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Abstract —In this paper, a new robust control strategy 
based on a predictor and the uncertainty and disturbance 
estimator (UDE) is developed for a class of uncertain non- 
linear systems with input/output delays. The closed-loop 
system is analyzed and sufficient stability conditions are 
derived based on Lyapunov analysis. The proposed strat- 
egy is applied to the particular case of quadrotor systems 
and validated through extensive simulations to evaluate 
performance and robustness. The controller is also imple- 
mented in a quadrotor prototype and validated in flight 
tests. 

Index Terms—Prediction, nonlinear systems, robust con- 
trol, time-delay, uncertainty and disturbance estimator 
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I. INTRODUCTION 

NMANNED Aerial Vehicles (UAVs) have gained an 

enormous interest for their civil potential applications. 

Among different UAVs, quadrotors are remarkably popular 

and have been used extensively in research over the past 

decade [1], [2]. A high-performance attitude control is a 

prerequisite for developing any other high-level control tasks 

[3]. The quadrotor dynamics involves challenges such as 

parametric uncertainties, non-linearity, coupling and external 

disturbances. Although many solutions have been proposed in 

the literature, very few of them have been validated in real 

flight tests and the most popular techniques are still based on 

classical control strategies [4]–[7]. This is mainly due to the 

constraints imposed by the limited computational resources of 

the embedded systems, which are typically micro-controllers. 

Also, and perhaps more importantly, because of the unstable 

nature of  quadrotors, controllers must  run  typically  at   very 

high frequencies [8]. 
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Robust control for quadrotors is still an active field of re- 

search [9]–[11] because the aerodynamic effects are extremely 

hard to be accurately modeled [12] and, specially in outdoor 

applications, a UAV is constantly perturbed by wind gusts 

[13]. Disturbance observers have drawn the attention of many 

researchers [10], [14], [15] as a tool for facing these problems. 

Several approaches exist in the literature related to control 

based on the estimation of uncertainties and external distur- 

bances, for example, adaptive robust control [16], uncertainty 

and disturbance estimator (UDE) [17], [18], extended state 

observer based control [19] , disturbance observer based con- 

trol (DOBC) [20], active disturbance rejection control (ADRC) 

[21], etc. The UDE strategy has demonstrated remarkable 

performance  in  handling  uncertainties  and  disturbances   in 

practical applications [22]–[25]. 

Among the different problems that must be overcome in real 

implementations, time delays [26] deserve a special attention. 

In a micro-aerial vehicle, the angular position and velocity are 

typically estimated by means of filters resulting in delayed 

measurements [27]. Most control strategies can fail even for 

very small delays, which unavoidably appear in practical im- 

plementations due to the computational time, communications 

or actuator delays, mainly if fast disturbances are expected.    

In order to extend the applicability of these strategies to time 

delay systems, some modifications are  needed. 

The main contribution of this paper is to propose a new 

control strategy for a class of nonlinear time-delay systems, 

with a particular application to real-time quadrotor attitude 

control. The proposed control law combines a modified UDE 

with a state predictor that can be applied to control systems 

with measurement or actuation delays. The proposed method 

not only remains stable under the presence of large time 

delays, but it also results in a much better performance when 

small delays are present, as it is the case of any digital control 

system [28]. Sufficient conditions for the closed-loop stability 

are derived. The control law is validated through simulations 

and in real-time experiments with  quadrotors. 

The rest of the paper is structured as follows. The problem 

is formulated in Section II, where some preliminaries on the 

state prediction are also introduced. The  proposed  control 

law is developed in Section III and then the closed-loop 

stability is analyzed.  In  Section  IV,  the  strategy  is  applied 

to the particular case of quadrotor systems, where extensive 

simulations illustrate the performance and robustness of     the 
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controller. The algorithm is also validated in an   experimental 

laboratory  platform,  followed  by  flight  tests  in a quadrotor d 

prototype. Some conclusions are drafted in the   last section. u +  +  

 
Notation: Along this paper, an n-dimensional vector is ex- 

pressed as x = [x1 , . . . , xn]T ∈ Rn, and its 1-norm is simply 
denoted  by  "x"  =  

.n 
|xi |.  The  induced  1-norm  of  an (a) Original system (1) 

m × n matrix X ∈ Rm×n is analogously denoted by "X" = 
max 
.m    

|xij |. The L1 norm of a function φ(t) : [a, b] → Rn
 

j i=1 
b 

is  represented  by  "φ"1   =  
¸
a "φ(s)" ds  while  "φ"∞  = 

sups∈[a,b] "φ(s)". 
 

