime dividing |B|.
Consequently XB is a subgroup of G.

We distinguish next the following cases:

Case 1: Ap ∩B 6= 1.

Since A and B are supersoluble, we have that Ap ∩ B is a subnormal
subgroup of bothA andB. ThereforeAp∩B is a subnormal p-subgroup
of G = AB (see [1, Theorem 7.5.7]). It follows in this case that Soc(G)
is a p-group and G is a soluble primitive group.

Case 2: Ap ∩B = 1.
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We claim that XB satisfies the hypothesis of the theorem. Since X
is a normal subgroup of A we have that X permutes with some Sy-
low subgroup of B for each prime divisor of |B|. Now we consider a
normal subgroup T of B. By hypothesis T permutes with the Sylow
p-subgroup Ap of A. We notice that TAp ∩XB = XT (Ap ∩B) = XT
is a subgroup of G, which implies that T permutes with X. Since X
and B are supersoluble, the claim is proved.

We assume first that XB is a proper subgroup of G. The choice of G
implies that XB is supersoluble. By Lemma 1, X ≤ CoreG(XB) ∈ U .
Hence the Sylow p-subgroup of CoreG(XB) is a normal p-subgroup
of G. We obtain again that Soc(G) is a p-group and G is a soluble
primitive group.

We assume now that G = XB. We consider a minimal normal sub-
group Y of the supersoluble group B. Then Y is a cyclic group.
We notice that X permutes with Y and the group XY is supersol-
uble because it is the product of cyclic groups (see [20, VI, 10.1]).
Since 1 6= 〈Y G〉 = 〈Y BX〉 = 〈Y X〉 is a subgroup XY , it follows that
〈Y G〉 = Y (X ∩ 〈Y G〉) is supersoluble.

If X ∩ 〈Y G〉 = 1, then 〈Y G〉 = Y is a cyclic normal subgroup of
G. Since G/Y is supersoluble, we deduce that G is supersoluble, a
contradiction. Consequently, X ∩〈Y G〉 6= 1 and the Sylow p-subgroup
of 〈Y G〉 is a normal subgroup of G. Again we deduce finally that
Soc(G) is a p-group and G is a soluble primitive group.

Step 2 : The final contradiction.
From Step 1 we have that G = NM , where N = Op(G) = Soc(G) is

abelian, M is a maximal subgroup of G such that Op(M) = 1 and M ∼= G/N
is supersoluble.

Since p is the largest prime dividing |G| we can deduce that N is a Sylow
p-subgroup of G. On the other hand there are Hall p′-subgroup Ap′ and Bp′
of A and B, respectively, such that Ap′Bp′ is a Hall p′-subgroup of G (see
[1, Lemma 1.3.2]). Then we may consider that M = Ap′Bp′ is a maximal
subgroup of G.

As above we assume that p divides |A| and consider X a minimal normal
subgroup of A such that X ≤ Ap ∈ Sylp(A).

We claim that X permutes with Bp′ . This is clear if Bp′ = 1. Assume
that Bp′ = Bp1 · · ·Bpr being p1 > . . . > pr the prime divisors of |Bp′ | and
Bpi a Sylow pi-subgroup of B for i = 1, · · · , r.
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We notice that B = BpBp′ being Bp the Sylow p-subgroup of B (even-
tually Bp = 1). Moreover Bp, X ≤ N and, in particular, Bp centralizes
X.

For formal purposes we set Bp0 := 1, assume inductively that X per-
mutes withBp0 · · ·Bpi−1 , for i > 0, and prove thatX permutes withBp0 · · ·Bpi−1Bpi .
In particular it will follow that X permutes with Bp′ and the claim will be
proved.

We set Bj = BpBp0 · · ·Bpj , for j ∈ {0, 1, . . . , r}. We notice that Bj is a
normal subgroup of B for every j because B is supersoluble.

