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Abstract: In this paper, the problem of controlling integrating and unstable systems with long 

time delay is analyzed. Based on a generalized predictor-based control structure, where the plant 

time delay can be taken out of the control loop for the nominal plant, an analytical design of the 

controllers is proposed in terms of the delay-free part of the nominal plant model. 

Correspondingly, further improve control performance is obtained compared with recently 

developed predictor-based control methods relying on numerical computation for controller 

parameterization. The load disturbance rejection controller is derived by proposing the desired 

closed-loop transfer function, and another one for set-point tracking is designed in terms of the H2 

optimal control performance specification. Both controllers can be tuned relatively independently 

in a monotonic manner, with a single adjustable parameter in each controller. The tuning 

procedure allows to realize the best trade-off between the control performance and robustness 

against process uncertainties. By establishing the sufficient and necessary condition for holding 

robust stability of the closed-loop control system, tuning constraints are derived together with 

numerical tuning guidelines for the disturbance rejection controller. Illustrative examples taken 

from the literature are used to demonstrate the effectiveness and merit of the proposed method. 

Keywords: Time delay system；discrete-time model；two-degree-of freedom (2DOF) control；

output prediction；robust stability 
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1 Introduction 

It has been widely recognized that integrating and unstable processes are difficult to control 

by using the conventional unity feedback control structure, especially under the presence of time 

delay. Time delay is usually associated with industrial process operations, due to mass 

transportation, energy exchange, and signal processing etc1,2. For example, the heating-up process 

of an industrial injection molding machine is a typical integrating process with time delay, since 

the temperature of the heating barrel will not be changed after the electric heater is turned on for a 

certain time due to the slow exchange of massive thermal energy, and then rise up continuously 

rather than reaching a steady value. In the recent years a lot of efforts have therefore been 

devoted to develop advanced control methods for these processes. Concerning the use of a 

proportional-integral (PI) or proportional-integral-derivative (PID) controller, improved tuning 

methods were proposed in the references3-8 to enhance disturbance rejection performance. Due to 

the fact that the standard internal model control (IMC) structure cannot hold internal stability for 

integrating and unstable processes9, a few IMC-based control schemes were developed in terms 

of a two-degree-of-freedom (2DOF) control strategy in the literature10-16, based on using different 

tracking error specifications and stability margins. In dealing with time delays, the Smith 

predictor (SP) has been effectively used to control stable processes with long time delay17, but it 

cannot be used for integrating and unstable processes due to the problem of internal instability18. 

A few modified SP control methods have been recently developed to improve control 

performance for integrating and unstable processes19-34. In the recent papers35,36, a generalized 

predictor (GP) structure was developed to control stable, integrating or unstable processes with 

long time delay. The proposed GP is equivalent to the SP but can be applied to integrating and/or 

unstable systems. Moreover, the delay is eliminated from the characteristic equation of the 

closed-loop system transfer function. However, no specific performance specifications, controller 

tuning methodology, or stability constraints were studied therein for engineering applications. 

In this paper, the GP-based structure given in the paper36 is studied for integrating and 

unstable systems with long time delay, reducing the control design problem to that for 

non-delayed plants in terms of the nominal case that the time delay can be taken out of the control 
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loop, but taking into account the uncertainties in the original delayed plant. Explicit controller 

design formulae are derived based on using a discrete-time plant model with time delay and the 

zero/pole distribution in the z-plane. As a result, both the set-point tracking response and the load 

disturbance rejection response can be regulated relatively independently through the 

corresponding controllers in the 2DOF control scheme. Both controllers have a single adjustable 

parameter, respectively, which can be tuned in a monotonic manner to meet a good trade-off 

between control performance and robustness against process uncertainties. This merit can provide 

more flexibility for on-line tuning in comparison with previously developed control methods (e.g. 

the references24,26,36) based on numerical computation for controller parameterization. Moreover, 

the sufficient and necessary condition for holding robust stability of the closed-loop system 

against the plant model uncertainties is established and correspondingly, tuning constraints on 

these adjustable parameters are derived together with numerical guidelines for practical 

applications.  

For clarity, the paper is organized as follows. Section 2 introduces the GP control structure 

together with process models adopted for control design. The proposed analytical controller 

design method is detailed in Section 3, addressing the load disturbance rejection and the set-point 

tracking, respectively. In Section 4, the sufficient and necessary condition for holding robust 

stability of the delayed closed-loop system is analyzed along with tuning constraints on the 

closed-loop controller for disturbance rejection. Four illustrative examples are shown in Section 5 

to demonstrate the effectiveness and advantage of the proposed method. Finally, some 

conclusions are drawn in Section 6. 

2  Review of a generalized predictor-based control structure   

The GP based control structure given in the paper36 is shown in Figure 1, where r  and y  

denote the set-point input and process output, respectively, and w  indicates an input load 

disturbance entering the process. The plant model is denoted by 

 0

( )
( ) ( )

( )
d dN z

G z G z z z
D z

    (1) 
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where 0 ( )G z  indicates the delay-free part and d  is the time delay (assuming to be a multiple 

of the sampling period).  

The filters 1( )F z  and 2 ( )F z  are used to yield the predicted undelayed output y , while 

another filter, k ( )F z , is included to eliminate steady output estimation error that may be 

provoked by external disturbance, model mismatch or process uncertainties. The controller 

denoted by f ( )K z  is set to track the set-point, and ( )K z  is the closed-loop controller for load 

disturbance rejection.  