II. PROBLEM FORMULATION AND  PRELIMINARIES 

Consider the following class of nonlinear  systems 

ẋ (t) = Ax(t) + B[u(t − h1) + d(t)] + f(x(t)) 

y(t) = x(t − h2) 

 
 
 

(1) 

 

(b) Equivalent system (3) 

 
Fig. 1.  System representations 

where x ∈ Rn and u ∈ Rm are the state and control variables 

respectively, f : Rn → Rn is  an  unknown  possibly  non- 

linear function, and d : R≥0 → Rm is the vector of external 
disturbances. It is assumed that there is a constant input  delay 

h1, and also that the state of the plant is fully accessible with a 

measurement delay h2. The total delay in the loop is denoted 

by h = h1 + h2. A representation of such system is depicted 
in Fig. 1(a). The following assumptions are taken: 

Assumption 1.  The pair (A, B) is  controllable 

Assumption 2.  The time delay h ≥ 0 is constant and known 

The underlying idea behind the original UDE [17] is that  

the unknown lumped  signal  w(x(t), t)  along  the  solutions  

of (3), denoted hereafter simply by w(t), can be accurately 

estimated and counteracted. However, as aforementioned, in 

the presence of input/output delays this strategy has limitations 

and needs to be improved. The extension of this methodology 

to time delay systems is presented in the next section. To this 

end, a conventional state prediction (see for example [30]) is 

computed by using the nominal model  as 
h 

x̂(t + h1) = e x(t − h2) + 

¸ 

e Bu(t − ξ) dξ. (4) 
Aξ 

0 

Assumption  3.  The uncertainty f(x) belongs to  the  column 

space of B, i.e., there exists a vector df (x) ∈ Rm  such that 

f(x) = Bdf (x) 

Assumption 4. There is a region D = {x ∈ Rn : "x" ≤ rx} 
where: i.) df (x) is locally bounded, ii.) df (0) = 0 and iii.) 

its derivative is locally bounded by "∇df (x)" ≤ cx 

Assumption   5.   The   initial   condition   for   (1)   given by 

x(s) = ϕ(s), ∀s ∈ [−h, 0] with ϕ : [−h, 0] → Rn, is entirely 

However, the model used to predict the state may be inaccurate 

because of model uncertainties or external disturbances, as 

stated in the following  proposition. 

Proposition 1. The error between the nominal prediction and 

the actual projection of the state is given   by 
h 

x(t + h1) − x̂(t + h1) = 

¸ 

e Bw(t − ξ + h1) dξ (5) 
Aξ 

0 

contained in D, that is, "ϕ"∞ < δ for some δ < rx 

Assumption   6.   The   unforced   system   (1)   starting from 

Proof.  Using the actual model (3), the actual projected    state 

is given by 

x(s) = ϕ(s), ∀s ∈ [−h, 0] satisfies1 "x(ξ)" < ∞, ∀ξ ∈ [0, h] x(t + h ) = eAhx(t − h ) + 

¸

 
h 

e Bu(t − ξ) dξ 
1 2 

Assumption   7.   The   input   disturbance  d(t) is  uniformly 0
 (6) 

bounded and its derivative is bounded by ||ḋ (t)|| ≤ cd, ∀t ≥ 0 

Let us define the lumped term w(x(t), t) ∈ Rm, to contain all 
the model uncertainties and external disturbances as follows 

w(x(t), t) ¾ df (x(t)) + d(t). (2) 

Using (2) and the Assumption 3, the model (1) can be 

represented as shown in Fig. 1(b), that   is 

ẋ (t) = Ax(t) + B[u(t − h1) + w(x(t), t)] 
(3) 

+ 

¸ 

eAξ Bw(t − ξ + h ) dξ. 
0 

The proposition follows subtracting (6) and  (4). 

 
III. PROPOSED CONTROL STRATEGY 

A. Control law development 

The  goal  is  to  regulate  the  state  x(t)  of  the closed-loop 

system so that it asymptotically tracks the state of the reference 

model with the desired dynamics given  by 
y(t) = x(t − h2). 

 
1 For nonlinear systems that exhibit finite escape time, there is a limit 

above which the system cannot be controlled [29]. The Assumption 6 
prevents the unforced system from exhibiting finite escape time smaller 
than h. 

ẋ m(t) = Amxm(t) + Bmr(t − h1), (7) 

where Am ∈ Rn×n, is Hurtwitz, Bm ∈ Rn×m, xm ∈ Rn and 

r(t) ∈ Rm. 
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by using a strictly-proper low-pass filter2  ttf (s) = 1/(Tfs+1) 
[17]. Then, the estimated uncertainty can be defined   as 

∆̂ (t − h2) ¾ L−1{Gf (s)} ∗ ∆(t − h2), (14) 
y 

where Gf (s) = ttf (s)Im. And thus, selecting 
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Fig. 2.  Proposed control strategy 

 

 
Assumption 8. The input reference command r(t) is bounded 

by "r(t)" ≤ ρ, ∀t ≥ 0 

Now, the following feedback law is proposed (see Fig.   2) 

u(t) ¾ −Fx̂(t + h1) + Mr(t) + uw (t), (8) 

where the matrices are chosen such that 

A − BF = Am, BM = Bm, (9) 

and the term uw (t), defined further below, will be used to 

compensate the uncertainties. Introducing (8) into the   system 

(3) and using (9)  yields 

ẋ (t) = Amx(t) + Bmr(t − h1) + B[uw (t − h1) + ∆(t)] 

 

uw (t) ¾ −∆̂ (t − h2) (15) 

and plugging it into (10) results in the closed-loop system 

ẋ (t) = Amx(t) + Bmr(t − h1 ) + Be(t) (16) 

where e(t) is the cancellation error defined as 

e(t) ¾ ∆(t) − ∆̂ (t − h) (17) 

Remark 1. In the nominal disturbance-free  case  e(t)  ≡ 0 
and thus the closed-loop system (16) has the desired dynamics 
specified by the reference model  (7). 