Since G is an NS-permutable product of the subgroups A and B, we
have that X permutes with Bz

pi
for some z ∈ B. Moreover, by the Frat-

tini Argument, B = BiNB(Bpi) and consequently, X permutes with Bbi
pi

for some bi ∈ Bi = BpBp0 · · ·Bpi . We can write bi = wtx with x ∈ Bp,
t ∈ Bp0 · · ·Bpi−1 and w ∈ Bpi . It follows that XBt

pi
= Bt

pi
X. Since we

are assuming that X permutes with Bp0 · · ·Bpi−1 , we can deduce that X
permutes with Bp0 · · ·Bpi and the claim follows.

Hence we have that X permutes with Bp′ and obviously it permutes with
Ap′ . Consequently, M = Ap′Bp′ < XAp′Bp′ ≤ G, which implies XAp′Bp′ =
G. Then N = X is a cyclic normal subgroup of G. Since G/N is supersoluble
it follows that G is supersoluble, the final contradiction.

Lemma 2. Let the group G = AB be the product of the subgroups A and
B. Then:

1. If the subgroup X �A is c-permutable in G with the subgroup Y ≤ B,
there exists b ∈ B such that X permutes with Y b. In particular, if
X �A is c-permutable in G with B, then X permutes with B.

2. If the group G = AB is the totally c-permutable product of the sub-
groups A and B, then G = AB is an NS-permutable product of the
subgroups A and B.

Proof. 1. Let X be a normal subgroup of A which is c-permutable in G
with a subgroup Y of B. Then there exists g = ba ∈ G = BA with b ∈ B
and a ∈ A such that X permutes with Y g = Y ba. It follows that Xa−1

= X
permutes with (Y g)a

−1
= Y b. The rest of Part 1 is clear.

2. Let X be a normal subgroup of A and Y a Sylow p-subgroup of B for
any p ∈ σ(B). By hypothesis X is c-permutable with Y in G, which implies
by Part 1 that there exists b ∈ B such that X permutes with Y b ∈ Sylp(B).
Changing the roles of A and B it is easily deduced that A and B are NS-
permutable.

From Theorem 1 and Lemma 2 the following result follows.
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Corollary 1. Let the group G = AB be the totally c-permutable product of
the subgroups A and B. If A and B are supersoluble, then G is supersoluble.

As mentioned in the Introduction from Corollary 1 the following result
due to Guo, Shum and Skiba is deduced:

Corollary 2. ([16, Theorem A]) Let the group G = AB be the product
of supersoluble subgroups A and B. If every subgroup of A is completely
c-permutable in G with every subgroup of B, then G is supersoluble.

Also from Theorem 1 the following recent improvement of the previous
corollary by Liu, Guo and Shum, as well as the next related result due to
Liu, Li and Yi, are recovered.

Corollary 3. ([22, Theorem 3.2]) A group G is supersoluble if and only if
G = AB is a product of supersoluble subgroups A and B such that every
subnormal subgroup of A is completely c-permutable with every subgroup of
B in G and every subnormal subgroup of B is completely c-permutable with
every subgroup of A in G.

Corollary 4. ([23, Theorem 3.4]) A group G is supersoluble if and only if
G = AB is the product of supersoluble subgroups A and B such that every
normal subgroup of A is permutable with every Sylow subgroup of B and
every normal subgroup of B is permutable with every Sylow subgroup of A.

3 U-residual of totally c-permutable products of
subgroups

In this section we study the behaviour of the supersoluble residual in totally
c-permutable products of subgroups. We gather first some previous results.

Lemma 3. Let the group 1 6= G = AB be the totally c-permutable product
of the subgroups A and B. Then:

1. If A and B possess Hall π-subgroups for a set of primes π, then G pos-
sesses a Hall π-subgroup; more precisely, there exist Hall π-subgroups
Aπ of A and Bπ of B such that AπBπ is a Hall π-subgroup of G.

2. If A and B have coprime orders, then G is σ(A)-separable. In partic-
ular either A or B contains a nontrivial normal subgroup of G.

