UNIVERSITAT
POLITECNICA
DE VALENCIA

DEPARTAMENTO DE INFORMATICA
DE SISTEMAS Y COMPUTADORES

Improvement of interconnection networks for
clusters: direct-indirect hybrid topology and
HoL-blocking reduction routing

A thesis submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

(Computer Engineering)

Author
Roberto Peiiaranda Cebrian
Advisors
Prof. Pedro Juan Lopez Rodriguez

Prof. Maria Engracia Gomez Requena

January 2017

Agradecimientos

Hace ya unos afios que empecé este proyecto, cuando mis directores Pedro y Marfa Engracia
me dieron la oportunidad de meterme en el mundo de la investigacién. Por ello y por todo los
conocimientos transmitidos, y no solo sobre la temética de la tesis, les doy las gracias. También
agradezco la participacién de Crispin, que ha sido como un hermano mayor dentro de la inves-
tigacion al principio de mi tesis. Por otro lado, me gustaria mencionar a Julio Sahuquillo quien
me fue introduciendo en este mundo cuando estaba terminando la carrera universitaria. Por ese

motivo me gustaria darle las gracias por encender la chispa de curiosidad sobre la investigacion.

También me gustaria agradecer la paciencia, el apoyo y el cariflo que me han ofrecido mis padres
Patricio y Esperanza y a mi hermano Cristian. Y como no, dar las gracias al resto de la familia

y a mis amigos, que en algunos momentos han ofrecido ayuda y comprension.

También agradecer el buen ambiente de trabajo, casi siempre, en el laboratorio y de los profe-
sores dentro del grupo de de investigacion GAP. Con mencion especial a Ricardo, que siempre
intentaba contentar las necesidades de todos. También agradecer esas charlas sobre peliculas,

series o incluso astrofisica a la hora del café.

iMuchas gracias por todo!

Contents

Abstract

Resumen

Resum

List of Figures

List of Tables

Abbreviations and Acronyms

1

3

Introduction
1.1 Motivation and Justification
1.1.1 Topologies i i
1.1.1.1 Direct Topologies
1.1.1.2 Indirect Topologies
1.1.1.3 Other Topologies
1.1.2 Routing Algorithms
1.1.2.1 Classifying Destinationsinto VCs
1.1.3 FaultTolerance
1.2 Goals and Methodology of this Thesis
1.3 ThesisOutline

Summary of Publications

2.1 KNStopology
2.2 Fault tolerance in KNS topology
2.3 HoL-blocking reduction routing

A New Family of Hybrid Topologies for Large—Scale Interconnection Networks
3.1 Introduction
3.2 Direct and Indirect Topologies
33 RelatedWork
3.4 The New Family of Hybrid Topologies
34.1 Descriptionofthe family
3.5 Routing Algorithms for the new Family of Topologies
3.5.1 Routing in k,—ary n,—direct 1-indirect topologies
3.5.1.1 Deterministicrouting
3.5.1.2 Adaptiverouting

ix

xi

xiii

XV

Xix

xxi

0 J N W W N

10
13
14
14

17
17
18
18

21

vi Contents
3.5.2 Routing in k,—ary n,—direct m,—indirect topologies 31
3.6 Evaluation 32
3.6.1 NetworkModel 32
3.6.2 EvaluationResults 32
3.6.3 Cost—performance analysis 35
3.64 Fault—tolerance 39
3.7 Conclusions e 40
4 The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 41
4.1 Introduction e e 42
4.2 Direct and Indirect Topologies 44
4.3 The KNS Family of Hybrid Topologies 48
4.3.1 Description of the family, 49
4.4 Routing Algorithms for the KNS Family of Topologies 53
4.4.1 Routing in kp—ary np—direct 1-indirects 53
4.4.2 Routing in kp—ary np—direct sp—indirects 55
45 Evaluation 57
451 NetworkModel 57
4.5.2 Performance Results L. 58
4.5.3 Cost—performance analysis 63
454 Fault-tolerance 68
4.6 Related Work L 70
47 Conclusions e 72
5 A New Fault-Tolerant Routing Methodology for KNS Topologies 73
5.1 Introduction L 74
5.2 Related Work 75
5.3 Preliminaries L. e 76
5.4 Fault-Tolerant Routing Methodology 78
5.4.1 OnelIntermediate Node 80
5.4.2 Multiple Intermediate Nodes 82
5.4.3 Extension To Other Indirect Subnetworks 84
5.5 Experimental Evaluation 84
5.5.1 SimulationModel 85
5.5.2 Fault Analysis 85
5.5.3 Performance Analysis 86
5.6 Conclusions e 88
6 A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes 91

6.1 Introduction 92
6.2 RelatedWork 93
6.3 The k-ary n-direct s-indirect (KNS) topology 94
6.4 Description of the Fault-Tolerant Routing Methodology 96
6.4.1 OnelIntermediate Node 100
6.4.2 Multiple Intermediate Nodes 102

6.4.3 Extension To Any Indirect Subnetwork 104

Contents vii
6.5 EvaluationResults 105
6.5.1 SimulationModel 105

6.5.2 Fault Analysis 106

6.5.3 Performance Analysis 108

6.6 Conclusions e 112

7 ITODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct Topolo-

gies 113

7.1 Introduction 114

7.2 Directtopologies 115

7.3 A HoL-blocking-aware Deterministic Routing Algorithm 116
7.4 Experimental Evaluation 0. 116
7.4.1 Performance analysis 117

7.5 Conclusions 118

8 Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies 119
8.1 Introduction 120

8.2 Directtopologies 121

8.3 A HoL-blocking-aware Deterministic Routing Algorithm 122

8.4 Experimental Evaluation 123

8.5 Conclusions 125

9 HoL-blocking Avoidance Routing Algorithms in Direct Topologies 127
9.1 Introduction L 128

9.2 Routing in Direct Topologies 129

9.3 HoL-Blocking-Aware Deterministic Routing Algorithms 130
9.3.1 XORDET: XOR DETerministic Routing 133

9.3.2 Implementation iSSues 134

9.4 Experimental Evaluation 135
9.4.1 Performance analysis 136

9.42 SwitchCost Analysis 140

9.5 Conclusions 143

10 XORAdap: A HoL-blocking aware adaptive routing algorithm 145
10.1 Introduction L 146
10.2 Routing in Direct Topologies 148
10.3 HoL-Blocking-Aware Deterministic Routing Algorithms 148
10.4 XORADAP: XOR ADAPtive Routing 150
10.5 Experimental Evaluation 152
10.6 Conclusions e 155

11 XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 157

11.1 Introduction o e 158
11.2 Background 160
11.2.1 Direct Topologies o v it 160
1122 Related Work 161
11.3 XOR-based HoL-blocking Reduction Routing 165

11.3.1 XORDET: XOR DETerministic Routing 165

viii

Contents

11.3.2 XORADAP: XOR ADAPtive Routing
11.3.3 Implementationissues

11.4 Experimental Evaluation
11.4.1 Performance analysis
11.4.1.1 XORDET evaluation

11.4.1.2 XORADAP evaluation

11.4.2 Switch Cost Analysis

11.5 Conclusions

12 General Discussion of Results

12.1 kp—ary np—direct sp—indirect (KNS) topology
12.1.1 Description of the family
12.1.2 Routing Algorithms for the KNS Family of Topologies

12.1.2.1 Routing in kp—ary np—direct 1—indirects
12.1.2.2 Routing in kj—ary nj—direct s—indirects

12.2 Fault tolerance for kp—ary np—direct sp—indirect
12.2.1 One Intermediate Node
12.2.2 Multiple Intermediate Nodes
12.2.3 Extension To Any Indirect Subnetwork

12.3 Reducing the HoL-blocking effect in Direct Topologies
12.3.1 IODET: In Order DETerministic Routing
12.3.2 XOR-based HoL-blocking Reduction Routing

12.3.2.1 XORDET: XOR DETerministic Routing
12.3.2.2 XORADAP: XOR ADAPtive Routing
12.3.2.3 Implementationissues

12.4 EvaluationResults
124.1 NetworkModel
12.4.2 kp—ary nj—direct sp—indirect (KNS) topology

12.4.2.1 Performance Results
12.4.2.2 Cost—performance analysis

12.4.3 Fault tolerance for kp—ary nj—direct sp—indirect topologies

12.4.3.1 Fault Analysis
12.4.3.2 Performance Analysis
12.4.4 Reducing the HoL-blocking effect in Direct Topologies
12.4.4.1 Deterministic routing algorithms evaluation
12442 XORADAPevaluation

13 Conclusions

13.1 Future Directions o . i i e
13.2 Other Publications
13.3 Funding Acknowledgments

References

Abstract

Nowadays, clusters of computers are used to solve computation intensive problems. These
clusters take advantage of a large number of computing nodes to provide a high degree of par-
allelization. Interconnection networks are used to connect all these computing nodes. The
interconnection network should be able to efficiently handle the traffic generated by this large

number of nodes.

Interconnection networks have different design parameters that define the behavior of the net-
work. Two of them are the topology and the routing algorithm. The topology of a intercon-
nection network defines how the different network elements are connected, while the routing
algorithm determines the path that a packet must take from the source to the destination node.
The most commonly used topologies typically follow a regular structure and can be classified
into direct and indirect topologies, depending on how the different network elements are inter-
connected. On the other hand, routing algorithms can also be classified into two categories:

deterministic and adaptive algorithms.

To evaluate interconnection networks, metrics such as latency or network productivity are often
used. Throughput refers to the traffic that the network is capable of accepting the network per
time unit. On the other hand, latency is the time that a packet requires to reach its destination.
This time can be divided into two parts. The first part is the time taken by the packet to reach its
destination in the absence of network traffic. The second part is due to network congestion cre-
ated by existing traffic. One of the effects of congestion is the so-called Head-of-Line blocking,
where the packet at the head of a queue blocks, causing the remaining queued packets can not

advance, although they could advance if they were at the head of the queue.

Nowadays, there are other important factors to consider when interconnection networks are
designed, such as cost and fault tolerance. On the one hand, a high performance is desirable, but
without a disproportionate increase in cost. On the other hand, the fact of increasing the size of
the network implies an increase in the network components, thus the probability of occurrence
of a failure is higher. For this reason, having some fault tolerance mechanism is vital in current
interconnection networks of large machines. Putting all in a nutshell, a good performance-cost

ratio is required in the network, with a high level of fault-tolerance.

This thesis focuses on two main objectives. The first objective is to combine the advantages
of the direct and indirect topologies to create a new family of topologies with the best of both
worlds. The main goal is the design of the new family of topologies capable of interconnecting

a large number of nodes being able to get very good performance with a low cost hardware.

X

X Abstract

The family of topologies proposed, that will be referred to as k-ary n-direct s-indirect, has a n
dimensional structure where the & different nodes of a given dimension are interconnected by
a small indirect topology of s stages. We will also focus on designing a deterministic and an

adaptive routing algorithm for the family of topologies proposed.

Finally we will focus on analyzing the fault tolerance in the proposed family of topologies.
For this, the existing fault tolerance mechanism for similar topologies will be studied and a

mechanism able to exploit the features of this new family will be designed.

The second objective is to develop routing algorithms specially deigned to reduce the pernicious
effect of Head-of-Line blocking, which may shoot up in systems with a high number of comput-
ing nodes. To avoid this effect, routing algorithms able of efficiently classifying the packets in
the different available virtual channels are designed, thus preventing that the occurrence of a hot

node (Hot-Spot) could saturate the network and affect the remaining network traffic.

Resumen

Hoy en dia, los clusters de computadores son usados para solucionar grandes problemas. Estos
clusters aprovechan la gran cantidad de nodos de computacién para ofrecer un alto grado de par-
alelizacion. Para conectar todos estos nodos de computacion, se utilizan redes de interconexién
de altas prestaciones capaces de manejar de forma eficiente el trdfico generado por esta gran

cantidad de nodos.

Las redes de interconexion tienen diferentes pardmetros de disefio que definen su compor-
tamiento, de los cuales podriamos destacar dos: la topologia y el algoritmo de encaminamiento.
La topologia de una red de interconexion define como se conectan sus componentes, mientras
que el algoritmo de encaminamiento determina la ruta que un paquete debe tomar desde su
nodo origen hasta su nodo destino. Las topologias mds utilizadas suelen seguir una estructura
regular y pueden ser clasificadas en topologias directas e indirectas, dependiendo de cdmo es-
ten interconectados entre si los diferentes elementos de la red. Por otro lado, los algoritmos
de encaminamiento también pueden clasificarse en dos categorias: algoritmos deterministas y

adaptativos.

Para evaluar las redes de interconexion se suelen utilizar medidas tales como la latencia o la
productividad de la red. La productividad mide el trdfico que es capaz de aceptar la red por
unidad de tiempo. Por otro lado, la latencia mide el tiempo que utiliza un paquete para alcanzar
su destino. Este tiempo se puede dividir en dos partes. La primera corresponde al tiempo
utilizado por el paquete en alcanzar a su destino en ausencia de trdfico en la red. La segunda
parte serfa la debida a la congestién de la red creada por el trafico existente. Uno de los efectos
de la congestion es el denominado Head-of-Line blocking, donde el paquete que encabeza una
cola se queda bloqueado, por lo que el resto de paquetes de la cola no pueden avanzar, aunque

pudieran hacerlo si ellos encabezaran dicha cola.

Hoy en dia hay otros factores importantes a tomar en cuenta cuando se disefian redes de in-
terconexion, como son el coste y la tolerancia a fallos. Por lo tanto, las prestaciones deben
mantenerse conforme aumentamos el tamafio de la red, pero sin un aumento prohibitivo en el
coste. Ademas, el hecho de aumentar el tamafio de la red implica un aumento en el nimero de
elementos de dicha red, con lo que la probabilidad de la aparicion de un fallo es mayor. Por
ese motivo, es vital contar con algin mecanismo de tolerancia a fallos en las redes de inter-
conexién para los grandes supercomputadores actuales. En otras palabras, es de esperar una

buena relacion coste-prestaciones con un alto nivel de tolerancia a fallos.

X1

Xii Resumen

Esta tesis tiene dos objetivos principales. El primer objetivo combina las ventajas de las topologias
directas e indirectas para crear una nueva familia de topologias con lo mejor de ambas. En con-
creto, nos centramos en el disefio de una nueva familia de topologias capaz de interconectar una
gran cantidad de nodos siendo capaz de obtener muy buenas prestaciones con un bajo coste hard-
ware. La familia de topologias propuesta, que hemos llamado k—ary n—direct s—indirect, tiene
una estructura n-dimensional, donde los diferentes k£ nodos de una dimension se conectan entre
si mediante una pequefia topologia indirecta con s etapas. También disefiaremos un algoritmo

de encaminamiento determinista y otro adaptativo para la familia de topologias propuesta.