In order to analyze the stability in the presence of uncer- 

tainties, the dynamics of the error (17) has to be derived. 

According to (14), the estimator dynamics can be expressed   

as 

∆̂
˙ 

(t − h) = − 
1 

∆̂ (t − h) +  
1 

∆(t − h) (18) 
Tf Tf 

Differentiating (17), using (18), and adding and subtracting 

Tf  
∆(t), the dynamics of the cancellation error can be written 

as 
1 

y(t) = x(t − h2), 

where the term 

 
(10) 

 

 

where 

ė (t) = − 
Tf 

 
1 

e(t) + g(t) (19) 

∆(t) ¾ w(t) + F 

¸

 
h 

eAξ Bw(t − ξ) dξ (11) 

g(t) ¾ ∆̇ (t) + [∆(t) − ∆(t − h)]. (20) 
f 

0 

has been introduced to gather  the  original  uncertainties  of 

the system along with the error introduced by the predictor, 

both of them unknown. Once the effect of the delay has been 

counteracted, an observer based on the UDE is adopted in   an 
outer loop to handle the overall uncertainties and disturbances. 

The  initial  condition  for  (19)  is  e(s) = ∆(s), ∀s ∈ [−h, 0] 
by (17),  assuming that the observer starts from zero,    that  is 

∆̂ (s) = 0, ∀s ∈ [−h, 0]. 
The closed-loop system is thus composed of (16) and   (19), 

which can be expressed altogether  as 

This approach might resemble the one-loop-at-a-time design 

procedure  widely  used  in  aircraft  control,  where  an   inner 
η̇ (t) = Aηη(t) + . 0  

. 

+

 
g(t) 

.
Bm

. 
0 r(t − h1), (21) 

loop referred to as stability augmentation system (SAS) is  

used to increase stability, and outer loops are used to provide 

additional features for maneuvering  [31]. 

where η(t) = [x(t), e(t)]T is an augmented state and the 

matrix Aη  is given by 

The new control input uw(t) should be chosen to cancel out 

the term ∆(t) which, despite being unknown, can be expressed 

using (10) as 

Aη = 
.
Am B 

. 

0 − 1  Im   
.
 

f 

∆(t) = B+ [ẋ (t) − Amx(t) − Bmr(t − h1) − Buw(t − h1)] . 
(12) 

Equation (12) is not implementable because the state x(t) is 

not accessible at time t.    Instead of (12), consider the signal 

∆(t − h2 ) = B
+ 

[ẏ (t) − Amy(t) + Bmr(t − h) − Buw(t − h)] , 

(13) 

which is the result of delaying ∆(t) by h2 units of time. In this 

way, the measurement y(t) = x(t − h2) appears in the signal 
to be estimated. Another handicap is that the term ẏ (t) is not 

realizable, but it can be approximated in the frequency domain 

B. Closed-loop stability 

As Aη is  Hurtwitz, the main issue to  analyze the stability  

is the boundedness of the term g(t) that drives the error 

dynamics. This is addressed by the following   lemma. 

Lemma 1. Under Assumptions 4 and 7, the term g(t) defined 

in (20) satisfies "g(t)" ≤ γx "x(t)"+ γe "e(t)"+ γ0, ∀x ∈ D, 

with constants γx, γe, γ0 subsequently defined. 
 

2The Laplace transformation is introduced to facilitate the manipula- 
tion of expressions. 
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Proof.  Let  us  first  introduce  the   following   notation  

αm  ¾  "Am",   βm   ¾   "Bm"  and   β   ¾    "B".   According 
to the definition (20), g(t) can be bounded as 

 

Theorem 1. Under Assumptions 1-6, the system (1) having 

no external inputs, i.e, d(t) = r(t) ≡ 0, controlled by (8) 
is asymptotically stable for some δ > 0 and for any delay 
0 ≤ h ≤ h∗  if there exist a positive definite symmetric matrix 

"g(t)" ≤ 
 
∆̇ (t)

  
+  

1  
"∆(t) − ∆(t − h)" . (22) T 

Tf 
P  such  that  PAη  + Aη P = −Im+n  and  positive  constants 
qx, qe   >  1 such  that  2 "P2" (γx + γe) < 1 where  γx  = 

∗ ∗ 

The first term in (22) is obtained by differentiating (11)   as cxαm (1 + µqx) 
.

1 + h  qx 

.
, γe  = cxβ (1 + µqe) 

.
1 + h  qe 

.
 h  

A and µ = "F" 
.¸ h

 Tf 

eAξ 
Tf 

dξ
. 

β. 

∆̇ (t) = ∇df  · ẋ (t) + F 

¸ 

e B∇df  · ẋ (t − ξ) dξ 0    

 

 

+ ḋ (t) + F 

¸

 

0 

0 

eAξ Bḋ (t − ξ) dξ. 

(23) Proof. Let us  choose  the  Lyapunov candidate function 

V (η) = ηT P η whose derivative along the trajectories of (21), 

with r(t) ≡ 0, is given by 
By  Assumptions  4,7,  and  using  the  Young’s  inequality for 
convolutions, that is "ϕ ∗ φ"1  ≤ "ϕ"1 "φ"∞, (23) can be V̇ (η) = ηT (PAη + AT P)η + 2ηT

 P2 g(t) 
 

(29) 

bounded by 
 
∆̇ (t)

  
≤ cx "ẋ (t)" + µcx sup 

 
 
"ẋ (ξ)" 

≤ − "η"
2 

+ 2 "η" "P2" "g" . 