3. If B is a group of prime order, then either A or B contains a nontrivial
normal subgroup of G.
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Proof. 1. Let Aπ and Bπ Hall π-subgroups of A and B, respectively. By
hypothesis there exists g ∈ G such that Aπ permutes with Bg

π. But g = ba
for some b ∈ B and a ∈ A. It follows easily that Aa

−1

π permutes with Bb
π,

which are also respective Hall π-subgroups of A and B. W.l.o.g. we assume
that Aπ permutes with Bπ. Now

|G|π =
|A|π|B|π
|A ∩B|π

≤ |Aπ||Bπ|
|Aπ ∩Bπ|

= |AπBπ| ≤ |G|π,

which implies that AπBπ is a Hall π-subgroup of G.
2. Set π = σ(A). Obviously A is a Hall π-subgroup of G and B is a Hall

π′-subgroup of G. Moreover by Sylow’s Theorems and the previous result
the group G possesses Hall π ∪ {q}-subgroups and Hall π′ ∪ {p}-subgroups
for all p ∈ π and all q ∈ π′. This implies by a Z. Du’s result [13, Theorem
1] that the group G is π-separable. In this case either 1 6= Oπ(G) ≤ A or
1 6= Oπ′(G) ≤ B and the result follows.

3. Assume that B is a group of order prime p. Using Part 2 we may
assume that p divides the order of A. We can also assume that B 6≤ A
and so A ∩ B = 1. By Lemma 2 there exists a Sylow p-subgroup Ap of A
which permutes with B. Then |BAp : Ap| = p and Ap is normal in BAp.
Consequently Ap ≤ CoreG(A), by Lemma 1, and A contains a nontrivial
normal subgroup of G.

Remark. From the well-known Hall’s Theorem, which characterizes soluble
groups by the existence of Hall π-subgroups for all sets π of primes (see [12,
I, 3.6]), and Lemma 3 it follows that the totally c-permutable product of
soluble subgroups is soluble. Though again this result can be deduced from
Lemma 2 and the following result for NS-permutable products of subgroups.

“If the group G = AB is the NS-permutable product of the soluble sub-
groups A and B, then G is soluble.”
Proof. Assume that the result is not true and let G = AB be a counterex-
ample of minimal order. In particular, A 6= 1 and B 6= 1. Let N be a
minimal normal subgroup of G. Then G/N = (AN/N)(BN/N) is the NS-
permutable product of the soluble subgroups AN/N and BN/N . The choice
of G implies that G/N is soluble. If M is a minimal normal subgroup of G,
N 6= M , then G ∼= G/(N ∩M) is soluble, a contradiction. Consequently N
is the unique minimal normal subgroup of G and G/N is soluble.

Since A and B are soluble there exist corresponding primes p and q
such that Oq(A) 6= 1 and Op(B) 6= 1. By hypothesis we have that AOp(B)
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and BOq(A) are subgroups of G. By Lemma 1 we deduce that Op(B) ≤
CoreG(AOp(B)) 6= 1 and also Oq(A) ≤ CoreG(BOq(A)) 6= 1; in particular,

N ≤ AOp(B) ∩BOq(A) = Op(B)Oq(A)(A ∩B) = 〈Op(B), Oq(A)〉(A ∩B).

By hypothesis we have thatOp(B) permutes with some Sylow q-subgroup
Aq of A. Then 〈Op(B), Oq(A)〉 ≤ Op(B)Aq which is a soluble group by
Burnside’s paqb-Theorem. Moreover A∩B is a soluble group which normal-
izes 〈Op(B), Oq(A)〉. This implies that 〈Op(B), Oq(A)〉(A ∩ B) is a soluble
group. In particular it follows that N is abelian and G is soluble, a contra-
diction.

Theorem 2. Let the group G = AB be the totally c-permutable product of
the subgroups A and B. Then GU = AUBU .

Proof. We notice first that AU and BU permute by Lemma 2 and so AUBU

is a subgroup of G.
Assume that the result is false and let G = AB be a counterexample

with |G| + |A| + |B| minimal. Since supersoluble groups are closed under
taking subgroups and from Corollary 1 we have that 1 6= AUBU ≤ GU . Also
we notice that A and B are proper subgroups of G. We split the proof into
the following steps:
Step 1. GU = AUBUN for all minimal normal subgroup N of G and
CoreG(AUBU ) = 1; in particular, Soc(G) ≤ GU .