The undelayed output ( )y z  is predicted by using the current information of ( )u z  and 

( )y z  in terms of the plant model, which can be derived as (see Figure 1) 

 1 2( ) ( ) ( ) ( )[ ( ) ( )]y z F z u z F z y z n z     (2) 

where ( )n z  denotes measurement noise, 1( )F z  and 2 ( )F z  are filters configured in terms of 

the numerator and denominator of the plant model and its state-space formulation36 as 

  1( ) ( , ) ( , )F z z z     (3) 

 
*

2

( , )
( )

( )m

N z
F z

z








 (4) 

where   

 
( )

( , ) :
( )m

N z
z

z



 


,  1   (5) 

 0 0

( )
( ) ( ) ( , ) ( , )

( )
d d dN z

G z G z z z G z z z
D z

        (6) 

 1
0

( ) ( , )
( , ) ( )( )

( ) ( )

mz N z
G z C zI A B

D z D z

   
   

  (7) 

 
*

* 1
0

( , )
( , ) : ( )( )

( )
d N z

G z C zI A A B
D z

    
  (8) 

 1

1

( , ) : ( )
d

i i

i

z C A Bz   



    (9) 

and m  is the number of zeros in ( )N z , ( , , )A B C  is a minimum order state-space realization 

of )(
~

0 zG , and ( )C   indicates an involvement with  . 
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Following the paper36, the prediction error filter, k ( )F z , is configured as 

 k

(1 )
( )

( )

m

m
F z

z








 (10) 

Note that   is an adjustable parameter in 1( )F z , 2 ( )F z , k ( )F z , It was shown that it can 

be tuned to balance the output prediction performance and its robustness against process 

uncertainties. Note that m  is the same as in (4). 

An important advantage of the GP based control structure shown in Figure 1 is to remove 

the ‘delay’ out of the closed-loop such that a delay-free control design can be developed for the 

‘undelayed plant’, as depicted in Figure 2. From this figure, the ideal transfer function relating r , 

w  and n  to y  can be derived as 

 0 0 0
f

0 0 0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )
dK z G z G z K z G z

y z K z r z w z n z z
K z G z K z G z K z G z

 
      

 (11) 

The main controllers, f ( )K z  and ( )K z , however, were not specifically designed in the 

references35,36, and no performance specifications or stability constraints were studied for 

engineering applications. To address these issues and obtain improved control performance, 

analytical designs for these two controllers will be proposed in the following sections. 

In this paper, integrating and unstable processes with time delay are studied by means of the 

following two transfer function models often used in engineering practice.  

 
p 0

1
p

( )
( )

( 1)( )
dk z z

G z z
z z z




 
 (12) 

 
p 0

2
u p

( )
( )

( )( )
dk z z

G z z
z z z z




 
 (13) 

where p 1z   and u 1z  .  

It is obvious that the discrete-time model in (12) describes an integrating process and the 

model in (13) represents an unstable process. 

3  Analytical controller design  

   For clarity, the controller designs for the load disturbance rejection and the set-point tracking 

are detailed in the following two subsections, respectively. 
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3.1  Closed-loop controller for disturbance rejection 

In the GP control structure shown in Figure 1, ( )K z  is the closed-loop controller for load 

disturbance rejection. The transfer functions between y , u  and w  can be derived, respectively, 

as 

 )(
)()(1

)()(
1

)(

)(
0

0

0 zG
zGzK

zGzK

zw

zy










  (14) 

 
)()(1

)()(
)(

)(

)(

0

0

zGzK

zGzK
zT

zw

zu
d 

  (15) 

It is seen that the transfer function from w  to u  is exactly equivalent to the closed-loop 

complementary sensitivity function for the ‘undelayed’ system shown in Figure 2. In the ideal 

case, the load disturbance should be rejected immediately after being detected by the ‘undelayed’ 

closed-loop structure, i.e. 1
dT z . However, practical constraints such as the closed-loop 

stability and actuator limits must be envisaged in engineering practice and should be taking into 

account in the controller design procedure. 

To eliminate the output error arising from load disturbance while maintaining the internal 

stability of the closed-loop system, the following asymptotic tracking constraints must be 

satisfied,  

 d1
lim(1 ) 0
z

T


   (16) 

 dlim(1 ) 0
iz p

T


  , 1, 2,..., .i l  (17) 

where ip  ( 1, 2,..., .i l ) are the process l transfer function poles on or outside the unit circle in 

the z-plane.  

Note that for an integral process, the constraint in (17) should be substituted by  

 d
1

lim (1 ) 0
z

d
T

dz
   (18)

 

Based on a classification of the zero distribution in z-plane for the process models shown in 

(12) and (13), two cases are considered for the controller design, 0 1z   and 0 1z  , as 

described below. 

a) Minimum-phase (MP) plants 
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When there is 0 1z   in the process model shown in (12) or (13),  

 
1

c
d 0 1 1

c

(1 )
( ) ( )

( )

l
l

l l
T z z z

z

  







  


  (19) 

is proposed as the desired closed-loop transfer function from w  to u , where i  ( 1, 2,..., .i l ) 

are to be determined by the asymptotic constraints in (16)-(18), and c  is a tuning parameter for 

the closed-loop control performance.  