Setting d(t) = r(t) ≡ 0 in Lemma 1, that is cd = ρ = 0, the 

 
+ cd + µcd, 

ξ∈[t−h,t] (24) term γ0 vanishes and, provided that γx, γe > 0, then "g(t)" ≤ 

γx "x(t)" + γe "e(t)" ≤ (γx + γe) "η(t)". It follows then that 

for any "η" < rx (which implies x ∈ D), (29) is bounded by 
where  µ  ¾  "F" 

.¸ h  
eAξ 

  
dξ
. 

β.  From  (16),  one  has  that V̇ (η) ≤ − "η"
2 

+ 2 "P " (γ + γ ) "η"
2

 
0
 

2 x e (30) 
"ẋ (t)"  ≤  αm "x(t)" + β "e(t)" + βmρ.  Assume  now  that 

there exist qe, qx > 1 such that "x(t + ξ)" ≤ qx "x(t)" and 

"e(t + ξ)" ≤ qe "e(t)" ∀ξ ∈ [−h, 0], [32]. Note that this 
assumption does not imply a priori the stability of the system. 

Then supξ∈[t−h,t] "ẋ (ξ)" ≤ αmqx "x(t)"+βqe "e(t)"+βmρ. 
And thus (24) is finally bounded by 
 
∆̇ (t)

  
≤ cxαm (1 + µqx) "x(t)" + cxβ (1 + µqe) "e(t)" 

≤ 0, if 2 "P2 " (γx + γe) < 1, 

and  thus  the  system  is  asymptotically  stable  for  h∗  if  

2 "P2" (γx + γe) < 1 hold. Note that V (t) is always decreas- 

ing because its derivative is negative in "η" < rx by (30), and 
hence "η(t)" is always decreasing because V (η) = "P " "η"

2
. 

That implies that limt→∞ "η(t)" = 0 if "η(0)" < rx,  which 
can always be achieved by choosing a small enough δ in As- 

+ (1 + µ)(cd + cxβmρ).  
(25) 

sumption 5. Furthermore, the terms γx, γe grow monotonically 

with the delay an hence any 0 ≤ h ≤ h∗  will also satisfy  the 

The second term in (22) can be bounded using the Leibniz- 

Newton formula and the Young’s inequality as   follows 

1 1  
¸ t      

˙
 

condition, which completes the  proof. 

Corollary 1. If there is no delay, that is h = 0, it is always 

possible to  find a  choice for  Am  ≺ 0, Tf  > 0 such  that  the 
"∆(t) − ∆(t − h)" ≤ 

 
∆(ξ)  dξ system is asymptotically stable. 

Tf Tf 

h 
t−h 

 
 
  

˙
 (26) 

 

Proof. Setting h = 0, the constants in Lemma 1 are simplified 

≤ 
T 

sup ∆(ξ)  . 
f ξ∈[t−h,t] 

 
 

to γx = cxαm and γe = cxβ, and thus the stability condition 

of Theorem 1 is simply given by      2 "P2" cx(β + αm) < 1. 
Proceeding similarly as above, from (25) it is easy to obtain 
that 

Note that P is the solution to PAη  + AT P = −Im+n.   The 
matrix  Aη   is  upper  triangular  and  its  eigenvalues  are   the 

sup 
 
∆̇ (ξ)

  
≤ cxαm (1 + µqx) qx "x(t)" collection  of  those  of  Am   and  −1/Tf Im.  Hence,  "P" can   

ξ∈[t−h,t] 
 

  
+ cxβ (1 + µqe) qe "e(t)" 

 

(27) 
be arbitrarily reduced by choosing Am, Tf  properly. 

Remark  2.  Note  that, for given a  controller tuning Am   and 

+ (1 + µ)(cd + cxβmρ). 

Gathering (22) and (25)-(27)  yields 

Tf, which satisfy the conditions of Theorem 1, the admissible 

delay is upper bounded by h∗ . If the delay was larger, one 

would try to reduce "P" as indicated by Corollary 1 to keep . 

"g(t)" ≤ cxαm (1 + µqx)  1 + 
hqx 

.
 

 

Tf 
"x(t)" 

the system stable, but doing so would have the opposite  effect 

on (γx +γe). Hence there is a maximum tolerable delay  above 
. 

+ cxβ (1 + µqe) 1 + 
hqe 

.
 

 

Tf 

. 

"e(t)" 

h 
. 

 
(28) 

which the system cannot be stabilized (this is well known    for 

uncertain time-delay LTI systems). 

Theorem  2.  The system  (1) controlled by (8), with  an     ex- 
+ (cd + cxβmρ) (1 + µ)  1 + 

f 

¾ γx "x(t)" + γe "e(t)" + γ0. 

ternal disturbance d(t) ƒ= 0 satisfying Assumption 7, and   
a reference command satisfying Assumption 8, will be stable 

for some  δ > 0 and  any  delay  0 ≤ h ≤ h∗  if  the 
conditions in 
Theorem  1  hold  and 

2"P2 "(γ0+ρβm)
 

x e < rx where γ0 = (cd + 
This allows stating the following  result: cxβmρ) (1 + µ) 

.
1 + h 

. 
and µ = "F" 

.¸
 h

∗      
Aξ 

.
 