Let N be a minimal normal subgroup of G. It is easy to prove that
G/N = (AN/N)(BN/N) is the totally c-permutable product of the sub-
groups AN/N and BN/N . By the choice of G we have that (G/N)U =
(AN/N)U (BN/N)U . This implies that GUN = AUBUN and, consequently,
GU = AUBU (GU∩N). Then we can deduce thatN ≤ GU andGU = AUBUN
and the desired conclusions follow.
Step 2. B is not a group of prime order.

Assume that B is a group of prime order. Then A is a maximal subgroup
of G and A∩B = 1. Assume that CoreG(A) 6= 1. Then from Step 1 we have
that GU ≤ A. Moreover from Lemmas 2 and 1, AUB is a subgroup of G
and GU ≤ AUB. Then GU = GU ∩AUB = AU (GU ∩B) ≤ AU (A∩B) = AU ,
a contradiction. Hence CoreG(A) = 1. From Lemma 3 we deduce now that
B is a normal subgroup of G, which has order prime. Consequently G is a
primitive group of type 1 with abelian minimal normal subgroup B. Then
G/B = G/CG(B) is cyclic and G is supersoluble, a contradiction.
Step 3. AUBU is a normal subgroup of GU .

We distinguish the following cases:
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B is supersoluble. In this case AUBU = AU .

Let B0 be a minimal normal subgroup of the supersoluble group B;
then B0 is a cyclic group of prime order. By Lemma 2 we have that
A permutes with B0 and, moreover, AB0 is the totally c-permutable
product of the subgroups A and B0, since B0 has order prime. The
choice of (G,A,B) and Step 2 imply that (AB0)U = AU � AB0. On
the other hand, since B0 / B, we deduce from Lemma 1 and Step 1
that AU ≤ GU ≤ AB0, and then AU �GU .

None A or B is supersoluble. In this case AU 6= 1 and BU 6= 1.

By Lemma 2 we have that A permutes with BU and B permutes with
AU . Again from Lemma 1 and Step 1, we deduce that both ABU and
BAU contain some corresponding minimal normal subgroup of G and
consequently

GU ≤ ABU ∩BAU = AUBU (A ∩B).

Since A∩B normalizes both AU and BU , it is clear now that AUBU �

GU .

Step 4. G is a soluble group.
Assume that the result is false. In particular, the soluble residual GS of

G is nontrivial and there exists a minimal normal subgroup of N of G such
that N ≤ GS ≤ GU . It follows from Step 1 that

GU = AUBUN = AUBUGS .

By Step 3 we have that

GU/AUBU ∼= GS/(AUBU ∩GS).

We claim that GU/AUBU is a soluble group. It will follow that N ≤
GS = (GS)S ≤ AUBU , a contradiction which will prove Step 4.

We prove next that GU/AUBU has Hall π-subgroups for any set of primes
π. By Hall’s Theorem [12, I, 3.6], GU/AUBU will be soluble and the claim
will be proved.

Let π be a set of primes. We consider subgroups AU ≤ X and BU ≤ Y
of A and B, respectively, such that X/AU and Y/BU are corresponding Hall
π-subgroups of A/AU and B/BU . By hypothesis there exists g ∈ G such
that X permutes with Y g. But g = ba with b ∈ B and a ∈ A. It follows
that Xa−1

permutes with Y b. We notice that AU ≤ Xa−1
and BU ≤ Y b and
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Xa−1
/AU and Y b/BU are Hall π-subgroups of A/AU and B/BU , respectively.

Hence w.l.o.g. we may assume that X permutes with Y . Next we argue that

XY ∩GU/AUBU

is a Hall π-subgroup of GU/AUBU and we will be done.
It is clear that |XY ∩GU : AUBU | divides

|XY : AUBU | = |X||Y |
|AU ||BU | |X∩Y ||AU∩BU |

which is a π-number; hence, XY ∩GU/AUBU is a π-group.
On the other hand,

|(GU/AUBU ) : (XY ∩GU/AUBU )| = |GU : XY ∩GU | = |GUXY : XY |

divides
|AB : XY | = |A||B|

|X||Y ||A∩BX∩Y |

which is a π′-number because

|A : X| = |(A/AU ) : (X/AU )| , |B : Y | = |(B/BU ) : (Y/BU )|

are π′-numbers.
This proves finally thatXY ∩GU/AUBU is a Hall π-subgroup ofGU/AUBU

and concludes the proof of Step 4.
Step 5. GU is an abelian p-group for some prime p.