Finalmente, nos centraremos en estudiar la tolerancia a fallos para la familia de topologias prop-
uesta. Para ello se estudiardn los mecanismos de tolerancia a fallos existentes en topologias
similares y se disefiard un mecanismo capaz de aprovechar al maximo las caracteristicas de esta

nueva familia.

El segundo objetivo consiste en el desarrollo de algoritmos de encaminamiento capaces de evitar
el pernicioso efecto Head-of-Line blocking, 1o cual puede aumentar rapidamente en sistemas con
un gran nimero de nodos de computacion. Para evitar este efecto se disefiaran algoritmos de
encaminamiento capaces de clasificar de forma eficiente los paquetes en los diferentes canales
virtuales disponibles, evitando asi que la aparicion de un punto caliente (Hot-Spot) sature la red

y perjudique a todo el trafico de la red.

Resum

Hui en dia, els clisters de computadors sén utilitzats per solucionar grans problemes computa-
cionals. Aquests clisters aprofiten la gran quantitat de nodes de computacié per a oferir un alt
grau de parallelitzaci6. Per a connectar tots aquests nodes de computacid, s’utilitzen xarxes
d’interconnexié d’altes prestacions capagos de manejar de manera eficient el transit generat per

aquesta gran quantitat de nodes.

Les xarxes de interconnexi6 tenen diferents pardmetres de disseny que defineixen el seu compor-
tament, dels quals podriem destacar dues: la topologia i I’algoritme d’encaminament. La topolo-
gia d’una xarxa de interconnexi6 ens defineix com es connecten els seus components, mentre
que I’algoritme d’encaminament determina la ruta que un paquet ha de prendre des del seu node
origen fins al seu node desti. Les topologies més utilitzades solen seguir una estructura regular
i poden ser classificades en topologies directes i indirectes, depenent de com estiguen intercon-
nectats entre si els diferents elements de la xarxa. D’altra banda, els algoritmes d’encaminament

també poden classificar-se en dues categories: algoritmes deterministes i adaptatius.

Per avaluar les xarxes de interconnexio es solen utilitzar mesures com ara la laténcia o la pro-
ductivitat de la xarxa. La productivitat mesura el transit que és capa¢ d’acceptar la xarxa per
unitat de temps. D’altra banda, la laténcia mesura el temps que utilitza un paquet per arribar
al seu desti. Aquest temps es pot dividir en dues parts. La primera correspon al temps emprat
pel paquet a aconseguir al seu desti en absencia de transit a la xarxa. La segona part seria la
deguda a la congesti6 de la xarxa creada per el transit existent. Un dels efectes de la congestio
és I’anomenat Head-of-line blocking, on el paquet que encapcala una cua es queda bloquejat, de
manera que la resta de paquets de la cua no poden avangar, encara que poguessen fer-ho si ells

encapcalessen la dita cua.

Hui en dia hi ha altres factors importants a tenir en compte quan se dissenyen xarxes de inter-
connexid, com son el cost i la tolerancia a fallades. Per tant, les prestacions s’han de mantenir
d’acord augmentem la mida de la xarxa, pero sense un augment prohibitiu en el cost. A més,
el fet d’augmentar la mida de la xarxa implica un augment en el nimero de elements d’aquesta
xarxa, de manera que la probabilitat de I’aparicié d’una fallada és més gran. Per aquest motiu,
és vital comptar amb algun mecanisme de tolerancia a fallades en les xarxes d’interconnexié per
als gran supercomputadors actuals. En altres paraules, és d’esperar bona relaci6 cost-prestacions

amb una alta tolerancia a fallades.

Aquesta tesi té€ dos objectius principals. El primer objectiu combina les avantatges de les topolo-

gies directes i indirectes per a crear una nova familia de topologies amb el millor dels dos mons.

Xiii

X1V Resum

En concret, ens centrem en el disseny de una nova familia de topologies capa¢ d’interconnectar
una gran quantitat de nodes sent capag d’obtenir molt bones prestacions amb un baix cost hard-
ware. La familia de topologies proposada, que hem nomenat k-ary n-direct s-indirect, t€ una es-
tructura n-dimensional, on els diferents k£ nodes d’una dimensié se connectan entre si mitjangant
una petita topologia indirecta amb s etapes. També dissenyarem un algoritme d’encaminament

determinista i un altre adaptatiu per a la familia de topologies proposta.

Finalment, ens centrarem en estudiar la tolerancia a fallades per a la familia de topologies pro-
posada. Per a aix0 s’estudiaran els mecanismes de tolerancia a fallades existents en topologies
similars i es dissenyara un mecanisme capag d’aprofitar al maxim les caracteristiques d’aquesta

nova familia.

El segon objectiu consisteix en la creacié d’algoritmes d’encaminament capagos d’evitar el per-
nicios efecte Head-of-line blocking que pot créixer rapidament amb un gran nimero de nodes
de computaci6. Per a evitar aquest efecte es dissenyaran algoritmes d’encaminament capagos de
classificar de forma eficient els paquets en els diferents canals virtuals disponibles, evitant aix{

que I’aparici6 d’un punt calent (Hot-Spot) sature la xarxa i perjudique tot el transit de la xarxa.

List of Figures

1.1
1.2
1.3

3.1
32
33

3.4

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

5.1
5.2

53
54

5.5

5.6

Some of the most commonly-used direct topologies.
How DBBM assigns destinations to VCs in a 8 X 8 mesh with4 VCs.
Implementation of virtual channel selection for a 256-node 2-D network and 4

An example of the new topology with n,, = 2, k,, =4andd, =4.
An example of the new topology with n,, = 2, k, = 4, d,, = 4 and p,, = 2.

Network latency vs. accepted traffic with uniform traffic and deterministic rout-
ing. 2D direct topologies. (a) 16, (b) 256 and (c) 4096 nodes.
Network latency vs. accepted traffic with uniform traffic and deterministic rout-
ing. 4K-node topologies. (a) 3D, (b)4D and (c)6D.

An example of the KNS topology with ny, =2, k, =4andd, =4.
An example of the KNS topology with n;, = 2, kj, =4, s;, = land p;, = 2. . .
Average packet latency from generation vs. accepted traffic for uniform traf-
fic and 2 dimensions for direct topologies. (a) 256 processing nodes. (b) 4K
processing nodes. (c) 64K processingnodes. L.
Average packet latency from generation vs. accepted traffic for uniform traffic
with 64K processing nodes and different number of dimensions: (a) 4D and (b)
8D,
Average packet latency from generation vs. accepted traffic for complement
traffic and (a) 4K processing nodes and (b) 64K processing nodes.
Average packet latency from generation vs. accepted traffic for tornado traffic
and (a) 4K and (b) 64K processingnodes.
Average packet latency from generation vs. accepted traffic for Hot—Spot traffic
at 5% in 2 dimensions. (a) 64 processing nodes. (¢) 256 processing nodes. . . .
Total cost of different topology configurations with 64K processing nodes. . . .

An example of the KNS topology withn =2and k=4.
An example of a set of faults that disconnect the network with a KNS topology
withn=2andk=4.
An example of the KNS topology withn = 2 and k = 4 and 2 faults.
Supported fault combinations by the methodology when using one or two inter-
mediate nodes in a 2D-network with 1024 nodes.
Supported fault combinations by the methodology when using one or two inter-
mediate nodes in a 3D-network with 1000 nodes.
Accepted traffic versus injected traffic for a 32-ary 2-direct 1-indirect under uni-
formtraffic.

XV

62

63
67

77

XVi List of Figures

5.7 Average latency versus injected traffic for a 32-ary 2-direct 1-indirect under uni-

formtraffic. e 87
5.8 Accepted traffic versus injected traffic for a 10-ary 3-direct 1-indirect under uni-
formtraffic. 87
5.9 Average latency versus injected traffic for a 10-ary 3-direct 1-indirect under uni-
formtraffic. 87
6.1 An example of the KNS topology withn =2andk=4. 95
6.2 Header for packets using the intermediate node methodology. 98
6.3 Examples of fault combinations in a KNS topology withn =2and k =4. . . . 101
6.4 An example of the KNS topology withn = 2 and k = 4 and 2 faults. 103
6.5 Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 2-D network with 1,024 nodes. 106
6.6 Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 3-D network with 1,000 nodes. 106
6.7 32-ary 2-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic. L. 108
6.8 10-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic. 0oL 109
6.9 64-ary 2-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic. 0oL 110
6.10 16-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.o 111
6.11 8-ary 4-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b) aver-
age latency versus injected traffic. oL oL 111

7.1 Average packet network latency vs. accepted traffic with uniform traffic pattern

for 2D torus with 64 nodes..o 117
8.1 Average packet latency vs. accepted traffic for uniform traffic. 123
9.1 How DBBM assigns destinations to VCs in a 4 x 4 mesh with4 VCs. 131
9.2 Implementation of VC selection for a 256-node 2-D network and 4 VCs. 132
9.3 How XORDET assigns destinations to VCs ina 4 x 4 mesh with4 VCs. 134
9.4 Avg. packet lat. vs. accepted traffic. 64-node 2D-mesh. 2 VCs are used.

Uniform traffic. Routing times are scaledin(b). 135
9.5 Avg. packet lat. vs. accepted traffic. 64-node 2D-torus. 2VCs are used. Uni-

form traffic. Routing times are scaledin(b). 136
9.6 Average packet latency vs. accepted traffic. Uniform traffic. (a) 256-node 2D-

torus and (b) 512-node 3D-torus. 138
9.7 Avg. packet lat. vs. accepted traffic. 256-node 2D-torus. Uniform traffic. (a) 4

VCsand (b) 8 VCs. e 139
9.8 Avg. packet lat. vs. accepted traffic. 256-node 2D-torus and 4 VCs. Uniform

traffic (a) X+Y+X-Y-routing. (b) XY routing. 139
9.9 Results for hot-spot. 256-node 2D-torusand 8 VCs 140

10.1 Paths of source-destination pairs of the first row with Bit-reversal pattern traffic. 150
10.2 How XORADAP assigns groups to VCs with 8 VCs. 151

List of Figures XVil

10.3 256-node 2D-torus. Average packet latency vs accepted traffic: Uniform (a) and

Bit-reversal (b) traffic patterns. L Lo 152
10.4 256-node 2D-torus. Uniform traffic with hot-spot. Accepted traffic (a) and av-

erage packet latency (b) vs. time. 154
11.1 How DBBM assigns destinations to VCs in a 8 x 8 mesh with4 VCs. 162
11.2 Implementation of VC selection for a 256-node 2D network and 4 VCs. 163
11.3 Implementation of VC selection in XORDET for a 256-node 2D network and 4

Vs, . o e 166
11.4 How XORDET assigns destinations to VCs in a 8 x 8 mesh with 4 VCs. 166
11.5 Paths of source-destination pairs of the first row with different pattern traffics:

(a) Bit-reversal and (b) Matrix Transpose. 168
11.6 How XORADAP may assign VCs to groups with 8 VCs. 169
11.7 Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.

Uniform random traffic pattern. (a,b) 4 VCs and (c,d)8 VCs. 173
11.8 Average packet latency and accepted traffic vs offered load. 512-node 3D-torus.

Uniform random traffic pattern. 4VCs. 174

11.9 Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) XY routing and (c,d) X+Y+X-Y- routing.

AVECS. o o 175
11.10Results for hot-spot. 256-node 2D-torusand 8 VCs. 176
11.11How the hot-spot traffic affects the different routing algorithms. 176
11.12256-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic. 178
11.1364-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic. 178
11.14512-node 3D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)

average packet latency vs. offered traffic. 179
11.15256-node 2D-torus. Matrix transpose traffic. (a) Accepted traffic and (b) average

packet latency vs. offered traffic. 179
11.16256-node 2D-torus. Bit-reversal traffic. (a) Accepted traffic and (b) average

packet latency vs. offered traffic. 180
11.17256-node 2D-torus. Uniform random traffic pattern with hot-spot. Accepted

traffic (a) and average packet latency (b) vs. simulation time. 181

11.18256-node 2D-torus. Uniform random traffic pattern with hot-spot. Average
packet latency (a) and network latency (b) for packets destined to the hot-spot

vs. simulation time. L. L. 181
11.19256-node 2D-torus. Uniform random traffic pattern with hot-spot. Completely

full (a) and empty (b) queues in the network vs. simulation time. 182
12.1 An example of the KNS topology withn;, = 2,k =4andd, =4. 192
12.2 An example of the KNS topology with ny, = 2, k, =4, s, =landp, =2. .. 192
12.3 Header for packets using the intermediate node methodology. 199
12.4 Example of a faulty link in a KNS topology withn =2and k=4. 202

12.5 Implementation of VC selection in IODET for a 256-node 2D network and 4 VCs.204
12.6 Implementation of VC selection in XORDET for a 256-node 2D network and 4

12.7 How XORDET assigns destinations to VCs in a 8 x 8 mesh with 4 VCs. 206

XViii List of Figures

12.8 Paths of source-destination pairs of the first row with different pattern traffics:
(a) Bit-reversal and (b) Matrix Transpose.
12.9 How XORADAP may assign VCs to groups with 8 VCs.
12.10Average packet latency from generation vs. accepted traffic for uniform traf-
fic and 2 dimensions for direct topologies. (a) 256 processing nodes. (b) 4K
processing nodes. (¢) 64K processingnodes.
12.11 Average packet latency from generation vs. accepted traffic for uniform traffic
with 64K processing nodes and different number of dimensions: (a) 4D and (b)
8D,
12.12Total cost of different topology configurations with 64K processing nodes. . . .
12.13Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 2-D network with 1,024 nodes.
12.14Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 3-D network with 1,000 nodes.
12.1532-ary 2-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.o
12.1610-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic. L.
12.17 Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) 4 VCs and (c,d) 8 VCs.
12.18 Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) XY routing and (c,d) X+Y+X-Y- routing.

12.19Results for hot-spot. 256-node 2D-torusand 8 VCs.
12.20256-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and (b)
average packet latency vs. offered traffic.
12.21256-node 2D-torus. Matrix transpose traffic. (a) Accepted traffic and (b) average
packet latency vs. offered traffic. L.
12.22256-node 2D-torus. Uniform random traffic pattern with hot-spot. Accepted
traffic (a) and average packet latency (b) vs. simulation time.