Tf 0    
 e 

  dξ  β. 

h 

T 



 

 
P2 

 

 

Proof. Considering external inputs, the term γ0 in Lemma 1 
does not vanish.  Choosing  the  same  Lyapunov function  as 
in  the  proof  of  Theorem  1,  the  derivative  along  the   new 

trajectories of (21) is given  by 

 

A.  Modeling of quadrotor systems 

A fairly accurate3 model of a quadrotor is given by the 

following set of nonlinear equations  [4] 

φ̈(t) = 
Iy  − Iz 

θ̇(t)ψ̇ (t) −  
J 

Ωθ̇(t) + 
uφ(t − h) 

,  

V̇  (η) ≤ (2 "P2 " (γx + γe) − 1)) "η"
2

 Ix Ix Ix 

  
 

+ 2 "P2" (γ0 + ρβm) "η" (31) θ̈ (t) = 
Iz − Ix 

ψ̇ (t)φ  ̇(t) + 
J 

Ωφ  ̇(t) + 
uθ (t − h) 

,  

(32) 

≤ 0, if "η" > rη, 
Iy Iy Iy 

 

ψ̈(t) = 
Ix − Iy 

φ̇ (t)θ̇(t) + 
uψ(t − h) 

,  
with rη ¾  

2"
 "(γ0+ρβm) Iz Iz  

1−2"P2"(γx+γe) 
. Note that 1−2 "P2" (γx +γe) > 0 

if  the  conditions of  Theorem 1  are  met.  Then, according to 

(31), the region Ωη = {η ∈ Rn+m : "η" ≤ rη } is positively 
invariant, which means that any trajectory starting from outside 

 

z̈(t) = cos φ(t) cos θ(t) uz (t − h) 
− g, (33)

 
m 

will eventually reach Ωη and remain inside for all future time 

[33]. The parameter rη should be understood as how far from 
the origin the system is steered because of the inputs. Using 

Theorem 4.18 in [33], if rη < rx, there exists a class KL func- 

tion γ and a finite T ≥ 0 for the initial state "η(0)" ≤ rx, such 

that the solution satisfies "η(t)" ≤ γ("η(0)" , t), ∀ 0 ≤ t ≤ T 

and "η(t)" ≤ rη , ∀t ≥ T . 
 

 
C.  Digital implementation 

Recall that the proposed control law is given by (8). Regard- 

ing the computation of uw (t), using (15)-(17), the following 

expression for the UDE control action can be obtained (see 

Fig. 2) 

where φ, θ and ψ are the roll, pitch and yaw Euler angles, 

Ii, i =  {x, y, z} are the moments of inertia and ui, i    = 

{φ, θ, ψ} are the input torques, all of them defined along the 
axes  of  a  body-fixed reference frame,  z  is  the  height, m is 

the mass of the vehicle, g is  the gravity acceleration, uz  is  

the input total thrust, J  is the  inertia of the propellers and     

Ω is the sum of the angular velocities of the motors (taking  

the sign into account). An input delay h is also considered. 

This delay may be caused by the communications with the 

Electronic Speed Controller of the motors, their response time 

and also because of the digital implementation of the control 

law. 

The uncertainty in the rotational subsystem (32) satisfies 

Assumption 3 because it can be written in terms of (3) with 

(Iy − Iz )θ̇ψ  ̇− J Ωθ̇   
.
03 I3 

.  

B = 

.
03

.  

d

 (x) = (I − I )φ̇  ψ̇  + J Ωφ̇  

Uw (s) = [I−Gf (s)]−1 Gf (s)B+[(sI−Am)Y(s)+BmR(s)], A =  
03 03

 
J 

f  

 

z x  

(Ix − Iy )φ˙ θ˙ 

which can be easily discretized and implemented in a digital 

micro-controller. 

The other key variable to be computed is the predicted 

state  x̂(t + h1).  Its  analytic  expression  is  given  in  (4).  The 
implementation of the distributed integral requires some at- 

tention [34], [35]. In this paper, the predictor is implemented 

in discrete-time form as in  [28], 

being  x   = [φ, θ, ψ, φ̇ , θ ,̇ ψ̇ ]T   the  state  vector,  J  ¾ 
diag{I−1   −1 −1 T 

x  , Iy   , Iz   } and u = [uφ, uθ, uψ ]  . The matched 
uncertainty is locally bounded and vanishes at the origin. 

Furthermore, its gradient is given by ∇df (x) = [03 ∇12 ] with 
 

0 (Iy − Iz )ψ  ̇− J Ω (Iy − Iz )θ  ̇  

∇12  ¾ (Iz  − Ix)ψ̇ + J Ω 0 (Iz  − Ix)φ̇  
 

d−1  h−j−1 
(Ix − Iy )θ˙ (Ix − Iy )φ̇  0 

(34) 
xk+d1  = Akxk−d2  + 

. 
Ak Bkuk+j−h , 

j=0 

 

where (Ak, Bk) is a discretization of (A, B) and d1, d2, d3   ∈ 

which is also locally bounded, thus satisfying the Assump- 

tion 4. Similarly, the height subsystem (33) satisfies the 

Assumption 3 because it can be written in terms of (3) with 

N are defined as d1 = h1/Ts, d2 = h2/Ts, d = d1 + d2 , being .
0 1

. . 
0  

. 