Accordingly, the closed-loop controller can be inversely derived from (15) as 

 d

d 0

( ) 1
( )

1 ( ) ( )

T z
K z

T z G z
 


 (20)  

Note that ( )K z  may provoke inter-sample rippling in the output response or control signal 

if ( )K z  has any pole with negative real part in z-plane, which arises from the corresponding 

zero of 0 ( )G z  as shown in (20). This is typically involved with the design of a discrete-time 

IMC controller9. To cope with the problem, it is proposed to build up the controller by 

 q( ) ( ) ( )K z K z K z


 (21) 

where q ( )K z  cancels all the poles of ( )K z  with negative real part, i.e.  

 
q

q

q
1

( )
1

n
n j

j j

z z
K z z

z







  (22)  

where jz  ( q1,j n  ) are the zeros with negative real part in 0(z)G , and qn  is the number of 

these zeros. Note that it follows ( ) ( )K z K z


 when 1z  . 

a1) Integrating processes 

For an integrating process described by (12), there is 1l  . It follows from (19) that 

 
2

c 0 1
d 2

c

(1 ) ( )
( )

( )

z
T z

z

  


 



 (23)  

Substituting (23) into the constraints in (16) and (18) it yields 

 1
c

2

1






 (24) 

 0 11    (25) 

If 0z  in (12) has no negative real part, substituting (12), (23)-(25) into (20) yields the 
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closed-loop controller, 

 
c c p

p 0

(1 )(2 1)( )
( )

( )( 1)

z z z
K z

k z z z

    


 
  (26) 

In the case that 0z  has negative real part, it follows from (22) that 

 1 0
q

01

z z
K z

z
 




 (27)  

Substituting (26) and (27) into (21) yields the corresponding controller that can avoid 

inter-sample rippling in the output response, 

 
c c p

p 0

(1 )(2 1)( )
( )

(1 ) ( 1)

z z z
K z

k z z z

    


 


 (28) 

a2) Unstable processes 

For an unstable process described by (13), the desired closed-loop transfer function from w  

to u  is the same as in (23), except for the coefficients in the numerator which should be derived 

by using the constraints in (16) and (17) as 

 
2 2

u c c
1 2

u c

( ) (1 )

( 1)(1 )

z

z

 


  


 
 (29) 

 0 11    (30) 

 If 0z  in (13) has no negative real part, substituting (13), (23), (29), (30) into (20) yields 

the closed-loop controller, 

 
2

c 1 0 u p

2 2
p 0 c c 1 0

(1 ) ( )( )( )
( )

( )[( ) (1 ) ( )]

z z z z z
K z

k z z z z

  
   

   


    
 (31) 

In the case that 0z  has negative real part, following a similar derivation as above, the 

closed-loop controller is obtained as 

 
2

c 1 0 u p

2 2
p 0 c c 1 0

(1 ) ( )( )( )
( )

(1 ) [( ) (1 ) ( )]

z z z z z
K z

k z z z z

  
   

   


    


 (32) 

Considering that the desired ( )K z  (or ( )K z


) has an integrating function, i.e. having a pole 

at 1z  , and substituting (29), (30) into (31)-(32), leads to ( )K z  and ( )K z


 simplified, 

respectively, as 



- 8 - 

 
2

c 1 0 p

p 0

(1 ) ( )( )
( )

( )( 1)

z z z
K z

k z z z

    


 
 (33) 

 
2

c 1 0 p

p 0

(1 ) ( )( )
( )

(1 ) ( 1)

z z z
K z

k z z z

    


 


 (34) 

b) Non-MP (NMP) plants 

When there is 0 1z   in the process model shown in (12) or (13), the desired closed-loop 

transfer function from w  to u  is proposed as 

 
1 1

c 0 0
d 0 1 1 1

c 0 0

(1 ) (1 )( )
( ) ( )

( ) (1 )( )

l
l

l l

z z z
T z z z

z z z z

  


 

 

  
  

  
  (35) 

where i  ( 1, 2,..., .i l ) are to be determined by the asymptotic constraints in (16)-(18), and c  

is a tuning parameter for the closed-loop control performance.  

For an integrating process described by (12) with 0 1z  , it follows from (35) that 

 
2 1

c 0 1 0 0
d 2 1

c 0 0

(1 ) ( )(1 )( )
( )

( ) (1 )( )

z z z z
T z

z z z z

  






   


  
 (36)  

Substituting (36) into the constraints in (16) and (18) it yields 

 0 c 0
1

c 0

2(1 ) (1 )(1 )

(1 )(1 )

z z

z




   


 
 (37) 

 0 11    (38) 

Substituting (12), (36), (37) and (38) into (20) yields the closed-loop controller, 

 
1 2

0 c 1 0 p

1 2
p 0 c 0 1 c 0

(1 )(1 ) ( )( )
( )

(1 )( 1)[ 2 2 (1 ) / ]

z z z z
K z

k z z z z z

  
  





   


      
  (39) 

    For an unstable process described by (13) with 0 1z  , the desired closed-loop transfer 

function from w  to u  is the same as in (36), except for the coefficients in the numerator which 

should be derived by using the constraints in (16) and (17) as 

 
1 2

0 u 0 u c
1 1 2

u 0 u 0 c

1 (1 )( )( )
1

1 (1 )( )(1 )

z z z z

z z z z








   
      