13.1 Different configurations for 8-port switches.

209

220

220

228

List of Tables

1.1
1.2
1.3

3.1
3.2

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8

6.1

8.1

9.1
9.2
9.3
9.4
9.5
9.6

11.1

Parameters of the different direct topologies. 4
Parameters of the different direct topologies. 6
How many destinations DBBM assigns to node 0 VCs in a 8 x 8 mesh with 4

VCs. . o e 11
Parameters of the topologies analyzed in this paper. 28

Analytical comparisons of the Mesh, Torus, Fat-Tree, flattened-butterfly, and
the k,—ary n,—direct m,—indirect topologies. k; in k,—ary n,—direct m,—
indirect topologies refers to the arity of indirect switches. 36
Results for different 2—D topologies with uniform traffic and deterministic routing. 37
Results for 4096—nodes topologies with uniform traffic and deterministic routing. 38

Parameters of the different analyzed topologies. 48
Parameters of the different analyzed topologies. 52
Analytical comparison of the Mesh, Torus, Fat-Tree, Flattened—Butterfly and

the KNS topologies. KNS topologies refers to the arity of indirect switches. . . 64
Results for different 2-D topologies with uniform traffic and 64K processing

nodes. e 65
List price for switches: (a) Edge switches and (b) Chassis switches. 66
List price for links: (a) Copper Links and (b) Fiber Links. 66
Cost for Network Interface Cards. 67

Cost—performance analysis for different topology configurations with 64K pro-
cessing nodes. Throughput is measured in flits/cycle/node. Throughput/cost is
measured in flits/cycle/node/$. 68

Percentage of paths that use one or two intermediate nodes when at most two
intermediate nodes are used: (a) 1,024-node 2-D network and (b) 1,000-node
3-Dnetwork. e 107

Comparison of the number of switching elements for the torus topology 124

How DBBM assigns destinations to node 0 VCs in a 4 x 4 mesh with 4 VCs. . 131
How IODET assigns destinations to node 0 VCs ina 4 x 4 mesh. #VCsis4 . . 133
How XORDET assigns destinations to node 0 VCs in a 4 x 4 mesh with 4 VCs. 134

Routing times (in cycles) for adaptive and OODET. 137
Number of switching elements for each routing algorithm 141
Comparison of the number of switching elements 142

How many destinations DBBM assigns to node 0 VCs in a 8 x 8 mesh with 4

XIX

XX List of Tables
11.2 How IODET assigns destinations to node 0 VCs in a 8 X 8 mesh. #VCsis4 . . 164
11.3 How many destinations XORDET assigns to node 0 VCs in a 8 X 8 mesh with

AVECS. oo 167
11.4 Number of switching elements for each routing algorithm. 184
11.5 Comparison of the number of switching elements 185
12.1 Parameters of the different analyzed topologies. 193
12.2 How IODET assigns destinations to node 0 VCs in a 8 X 8 mesh. #VCsis4 . . 204
12.3 How many destinations XORDET assigns to node 0 VCs in a 8 x 8 mesh with

AVCs. .« o e 207
12.4 Cost—performance analysis for different topology configurations with 64K pro-

cessing nodes. Throughput is measured in flits/cycle/node. Throughput/cost is
measured in flits/cycle/node/$. 217

Abbreviations and Acronyms

Adp Adaptive

HoL Head of Line

KNS k-ary n-direct s-indirect
IODET In Order DETerministic routing

OODET Out of Order DETerministic routing
XORDET XOR DETerministic routing
XORADAP XOR ADAPtive routing

VC Virtual Channel

XX1

Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation for this thesis. First, we
describe the problem that justifies the development of this thesis. After that, some tasks are

proposed in order to achieve the main purposes of this thesis.

2 Chapter 1. Introduction

1.1 Motivation and Justification

The computing power required by statistical and scientific problems is continuously increasing.
Due to this, supercomputers are used to resolve these problems. Nowadays, most supercomput-
ers are based on clusters of computers. The topmost machines of the top 500 supercomputer list
[1] are being built up by using hundreds of thousands of processing nodes. All these processing
nodes work jointly to solve a given problem in as less time as possible. For this joint work, they
need an interconnection network that allows all the processing nodes to share data among them.
This communication among all the processing nodes must be as efficient as possible because
it strongly impacts the performance of the whole system. Transmission time of data across the
interconnection network adds up to the processing time, impacting the time required to run the
applications. Therefore, the performance of this interconnection network must be taken into

account when designing a supercomputer.

Three of the most important design issues of interconnection networks are the topology, the
routing algorithm and the switching technique [2, 3]. Topologies define how the components
of the system are connected. The routing algorithm determines the path that is followed by
packets from their source to their destination node. Switching techniques describe how packets
are stored and forwarded to the next routing component. In this thesis, we focused on virtual
cut-through, where the buffers within the routing component must have enough space to store a
complete packet, although they do not need the complete packet to forward it to the next routing

component.

To evaluate different interconnection network configurations, measures like latency or through-
put are often used. Throughput is the amount of data that the network can deliver by time unit.
On the other hand, latency is the time that a packet needs to reach its destination. This time
can be divided into two parts. The first is the time taken by the packet to reach its destination
in the absence of network traffic. The second part would be due to network congestion due
to existing traffic. One of the effects created by the congestion is the so-called Head-of-Line
blocking, where the packet at the head of a queue blocks, causing the remaining queued packets
can not advance, although they could advance if they were at the head of the queue because the

demanded resources are free.

Due to the large size of current supercomputers, these metrics need to be complemented by other.

Nowadays, there are a large amount of components that increase the cost of the network. For this

Chapter 1. Introduction 3

reason, the design of the interconnection network must be also aware of the cost, and this cost
should not disproportionately increase with the network size. Moreover, the higher the number
of network components, the higher the probability of failure. Therefore, the capability of the
network to tolerate failures is also extremely important, as it must affect as little as possible the

network performance and cost.

1.1.1 Topologies

The topology features heavily impacts the network performance and cost. Network latency de-
pends largely on the network diameter, which measures the maximum distance between two
nodes of the topology using the shortest possible path between them. On the other hand, the
maximum throughput reachable by the network is limited by the bisection bandwidth. There-
fore, these aspects must be considered when a designer has to choose a network topology or
when (s)he has to develop a new one because performance will highly depend on them. There
are other factors to consider by the designer, as an easy implementation and the cost of the
network. It is quite common to use regular structures to simplify their implementation and the
possibility of expanding the network. Among the different taxonomies of regular topologies, the

most commonly-used one divides them into direct and indirect topologies [2, 3].

1.1.1.1 Direct Topologies

In this case, each node is composed by its own router and its processing node in direct topologies.
This router connects the node to a subset of the nodes of the network through point-to-point
links. This kind of topologies usually adopt an orthogonal structure, where nodes are organized
in an n—dimensional space. Each node has at least one link in each dimension, being regularly
organized through all dimensions. Therefore, traversing one link produces a displacement in
only one dimension. This design offers symmetry and regularity which greatly simplify its
implementation and the routing algorithm. The most commonly—used direct topologies are the
mesh, the torus and the hypercube. They are usually referred to as k—ary n—cubes. In what
follows, to distinguish the topology parameters of both direct and indirect topologies, we will
refer to this topology as kg—ary ng—cubes!. In this case, kq represents the number of nodes in
each one of the ny dimensions. The total number of nodes in the system is given by N = k™.

These nodes are labeled by an identifier with as many components as topology dimensions

[T3R1}

"The subscript “4” stands for direct.

4 Chapter 1. Introduction

(©)
® @ o ®)
(a)
FIGURE 1.1: Some of the most commonly-used direct topologies.
TABLE 1.1: Parameters of the different direct topologies.
Topology | Diameter | Bisection width |
Mesh ’I’Ld(k‘d - 1) 2N/k‘d
Torus nq(kq/2) AN /ky
Hypercube ng N
{Pny—1,--.,po}. The component associated to each dimension ranges from 0 to k; — 1 (i.e.,

nodes are numbered from (0,0, ..., 0) to (kq—1,ks—1, ..., kg—1)). The identifiers of neighbor
nodes in a given dimension only differ in the component corresponding to that dimension, while
the remaining components have the same value. For instance, two nodes p y p’ are neighbors in

the = dimension, if and only if p, = p/, £ 1 and p; = p/, for the rest of dimensions.

In a mesh topology, Figure 1.1.(a), all the nodes with the same coordinates except one compose
a linear array. In torus, Figure 1.1.(b), all the nodes with the same coordinates except one form a
ring. The hypercube is a particular case of a mesh where there are only two nodes in each linear
array (kg = 2), which forces the number of dimensions (1) to be large enough to interconnect
all the nodes of the system (i.e., ng = loga V). Direct topologies have been used in several of the
most powerful supercomputers, being the 3D-torus the most widely used one. For instance, the
number two (Titan) and number three (Sequoia) of the November 2015 Top500 supercomputer

list [1] are based on a torus.

For a given number of processing nodes NV, direct topologies provide a richer connectivity as
the number of dimensions increases. As the hypercube has the largest possible number of di-
mensions, it provides a better connectivity than meshes and tori, but at a higher cost, since it

uses more links and it has a higher router degree (number of ports of the router).

Chapter 1. Introduction 5

Table 1.1 shows the diameter and bisection width for these topologies. For a constant number
of processing nodes (N = k:gd), diameter is increased as the number of dimensions (n,) is de-
creased or, in other words, the number of nodes per dimension (k) is increased. The increase of
the distance traversed by packets also increases the probability of contention with other packets
that are also crossing the network, which reduces network throughput. Moreover, the bisection
bandwidth is decreased with a lower number of dimensions. From this point of view, it may
seem interesting to maximize the number of dimensions of direct topologies for a given number
N of processing nodes. Nevertheless, other issues have to be considered. Direct topologies with
up to three dimensions can be implemented by using relatively short links in the 3-D physical
space and with an acceptable wiring complexity, regardless of the size of the system. However,
implementing a topology with more than three dimensions implies increasing the length of the
links, since we have to map all the dimensions to the 3-D physical space. In addition, they also
require using routers with a higher number of ports (two bidirectional ports per each dimen-
sion are required, one per each direction in that dimension). So, direct topologies have some
limitations for the implementation of large-scale machines, since they would require using a
large number of nodes per dimension (k;), which increases the diameter of the network and also
the probability of contention, which increases message latency of communications and reduces

network throughput.

1.1.1.2 Indirect Topologies

In indirect topologies, the processing node and the router are two different components. There-
fore, the processing nodes are not able to route packets. In this kind of topologies, the routers
are called switches. In this case, the processing nodes are connected to the network through
switches. However, unlike direct topologies, there are switches in the network that are con-
nected only to other switches, without connecting to any processing node. In fact, most of

switches are not connected to any processing node.

The most common indirect topologies are the multistage interconnection networks (MINs),
where the switches are organized in stages. The processing nodes are connected to the switches
of the first stage and the switches from different stages are connected using any pattern in order
to offer full connection between processing nodes. MINs can be divided into unidirectional and
bidirectional MINs, depending on the used links. In UMINSs the last stage is connected to the

processing nodes and packets must traverse all stages by an unique path. The diameter in this

6 Chapter 1. Introduction

TABLE 1.2: Parameters of the different direct topologies.

| Topology Diameter | Bisection width|

k—ary n—tree 2n; N
RUFT n; N

case is always equal to the number of stages. On the other hand, BMINs have two routing steps,
packets first travel upwards the network and then downwards. In the worst case, the packets
traverse all stages twice. But, if the packet is able to reach the destination in any stage when it is
going upwards, it can start to go downwards. Besides that, BMINSs offer several different paths

to reach a given destination from a given source.

Different MINs have been proposed in the literature, depending on the connection patterns that
have been used to interconnect the adjacent stages. The most widely—used MIN in commercial
systems is the fat—tree topology [4], which is a BMIN. However, there are other more recent
proposals, like the one proposed in [5] or [6], where the second one is focused on fault tolerance.
Most of the high—performance interconnect vendors as Mellanox (manufacturer of the Infiniband
technology) [7] or Myricom (manufacturer of Myrinet) [8] recommend to use a fat—tree and
provide specific switches for building this topology. Moreover, it has been used in some of the
most powerful supercomputers. For instance, the Tianhe 2 and the Tianhe 1A supercomputers,
the number one and twenty six, respectively, in the November 2015 Top500 list [1] use this

topology.

One of the most used implementation of a fat—tree topology is the k—ary n—tree. In what follows,
to distinguish the topology parameters of both direct and indirect topologies, we will refer to this
topology as k;—ary n;—tree®. k; is the number of links that connect a switch to the next or the
previous stage, and n; is the number of stages of the indirect network. So, each switch has 2k;
bidirectional ports in fat—trees (i.e. using switches with d x d ports, k; is d/2). A fat-tree requires
at least logy, N stages to interconnect /N processing nodes. Each stage has N/k; switches, with

a total of (N/k;)logy, N switches and N = k;" processing nodes.

Table 1.2 shows the diameter and bisection bandwidth for some of these topologies. In k—ary
n~—tree, the diameter of the network depends only on the number of stages, and it is given by
2n;, that is 2logy, N, as in the worst case a packet must traverse upwards all stages and all stages

downwards. Notice that, for a UMIN, the distance traversed by packets is always n;, regardless

[T

>The subscript “;” stands for indirect.

Chapter 1. Introduction 7

of the source and destination processing nodes. In summary, for a fixed number N = k;" of
processing nodes of a MIN, when the number of stages n; is increased, k; is decreased but the
distance that packets have to traverse to reach the destination is increased. Thus, it should be
taken into account that, by using high-degree switches fewer switches will be required, but each
of them will be more complex. On the contrary, if we use low—degree switches, we will require

more switches, but much simpler.

1.1.1.3 Other Topologies

There have been attempts to design other topologies, but they have been never or seldom used
in commercial products or in supercomputers. For example, in [9], WK-recursive topology was
presented for interconnection networks and, later, for on—chip networks ([10]). Moreover, this

topology has difficulties to guarantee deadlock freedom in the routing algorithm.

The flattened-butterfly topology was presented in [11]. This topology is obtained by combining
the switches that are at the same position in each stage of a conventional butterfly MIN. As a
result, we obtain an n-dimensional direct network where the nodes of the same array are not
connected by a ring like in a torus. Instead of that, they are fully connected. This topology is
similar to a generalized hypercube but, in this case, attaching several processing nodes to the
same switch. This fact is called concentration, and is used in several topologies. Like in the

generalized hypercube, the fact of having this connectivity highly impacts their cost.