Let N be a minimal normal subgroup of G. We have that AUBU �GU =
AUBUN and N is an abelian p-group for some prime p, from Steps 1, 3
and 4. Consequently GU/(AUBU ) ∼= N/(N ∩AUBU ) is an abelian p-group.
Therefore Op(GU )(GU )′ ≤ AUBU which implies Op(GU )(GU )′ = 1 since
CoreG(AUBU ) = 1 by Step 1, that is, GU is an abelian p-group.
Step 6. The final contradiction.

From Lemma 2 we have that AUB and ABU are subgroups of G. We
consider also A = AUUA and B = BUUB where UA and UB are U-projectors
of A and B, respectively. Then

AUB ∩GU = AUBUUB ∩GU = AUBU (UB ∩GU ) �AUB

and analogously

BUA ∩GU = BUAUUA ∩GU = BUAU (UA ∩GU ) �BUA.
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If UB ∩GU = 1 and also UA ∩GU = 1, it follows that AUBU �G and so
AUBU = 1 by Step 1, a contradiction.

W.l.o.g. we assume now that UB ∩GU 6= 1. Since UB ∩GU is a normal
subgroup of UB, we may consider a minimal normal subgroup N0 of UB
such that N0 ≤ UB ∩ GU . We notice that N0 is a cyclic group of order p,
the prime divisor of |GU |, because UB is supersoluble. Moreover by Step 5
we have also that GU is abelian, and consequently GU centralizes N0 and
N0 is a normal subgroup of B = BUUB. In particular we can deduce that
N0 ≤ Z(Bp) for every Sylow p-subgroup Bp of B.

On the other hand by Lemma 2 there exists a Hall p′-subgroup Ap′ of A
which permutes with N0. Hence

N0 = N0(GU ∩Ap′) = GU ∩N0Ap′ �N0Ap′ ,

that is, Ap′ normalizes N0.
Consequently,

〈NG
0 〉 = N0[N0, G] = N0[N0, Ap] ≤ GU

because G = BA = B(Ap′Ap) for any Sylow p-subgroup Ap of A, and
N0 ≤ GU . Also by Lemma 2 we notice that

N0A
a
p = N0A

xy
p = (N0Ap)y

is a subgroup of G, for some a = xy ∈ A with x ∈ Ap and y ∈ Ap′ , that is,
N0 permutes with any Sylow p-subgroup Ap of A.

Taking into account the previous facts we prove next that [N0, Ap] is a
normal subgroup of G.

We know by [1, Lemma 1.3.2] that there exist Sylow p-subgroups Ap and
Bp of A and B, respectively, such that Gp := ApBp is a Sylow p-subgroup
of G = AB. Consequently [N0, Gp] = [N0, Ap] is normalized by Gp.

We claim that [N0, Ap] is a normal subgroup of A.
We notice that either N0 ≤ Ap or N0 ∩ Ap = 1. In the second case

|N0Ap : Ap| = p, and then, in any case, [N0, Ap] ≤ Ap.
If N0 ∩Ap = 1, then N0 ∩A = 1 and consequently

〈NG
0 〉 ∩A = N0[N0, Ap] ∩A = [N0, Ap](N0 ∩A) = [N0, Ap] �A.

Assume now that N0 ≤ Ap. Then

〈NG
0 〉 = N0[N0, Ap] �A.

13



If N0 ≤ AU , then 〈NG
0 〉 ≤ CoreG(AU ) ≤ CoreG(AUBU ) = 1 by Step 1, a

contradiction.
Consequently,

1 6= 〈NG
0 〉AU/AU ∼=A 〈NG

0 〉/〈NG
0 〉 ∩AU ,

and we can consider an A-chief factor C/D such that

〈NG
0 〉 ∩AU ≤ D < C ≤ 〈NG

0 〉

and satisfying that N0 6≤ D but N0 ≤ C. We notice that in addition C/D is
a cyclic group of order p and, in particular, is centralized by Ap. Therefore,
this implies that C = DN0 = 〈NG

0 〉 = N0[N0, Ap] and D = [N0, Ap], which
is a normal subgroup of A, and the claim is proved.