 (40) 

 0 11    (41) 

Substituting (13), (36), (40), (41) into (20) yields the closed-loop controller, 
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1 2

0 c 1 0 u p

1 2 2 1
p 0 0 c c 0 1 0 0

(1 )(1 ) ( )( )( )
( )

[(1 )( )( ) (1 ) (1 )( )( )]

z z z z z z
K z

k z z z z z z z z

  
   



 

    


       
 (42) 

which can be simplified as 

 
1 2

0 c p

p

(1 )(1 ) ( )
( ) ( )

( 1)

z z z
K z Q z

k z

  



 (43) 

where  

 1 0
1 2

0 c 0 u 1 c 0

( )
(1 )[ 2 1 (1 ) / ]

z
Q z

z z z z z

 
  




      
  (44) 

3.2  Set-point tracking controller  

( )K z has been designed to obtain the desired closed-loop complementary sensitivity 

function d ( )T z  in (15). It follows from (11) that the output / set-point transfer function is 

 
-

0
f

0

( ) ( )( )
( )

( ) 1 ( ) ( )

dK z G z zy z
K z

r z K z G z



 (45)  

   That is 

 f d

( )
( ) ( )

( )
dy z

K z T z z
r z

  (46) 

Assume d ( )T z  being factorized into an all-pass part dA ( )T z  and an MP part dM ( )T z , i.e. 

 d dA dM( ) ( ) ( )T z T z T z  (47)  

According to the IMC theory9 for set-point tracking, an ideal controller should take the 

following form to satisfy the H2 optimal control performance,  

 g 1
f1 dM( ) ( ( ))nK z z T z   (48) 

where gn  is a positive integer chosen to keep g

dM ( )nz T z  bi-proper, i.e. its numerator and 

denominator have the same degree. 

For practical application, it is proposed to add a low-pass filter to the above ideal controller 

so that the control peak can be modulated to comply with the controller capacity in practice, i.e.  

 
f f

f

f
f2

f

(1 )
( )

( )

n n

n

z
K z

z








 (49) 

where fn  is the filter order that may be specified by the user, and f  is a tuning parameter. 
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When f 0  , then f2 ( ) 1K z  . Obviously, the simplest form is a first-order filter, 

 f
f2

f

(1 )
( )

z
K z

z








 (50) 

Therefore, the set-point tracking controller is obtained as 

 f f1 f2( ) ( ) ( )K z K z K z  (51) 

where the tuning parameter, f , can be tuned to reach a compromise between the set-point 

tracking performance and the control effort. With a smaller value of f , the set-point tracking 

speed will be faster, but the required output energy of fK  is larger. In addition, the set-point 

response will become more aggressive in the presence of process uncertainties; on the contrary, if 

f  is tuned to be larger, the nominal set-point tracking speed will becomes slower but the output 

energy of fK  is alleviated, and correspondingly, the set-point response will become less 

sensitive to process uncertainties. Note that when 1z  , fK  recovers the optimality, i.e. 

f f1( ) ( )K z K z . 

    Substituting (48), (50) and (51) into (46) the obtained output response is 

 g

f2 dA( ) ( ) ( ) ( )n dy z z K z T z r z   (52) 

For instance, in the case of dA ( ) 1T z   and g 1n  , using a first-order filter in (50) yields 

the output response in the form of 

 f

f

1
( ) ( )dy z z r z

z








 (53) 

By using the inverse z-transform, the set-point response to a step change in time domain can 

be derived as 

 s ( - )
f

0, ;

1 , .
( ) k d

k d
T

k d
y k




  
  (54) 

where sT  denotes the sampling period. It is seen that there is no overshoot in the set-point 

response and its time domain specifications can be quantitatively tuned by f . For example, 

consider the rise time, denoted by rt , which is usually defined as the time when the output 

response first reaches 90% of its final steady-state value in response to a step change of the 

set-point. If r 15t  (s) is specified for a process with 20d   and s 0.2T  (s), it can be 
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computed from (54) that the filter parameter should be taken as f 0.959  . 

To sum up, all the controller formulae for different cases of the process models are listed in 

Table 1. For the convenience of practical application, the proposed control design procedure is 

summarized as follows.  

(i) Build up a GP structure by configuring the stable filters 1( )F z , 2 ( )F z , and k ( )F z , 

according to (2), (3), (10), with a choice of 1  ; 

(ii) Design the disturbance rejection controller ( )K z  for different cases of the process models 

as listed in Table 1;  

(iii) Monotonically tune the single adjustable parameter c  in ( )K z , in combination with a 

retuning of   in 1( )F z , 2 ( )F z  and ( )kF z  for improving output prediction if necessary, 

to achieve a good trade-off between disturbance rejection performance and closed-loop 

robust stability.  

(iv) Factorize the resultant closed-loop sensitivity function d ( )T z  as shown in (23) or (36), and 

then design the set-point tracking controller f ( )K z  shown in (51). Then tune the single 

adjustable parameter f  in f ( )K z  to achieve the desired set-point tacking performance 

and its robustness against process uncertainties. 