Ts  the discretization time. 
To   summarize  the  tuning  procedure,  four  decisions   are 

A =  
0 0

 
B =   

1/m 
d(t) = mg 

considered:  the  sample  time  Ts,  the  filter  time  constant  Tf , 

the prediction horizon h, and the desired reference   model. 

 

 
IV. APPLICATION TO QUADROTOR  AIRCRAFT 

 

In this section, the performance and robustness of the pro- 

posed strategy are illustrated through several simulations using 

a quadrotor model. These results are validated experimentally, 

first, in a Quanser laboratory platform, and later, in flight tests 

with a quadrotor prototype. 

and u  =  uz cos θ cos φ. Note that the disturbance   d(t) 
is constant and satisfies  Assumption  7,  while  in  this  case 

df (x) ≡ 0 thus satisfying Assumption 4. Regarding the finite- 
escape condition, the  unforced system  (32) is reduced to   the 

Euler’s equations that describe the free rotation of a rigid body. 

As the consequence of conservation of the energy and angular 

momentum, the solution to this set of equations is bounded in 

time [36]. Also, setting uz = 0 in (33) yields a linear equation. 

 
3The rotational kinematic model used to derive (32) is linearized 

around the origin. Note that because of the singularity of the Euler 
representation, the linearization is only valid for |θ| < π/2. 
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Fig. 3. Simulations comparing the original UDE [17] and the proposed 
strategy for a delay h = 70 ms. 

Fig. 4. Performance comparison with a conventional PID controller [37] 
with a delay h = 100 ms (Tf  = 0.1 s) 

 

 
Therefore, there is not finite escape time and Assumption 6 

holds. 

Remark 3. From the arguments presented above, the proposed 

controller applied to quadrotor systems can only be proven to 

be locally stabilizing around the origin (in spite of uncertain- 

ties, external disturbances and input  delay) 

 

B. Simulations 

For the sake of clarity, the performance and robustness are 

first illustrated using a SISO model. At the end of this section 

the control strategy is validated using the full nonlinear MIMO 

quadrotor model. The performance and robustness of the pro- 

posed strategy are illustrated next using one of the axes.   Any 

of the equations in (32) can be seen as ÿ  = bu(t − h) + w(t) 
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or alternatively, in state-space form  as 

ẋ  = 

.
0 1

. 

x + 

.
0
. 

u(t − h) + 

.  
0
 
. 

, (35) 

Fig. 5. Robustness conventional PID controller [37] with a +50% delay 
error (filter tuned with Tf  = 0.1 s) 

0 0 b w(t) 
2
1 

c 2 ,  Ti  =  8.51h,  Td   = 2.87h, 

where w(t) represents the interaction with the missing states, 

uncertainties in the parameter b or external disturbances like 

wind gusts. 

The controller is implemented as suggested in Section III-C, 

with Ts = 10 ms and the reference model given by 

Td Tis  +Tis+1 
,  and  K   =   

bh 

α = 0.1, as suggested by [37]. These are, to the best of 

our knowledge, the simplest PID tuning rules for time delay 

systems in terms of performance. The comparison is shown in 

Fig. 4 for a delay h = 100 ms, where it can be seen that the 

proposed control law outperforms the PID controller. In order 

ẋ m  = 

. 
0 1  

.
 

−ω2 −2ωc 
xm + 

. 
0 
. 

2 
c 

yref (t), (36) 
to test the robustness against modeling errors in the delay, if an 

increment in the time delay of 50% is assumed, the proposal in 

[37] becomes unstable whereas the proposed strategy  remains 
where ωc is the desired closed-loop bandwidth. The parameters 

Tf  and h will be changed throughout this section. 

1) Stability: Fig. 3 shows a comparison of the original 

UDE-based control without considering the delays [17] and 

the  proposed  strategy.  The  filter  is  tuned  with  Tf   =  0.1  s 

and the delay is h = 70 ms. One can see how the proposed 

strategy can deal with that delay, ensures the matching of the 

reference model, and rejects input load  disturbances. 

2) Performance:  The proposed strategy is compared   with 

stable, as shown in Fig.  5. 

Another simulation shows the influence of the filter time 

constant Tf   in Fig. 6, where a wind disturbance is simulated 

between t = 2 s and t = 5 s. The wind disturbance is 

simulated by passing a white noise signal through a low-pass 

filter. It can be clearly seen  how the lower the Tf , the better 

the disturbance rejection performance. It is also important 

that  the  choice  of  Tf   does  not  affect  the  reference  tracking 
performance, which is always desirable for an easier   tuning. 

a  PID  controller  u(s)  =  Kc 

.
1 +  Tds

 
1 

Tis 

. 
e(s), with a 3) Robustness:  Robustness with respect to uncertainties  in 

prefilter such that e(s) = Fr (s)r(s) − y(s), with     Fr (s) = the delay h is investigated. Fig. 7 shows different simulations 
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Fig.  6.    Simulations  showing  the  influence  of  the  parameter  Tf   in 
external disturbance rejection performance 

Fig. 8. Simulations showing hover flight and tracking performance in 
the yaw axis under the presence of wind disturbances (nonlinear MIMO 
system time delay h = 150 ms and filter tuned with Tf  = 0.1 s) 

 
 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 
 
 
 

20 

 
15 

 
10 

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5 6 7 
t 

and selecting ωc = 5 rad/s. A delay of h = 150 ms is  

considered  and  a   filter  time  constant  Tf     =   0.1  s  is 

chosen. The simulation in Fig. 8 reproduces a real situation 

where the vehicle is perturbed by  wind  gusts  and  the  goal  

is to keep it at hovering (zero reference in roll and  pitch) 

while tracking a square reference signal  in  the  yaw  axis.  