Now it follows by Lemma 2 that there exists a Hall p′-subgroup Bp′ of
B such that [N0, Ap] permutes with Bp′ . Consequently,

[N0, Ap] = [N0, Ap](Bp′ ∩GU ) = [N0, Ap]Bp′ ∩GU � [N0, Ap]Bp′ ,

that is, Bp′ normalizes [N0, Ap], and we can deduce finally that [N0, Ap] is
normal in G.

Since [N0, Ap] ≤ Ap we notice that [N0, Ap] < 〈NG
0 〉 = N0[N0, Ap].

Hence 〈NG
0 〉/[N0, Ap] ∼= N0

∼= Cp is a U-central chief factor of G. By
[12, V, 3.2(e)] this chief factor is covered by any U-normalizer U of G. But,
since GU is abelian, U is a U-projector of G and GU ∩U = 1 by [12, V, 4.2;
IV, 5.18]. Therefore

〈NG
0 〉 ≤ [N0, Ap]U ∩GU = [N0, Ap](GU ∩ U) = [N0, Ap] < 〈NG

0 〉,

the final contradiction.

As an application of Theorem 2 we deduce next a local version for p-
supersoluble groups of Corollary 1.

Corollary 5. Let p be a prime. If the group G = AB is a totally c-
permutable product of p-supersoluble subgroups A and B, then G is p-supersoluble.

Proof. We recall that for any group X, Op′,p(X) is the centralizer of all
chief factors of X whose orders are divisible by p (see for instance [12, A,
13.8(a)]). If, in addition, X is p-supersoluble, these chief factors are cyclic
of order p. Hence, in this case, X/Op′,p(X) is in particular abelian and
X/Op′(X) is supersoluble, which implies XU ≤ Op′(X).
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Since A and B are p-supersoluble, it follows that AU ≤ Op′(A), BU ≤
Op′(B) and then GU = AUBU is a p′-group by Theorem 2. It follows that
G is p-supersoluble.

A corresponding result for complete c-permutability was considered in
[16] by Guo, Shum and Skiba, as an extension of a result by A. Carocca in [9]
for totally permutable products of groups. It follows now from Corollary 5.

Corollary 6. ([16, Theorem 4.1]) Let p be a prime. Let the group G = AB
be the product of p-supersoluble subgroups A and B. If every subgroup of A is
completely c-permutable with every subgroup of B, then G is p-supersoluble.

The next example shows the failure of Theorem 2 for NS-permutable
products of subgroups.

Example 1. We construct a group G = AB which is the NS-permutable
product of subgroups A and B such that GU = 〈AU , BU 〉 6= AUBU ; in
particular, AU and BU are not permutable.

We consider H = Alt(4) = V S the alternating group on {1, 2, 3, 4},
being V = 〈v1, v2〉 with v1 = (1 2)(3 4), v2 = (1 3)(2 4), and S = 〈x〉 with
x = (1 2 3). Let M be the natural permutation module for Alt(4) over F2

with permutation basis {x1, x2, x3, x4}. We set

y1 = x1x2, y2 = x1x3, z = x1x2x3x4 ∈M,

Y = 〈y1, y2〉, Z = 〈z〉 and W = 〈y1, y2, z〉 = Y ×Z which is an H-submodule
of M . Let G = [W ]H be the corresponding semidirect product.

More precisely H acts on W as follows:

yx1 = y1y2, y
x
2 = y1, z

x = z;

yv11 = y1, y
v1
2 = y2z, z

v1 = z;

yv21 = y1z, y
v2
2 = y2, z

v2 = z.

In particular:

• Z = Z(G),

• Y is a non-trivial irreducible S-submodule of W (hence, Y S ∼= V S =
H),

• 〈Y, V 〉 = Y ZV = WV 6= Y V .
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We let A = WS = ZY S and B = ZV S = ZH. Then G = AB, AU = Y ,
BU = V and GU = WV = 〈AU , BU 〉 6= AUBU .