4  Robust stability analysis  

Considering the uncertainties of the original delayed process being described in a 

multiplicative form, ( ) [ ( ) ( )] ( )z P z G z G z   , as shown in Figure 3, we reformulate the 

closed-loop system is reformulated in the standard M    form shown in Figure 4 for robust 

stability analysis. The transfer function from the output outv  to the input inv  of ( )z  can be 

derived as 

 0in
2

out 01

dKG zv
M H

v KG



 


 (55) 

where 

 
* *

2 2 2 2

(1 ) ( ) ( ) [ ( ) (1 ) ]

( )

m d m m
d

k k m

N z z z N z
H F F z F F

z

  



     

   


 
 (56) 

According to the small gain theorem (see e.g. the reference9), the closed-loop structure holds 
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robust stability in the presence of process uncertainty if and only if 

 0
2

0

1
1

dKG z
H

KG





 


 (57) 

For integrating and unstable processes described by (12) and (13), we take 1m   in (10) for 

output prediction. It can be derived using (3) and (4) that 

 1 0 1 0
2 2

(1 )( ) ( )( ) (1 )( )

( )

dz z z z z
H

z

       


       



 (58) 

where 0  and 1  are determined from 

 2
0

( )
m

m
m

i

F z z 


    (59) 

When there is 0 1z   in the process model shown in (12) or (13), by substituting (15)，(23) 

and (58) into (57), the robust stability condition is obtained as 

 
2 3 2 ( 1) ( 2)

c 0 1 2 3 4 5 6
2 2

c

(1 ) [ ] 1

( ) ( ) ( )

d d dz z z z z z

z z z

       
 

    

 

      


  
  (60) 

where 0 1 1    , 1 1 1 0 0 1( 1 )           , 2 1 0 0 1 0(1 ) ( 1 )               , 

3 0 0( 1 )       , 4 0 0 (1 )     , 5 1 0 0 1(1 )( )        , 6 1 1(1 )     . 

For the case of 0 1z   in the process model shown in (12) or (13), it can be verified by 

substituting (15)，(36) and (58) into (57) that the robust stability condition is the same as (60). 

Consider the following three types of model uncertainty that are often adopted for 

assessment in engineering practice, 

p

p

k

k


                                    (61) 

1dz                                     (62) 

p

p

(1 ) 1dk
z

k


                               (63) 

Since a rational z-transform (i.e. sj Tz e  ) is a periodic function with respect to  , by 

defining jz e   ( 0 2   ) and substituting (61)-(63) into (60), respectively, the robust 

stability constraints are correspondingly derived as 
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2 2 2

pc 1 2

2 2
p3 4

(1 ) kx x

kx x

 



 (64) 

 
2 2 2

c 1 2

2 2 2 2
3 4

(1 ) 1

(cos 1) (sin )

x x

x x d d



 

 


    
 (65) 

 
2 2 2

c 1 2

2 2
2 23 4

(1 ) 1

[(1 )cos 1] [(1 )sin ]

x x

k kx x d d
k k



 

 


       
 (66) 

where 

1 6 5 4 0 1 2 3cos( 2) cos( 1) cos cos3 cos 2 cosx d d d                      

2 6 5 4 0 1 2sin( 2) sin( 1) sin sin 3 sin 2 sinx d d d                     

2 2 2 2 2 2
3 c c c c c ccos 4 2( )cos3 ( 4 )cos 2 2( )cosx                         

2 2 2 2
4 c c c c csin 4 2( )sin 3 ( 4 )sin 2 2( )sinx                      

It is seen that all the above robust stability constraints are nonlinear inequalities with respect 

to the filter parameter,  , and the closed-loop controller parameter, c . Generally, both   and 

c  may be initially taken in the interval of [0.8, 0.99] to maintain the closed-loop stability. To 

improve the control performance or closed-loop stability, it is suggested to monotonically 

decrease   on line in order to improve the output prediction performance but in exchange for its 

robustness against process uncertainties, and vice versa. Similarly, c  can be monotonically 

tuned on line to meet a good trade-off between the disturbance rejection performance and the 

closed-loop robust stability. As the above robust stability constraints cannot be solved 

analytically for tuning c , numerical tuning guidelines can be explored for practical applications, 

which will be illustrated by simulation examples shown in Section 5. Based on the simulation 

study, it is suggested to tune c  in the interval of [0.9 0.99] to obtain a good trade-off between 

the closed-loop control performance and its robust stability for integrating and unstable processes 

with time delay. 

 

Remark 1.  The robust stability constraint shown in (57) can be used for different designs on the 

closed-loop controller as discussed in the paper36. With the proposed controller design, it is seen 
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from the corresponding stability constraints shown in (64)-(66) that these constraints are in fact 

inequalities with respect to the tuning parameter, c  , in the closed-loop controller, K . 

Therefore, it is convenient to check these constraints in tuning c  for a good trade-off between 

the closed-loop control performance and its robust stability. Note that these constraints may also 

be used to evaluate an allowable upper bound of the process uncertainties.                ◇ 

5  Simulation study  

Four benchmark examples studied in the references are used for illustration, respectively for 

two MP integrating processes, an NMP integrating process, and an unstable process. To assess 

control performance, the commonly used performance index of integral-absolute-error (IAE) of 

process output is adopted which should be as small as possible.  