The proposed controller is  compared with  that in  [38],   with 

ux(t) = −σx1 (kpx) − σi2 (kdẋ ) for  each  axis  x = {φ, θ, ψ} 
and the saturation function is defined  as   

−bi, s < bi 
 

5 
σbi (s) = 

0 

s, −bi  ≤ s ≤ bi    . 
  

bi, s > bi 

−5 The controller is tuned with  kp  =  ω2
 and  kd  = 2ωc,  for 

−10 
0 1 2 3 4 5 6 7 

t 
 

 

Fig. 7. Simulations showing robustness with respect to the uncertainty 
in the delay around a nominal value of h = 200 ms (filter tuned with Tf  

= 0.1 s) 

 

with a percentage of uncertainty in the delay h around a 

nominal value of h = 200 ms. 

4) Nonlinear multivariable model: Once the properties of 

the proposed strategy have been illustrated, the full control    

of a nonlinear quadrotor model in (32) is presented next. 

Comparing to  the model in  (7), it  can be seen  that for     this 
particular case x = [φ, θ, ψ, φ˙ , θ˙, ψ˙ ]T , 

A = 

.
03 I3 

. 

, B = 

.
03

. 

, (37) 

the sake of comparison, and the saturation bounds are chosen 

as  bφ1   = bθ1   =  4,  bφ2   = bθ2   = 5 and bψ1   =  50, bψ2     = 
60. The  bounds on the  yaw  axis  have to  be  larger to  allow 

good tracking performance. The benefit of this controller is 

that it allows to bound some of the states, thus limiting the size 

of the nonlinearities which depend on those states. However,  

in practice, small saturations make the system convergence 

very slow, leading to poor performance, as shown in Fig. 8, 

while the proposed controller is able to achieve satisfactory 

tracking and disturbance rejection in spite of the delay and 

nonlinearities. 

 
C. Experimental validation in a Quanser platform 

The 3D hover system shown in Fig. 9, which is a quadrotor 

with  reduced degrees of  freedom, is  investigated. It  consists 
 

and 

03 03 I3 
of  a  quadrotor mounted on  a  3  DOF  pivot joint  so  that the 

body  can  freely  rotate  in  roll,  pitch  and  yaw.  An  Inertial 
T 

f(x, t) = 
.
0,   0,  0, θ̇ψ̇  − θ̇ , ψ̇ φ̇ + φ̇ , φ̇ θ̇

.
 . (38) Measurement Unit,  the  MPU6050 from  InvenSense, is  used 

to provide angular position and velocity measurements,  using 
For  simplicity, every axis is  designed with  the  same closed- 

loop dynamics, by specifying the following reference  model 
a Kalman filter algorithm which is run in an Arduino UNO 

micro-controller at  300 Hz.  There  is  a  delay  in  the system 

A = 

. 
03 I3 

−ω2I3 −2ωcI3 

. . 
03

 

, B = 
ω2I3

 

. 

, (39) 
which has mainly two sources: i) a measurement delay of 

about 20 ms due to the Kalman filter implementation, and   ii) 
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Fig. 9.  Quanser experimental platform 
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Fig. 11. Experimental results in a Quanser platform. Stability compar- 
ison of the original UDE  [17] and the proposed strategy  for a delay     
h = 120 ms. 
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Therefore, one has that cx = Irx, ∀x ∈ D. In order to illustrate 
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Theorem 2, let us choose a region with rx = 3 (which fulfills4 

Theorem 1 because 2 "P2 " (γx + γe) ≈ 0.82 < 1) in which 

the maximum norm of the gradient is cx = Irx ≈ 0.16. As 
pointed out in Theorem 2, it is possible to find the maximum 

input command that ensures stability by solving rη = rx. 

Using equation (31), assuming cd = 0 and solving for ρ yields 
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Fig. 10. Experimental results in a Quanser platform. Tracking and 
disturbance rejection performance of the proposed strategy for a delay 
h = 120 ms. 

 

 

the response time of the motors of about 100 ms. The total 

delay of the system is thus estimated as h = 120 ms. 

For the controller synthesis, a single axis is modeled by a 

double integrator as in (35), with b = 0.13. The controller is 

implemented in one of the axes as suggested in Section III-C 

with Ts  = 3.3 ms, Tf  = 0.2 s, and the reference model (36), 

with desired closed-loop bandwidth ωc = 2.5 rad/s. 

The condition derived in Theorem 2 will be illustrated next 

for the Quanser platform. Consider the rotational dynamics of 

the quadrotor (32). The gradient of  the  matched  uncertainty 

is given by (34), which satisfies Assumption 4 only locally. 