Other works are based on hierarchical topologies. They usually use two different subnetworks,
a local and a global one. Hierarchical designs are expected to have a higher latency and smaller
throughput, since both networks must be traversed for most of the source—destination pairs. One
example of this kind of topologies is proposed in [12], using as local network a simple bus,
and a mesh as global network. The authors of [13] propose a tool to select the most suitable
topology for a given network design. The tool explores the design space of hybrid Clos-torus
networks. In particular, the explored designs are hierarchical topologies, where local networks
are Clos networks and they are connected by a global torus network. Another recent hierarchical
topology is the DragonFly [14, 15]. This topology groups the different routers in virtual routers
to increase the effective radix of the network. To do this, it uses two different networks, one
intra—group (local), and another one inter—group (global). The authors recommend to use a

non-minimal global adaptive routing algorithm to balance the load across the global channels.

8 Chapter 1. Introduction

These global channels, which link different groups, are long links, so that a high latency can be

expected.

In [16] a topology that combines several tori networks is proposed. The proposal focus on large
supercomputers, but its applicability is limited to 2'¢ processing nodes and its wiring layout is
complex for large machines. The proposal starts from a 2-D torus and provides bypass links in
the diagonal direction as many times as needed. This proposal does not improve the number
of hops in a single dimension, since no new links are added to connect nodes of the same
dimension, but reduces the number of hops when traversing several dimensions. In addition,

this topology has the same problem with deadlock-free routing than the WK-recursive one.

Other works propose the combination of several topologies, to reach the good properties of both
of them. Most of them have been proposed for on—chip networks and therefore the target is
different to ours. For example, in [17], each core is connected to two different tree networks
in an on-chip environment in order to overcome the poor performance provided by trees. This
proposal is not suitable for large machines due to the complexity of the cable layout and the poor
performance achieved even with two trees. Another topology is the mesh of trees (MoT) intro-
duced in [18] and later used also in NoCs [19]. It is based on an n—dimensional topology where
the nodes of a given dimension are connected using a tree. This results in a topology with very
poor expected performance due to using a simple tree for connecting the nodes of a dimension.
The Bcube [20] and Hypercrossbar network [21] were also proposed. Each processing node is
connected to several dimensions by using several NICs. A switch is used to connect the pro-
cessing nodes of the same dimension. However, routing is performed through end-processing
nodes, by ejecting packets from the network through a NIC and later reinjecting them through

another one.

1.1.2 Routing Algorithms

The routing algorithm is an important design parameter in interconnection networks. It estab-
lishes how the packets cross the network in order to reach their destination. The chosen path
could highly aftect the performance depending on the traffic pattern that the network is handling.

For this reason, choosing the appropriate routing algorithm is extremely important.

Routing algorithms can be categorized in different ways. For example, a routing algorithm can

be minimal routing or non-minimal routing. With minimal routing, a packet only performs the

Chapter 1. Introduction 9

strictly needed hops to reach its destination node. In other words, all paths given by the routing

algorithm between a source node and its destination node are minimal paths.

Orthogonally, routing algorithms can be also classified depending on the number of paths that
it offers for a given pair of nodes. If there are multiple available paths, the traffic flow is able
to change, adapting to unforeseen network issues. However, if only one path is returned by the
routing algorithm for a source-destination pair, with a deterministic behavior, a change on the
status of the network could highly affect its performance. According to this criteria, the routing

algorithms can be divided into adaptive and deterministic algorithms.

When designing a routing algorithm, we have to take account that the algorithm has to be
deadlock-free and livelock-free. When a deadlock appears in the network, packets are blocked
and they can never advance. However, in livelocks, packets can advance but they are not able to

reach their destination.

Ensuring deadlock and livelock freedom is more difficult when using adaptive routing algo-
rithms. There are different techniques to cope with these issues. Most of them use extra re-
sources, like virtual channels, to solve the problem. For instance, the Duato’s protocol allows
the use of one or more virtual channels without restrictions, provided that there are one or more
escape channels that are deadlock-free. On the other hand, there are other techniques where
extra resources are not needed. They usually introduce some restrictions, like Dimension Order
Router (DOR) for direct topologies, that forces to cross the network in a given order, or bubble
technique for rings, that requires buffer space available for more than to packets to allow new

packet injections.

One of the most widely used adaptive routing algorithm for direct topologies is the fully adap-
tive routing algorithm that has several adaptive virtual channels, that allows packets to cross
dimensions in any order, and on escape channels with DOR. Obviously, this algorithm is valid
for orthogonal topologies. At the same time, DOR is widely used as a deterministic routing
algorithm in orthogonal topologies. Besides this, torus topologies need to solve the deadlock

problem in their rings, for instance using the bubble technique.

For k—ary n—tree topologies, the adaptive routing algorithm does not need extra virtual channels.
In this case, the packet can could go through any port in the first phase, when the packet goes
upwards. In the second phase, when the packet goes downwards, a deterministic algorithm must

be used, since there is only one path to the destination node. DESTRO [22] is a deterministic

10 Chapter 1. Introduction

routing algorithm focused on k—ary n—tree topologies. In this case, the algorithm offers only
one path for each source-destination pair. Moreover, this algorithm helps to avoid the Head of

Line (HoL) blocking effect as it classifies different destinations to different ports.

1.1.2.1 Classifying Destinations into VCs

As mentioned above, adaptive routing provides more flexibility to forward packets in the net-
work through the different VCs in direct or dimensional topologies. This routing freedom
has two opposite effects. The positive one is that temporally congested network areas can be
avoided. However, the negative effect is that packets with different destination nodes may be
highly interleaved in the switch queues, which significantly increases the HoL.-blocking effect,
which could highly degrade network performance. For instance, if there is a hotspot node,
where a lot of traffic is forwarded to this hotspot node, an adaptive routing algorithm freely
spread all this hotspot traffic throughout the network, blocking output channels and generating
the HoLL-blocking effect. As deterministic routing does not offer such flexibility, its contribution

to increase the HoL-blocking effect is lower.

Some authors have proposed algorithms that are able to reduce the HoL-blocking effect using
VCs. To do this, the authors propose to classify destinations into virtual channels using some
rules. These algorithms can do it dynamically or statically. In this thesis, we have focused
on static algorithms. In general, they use this classification in conjunction with a deterministic

routing algorithm like DOR.

For instance, in [23], VOQnet was presented. This algorithm associates each destination to a
different virtual channel. Therefore, it needs as many virtual channels as destination nodes.
Although this algorithm completely removes the HoL-blocking effect, it requires a high number
of virtual channels that grows with the size of the network, and this is unaffordable in many
cases. However, it is used for comparison purposes since it provides an upper bound that could

be achieved by completely removing HoL-blocking from the network.

VOQsw was proposed in [24] as a simplification which needs less resources. In this case, the
algorithm only solves the local congestion inside the router. It requires as many virtual channels
as the number of output ports of the switch. In VOQsw, the packet is assigned to a virtual

channel depending on the next output port that the packet will use. VOQsw does not solve

Chapter 1. Introduction 1
OO OO0 [wo
0O e ®® |
® @ ® @@ 6
CRcRcRcRCRCRE RS,
@066 6
OO0 6 6 6

FIGURE 1.2: How DBBM assigns destinations to VCs in a 8 x 8 mesh with 4 VCs.

TABLE 1.3: How many destinations DBBM assigns to node 0 VCs in a 8 x 8 mesh with 4 VCs.

Dim | VC#0 | VC#1 VC#2 VC#3
X 8 16 16 16
Y 7 No dest. | No dest. | No dest.

global congestion, so, it leads to a worse classification of packets than VOQnet and it is also not

scalable, as the number of required VCs depends on the switch degree.

In order to be more scalable requiring less resources, DBBM was introduced in [25]. This al-
gorithm selects virtual channels by using some bits from the destination identifier. By default,
it uses the least significant bits required to choose a virtual channel, that is, it uses the destina-
tion identifier modulo the number of virtual channels. Although it works quite well in indirect
networks, when using DBBM in a torus or a mesh, it leads to an unbalanced classification of
destinations. For instance, in a 2D torus or mesh, all the nodes in a given column are assigned
to the same virtual channel as shown in Figure 1.2 for an 8x8 mesh with 4 virtual channels per

physical channel.

Indeed, Table 1.3 shows the number of destinations assigned to different VCs for a node of the
network (node 0). For instance, virtual channel #0 of the X -dimension is used to reach 8 nodes
(the 4" row), while virtual channel #1 of the X -dimension is used to reach 16 nodes (the 1% and
5t row). As it can be seen, all the virtual channels in the Y -dimension are never used but one

per port. This lack of classification in the last dimension (Y') would lead to a huge congestion

12 Chapter 1. Introduction

01234567 01234567

Dest. Id Dest. Id

vC VvC

(a) DBBM (b) BBQ

FIGURE 1.3: Implementation of virtual channel selection for a 256-node 2-D network and 4
VCs.

due to the HoL-blocking effect that, at the end, could be propagated to the whole network due

to upstream flow control pressure.

On the other hand, the implementation of this mechanism is very simple, provided that the
number of VCs is a power of two. In that case, the modulo operation by the number of virtual
channels is as easy as selecting the log(#V C's) least significant bits of the packet destination
(see Figure 1.3(a)). Besides that, the assignment to a virtual channel only depends on the packet
destination. Therefore, packets use the same virtual channel while they traverse the network.
This is a nice feature, as virtual channel assignment can be done once at the source node, since
the rest of nodes that a packet crosses across the network merely forwards the packet through the
same virtual channel from which the packet arrived to. Indeed, this fact also leads to a very low
switch complexity. Because there is not need to move packets in a switch from one input virtual
channel to another output virtual channel with different identifier. The internal switch of the
nodes can be implemented as one independent switch per virtual channel, instead of deploying

a fully-connected crossbar.

To solve the problem with the poor classification in a 2D torus or mesh, BBQ mechanism [26]
was proposed. This is a specific case of DBBM, where the destination identifier is also used
to choose the virtual channel for each packet. Indeed, it uses the destination log(#V C's) most
significant bits (see Figure 1.3(b)). That is, BBQ divides the network in as many horizontal
bands as virtual channels, in such a way that the nodes in each column are spread as much as
possible among the virtual channels. However, the problem is that all the nodes inside each
horizontal band use the same virtual channel, and, therefore they may suffer from HoL-blocking
in the first dimension. As in DBBM, BBQ never changes the virtual channel of a packet, and
it can be assigned once at injection time, keeping the same virtual channel along its path in the

network.

Chapter 1. Introduction 13

1.1.3 Fault Tolerance

As mentioned above, the size of the network is rapidly growing and thus the probability of failure
of any component. In order to keep the connectivity of the network in presence of failures,

several solutions have been proposed.

Some solutions choose to replicate all network elements, and use these additional elements as
spare components. However, these solutions are extremely expensive. Other solutions are fo-
cused on modifying the routing algorithm to be able to reach the destination nodes by alternative
paths, avoiding regions or components with failures. There are two different categories of fault
tolerant techniques that are based on routing configuration. The first category reconfigures the
routing tables when a failure occurs. In this case, the routing tables have to be updated with
the new topology after the failure [27-30]. Using this technique, the network can tolerate any
number of faults without requiring extra resources [31], as long as the network is still connected.
However, this technique needs to use topology-agnostic routing algorithms because the resulting
topology is irregular. Therefore, the performance may be affected. That is, they do not consider

the specific characteristics of the topology, thus, they often provide a worse traffic balance.

On the other hand, the second category covers fault-tolerant routing algorithms. Many algo-
rithms for interconnection networks that are able to tolerate failures have been proposed, and
specially for direct network topologies like tori and meshes. Some of these routing algorithms
do not require extra resources, like [32, 33] or [34]. The first two methods are able to tolerate
only a few faults for low dimensional meshes, while the third method can offer more tolerance
against faults, but needs extra virtual channels in a torus. However, these routing algorithms
provide a poor traffic balance as a lot of traffic is directed towards a single link, which can be
easily saturated. There are other algorithms that require adding some resources, like virtual
channels. Sometimes, the number of virtual channels depends on the number of tolerated faults
[35] or the number of dimensions of the topology [36]. Other of these algorithms are based on
disabling faulty regions [37—41] or individual nodes [42—44] to route the packets around these
fault regions. However, to do this, these algorithms disable healthy nodes. Some authors use
the technique provided by Valiant [45] to implement a routing algorithm that uses intermediate
nodes to avoid faults [46]. This technique requires a few virtual channels but it does not disable

healthy nodes.

14 Chapter 1. Introduction

1.2 Goals and Methodology of this Thesis

The work performed in this thesis has been developed following the typical steps followed in a

research work.

First, we studied the state of the art. We have reviewed the previous work devoted to the field of
research in order to obtain the required knowledge to develop this thesis. In particular, we have

acquired background on topologies, routing and fault tolerance.

Next, we identified some problems to be solved and/or aspects that could be improved, also

developing new proposals.

In particular we proposed a new family of hybrid (direct-indirect) topologies that is able to
connect a huge number of nodes, trying to combine the best features of both direct and indirect
topologies. The new family of topologies is referred to as k—ary n—direct s—indirect (or KNS
for short). Routing algorithms for the new family of topologies were also developed. A fault-

tolerant routing algorithm for the KNS was also developed.

Although initially intended for the KNS topology, we have also developed new routing algo-

rithms for torus and meshes that are designed to reduce the HoL-blocking effect.
Once the new proposals are done, they must be evaluated and compared with existing ones.

To do so, we have prepared the necessary framework environment to implement the different
proposals which are presented in this thesis. We have extended the simulator of our research
group (Parallel Architecture Group (GAP)) which was originally developed in Modula-2. We
recoded this tool in the C programing language because of the restrictions of Modula-2. We
also modeled some of the most well-known topologies and routing algorithms in this simulator,
including torus, meshes, k—ary n—tree, and flattened butterfly. This framework was used to
evaluate the topology and the routing algorithms proposed in this thesis, also performing an

in-depth comprehension with previous existing work.

1.3 Thesis Outline

Following the current UPV rules, this thesis has been written as a compendium of articles.

Therefore, the rest of the thesis is organized as follows:

Chapter 1. Introduction 15

The Chapter 2 enumerates the conference or journal papers where the different proposals are

included.

Chapters 3 to 11 include the different publications related to the work done in this thesis. They

have been adapted to the required formatting style.
In Chapter 12, a general discussion of results of the main contributions of the thesis is presented.

Finally, in Chapter 13, some conclusions and ideas for future work are presented.