Example 1.  Consider the integrating process with time delay studied in the reference36, 

 
4

( )
( 1)

se
G s

s s






  

With a sampling period of s 0.2T  (s), a discrete-time model of the process was there36 

obtained 

 200.018731( 0.9335)
( )

( 1)( 0.8187)

z
G z z

z z



 

  

The filters 1( )F z , 2 ( )F z , k ( )F z  are configured based on the design formulae in (3), (4), 

(10) with a choice of 0.84   as done in the reference36, i.e. 

1( )F z    

where   is in the form of (9) with 20d  , 
1.8187 0.8187

1 0
A

 
  
 

, 
1

0
B

 
  
 

 and 

 1 0.84C   ,  

0.01873 0.01752

0.84

z

z


 


 

2

0.8848 0.7248
( )

0.84

z
F z

z





 

k

0.16
( )

0.84
F z

z



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Now let us consider the analytical controllers proposed in section 3. Note that there is a zero 

( 0 0.9335z   ) of ( )G z  with negative real part. The disturbance rejection controller is therefore 

obtained by employing the controller design formula in (28) as 

 c c(1 )( 0.8187)(2 1)
( )

0.03622 ( 1)

z z
K z

z z

    



 

The proposed controller design formulae in (23)-(25) and (47)-(51) give the set-point 

tracking controller, 

 
2

c f
f 2

c 0 1 f

( ) (1 )
( )

(1 ) ( )( )

z
K z

z z

 
   

 


  
 

where 1 c2 / (1 )    and 0 11   .  

For illustration, a unity step change is added to the system input at 0t  (s) and a step load 

disturbance with a magnitude of -0.1 is added to the process input at 80t  (s). By taking 

c 0.973   and f 0.942   in the above controllers to obtain a similar rising speed of the 

set-point response and a similar disturbance response peak with those of the reference36 for 

comparison, the control results are shown in Figure 5 along with the IAE indices listed in Tables 

2 and 3. It is seen that both the set-point response and disturbance response have been apparently 

improved by the proposed method. 

Now assume that the process gain is actually 20% larger and process time delay is 20% 

smaller than the model. The perturbed system responses are shown in Figure 6 along with the 

IAE indices listed in Tables 2 and 3. It is seen that the proposed method well maintains the 

performance in the presence of these process uncertainties. 

The control performance variation for the process by tuning c  is illustrated in Figure 7, 

where dT  is the closed-loop complementary sensitivity function shown in (23) and ‘Peak’ 

denotes the disturbance response peak to a step load disturbance with a magnitude of 0.5. It is 

seen that when c  is tuned to a larger value, a smaller value of dT  is obtained which indicates 

better closed-loop robust stability but in exchange for the disturbance rejection performance. On 

the contrary, tuning c  to a smaller value will result in enhanced disturbance rejection 

performance but degrade the closed-loop robust stability. 
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Numerical relationship between the output response peak to a step change of load 

disturbance ( w ) and the model parameter p ( 1,  1)z    as shown in (12) is plotted in Figure 8 

with respect to tuning c  in the intervals of [  0.05, 0.95]  and [  0.95, 0.999], respectively. It is 

seen from Figure 8(a) that the disturbance response peak is increased with respect to 

p [0,  0.99]z  , but remains almost the same for p [ 0.99,  0]z   , regardless of tuning c  in the 

interval of [  0.05, 0.95] . When c  is tuned to be larger than 0.99, the disturbance response peak 

will become evidently larger as shown in Figure 8(b). Moreover, Figure 9 shows the numerical 

relationship between the disturbance response peak and c  regarding different values of the 

process time delay. It is seen that tuning c  is limited in the range of (0, 1) for such an integral 

process, and different values of c (0,  0.9)   gives similar control results, except for 

c (0.9,  1)  . Obviously, when c 1  , the peak will become larger, and moreover, when the 

time delay is larger, the peak will become larger. 

Example 2.  Consider the integrating process with time delay studied in the reference25, 

 
6.567

( )
(3.4945 1)

se
G s

s s






  

With a sampling period of s 0.2T  (s), a discrete-time model of the process is obtained as 

 -330.005616( 0.9811)
( )

( 1)( 0.9444)

z
G z z

z z




 
  

The filters 1( )F z , 2 ( )F z , k ( )F z , designed as proposed in reference36 are configured based 

on the design formulae in (3), (4), (10) with a choice of 0.9672  , i.e. 

1( )F z    

where   is in the form of (9) with 33d  , 
1.9444 0.9444

1 0
A

 
  
 

, 
1

0
B

 
  
 

, and 

 1 0.9672C   , 

0.005616 0.00551

0.9672

z

z


 


 

2

0.6515 0.6187
( )

0.9672

z
F z

z





 

k

0.03278
( )

0.9672
F z

z



 



- 17 - 

Note that there is a zero ( 0 0.9811z   ) of ( )G z  with negative real part. The disturbance 

rejection controller is therefore obtained by employing the controller design formula in (28) as 

 c c(1 )( 0.9444)(2 1)
( )

0.011126 ( 1)

z z
K z

z z

    



 

The proposed controller design formulae in (23)-(25) and (47)-(51) give the set-point 

tracking controller, 

2 2
c f

f 2 2
c 0 1 f

( ) (1 )
( )

(1 ) ( )( )

z
K z

z z

 
   

 


  
 

where 1 c2 / (1 )    and 0 11   .  