Because  of  the  symmetry  of  the  quadrotors,  Ix  = Iy , then 

I  ¾  |Iz  − Ix| =  |Iy  − Iz |.  Also,  in  the  Quanser  platform, 
the  motors  are  bidirectional,  and  they  are  driven  such that 

Ω2 = −Ω1 and Ω3 = −Ω4. Hence the gyroscopic torque 

vanishes  because  ideally  Ω  ¾   
.4     

Ωi   =  0.  Hence,  from 

The next experiment complies with these bounds because the 
commanded angle is less than 14.7 deg and the system satisfies 

"x(0)" + "e(0)" < 3 as  it  starts  from the  origin.  Note that 
e(0) = 0 because the observer starts also from zero. 

The results of the first experiment are shown in Fig. 10. 

A step input reference of 10◦ is applied at t = 0 followed  

by a step input disturbance simulated by software at t =   6 
s. It is possible to see how the response of the  system  

matches that of the reference model. The disturbance is also 

rapidly rejected, achieving zero steady-state tracking error. It  

is also interesting to look how the estimation of the   unknown 

dynamics converges to some value, which is what keeps the 

system precisely at 10◦. If the system was an ideal double 
integrator, this value would be  zero. But  this  is  not the  case 

and the observer is able to estimate that uncertainty. Note also 

how the input disturbance is also estimated after it is applied 

at t = 6 s. 

As it has been discussed above, the original UDE reduces 

the delay margin of the system drastically. In order to illustrate 

this fact, the same experiment as before is carried out using the 

(34), the gradient of the unknown dynamics is bounded   by 

"∇df (x)" ≤ max 
,
I 
 

ψ̇ 
  

, I 
.

||θ̇|| + 
 

φ̇
 ., 

≤ I "x" ¾ cx. 

original UDE-based control [17], and keeping the same tuning 

parameters. Both responses are shown in Fig. 11, where it can 

be seen that the original UDE is clearly   unstable. 
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Fig. 12. Quadrotor prototype used in experiments 
 
 

TABLE I 
CONTROLLER PARAMETERS IN FLIGHT TESTS 
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Fig. 13.  Tracking performance in a real flight. 
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D. Experimental validation in flight tests 

There are some handicaps to overcome  in  real  flights,  

e.g., large model uncertainties, measurement noise, flapping 

and ground effects, wind gusts, etc. The quadrotor prototype 

used for the experiments has a distance of 41 cm between 

rotors, weighting about 1.3 kg without battery. The basic 

hardware consists of a MikroKopter frame, YGE 25i electronic 

0.2 
 

 
0.1 

 

 
0 

 

 
−0.1 

 

 
−0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
0 5 10 15 20 25 30 35 40 45 

time (s) 

speed controllers, RobbeRoxxy 2827-35 brushless motors and 

10x4.5 plastic propellers. All the computations are carried out 

on-board at 400 Hz using an Igep v2 board running Xenomai 

real-time operating system. In this system, the delays in the 

control loop come from: i) the Kalman filter algorithm which 

introduces a small delay due in the measurements, and ii) the 

response time of the motors  drivers. 

For the controller synthesis, each axis is modeled by a 

double integrator as in (35). The controller is implemented 

with a sample time Ts = 2.5 ms and a reference model as in 

(36) is proposed. The controller tuning is shown in Table    I. 

The first experiment consists of applying yaw and height 

step references during stationary flight (roll and pitch refer- 

ences set to zero). The result of this experiment is shown in 

the Fig. 13. One can see how the roll and  pitch angles are  

kept very close to zero. Their root mean squared errors are 0.6 

deg and 0.7 deg for roll and pitch, respectively. The tracking 

performance of the yaw angle is very good. The performance 

in  the height control is  also  remarkable, because it  is   more 

 
4 A quadrature algorithm in Matlab has been used to compute the term 

, h    Aξ
  

0    e       dξ 

Fig. 14. Disturbance rejection in a real flight. A video of this experiment 
is available at https://youtu.be/AaCOYglzBao . 

 

 
challenging due to the large delay of the ultrasonic sensor and 

the huge mass of the  vehicle. 

In the second experiment, disturbances are applied to the 

quadrotor in stationary flight. These disturbances are generated 

by hitting the vehicle in the pitch axis. The result of this 

experiment is shown in the Fig.  14  where  it  can  be  seen 

that the vehicle recovers successfully. It is remarkable that the 

quadrotor is deviated more than 30 deg from its equilibrium 

point and yet it remains  stable. 

 
V. CONCLUSIONS 

In this paper, a control strategy based on a disturbance 

observer has been developed to deal with systems with input 

and output delays. A predictor is adopted to counteract the 

effect of the delay in the feedback loop, while a modified 

uncertainty and disturbance estimator (UDE) is used to com- 

pensate for model uncertainties and reject input disturbances. 

The proposed strategy not only is applicable to systems    with 
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b [deg/s2 ] ωc [rad/s] Tf  [s] h [ms] 

φ 1500 2.5 0.6 25 

θ 1500 2.5 0.6 25 

ψ 1000 4 1 25 

z 3000 2.5 0.6 250 
 



 

 
 

large delays, but it also results in outstanding performance 

when applied to systems with small delays, inherent to any 

digital implementation. These results have been demonstrated 

with extensive simulations and experiments. 
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