Chapter 2

Summary of Publications

Most of the proposals developed in this PhD thesis have been published in different conferences

and journals. This chapter enumerates these publications

2.1 KNS topology

First, we developed the KNS topology and analyzed their different configurations. We compared
their results obtained with other well-known topologies in order to obtain the benefits of using
KNS topologies. The analysis does not consider only performance results but it also considers

the cost of the network. This work resulted in two publications:

e R. Pefiaranda, C. Gémez, M.E. Gémez, P. Lépez, and J. Duato. A New Family of Hy-
brid Topologies for Large—Scale Interconnection Networks. In //th IEEE Interna-
tional Symposium on Network Computing and Applications (NCA). This publication can

be found in Chapter 3.

e R. Pefiaranda, C. Gémez, M.E. Gémez, P. Lopez, and J. Duato. The k-ary n-direct
s-indirect Family of Topologies for Large-Scale Interconnection Networks. In The

Journal of Supercomputing. This journal article can be found in Chapter 4.

17

18 Chapter 2. Summary of Results

2.2 Fault tolerance in KNS topology

We also focused on KNS fault-tolerance. We designed a fault-tolerance mechanism for KNS
topologies which is able to tolerate several faults while achieving a low network performance

degradation:

e R. Pefiaranda, Ernst Gunnar Gran, Tor Skeie, M.E. Gémez, and P. Lépez. A New Fault-
Tolerant Routing Methodology for KNS Topologies. In The 2nd IEEE International
Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data

Era (HiPINEB).. Please see Chapter 5.

e R. Pefiaranda, M.E. Gémez, P. Lopez, Ernst Gunnar Gran, and Tor Skeie. A Fault-
Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes. In
Journal of Concurrency and Computation: Practice and Experience. This journal article

can be found in Chapter 6.

2.3 HoL-blocking reduction routing

Regarding HoL-blocking reduction in direct topologies, we designed three different routing
algorithms. The first algorithm was IODET, which led to two different publications in different

conferences:

e R.Pefiaranda, C. Gémez, M.E. Gémez, P. Lopez, and J. Duato. IODET: A HoL-blocking-
aware Deterministic Routing Algorithm for Direct Topologies. In IEEE [8th Inter-
national Conference on Parallel and Distributed Systems (ICPADS). 1t is presented in
Chapter 7.

e R. Pefiaranda, C. Gémez, M.E. Gémez, P. L6pez, and J. Duato. Deterministic Routing
with HoL-Blocking-Awareness for Direct Topologies. In International Conference on

Computational Science (ICCS). It can be found in Chapter 8.

The second routing algorithm, XORDET, was designed as an improvement of IODET and it was

published in:

Chapter 2. Summary of Results 19

e R.Pefaranda, C. Gémez, M.E. Gémez, P. Lépez, and J. Duato. HoL-blocking Avoidance
Routing Algorithms in Direct Topologies. In IEEE International Conference on High

Performance Computing and Communications (HPCC). It is shown in Chapter 9.

The last designed algorithm, the adaptive one, is XORADAP. This algorithm was presented in:

e R. Pefiaranda, C. Gémez, M.E. Gémez, and P. Lépez. XORAdap: A HoL-blocking
aware adaptive routing algorithm. In 23rd Euromicro International Conference on Par-

allel, Distributed and Network-Based Processing (PDP). Please see Chapter 10.

Both contributions were merged, explaining the use of XOR operation to reduce the HolL-
blocking effect and including an extended evaluation analysis. We have submitted a journal

paper, which is currently under review, in:

e R.Pefiaranda, C. Gémez, M.E. Gémez, and P. L6pez. XOR-based HoL-blocking reduc-
tion Routing Mechanisms for Direct Networks. In Parallel Computing. This journal

article is shown in Chapter 11.

Chapter 3

A New Family of Hybrid Topologies for

Large—Scale Interconnection Networks

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Maria Engracia Gémez, Pedro Lépez, Jose Duato (Universi-

dad Politécnica de Valencia).
Type: Conference.

Conference: 11th IEEE International Symposium on Network Computing and Applications

(NCA).
Location: Cambridge, MA, USA.
Year: 2012.
DOI: http : //dzx.doi.org/10.1109/NC A.2012.22

URL: http : //ieeexplore.iece.org/zpls/abs_all.jsp?arnumber = 6299098

21

22 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

Abstract

In large supercomputers the topology of the interconnection network is a key design issue that
impacts the performance and cost of the whole system. Direct topologies provide a reduced
hardware cost, but, as the number of dimensions is conditioned by 3D wiring restrictions, a high
number of nodes per dimension is used, which increases communication latency and reduces
network throughput. On the other hand, indirect topologies can provide better performance for
large network sizes, but at the cost of a high number of switches and links. In this paper, we
propose a new family of topologies that combines the best features of both direct and indirect
topologies to efficiently connect an extremely high number of nodes. In particular, we propose
an n—dimensional topology, where the nodes of each dimension are connected through a small
indirect topology. This combination results in a family of topologies that provides high per-
formance, with latency and throughput figures of merit close to indirect topologies, but with a
lower hardware cost. In particular, it is able to double the throughput obtained per switching
element of indirect topologies. Moreover, the layout of the topology is much simpler than in
indirect topologies. Indeed, its fault—tolerance degree is equal or higher than the one for direct

and indirect topologies.

3.1 Introduction

The topmost machines of the top 500 supercomputer list [1] are composed of hundreds of thou-
sands of processing nodes. The performance of the machine is strongly impacted by the in-
terconnection network among the processing nodes. The main design challenges of intercon-
nection networks are to provide low latency and a high network throughput while providing a
simple implementation at a reduced hardware cost. Two of the most important design issues
of interconnection networks are topology and routing algorithm [2, 3]. Topology defines how
the processing nodes are connected, and the routing algorithm determines the path followed by
packets from their source to their destination node. The topology of a network also impacts
to a large extent its cost. Topologies usually adopt a regular structure to simplify the rout-
ing algorithm, their implementation and the possibility of expanding the network. The most

commonly-used taxonomy classifies topologies in direct and indirect networks[2, 3].

Direct topologies adopt an orthogonal structure where nodes are organized in an n—dimensional

space. The nodes are connected in each dimension in a ring or array fashion. 2D or 3D direct

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 23

topologies are relatively easy to build as each topology dimension is mapped to a physical di-
mension. Direct topologies with more than three dimensions imply not only increasing its wiring
complexity but also the length of its links when they are mapped to our 3D physical space, which
leads to use a higher number of nodes per dimension, increasing the communication latency and

negatively impacting performance.

The alternative is to use an indirect topology. The most common indirect topologies are multi-
stage indirect networks (MINs) where switches are organized as a set of stages. Indirect topolo-
gies usually provide better performance for a large number of nodes than direct topologies.
However, these better results are achieved at the cost of using a high number of switches and
links, and increasing the wiring complexity, which grows with its size, unlike direct topologies,

where complexity grows with the number of dimensions.

In this paper, we propose a new family of hybrid topologies that combines the best features of
direct and indirect topologies. We propose an n—dimensional topology where the nodes of each
dimension are connected by small indirect networks, thus reducing the communication latency in
each dimension. The small size of this indirect topology allows a reasonable wiring complexity
opposite to large indirect topologies. This combination results in a family of topologies that
provides high performance, with latency and throughput figures of merit close to the ones of
indirect topologies, but with a reduced hardware cost. In particular, it is able to double their

throughput per switching element.

The rest of the paper is organized as follows. Sections 3.2 and 3.3 present background and
related work, respectively. Section 3.4 and 3.5 describes the proposed family of topologies
and the routing algorithms, respectively. Section 3.6 evaluates the new topologies. Finally,

conclusions are drawn.

3.2 Direct and Indirect Topologies

In direct topologies, each node has its own router that connects it to its neighbor nodes by means
of point-to-point links. Direct topologies usually adopt an orthogonal structure, where nodes are
organized in an n—dimensional space, each node having at least one link in each dimension.
The symmetry and regularity of these networks greatly simplify their implementation and the
routing algorithm. In what follows, to distinguish the topology parameters of both direct and

indirect topologies, we will refer to this topology as ks—ary ng—cubes, where k, is the number

24 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

of nodes in each of the ny dimensions. The total number of nodes in the system is given by
N = k4. The most commonly—used direct topologies are meshes, tori and hypercubes. In a
mesh topology, all the nodes of a dimension compose a linear array, and, in torus, a ring. The
hypercube is a particular case of a mesh where there are only two processing nodes in each
dimension (k4 = 2), which forces the number of dimensions to be ng = logsN. The torus has
been used in several of the most powerful supercomputers (i.e. current numbers 1 and 3 in the
top500 list, k Computer and Jaguar). For a given number of nodes N, direct topologies provide
a richer connectivity as the number of dimensions increases, but at a higher cost, since more
links and a higher router degree are required. Moreover, other issues have to be considered.
Implementing a topology with more than three dimensions in our 3D physical space implies
increasing the length of the links, the physical layout and the switch degree. Due to this reason,
the topology design could lead to use a large number of nodes per dimension (%), increasing the
diameter of the network and the probability of contention, thus negatively impacting network

performance.

The alternative is to use indirect topologies where routers become independent devices known
as switches and have not necessarily an associated processing node. The most common indirect
networks are the multistage interconnection networks (MINs). In MINs, switches are organized
in a set of stages. Processing nodes are connected to the first stage, and the other stages are
connected among them using a certain connection pattern. Unidirectional MINs (UMINs) use
unidirectional switches and links, so the network is traversed by packets only in one direction.
In this case, processing nodes are also attached to the last stage and a unique path between each
source—destination pair is provided (using the minimum number of stages). Bidirectional MINs
(BMINSs) use bidirectional links and switches. So, in order to travel from a source to a destination
node, packets travel upwards the network and then downwards. BMINs provide several paths
between each source—destination pair. The most widely—used MIN in commercial products (
[7], [8] and [48]) is the fat—tree topology [4], which is a BMIN. Moreover, it has been used in
some of the most powerful supercomputers (i.e. the number 2 in the Top500 list, the Tianhe
1A supercomputer). The k—ary n—tree is the most widely—used implementation of the fat—tree
topology. In what follows, we will refer to this topology as k;—ary n;—tree. k; is the number of
links that connect a switch to the next or the previous stage, and n; is the number of stages of the
network. So, each switch has 2k; bidirectional ports. A MIN to interconnect N processing nodes
requires at least logy, N stages, each of them with N/k; switches, and N = k;"* processing

nodes. For a MIN with N processing nodes, if we use high—degree switches, we will need fewer

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 25

stages and switches connected through a simple wiring, but each of them will be more complex.
However, if we use low—degree switches, we will require more switches and stages with more
complex wiring, but switches will be simpler. In fat-trees, the diameter of the network depends
only on the number of stages, and it is given by 2n;, that is 2logy, N. So, if n; is increased,
the distance that packets have to traverse is increased. Indirect networks usually provide better
scalability than direct networks, because they provide smaller diameters and shorter latencies
for large network sizes. Nevertheless, this is accomplished at a higher cost, because they require
a high number of switches and links, and, unlike direct topologies, the complexity of network

wiring grows with its size.

3.3 Related Work

Alternative topologies to the ones presented in the previous section have been proposed in the
literature, but they have been never or seldom used in commercial products or in supercomputers.
This is the case of the WK-recursive topology [9] proposed for off—chip networks and more
recently for NoCs [10], which has difficulties to guarantee deadlock—freedom. Another very
popular topology in recent papers is the flattened—butterfly[11], which is a modification of the
MIN butterfly, resulting in an n—dimensional direct network (defined with &y and n; parameters)
where the nodes of each dimension are fully connected, similar to a generalized hypercube but
attaching several nodes (parameter py) to the same switch. This topology, like the generalized

hypercube, has a high cost, specially for large machines, which is the focus of our proposal.

Other works propose the combination of several topologies, like we do in this paper. However,
most of them have been proposed for on—chip networks and therefore the target is different
to ours. In [17], each core is connected to two different tree networks. This proposal is not
suitable for large machines due to the complexity of the cable layout and the poor performance
achieved even with two trees. A topology closer to the new family proposed in this paper is
the mesh of trees (MoT) introduced in [18] and later used also in NoCs [19]. It is based on an
n—dimensional topology where the nodes of a given dimension are connected using a tree. This
results in a variant of our family with very poor expected performance due to using a simple tree

for connecting the nodes of a dimension.

Many of the proposals for NoCs are based on hierarchical topologies. Subsets of cores are

connected by small local networks connected by a global network. This is not the case of

26 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

the family proposed in this paper, since processing nodes are connected to both topologies.
Hierarchical designs are expected to have higher latencies and smaller throughput, since both
networks must be traversed for most of the source—destination pairs. In [12], the authors propose
to use as local network a simple bus and a mesh as global network. However, this is not suitable
for large machines due to the low performance provided by buses and meshes. The authors
of [13] propose a tool to select the most suitable topology for a given design, connecting Clos
networks by a global torus. Another hierarchical topology is the DragonFly[14], which is based
on grouping routers to increase the effective radix of the network. Global channels, which link

different groups, are long and a high latency can be expected.

Finally, in [16], a topology that combines several tori networks is proposed. The proposal focus
on large supercomputers, but its applicability is limited to 2'® nodes and its cable layout is com-
plex for large machines. Bypass links in the diagonal direction reduce the number of hops when
traversing several dimensions. Moreover, this topology has problems to guarantee deadlock-free

routing.

3.4 The New Family of Hybrid Topologies

This paper proposes a new family of topologies able to efficiently connect an extremely high
number of processing nodes. We propose an hybrid topology based on combining an n—dimensional
direct network with smaller indirect topologies that connect the nodes of each dimension. There-
fore, we combine the advantages of direct and indirect topologies to obtain a family of topolo-
gies that is able to connect a high number of processing nodes while providing low latency, high
throughput and a high level of fault-tolerance, at a lower cost than indirect networks. In par-
ticular, we propose using two different kinds of switches. First, low—degree switches are used
to move packets across dimensions. We will refer to these switches as routers, and they will
have at least one processing node attached to them and as many ports as dimensions. These
routers could be part of the interconnection network but another option is to take advantage of
network interface board with routing capabilities like the ATOLL board [49], in such a way that
processing nodes, in addition to inject and receive packets into and from the network, would
also be able to receive packets that are not destined to them, routing these packets towards their
destination nodes. Additionally to these routers, the proposed topology also uses other switches

to implement the indirect networks that interconnect the nodes of each dimension.

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 27

e

Crossbar

Fat—tree

RUFT

FIGURE 3.1: An example of the new topology FIGURE 3.2: An example of the new

with n,, = 2, k, = 4 and d,, = 4. topology with iy, =2, ky, = 4, dn =
4 and p, = 2.