For illustration, a unity step change is added to the system input at 0t  (s) and a step load 

disturbance with a magnitude of -0.1 is added to the process input at 100t  (s). To make 

comparison with that of the reference25, we take c 0.94   and f 0.96   in the above 

controllers for illustration. The control results are shown in Figure 10 along with the IAE indices 

listed in Tables 2 and 3. It is seen that both the set-point response and disturbance response have 

been improved by the proposed method.  

Now assume that the process gain is actually 20% smaller and process time delay is 20% 

larger than the model. Figure 11 shows the perturbed system responses, and the corresponding 

IAE indices are listed in Tables 2 and 3. It is seen that the proposed method maintains good 

robust stability, while the reference25 could not hold the closed-loop stability any longer. 

Example 3.  Consider the NMP integrating process with time delay studied in the 

references37, 38, 

 
0.1( 0.418 1)

( ) 0.547
(1.06 1)

ss e
G s

s s

 



  

With a sampling period of s 0.1T  (s), a discrete-time model of the process is obtained as 

 10.01808( 1.2727)
( )

( 1)( 0.91)

z
G z z

z z



 

  

Again, the filters 1( )F z , 2 ( )F z , k ( )F z  are configured based on the design formulae in (3), 

(4), (10) with a choice of 0.98  , i.e. 

1( )F z    
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where   is in the form of (9) with 1d  , 
1.9613 0.9608

1 0
A

 
  
 

, 
1

0
B

 
  
 

 and 

 1 0.98C   , 

0.01808 0.023

0.98

z

z

 
 


 

2

0.8663 0.8463
( )

0.98

z
F z

z





 

k

0.02
( )

0.98
F z

z



 

The disturbance rejection controller is obtained by employing the controller design formulae 

in (39) as 

 
2

c 1 0
2

c 1 c

0.2143(1 ) ( )( 0.91)
( )

0.00493( 1)( 1.2143 2 0.7857 (1 ) )

z z
K z

z z

  
  

  


    
 

The proposed controller design formulae in (36)-(38) and (47)-(51) give the set-point 

tracking controller, 

 
2

c f
f 2

c 0 1 f

( ) (1 )
( )

(1 ) ( )( )

z
K z

z z

 
   

 


  
 

where  

0 c 0
1

c 0

2(1 ) (1 )(1 )

(1 )(1 )

z z

z




   


 
 

0 11   . 

Note that an IMC based PID control method was given in the reference37, which had shown 

improved control performance compared with that of the reference38. For fair comparison, the 

2DOF IMC control method presented in Chapter 8 of the bibliography2 is used here, of which the 

control structure had been studied in the references10, 11. The corresponding controllers for 

set-point tracking and load disturbance rejection are obtained, respectively, as  

s
s

s(1.06 1)

0.547(0.418 1)( s 1)

s
C

s 



 

 

d
f

d(1 )

T
C

G T



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0.11
d 2

f

( 1)( 0.418 1)

( 1) (0.418 1)
sa s s

T e
s s

  


 
 

together with the desired transfer function for set-point response,  

0.1
r s

s

( 0.418 1)

(0.418 1)( 1)
ss

T C G e
s s

 
 

 
  

1 f2 0.836a      

where s  and f  are the tuning parameters of sC  and fC , respectively. 

For illustration, a unity step change is added to the system input at 0t  (s) and a step load 

disturbance with a magnitude of -0.5 is added to the process input at 40t  (s). Taking   

c 0.93   and f 0.92   in the proposed controllers and s 1.5  , f 1.9   in the above 

controllers of the bibliography2 to obtain a similar rising speed of the set-point response and a 

similar recovery time of the load disturbance response with those of the reference37 for 

comparison, the control results are shown in Figure 12 along with the IAE indices listed in Tables 

2 and 3. It is seen that both the set-point response and disturbance response have been evidently 

improved by the proposed method. 

Now assume that the process gain is actually 20% larger and the process time delay is twice 

larger. The perturbed system responses are shown in Figure 13, and the corresponding IAE 

indices are listed in Tables 2 and 3. It is again seen that the proposed method well maintains the 

response stability against process uncertainties. 

Example 4.  Consider the unstable process with time delay studied in the references26,36, 

 
52

( )
(10 1)(2 1)

se
G s

s s




 

 

With a sampling period of s 0.1T  (s), a discrete-time model of the process was obtained in 

the reference36 as 

 500.00049342( 0.9868)
( )

( 1.0046)( 0.9564)

z
G z z

z z



 

 

The filters 1( )F z , 2 ( )F z , k ( )F z  are configured based on the design formulae in (3), (4), 

(10) with a choice of 0.98   as proposed in the reference36, i.e. 
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1( )F z    

where   is in the form of (9) with 50d  , 
1.9613 0.9608

1 0
A

 
  
 

, 
1

0
B

 
  
 

 and 

 1 0.98C   , 

0.00049342 0.00048691

0.98

z

z


 


 

2

0.8824 0.8418
( )

0.98

z
F z

z





 

k

0.02
( )

0.98
F z

z



 

The disturbance rejection controller is obtained by using the controller design formulae in 

(34) as 

 
2

c 1 0(1 ) ( )( 0.9564)
( )

0.00098033 ( 1)

z z
K z

z z

    



 

The proposed controller design formulae in (23), (29), (30) and (47)-(51) give the set-point 

tracking controller, 

 
2 2

f c
f f1 f2 2 2

c f 1 0

(1 ) ( )
( ) ( )

(1 ) ( ) ( )

z z
K K z K z

z z

 
   
 

 
  

 

where 2 2 2
1 c c c[(1.0046 ) (1 ) ] / [0.0046(1 ) ]         and 0 11   . 