(We notice that A ∼= B being Y and V in correspondence.)
We prove finally that A and B are NS-permutable.
Let 1 6= N � A. If 3 /∈ σ(N), then N = Y , N = Z or N = W . If

3 ∈ σ(N), then either N = Y S or N = ZY S = A. In all cases N permutes
with ZV ∈ Syl2(B) and with S ∈ Syl3(B).

With the same arguments we deduce also that any normal subgroup of
B permutes with a Sylow p-subgroup of A for any p = 2, 3.

4 Final examples and remarks

The first two examples next show the relation between permutability and
complete c-permutability and how significant structural properties of totally
permutable products of subgroups are missed when replacing permutability
by (complete) c-permutability.

Example 2. Assume that X and Y are subgroups of a group G.
If X and Y are permutable, then X and Y are obviously completely

c-permutable in G, though the converse is not true.
To see this it is enough to consider the symmetric group G = Sym(3) of

degree 3. In fact a Sylow 2-subgroup X of G is completely c-permutable in
G with all subgroups of G though it is not permutable with all subgroups
of G.

In particular, for the trivial factorization G = AB being A = G and
B = X, we can see that every subgroup of A is completely c-permutable in
G with every subgroup of B, but X = X∩G 6≤ F (G), the Fitting subgroup of
G, differently to the behaviour of totally permutable products of subgroups.

(We recall that if a group G = HK is the totally permutable product of
subgroups H and K, then H ∩K ≤ F (G); [24, Lemma 2].)

Example 3. We consider V = 〈a, b〉 ∼= Z5 × Z5 and Z6
∼= C = 〈α, β〉 ≤

Aut(V ) given by

aα = a−1, bα = b−1; aβ = b, bβ = a−1b−1.

Let G = [V ]C the corresponding semidirect product of V with C. Set
A = 〈α〉 and B = V 〈β〉. Then G = AB and every subgroup of A is
completely c-permutable in G with every subgroup of B but A and B are
not totally permutable. In fact we notice that BN = BU = V does not
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centralize A, in contrast to properties of totally permutable products of
subgroups.

We denote by ZU (G) the U-hypercentre of the group G, i.e., the largest
normal subgroup of G such that every chief factor H/K of G with K < H ≤
ZU (G) is cyclic of prime order. We remark that in this example ZU (G) = 1
and obviously G modulo ZU (G) is not a direct product of the images of A
and B.

(It is know that if G = HK is the totally permutable product of sub-
groups H and K, then XN centralizes Y for {H,K} = {X,Y } ([8, Theorem
1]); also G modulo ZU (G) is a direct product of the images of A and B (see
[14, p. 859, Remarks (3)]).)

As mentioned in the introduction we see next that c-permutability fails
to satisfy the property of persistence in intermediate subgroups; i.e., if X
and Y are c-permutable subgroups in a group G, then X and Y are not
necessarily c-permutable in any subgroup M of G such that X,Y ≤M ≤ G.
This makes a relevant difference between c-permutability and complete c-
permutability.

Example 4. Let G = Sym(4) be the symmetric group of degree 4, Y
a subgroup of G of order 2 generated by a transposition, V the normal
subgroup of G of order 4 and X a subgroup of V of order 2, X 6= Z(V Y ).
Then we observe that X and Y are c-permutable in G but they are not
c-permutable in 〈Y,X〉.

Final Remark. Inspired by the previous research on totally permutable
products of subgroups it is natural to wonder whether this study on condi-
tional permutability and supersolubility can be extended in the framework
of formation theory. In this sense it is to be mentioned that totally c-
permutable products of subgroups is a too weak structure to obtain positive
results for general saturated formations, containing U , even in the universe
of soluble groups. We mention here the following example. We consider as
in Example 4, G = Sym(4), A = Alt(4) the alternating subgroup of G and
Y a subgroup of G of order 2 generated by a transposition. Then one can
check that G = AY is the totally c-permutable product of A and Y ; but for
N 2 the saturated formation of metanilpotent groups, we have that U ⊆ N 2,
A, Y ∈ N 2 but G 6∈ N 2.

In contrast, for saturated formations of soluble groups containing all
supersoluble groups, previous developments on totally permutable products
of subgroups have been extended by weakening permutability to complete
c-permutability in [2].
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