3.4.1 Description of the family

The newly proposed topology organizes nodes in n dimensions, like in a direct topology, but
the nodes of a given dimension are not exclusively connected with their adjacent nodes, as in
meshes and tori. Instead, all the nodes of a given dimension are directly connected by means of
an indirect network. This indirect network could be even a simple switch, if the number of nodes
per dimension is small. If the number of nodes per dimension exceeds the number of ports of the
available switches, an indirect network (i.e. a MIN) is required. Therefore, the proposed family
of topologies is defined by three parameters. Two of them are inherited from direct networks: the
number of dimensions n,, and the number of nodes per dimension k,,. The number of processing
nodes it can interconnect is given by IV = k. In addition, there is an extra parameter, m,,, the
number of stages of the indirect subnet. The number of stages (m,,) necessary to interconnect
the k,, nodes of a given dimension depends on the number of ports of the switches of the indirect
subnet (which will be referred to as d,,) and on k,,. If k,, < d,,, a simple switch is enough to
interconnect all the nodes of the dimension, and m,, will be equal to 1. On the other hand, if
kyn, > dy, a MIN with a number of stages given by logy, k,, is required. We will refer to the new
family of topologies proposed in this paper as k,—ary n,—direct m,—indirect topology, where
ky, is the number of nodes per dimension, n,, is the number of dimensions and m,, is the number

of stages of the indirect subnets.

In this paper, we have considered two different MINs to connect the nodes of a given dimension.
The first one is the well-known fat—tree topology. The second one is RUFT [5], a unidirectional

MIN derived from a fat—tree using a load—balanced deterministic routing algorithm [22].

28 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

Topology Parameters
ky—ary ny—direct my—indirect | n,, # of dimensions
kn, # of nodes per dimension
m,, | # of stages of the indirect subnet
dp, switch degree
Dn, # nodes per router

TABLE 3.1: Parameters of the topologies analyzed in this paper.

Figure 3.1 shows an example of the new topology with 2 dimensions (n,, = 2) and 4 nodes
per dimension (k,, = 4), with a total of 16 processing nodes. In this case, as the number of
ports d,, = 4 of the switches equals k,,, a crossbar is used in order to interconnect the 4 nodes.
Therefore, the network is a 4—ary 2—direct 1-indirect. However, for a higher number of nodes
per dimension, say k, = 8 and the same switch size, a MIN should be used, such as a fat-tree
or a RUFT with 3 stages and 12 4-port switches (bidirectional for the fat—tree and unidirectional

for the RUFT), implementing in this case an 8—ary 2—direct 3—indirect.

Notice that it is also possible to attach several processing nodes to the same router (known as
concentration) as shown in Figure 3.2, in which nodes and routers are shown separately. In this
case, two processing nodes are connected to each router. Only the corner nodes are drawn for
the sake of clarity. This extension introduces a new parameter on the topology family, p,,, the
number of processing elements that are connected to each router. In this case, the number of
processing nodes is given by N = p, k.. In Figure 3.2, two different switching elements with
different sizes can be distinguished. The switches (labelled with an “S”’) are only connected to
other switching elements and have a degree of k,,, whereas the routers (labelled with an “R”)
are connected on one side with processing nodes and on the other side with switches, being their

degree n,, + py.

As it can be seen in Figure 3.2, if a crossbar is used as indirect subnet, switches allow packets to
change its position in a given dimension by traversing only two links, whereas routers allow to
change the dimension. Thus, the diameter of the new topology is 2n,,. If a MIN is used instead
of a crossbar, the diameter of the network would be the diameter of the used MIN multiplied by

Ty,

Table 3.1 summarizes the parameters that define the hybrid family of topologies proposed in
this paper. Notice that only the d,, or m,, parameter is needed as the other one can be easily
derived from it and k,. The proposed hybrid topologies can take advantage of current high—

radix switches. Switches up to 64 ports are available [50], while recent works propose switches

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 29

with up to 144 ports [51]. With such switches, a small MIN with only 2 or 3 stages or even a
single switch will be enough to connect the nodes in each dimension in most cases. As the MIN

is very small, it will introduce low latency and low wiring complexity.

Hybrid topologies have several main advantages. First, they allow to reduce the diameter com-
pared to direct topologies. If we are using crossbars, the diameter of the new topology is 2n,,,
while in a mesh it is ng(ky — 1). This will lead to improve network performance, increasing the
network throughput and decreasing the latency. On the other hand, the number of switches and
links is reduced compared to an indirect topology that connect the same number of nodes (see
Section 3.6), therefore reducing the cost of the network. Finally, as the number of alternative
paths in the proposed topology is very high, it provides a higher level of fault—tolerance than

direct topologies and the same as indirect ones (see Section 3.6).

3.5 Routing Algorithms for the new Family of Topologies

In this section, we first describe the routing algorithms proposed for k,,—ary n,—direct 1-indirects
(i.e., a crossbar is used as indirect subnet), and then the ones proposed for the general case, that
is, for k,—ary n,—direct m,—indirects, using a fat-tree or a RUFT as indirect subnets. In both

cases, we provide deterministic and adaptive routing algorithms.

We will first explain how routers and switches are labeled in the new topology family. Each
router is labeled like in meshes and tori with a set of components (as many as network dimen-
sions) (ry,,—1,7n, -2, ---,71,70). Each coordinate represents the position of each router in each
dimension. On the other hand, the switches are labeled by a 2-tuple /d,p/, where d is the dimen-
sion in which the switch is located, and p is the position of that switch in that dimension (see
Figure 3.1). Notice that routers do not belong to any dimension, since they are connected to all
of them, and packets change dimension through them. On the contrary, switches allow packets

to move across a given dimension.

30 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

3.5.1 Routing in k,—ary n,—direct 1-indirect topologies

3.5.1.1 Deterministic routing

The deterministic routing algorithm for k,,—ary n,—direct 1-indirects, which will be referred to
as Hybrid-DOR, is adapted from the DOR deterministic routing algorithm for meshes. In DOR,
packets are routed through the dimensions following an established order until the destination
node is reached. At each dimension, packets traverse several routers until the movement in
that dimension is exhausted. On the other hand, as each router has two links per dimension,
packets must be forwarded in each dimension through the direction that guarantees the minimal
path. In Hybrid—-DOR, network dimensions are also crossed in an established order to guarantee
deadlock freedom. However, packets do not perform several hops at each dimension. Instead, in
Hybrid-DOR, routers directly forwards packets through the unique link of the dimension they
have to traverse. Notice also that, in k,—ary n,—direct 1—indirect topologies, it is not required
to choose the direction at each dimension, as there is only one link per dimension. Regarding
how the crossbars route packets, they just forward packets through the link indicated by the
destination component of the corresponding dimension, requiring just one hop to reach next

router.

3.5.1.2 Adaptive routing

As done in meshes, adaptive routing for k,—ary n,—direct 1—indirect topologies is accomplished
by allowing to cross the network dimensions in any order. Therefore, the routers, instead of
selecting the next dimension to forward the packet, check which dimensions approach it to its
destination and later, the selection function selects one of them following some criterion. The

routing algorithm for the crossbars is the same as the one used in deterministic routing.

As in meshes, when using adaptive routing in k,—ary n,—direct 1—indirect topologies, at least
two virtual channels (VCs) are required in the routers to avoid deadlocks[3]. One VC is used
for adaptive routing and the other one to provide a deadlock-free escape channel (for traversing
dimensions in order). In addition, two VCs are also required in the crossbar links to maintain

the routing restrictions when packets are forwarded to the routers after traversing the crossbar.

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 31

3.5.2 Routing in k,—ary n,—direct m,—indirect topologies

In this case, crossbars are replaced by small MINs. As stated above, we will consider fat—trees or
RUFTs as MINs. In order to properly identify the switches inside a given fat—tree or RUFT, we
extend the classical switch coordinates used in MINs (stage and position in that stage) to include
the coordinates of the MIN in the direct topology. In this way, the switch coordinates in k,—ary
nyp—direct m,—indirect topologies are given by a 4-tuple [d,p,e,0], where d is the dimension the
MIN belongs to, p is the position of the MIN in that dimension, e is the stage of the switch
inside the MIN, and o is the order of that switch in that stage. Remember that d and p are the

coordinates of the corresponding crossbar in a kj,—ary n,—direct 1-indirect.

Since the routers are the same regardless of the indirect topology used, its routing algorithm is
the same as the one explained for k,,—ary n,—direct 1—indirect topologies, both for deterministic

and adaptive routing. However, switch routing algorithm depends on the indirect network used.

First, we focus on the k,—ary n,—direct m,—indirect topology that uses fat-trees as indirect
subnets. Despite a fat—tree has several paths for each source—destination pair (i.e., it allows
adaptive routing), we propose to use the deterministic routing algorithm presented in [22] since
it is simple and outperforms adaptive routing for most traffic patterns [22]. Routing is composed
of two subpaths. First, the packet is sent forward to the root of the fat—tree. Once the packet
has finished this subpath, it is sent downwards to its destination. The link to be used in both
subpaths is given by the destination coordinate corresponding to the stage where the switch is
located at. Please see [22] for details. In the fat-tree subnets of the k,—ary n,—direct m,—
indirect topologies, the routing algorithm is the same, but we only use the part of the destination
identifier corresponding to the dimension the fat-tree belongs to, instead of using the whole
destination identifier. In this way, the packet is delivered to the same router that would be reached
through the corresponding crossbar in a k,,—ary n,—direct 1-indirect topology. In RUFT, there
is a unique path between each source—destination pair and packets have to cross all the stages,
reaching the last stage which is directly connected back to the processing nodes. The link to be
used in a particular switch is given by the destination component corresponding to the switch

stage. Please see [5] for details.

32 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

3.6 Evaluation

3.6.1 Network Model

We will evaluate the new family of topologies by simulation. Virtual cut—through switching with
input-output queued switches and credit-based flow control was assumed. We also assumed that
it takes 20 cycles to route a packet; switch and link bandwidth equal to one flit per cycle; and
a fly time of 8 cycles. These values were used to model Myrinet networks in [52]. In addition,
for the new topology using RUFT as indirect subnet, the fly time of the last stage long links was

assumed to be 8 cycles per stage.

Several synthetic traffic patterns were used in the evaluation, including uniform, hot-spot, and
complement. However, for the sake of brevity, we will show results only for the uniform traffic
pattern, where message destinations are randomly chosen among all destinations. Several packet
sizes were analyzed (from 16 to 512 flits). Due to space limitations, we will only show results

for 256-flit packets.

3.6.2 Evaluation Results

We compare the k,—ary n,—direct m,,—indirect family using different indirect subnets (cross-
bar, fat-tree and RUFT) against other well-known topologies such as tori, meshes, fat—trees,
and flattened-butterflies. Due to space limitations, we show here only a subset of the most
representative simulations. In particular, we only show results for deterministic routing and uni-
form traffic, nevertheless we can state from obtained simulation results that adaptive routing and
other traffic patterns lead to similar relative results to the ones presented in this paper. For the
proposed family of topologies, the algorithms are the ones presented in Section 3.5.1.1. For tori,
meshes and flattened—butterflies, DOR routing [3] is used. For fat-trees, we use the determinis-
tic routing algorithm proposed in [22]. If not stated the contrary, only one processor is attached
to each router. If several are attached, p—c notation is used, p being the number of processors
attached to each node. These networks are compared with fat—trees with the same number of

nodes (in some cases, several configurations are possible).

Figure 3.3.(a) shows the results for small networks (16 nodes) with uniform traffic. The flattened—

butterfly is the one that achieves the lowest throughput (we have selected a flattened—butterfly

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 33

3000 T T T T T : : 9000 T T
—+— Mesh %’E’Sh
——— Torus 8000 - ——— Torus —

2500 —— 4-ary 2-direct 1-indirect
—=— 4-ary 2-direct 2-indirect(FT
2000 4-ary 2-direct 2- mdlreét(leF
——<— FT 2-ary 4-tree 7 &
1500 | — FT4-ary 2-tree [/
+FB24ry3cube2«c/ //

] —*— 16-ary 2-direct 1-indirect
f 7000 - —=— 16-ary 2-direct 4-indirect(FT) 1
6000 L lg ary 2-direct 2-indirect(FT)

e -ary 2-direct 4-indirect(RUFT)
5000 F —— ﬁ_ary 2-direct 2- mdlrect(RgFT) i
FT 16-ary 2-tree

4000 E 2-ary 8-tree 7oA
— ST 4-ary 4-tree /

1000 3000

Average Message Latency (cycles)
Average Message Latency (cycles)

500 | | 2000 1
1000 1
O L L L L L L L 0 - .
0 01 02 03 04 05 06 07 038 0 01 02 03 04 05 06 07
Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)
7000 T

—+— 64-ary 2-direct 1-indirect

——— 64-ary 2-direct 6-indirect(FT)
—— 064-ary 2-direct 3-indirect(FT)
——=— 064-ary 2-direct 2- 1nd1rect(FT)
5000 ¢ 64-ary 2-direct 6-indirect@RU

6000

X

4000 r —— 64-ary 2-direct 2-indirect
—+ FT 16-ary 3-tree

3000 — = FT 2-ary 12-tree
—— FT 4-ary 6-tree
~——— FB 2-ary 10-cube 4-c
—<— FB 16~ -ary 2-cube 16 ¢

1000 [v i

2000

Average Message Latency (cycles)

0 0.1 0.2 0.3 0.4 0.5 0.6
Traffic (flits/cycle/node)

(c)

FIGURE 3.3: Network latency vs. accepted traffic with uniform traffic and deterministic rout-
ing. 2D direct topologies. (a) 16, (b) 256 and (c) 4096 nodes.

with similar hardware cost). The mesh is the second worst, and the torus and the different

configurations of our family and fat—trees obtain similar throughputs.