For illustration, a unity step change is added to the system input at 0t  (s) and a step load 

disturbance with a magnitude of -0.1 is added to the process input at 150t  (s). The control 

results compared with the references26,36 are shown in Figure 14 along with the corresponding 

IAE indices listed in Tables 2 and 3. It is seen that given the similar set-point response, improved 

disturbance rejection performance is obtained by the proposed method. 

Then assume that all the process parameters are actually 20% larger than the model, the 

perturbed system responses are shown in Figure 15, and the corresponding IAE indices are listed 

in Tables 2 and 3. It is once again seen that the proposed method maintains good robust stability.  

Based on the process model, numerical relationship between the disturbance response peak 

and c  is plotted in Figure 16 regarding different values of the process time delay. It is seen that 

for such an unstable process, the trend of the disturbance response peak is similar to that of an 
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integrating process like example 1. The tuning range of c , however, becomes significantly 

narrower with the increment of time delay or pz  in the process model as shown in (13). 

6  Conclusions  

An analytical design of a 2DOF control structure using a GP has been proposed for 

integrating and unstable systems with long time delay, to overcome the deficiency of numerical 

computation for controller parameterization that is case-dependent and inconvenient for on-line 

tuning as involved when using recently developed predictor-based control methods. Both the 

set-point tracking response and the load disturbance rejection response can be tuned separately in 

a monotonic manner through a single adjustable parameter. Based on a classification of the plant 

model zero/pole distribution in the z-plane, controller design formulae have been explicitly 

derived for different cases, while addressing the problem of inter-sample rippling provoked by 

the model zero having negative real part. Analytical expression for the set-point tracking response 

has been derived based on the plant model and the controller formula, therefore facilitating the 

assessment of quantitative performance specifications of the set-point response in engineering 

practice. The closed-loop controller for disturbance rejection has been analytically derived by 

proposing a desired transfer function between the process input and the load disturbance. The 

sufficient and necessary condition for holding the closed-loop robust stability has been analyzed, 

and correspondingly, robust tuning constraints on the closed-loop controller have been derived in 

terms of different model uncertainty forms, along with numerical tuning guidelines explored 

based on illustrative examples with a wide range of model parameters. The applications to 

benchmark examples from the recent references24,26,35,36, where numerical controller design 

methods rather than analytical formulae were used, have well demonstrated the effectiveness and 

merit of the proposed method.  
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Table and Figure Captions 

 

Table 1   Summary of the controller design formulae 

Table 2   IAE for set-point tracking by different methods 

Table 3   IAE for load disturbance rejection by different methods 

Figure 1  The predictor-based control structure 

Figure 2  Ideal delay-free control loop  

Figure 3  The predictor-based control structure with process uncertainty 

Figure 4  The M   structure for robust stability analysis 

Figure 5  Control results for Example 1 

Figure 6  Perturbed system responses of Example 1 

Figure 7  Illustration on a trade-off between control performance and robust stability 

Figure 8  Numerical relationship between the disturbance response peak and c  for Example 1 

Figure 9  Numerical results regarding different values of the time delay for Example 1 

Figure 10  Control results for Example 2 

Figure 11  Perturbed system responses of Example 2 

Figure 12  Control results for Example 3 

Figure 13  Perturbed system responses of Example 3 

Figure 14  Control results for Example 4 

Figure 15  Perturbed system responses of Example 4 

Figure 16  Numerical relationship between the disturbance response peak and c  regarding the 

time delay for Example 4 
 
 

Table 1  Summary of the controller design formulae 

(Note: A higher-order filter ( f 2n  ) in (49) may be used to design fK ) 

Process model K  fK  

eq.(12) 

eq.(26) for 00 1z   

eq.(28) for 01 0z    

eq.(39) for 0 1z   

eqs.(47)-(51),   

eqs.(23)-(25) for 0 1z   

eqs.(36)-(38) for 0 1z   

eq.(13) 

eq.(33) for 00 1z   

eq.(34) for 01 0z    

eqs.(43)-(44) for 0 1z           

eqs.(47)-(51), 

eqs.(23), (29), (30) for 0 1z   

eqs.(36), (40), (41) for 0 1z   
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Figure 1  The predictor-based control structure 

 

 

 

 

 

 
 
 

Figure 2  Ideal delay-free control loop 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  The predictor-based control structure with uncertainty 
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Figure 4  The M   structure for robust stability analysis 
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Figure 5  Control results for Example 1 
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Figure 6  Perturbed system responses of Example 1 
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Figure 7  Illustration on a trade-off between control performance and robust stability 
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Figure 8  Numerical relationship between the disturbance response peak and c  for 

Example 1 
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Figure 9  Numerical results regarding different values of the time delay for Example 1 
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Figure 10  Control results for Example 2 
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Figure 11  Perturbed system responses of Example 2 
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Figure 12  Control results for Example 3 
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Figure 13  Perturbed system responses of Example 3 
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Figure 14  Control results for Example 4 
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Figure 15  Perturbed system responses of Example 4 
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Figure 16  Numerical relationship between the disturbance response peak and c  

regarding the time delay for Example 4 
 

 