As we increase the number of nodes per dimension in the direct topologies (Figures 3.3.(b)
and 3.3.(c)), throughput goes down in all topologies. In the case of mesh and torus topologies,
throughput is strongly reduced as the average distance between two nodes is markedly higher
than in the other topologies. In fact, Figure 3.3.(c) does not show mesh and torus topologies
because their throughput is very low (it is an 88,66% and 83,66% lower than k,—ary n,—direct
I-indirect, respectively). The three best topologies are the ones of our family that use a crossbar
or a fat—tree to connect the different nodes of a dimension. The other topologies obtain results
halfway these topologies and the direct ones. Notice that each topology has a different hardware
cost, which is evaluated in following sections. In Figures 3.3.(b) and 3.3.(c) we can also see
that, if we decrease the number of stages in the MINs of the k,—ary n,—direct m,—indirects,

the arity of the switches is increased, and a lower latency should be obtained. The plots show

34 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

10000 : . 7000 : :
= — <%\‘/[esh = —+— Mesh
3 9000 - —~— Forus 1 9 6000 - Torus |
2 8000 - — 6-ary 3-direct 1-indirect 2 —*— 8-ary 4-difect 1-indirect _
2 ——=— 16-ary 3-direct 4-indirect(FT) 2 ——=— 8-ary 4-direct 3-indirect(FT)
Z 7000 - 6-ary 3-direct 2-indirect(FT) 1 z 5000 ¢ 8-ary 4-ditect 3-indirectRUFT) |
§ 6000 - 6-ary 3-direct 4-indirec¢RUFT)] § —=&— FT 16-ary/3-tree
3 —— l6-ary 3-direct 2-indirect(RUF Ty 5 4000 r —<— FT 2-ary 12-tree " | q
o 5000 + —=— FT I6-ary 3-tree # b 4 o —=— FT 4-ary p-tree ,
%ﬁ —— FT 2-ary 12-tree / %ﬂ 3000 — + FB2-ary/ll-cube 2-¢ Vi i
8 4000 - —o— fT 4-ary 6-tree 5 7 z —— FB 4-ary/5-cube 4-¢
= 3000 - — FBd4-ary 5-cube 4-c /[J = | — FB8-ary3-cube 8% / A]
o —— /FB 8-ary 3-cube & 4 y 2000 YAy’
] 2000 1]
S S 1000 1
Z 1000 1 < ==
0 | | 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)

6000 : .
—+— Mesh
——— Torus
5000 r ——— 4-ary 6-direct 1-indirect [
——=— 4-ary 6-direct 2-indirect(FT)
4-ary 6-direct 2-indirect(RUFT |

4000 1o FT 16-ary 3-tree []
—— FT 2-ary 12-tree | P

3000 + —=— FT 4-ary 6-tree . + /A
— FB2-ary 11-cube 2-¢ |/ :

2000

1000

Average Message Latency (cycles)

0 0.1 02 03 04 05 06 0.7
Traffic (flits/cycle/node)

(©)

FIGURE 3.4: Network latency vs. accepted traffic with uniform traffic and deterministic rout-
ing. 4K-node topologies. (a) 3D, (b) 4D and (c) 6D.

that, the higher the number of stages, the higher the base latency as more switches have to be
crossed by packets. Networks with more stages also achieve more throughput. This increase in
the network throughput is explained by the HoL blocking effect. With fewer stages, each switch
concentrates traffic to a higher number of destinations, leading to more HoL. blocking effect
and, hence, less throughput. Figures show that in a k,,—ary n,,—direct 1-indirect, base latency is
stable because the number of hops between nodes does not depend on the number of nodes per
dimension. However, in k,,—ary n,,—direct m,,—indirect, on fat—trees, the base latency increases
with the number of nodes because the number of stages in the indirect subnets grows. In the
case of tori and meshes, base latency strongly depends on the number of nodes per dimension,

as the average distance is highly increased.

Figure 3.4 analyzes the impact of the number of dimensions in the different topologies. We
analyze a 4K-node network implemented with different number of dimensions. We can distin-

guish three different behaviors. Mesh and torus topologies have a similar behavior. The higher

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 35

the number of dimensions and the fewer the number of nodes per dimension, the higher the
achieved throughput. Also, base latency decreases with the number of dimensions, because
the average distance between nodes is reduced. However, the behavior of k,,—ary n,—direct 1—
indirect is different. Throughput increases with the number of dimensions because the size of
switches of the indirect network (a crossbar in this case) is reduced, and, hence, the pernicious
effect of HoL blocking is reduced. However, the base latency does not improve with the number
of network dimensions. This is due to the fact that the number of hops that packets must perform
grows with the number of dimensions. Concerning the k,,—ary n,,—direct m,—indirect, they have
a similar behavior to the previous one, but with a difference. The base latency decreases when
the number of dimensions increases because there are fewer nodes per dimension. Therefore,
the indirect subnets have fewer stages. The selected configurations of the flattened—butterfly
(the ones with a similar hardware cost to our proposal) provide an intermediate throughput. Fi-
nally, notice that, as the number of dimensions is increased, the direct topologies become more
competitive compared to fat-trees. Anyway, we would like to remark that the new family of

topologies always obtains the best throughput regardless of the number of dimensions.

We have analyzed the impact of packet size on the different topologies for all the traffic patterns

and we found that their behavior is very similar regardless the packet size.

3.6.3 Cost—-performance analysis

This section estimates and compares the hardware cost of each topology evaluated in the paper.
In particular, we will analyze, for each topology the number of links, the number of switches,
and the number of switching elements. In particular, we will estimate the hardware cost by
using the total number of switching elements since it considers both the total number of required
switches and its degree, which is related to the number of links. The number of links is not a
good metric since a network with more complex switches has a lower number of links but seems
to be cheaper using this metric. As known, the number of switching elements of a switch of
degree d is d x d. A switching element is the basic component that implements each input of
a multiplexer. Moreover, we will introduce two different figures of merit that tries to combine
both performance and cost of a given topology. The first one is the throughput per switching
element. The higher this parameter, better performance/cost ratio the topology has. The other
parameter is the product of the base latency and the number of switching elements. The higher,

the worse the topology is.

36 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

‘ ‘ ‘ Mesh ‘ Torus ‘ Fat—tree ‘ Flattened—Butterfly ‘
Switches N N Nn;/k; ky!
Switching elements N(@2ng+1)? [N@na+1)? [4kiniN | k¢ (np(ks — 1)+ N/k77)?
links 2(kq — 1)k 'ng 2k g 2N (n; — 1) Ky (kg — 1)ng
‘ H ky—ary n,—direct m,—indirect FT ‘ kyn—ary n,—direct m,—indirect Xbar and RUFT ‘
Switches N/pn(mpny/ki) + 1) N/pp((myny/ki) + 1)
Switching elements || N/p,((4mpnnk; + (np + pn)?) N/po(mpnnk; + (np + pn)?)
links 2(klmng, + (my — 1)Nny /pr) 2k ng, + (my, — 1) Nny, /pn

TABLE 3.2: Analytical comparisons of the Mesh, Torus, Fat-Tree, flattened—butterfly, and
the k,—ary n,,—direct m,—indirect topologies. k; in k,—ary n,,—direct m,—indirect topologies
refers to the arity of indirect switches.

Table 3.2 shows the formula to compute the number of unidirectional links, switches and switch-
ing elements for each topology. Notice that, as RUFT is an unidirectional indirect network, the

number of switching elements is four times smaller than the one in the fat-tree subnets.

Table 3.3 shows in the upper part results for 16—node topologies for uniform traffic and deter-
ministic routing. The network is 2D in the case of k,—ary n,—direct m,—indirect, mesh, and
torus topologies. For flattened—butterflies we have considered 2D and 3D configurations that
match the hardware cost of our proposal. The 2D flattened—butterfly is the topology that achieve
the highest raw throughput, followed by the k,,—ary n,—direct m,,—indirect using fat-trees as
indirect subnets, but with a larger number of switching elements. The next ones are k,—ary

npy—direct m,—indirects with RUFT and crossbar.

Let us compare the cost of the topologies. The 3D flattened—butterfly is the one with the smallest
number of switching elements. The following cheaper topologies, with the same number of
switching elements, are the k,—ary n,—direct 1-indirect and the k,,—ary n,,—direct m,—indirect
using RUFT. Although the latter has more switches than the former, as they are simpler, the total
number of switching elements is the same. On the contrary, the 2D flattened—butterfly and the
kn—ary n,—direct m,—indirect using fat—trees, in this order, are the topologies with the highest
cost. However, when throughput and cost (i.e., the throughput per switching element) of each
topology are considered, the conclusions completely differ. In that case, the best topology is the
3D flattened—butterfly, followed very near by the k,—ary n,—direct m,—indirect with RUFT and
the k,—ary n,—direct 1-indirect. On the other hand, fat-trees are less interesting due to their
higher complexity. Concerning the number of stages of the indirect subnet, we can see that a
lower number of stages allows the best result from the latency—cost point of view. However, if
throughput is the primary concern, a MIN with more stages is a better option as it reduces the

HoL blocking effect.

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 37
#Nodes | Topology Base | Throughput Links | Switches | Switching | Thro./switching Base latency*
lat. elem. elem. | switching elem.

16 Flattened—Butterfly | 329,00 0,51133 24 8 200 0,0025567 65800
2-ary 3-cube 2-¢

16 4—ary 2—direct 437,01 0,69003 96 48 272 0,0025369 118866
2-indirect(RUFT)

16 4—ary 2—direct 375,48 0,66259 64 24 272 0,0024360 102131
I—indirect

16 Torus 345,30 0,63534 64 16 400 0,0015883 138120

16 Mesh ‘ 360,38 0,57466 48 16 400 0,0014367 144150

16 Fat-Tree arity 2 415,57 0,65030 96 32 512 0,0012701 212773
stages 4

16 Fat-Tree arity 4 327,46 0,62456 32 8 512 0,0012198 167661
stages 2

16 4—ary 2-direct 439,24 0,74223 128 48 656 0,0011314 288139
2—indirect(FT)

16 Flattened—Butterfly | 328.47 0,81492 96 16 784 0,0010394 257524
4-ary 2-cube 1-c

4096 64—ary 2—direct 770,56 0,47438 | 57344 28672 135168 0,0000035 104155095
6-indirect(RUFT)

4096 64—ary 2—direct 546,71 0,42546 | 32768 10240 135168 0,0000031 73898072
3—indirect(RUFT)

4096 64—ary 2—direct 463,11 0,41971 | 24576 6144 167936 0,0000025 77772700
2—indirect(RUFT)

4096 64—ary 2—direct 866,40 0,55148 | 98304 28672 430080 0,0000013 372620624
6-indirect(FT)

4096 64—ary 2—direct 591,82 0,50569 | 49152 10240 430080 0,0000012 254531077
3—indirect(FT)

4096 Fat-Tree arity 2 865,20 0,48493 | 90112 24576 393216 0,0000012 340210585
stages 12

4096 Fat-Tree arity 4 561,23 0,43872 | 40960 6144 393216 0,0000011 220683070
stages 6

4096 Flattened—Butterfly =~ 439,94 0,22688 10240 1024 200704 0,0000011 88297728
2-ary 10-cube 4-c

4096 64—ary 2—direct 499,96 0,46912 | 32768 6144 561152 0,0000008 280553722
2—indirect(FT)

4096 64—ary 2—direct 389,29 0,44818 16384 4224 561152 0,0000008 218448488
1-indirect

4096 Torus ‘ 1292,88 0,07323 16384 4096 102400 0,0000007 132390963

4096 Flattened—Butterfly — 338,47 0,40332 7680 256 541696 0,0000007 183349068
16-ary 2-cube 16-c

4096 Fat-Tree arity 16 388,45 0,41601 16384 768 786432 0,0000005 305487961
stages 3

4096 Mesh 1606,12 0,05084 | 16128 4096 102400 0,0000005 164467087

4096 Flattened—Butterfly | 339,65 0,60032 | 516096 4096 | 66064384 0,0000000 22435873084
64-ary 2-cube 1-c

TABLE 3.3: Results for different 2-D topologies with uniform traffic and deterministic routing.

Table 3.3 shows also results for larger networks. As can be seen, as the number of nodes per

dimension increases, the network performance gets worse in mesh and torus topologies. Re-

garding the hybrid topologies proposed in this paper, the results shown confirm what we stated

above. The best raw performance is obtained with the 2D flattened—butterfly and configura-

tions of the k,,—ary n,—direct m,,—indirect (fat—tree subnets) topology, with an advantage for the

topologies proposed in this paper as we increase the number of nodes per dimension. From the

cost—performance point of view, different configurations of the new family with RUFT indirect

subnets are the best option. Although the k,—ary n,,—direct m,,—indirect (RUFTSs) topology does

not achieve the best raw performance, it is able to take the highest advantage of the combination

38 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

#Dimensions | Topology Base | Throughput Links | Switches | Switching | Thro./switching Base latency*
lat. elem. elem. | switching elem.
3 16—ary 3—direct 766,14 0,50088 | 61440 28672 163840 0,0000031 125524540
4—-indirect(RUFT)
3 16—ary 3—direct 544,01 0,45590 | 36864 10240 163840 0,0000028 89130980
2—indirect(RUFT)
3 16-ary 3—direct 443,32 0,46498 | 24576 4864 262144 0,0000018 116213728
1—indirect
3 16-ary 3—direct 815,39 0,60257 | 98304 28672 458752 0,0000013 374060903
4—indirect(FT)
3 Fat-Tree arity 2 865,20 0,48493 | 90112 24576 393216 0,0000012 340210585
stages 12
3 16-ary 3—direct 576,95 0,50412 | 49152 10240 458752 0,0000011 264674815
2—indirect(FT)
3 Torus 654,40 0,22376 | 24576 4096 200704 0,0000011 131340348
3 Fat-Tree arity 4 561,23 0,43872 | 40960 6144 393216 0,0000011 220683070
stages 6
3 Flattened—Butterfly | 396,56 0,40179 15360 1024 369664 0,0000011 146595250
4-ary 5-cube 4-c
3 Flattened—Butterfly | 361,82 0,39680 10752 512 430592 0,0000009 155798223
8-ary 3-cube 8-c 3
3 Mesh 762,46 0,16553 | 23040 4096 200704 0,0000008 153029131
3 Fat-Tree arity 16 388,45 0,41601 16384 768 78432 0,0000005 305487961
stages 3
3 Flattened—Butterfly | 365,00 0,63116 | 184320 4096 8667136 0,0000001 3163526160
16-ary 3-cube 1-c
6 4—ary 6-direct 714,24 0,61761 73728 28672 299008 0,0000021 213564147
2—-indirect(RUFT)
6 4—ary 6-direct 546,78 0,57877 | 49152 10240 299008 0,0000019 163492186
1—indirect
6 Fat-Tree arity 2 865,20 0,48493 | 90112 24576 393216 0,0000012 340210585
stages 12
6 Flattened—Butterfly | 450,03 0,42385 | 22528 2048 346112 0,0000012 155761542
2-ary 11-cube 2-c
6 4—ary 6-direct 715,60 0,65648 | 98304 28672 593920 0,0000011 425011201
2—indirect(FT)
6 Fat-Tree arity 4 561,23 0,43872 | 40960 6144 393216 0,0000011 220683070
stages 6
6 Torus 463,94 0,52038 | 49152 4096 692224 0,0000008 321150900
6 Mesh 502,79 0,49203 | 36864 4096 692224 0,0000007 348041789
6 Fat-Tree arity 16 388,45 0,41601 16384 768 78432 0,0000005 305487961
stages 3
6 Flattened—Butterfly | 416,37 0,66666 | 73728 4096 1478656 0,0000005 615671623
4-ary 6-cube 1-c

TABLE 3.4: Results for 4096—nodes topologies with uniform traffic and deterministic routing.

of an unidirectional MIN with an optimized routing algorithm, leading to obtain by far the best

throughput per switching element.

Table 3.4 shows the results for the large networks (4096 nodes) but now considering a higher
number of dimensions (3 and 6). As can be seen, when the number of dimensions is increased,
improvements are achieved, specially in torus and mesh topologies. However, the best raw
throughput is always obtained by a flattened-butterfly, followed by the k,,—ary n,,—direct m,,—
indirect (fat—trees) configuration, although at a higher cost in the case of the flattened—butterflies.
The best cost—performance ratio is achieved by the k,—ary n,—direct m,,—indirect (RUFT). In
particular, the throughput per switching elements of this topology is much better than that ob-

tained by fat-tree and flattened—butterfly.

Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks 39

The previous tables also show the topology cost in links. Some of the configurations of the
flattened-butterflies, fat—trees and the k,—ary n,—direct m,—indirects (fat—trees) have the high-
est cost in links. However, the fat-trees and the k,—ary n,—direct m,,—indirects (fat-tree sub-
nets) that have a lower number of links are the ones with fewer stages in the fat—tree. These
configurations are also the ones that achieve the best latency—complexity figure of merit. Con-
cerning the number of dimensions, if we increase this number, the number of links is increased,
because adding more dimensions provides more connectivity. kp—ary n,—direct m,—indirect
(fat-trees) topology is an exception because, although we have more fat—trees by increasing the
number of dimensions, they are smaller and have fewer links. This makes k,—ary n,—direct
my—indirects (fat-tree subnets) to be less impacted by an increase in the number of dimensions.
There is also a significant difference in the number of links between k,—ary n,—direct m,—
indirect using fat—trees or RUFTSs subnets. This is because in RUFT, the links are unidirectional,

whereas in a fat—tree they are bidirectional.

3.6.4 Fault-tolerance

The proposed topologies provide a lot of alternative paths, which is very important to avoid

faults.

In the mesh topology, the worst case arises when a link connected to a corner node fails. As
each corner node has a number of links equal to the number of network dimensions, to keep
the network connected, the maximum number of faults it can tolerate is equal to the number of
dimensions minus 1. The torus topology tolerates more faults than the mesh, twice the number of
dimensions minus 1, due to the fact that packets can be moved in both directions of a dimension.
The fat-tree topology tolerates as many faults as k of the switches minus one. The flattened—
butterfly tolerates as many faults as ks (n ¢ — 1), which is the switch degree. In the case of k,,—ary
n,—direct m,—indirect topologies, the number of tolerated faults is the number of dimensions
minus 1. Notice, though, that routing should be also changed to fully support fault tolerance in

all topologies, but this is out of the scope of this paper.

To perform a simple topology comparison, assume we have switches of degree d. In a mesh
network, the number of dimensions would be d/2, so the number of tolerated faults is d/2 — 1.
A torus would have also d/2 dimensions, with a fault—tolerance degree of d — 1 faults. In a
fat—tree, switches would have d/2 up and d/2 down ports, thus tolerating d/2 — 1 faults. In

the flattened-butterfly topology the number of tolerated faults is equal to d — 1. For the new

40 Chapter 3. A New Family of Hybrid Topologies for Large—Scale Interconnection Networks

topology, a network of d dimensions can be built, so it is able to tolerate up to d — 1 faults, which

is the best level of fault—tolerance achieved by the evaluated topologies.

We have not considered faults in injection links, but fat—trees and flattened—butterflies usually
have a single link that connects the node to the network. If this link fails, the node will be
isolated. Therefore, considering also the injection links, these networks will not tolerate any
fault. On the contrary, in the new topology family, if the router is implemented inside the NIC, it
is connected to the network through as many links as dimensions in the network, so the injection

links also tolerate d — 1 faults.

3.7 Conclusions

This paper presents a new family of hybrid topologies for large—scale interconnection networks.
It uses an n—dimensional topology where the nodes of each dimension are connected through
a small indirect topology. This indirect topology may be a crossbar or a MIN (a fat—tree or
a RUFT). This combination results in a set of topologies that provide high—performance, with
latency and throughput figures of merit close to one obtained with indirect topologies, but with
a much lower hardware cost. In particular, the new topology with fat—trees as indirect subnet
is the topology that achieve the highest throughput. Nevertheless, from the cost—performance
point of view, the new topologies with RUFT indirect subnets are the winners, as they are able
to double the throughput obtained per switching element compared to indirect topologies, and
this advantage is even higher for direct topologies. Moreover, the layout of the topology is much
simpler than the one for indirect topologies. Concerning fault—tolerance, for a given switch size,
the new topologies are able to achieve equal or even higher levels of fault-tolerance than the

ones obtained with other topologies.

Chapter 4

The k-ary n-direct s-indirect Family of
Topologies for Large-Scale

Interconnection Networks

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Maria Engracia Gémez, Pedro Lépez, Jose Duato (Universi-

dad Politécnica de Valencia).
Type: Journal.
Journal: The Journal of Supercomputing.
Publisher: Springer.
Year: 2016.
DOI: hittp : //dx.doi.org/10.1007/s11227 — 016 — 1640 — =z
URL: http : //link.springer.com/article/10.1007%2F s11227 — 016 — 1640 — z
ISSN: 0920-8542.
Category: Processor Architectures and Computer Science.
Impact Factor: 0.858

JRC ranking: Q2 (2014)

41

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
42 Networks

Abstract

In large-scale supercomputers, the interconnection network plays a key role in system perfor-
mance. Network topology highly defines the performance and cost of the interconnection net-
work. Direct topologies are sometimes used due to its reduced hardware cost, but the number
of network dimensions is limited by the physical 3-D space, which leads to an increase of the
communication latency and a reduction of network throughput for large machines. Indirect
topologies can provide better performance for large machines, but at higher hardware cost. In
this paper, we propose a new family of hybrid topologies, the k—ary n—direct s—indirect, that
combines the best features from both direct and indirect topologies to efficiently connect an
extremely high number of processing nodes. The proposed network is an n—dimensional topol-
ogy where the k nodes of each dimension are connected through a small indirect topology of s
stages. This combination results in a family of topologies that provides high performance, with
latency and throughput figures of merit close to indirect topologies, but at a lower hardware cost.
In particular, it doubles the throughput obtained per cost unit compared with indirect topologies
in most of the cases. Moreover, their fault-tolerance degree is similar to the one achieved by

direct topologies built with switches with the same number of ports.

4.1 Introduction

The size of large supercomputers has been growing year after year. The topmost machines of
the top 500 supercomputer list [1] are being built up by using hundreds of thousands of pro-
cessing nodes. All these processing nodes work jointly to solve a given problem in as less time
as possible. This joint work is performed thanks to the interconnection network that allows all
the processing nodes to share data among them. The interconnection network must enable an
efficient communication among all the processing nodes because it strongly impacts the perfor-
mance of the whole system. Transmission time of data across the interconnection network adds

up to the processing time, impacting the time required to run the applications.

The main design challenges of interconnection networks design are to provide low latency com-
munications, in order to reduce the execution time of applications, and a high network through-
put, to allow as many simultaneous communications as needed, while providing a simple imple-

mentation at a reduced hardware cost.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 43

In addition to performance and cost, another important feature of interconnection networks is
their ability to provide fault-tolerance. The high amount of hardware that can be found in an
interconnection network in high—performance machines significantly impacts the probability
of having a fault in the system. Each component may independently fail, and therefore, the
probability of having a single fault in the whole system drastically raises with the number of
elements that compose it. Thus, tolerating faults is also a basic requirement when designing an

interconnection network, specially for a large machine.

Two of the most important design issues of the interconnection networks are the topology and the
routing algorithm [2, 3]. Topology defines how the components of the system are connected, and
the routing algorithm determines the path that is followed by packets from their source to their
destination node. The topology of a network also impacts, to a large extent, its cost. Topologies
usually adopt a regular structure to simplify their implementation, the routing algorithm and the
possibility of expanding the network. Among the different taxonomies of regular topologies, the

most commonly-used one divides them into direct and indirect topologies [2, 3].

Direct topologies usually adopt an orthogonal structure where nodes are organized in an n—
dimensional space. Each node is composed of a router and a processing node. The nodes are
connected in each dimension in a ring or array fashion. 2D or 3D direct topologies are relatively
easy to built as each topology dimension is mapped to a physical dimension. Implementing
direct topologies with more than three dimensions implies not only increasing its wiring com-
plexity but also the length of its links when they are mapped to the 3D physical space. Indeed,
the number of ports of the routers geometrically grows with the number of dimensions (as two
ports per each dimension are required). The implementation limitation in the number of dimen-
sions leads to increase the number of nodes per dimension, which increases the communication
latency, negatively impacting performance. As a consequence, direct topologies are not the most

suitable ones for large machines.

The alternative is to use an indirect topology. The main difference, compared to direct topolo-
gies, is that not all the routers have an associated processing node. The most common indirect
topologies are multistage indirect networks (MINs) where switches are organized in a set of n
stages. Indirect topologies provide better performance for a large number of processing nodes
than direct ones. However, this is achieved by using a higher amount of switches and links.
Furthermore, their physical implementation is complex due to the fact that the wiring complex-

ity grows with the number of processing nodes in the system, unlike direct topologies where

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
44 Networks

complexity grows with the number of topology dimensions.

To overcome the limitations of direct and indirect topologies, in this paper we propose a new
family of topologies where we combine the best features of both types of topologies. Other
hybrid topologies have been proposed previously in the literature (see Section 4.6). However,
most of them are hierarchical and therefore introduce long latency for the communication of
non-local processing nodes and others are intended for particular purposes [20, 21]. In this pa-
per we propose a topology family that can be configured to meet different scenario requirements.
We propose an n—dimensional topology, where the rings that connects the nodes in each dimen-
sion are replaced by small indirect networks. In this way, communication latency along each
dimension no longer linearly grows with the number of nodes per dimension thanks to these in-
direct networks. On the other hand, the small size of this indirect topology allows a reasonable
wiring complexity opposite to large indirect topologies. This combination results in a family of
topologies that provides high performance, with latency and throughput figures of merit close
to the ones obtained with indirect topologies, but at a reduced hardware cost. In addition, the

fault—tolerance level is higher than or equal to the one provided by direct and indirect topologies.

Evaluation results show that the new proposed family of topologies can obtain similar or better
performance results than the ones provided by indirect topologies, but using a smaller amount
of hardware resources and with an easier implementation. In particular, they are able to double
the throughput obtained per cost unit compared to the one obtained with indirect topologies in

most of cases, and this difference is even higher when it is compared with direct topologies.

The rest of the paper is organized as follows. Section 4.2 presents some background. Section 4.3
describes the proposed family of topologies. The routing algorithms to be used are presented in
Section 4.4. Section 4.5 evaluates the new family of topologies, comparing it against direct and
indirect topologies, and other recently proposed topologies. Some related works are commented

in Section 4.6. Finally, some conclusions are drawn.

4.2 Direct and Indirect Topologies

In direct topologies, each node has its own router that connects it to a subset of the nodes of
the system by means of point-to-point links. Direct topologies usually adopt an orthogonal
structure, where nodes are organized in an n—dimensional space, in such a way that traversing

one link produces a displacement in only one dimension. That is, all the links of the network

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 45

are organized in several dimensions in a regular way, and each node has at least one link in each
dimension. The symmetry and regularity of these networks greatly simplify its implementation
and the routing algorithm, since the movement of a packet in a single dimension does not modify

the number of hops remaining in the other dimensions to reach the packet destination.

This kind of topologies is known as k—ary n—cubes. In what follows, to distinguish the topology
parameters of both direct and indirect topologies, we will refer to this topology as kg—ary n4—
cubes!, where k, is the number of nodes in each of the n,; dimensions in a direct network. The
total number of processing nodes in the system is given by N = k;"¢. In these topologies, nodes
are labeled by an identifier with as many components as topology dimensions {p,,_1,...,p0},
and the component associated to each dimension ranges from 0 to k; — 1 (i.e., nodes are num-
bered from (0,0,...,0) to (kg — 1,kq — 1,..., kg — 1)). The identifiers of neighbor nodes
in a given dimension only differ in the component corresponding to that dimension, while the
remaining components have the same value. For instance, two nodes p y p’ are neighbors in the

x dimension, if and only if p, = p, + 1 and p; = p|, for the rest of dimensions.

The most commonly—used direct topologies are mesh, torus and hypercube. In a mesh topology,
all the nodes of a dimension compose a linear array. In torus, all the nodes of each dimension
form a ring. The hypercube is a particular case of a mesh where there are only two nodes in
each dimension (k; = 2), which forces the number of dimensions (n4) to be large enough to
interconnect all the nodes of the system (i.e., ng = logoIN). Direct topologies have been used
in several of the most powerful supercomputers, being the 3D-torus the most widely used one.
For instance, the number two (Titan) and number three (Sequoia) of the November 2015 Top500

supercomputer list [1] use a torus.

For a given number of processing nodes [V, direct topologies provide a richer connectivity as
the number of dimensions increases. As the hypercube has the largest possible number of di-
mensions, it provides a better connectivity than meshes and tori, but at a higher cost, since it

uses more links and it has a higher router degree (number of ports of the router).

Latency is related to the average distance, measured as the number of links that packets have to
cross to reach their destination. Related to this, the diameter of a topology measures the maxi-
mum distance between two nodes of the topology using the shortest possible path between them.

For a constant number of processing nodes (N = k[;*), diameter is increased as the number of

[T3R1}

!"The subscript “4” stands for direct.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
46 Networks

dimensions (ng4) is decreased and the number of nodes per dimension (k) is increased. The in-
crease of the distance traversed by packets also increases the probability of contention with other
packets that are also crossing the network, which reduces network throughput. From this point
of view, it may seem interesting to maximize the number of dimensions of direct topologies
for a given number N of processing nodes. Nevertheless, other issues have to be considered.
Direct topologies up to three dimensions can be implemented by using relatively short links in
the 3-D physical space and with an acceptable wiring complexity, regardless of the size of the
system. However, implementing a topology with more than three dimensions implies increasing
the length of the links, since we have to map all the dimensions to the 3-D physical space. In
addition, they also require using routers with a higher number of ports (two bidirectional ports
per each dimension are required, one per each direction in that dimension). So, direct topologies
have some limitations for the implementation of large-scale machines, since they would require
using a large number of nodes per dimension (%), which increases the diameter of the network
and also the probability of contention which increases message latency of communications and

reduces network throughput.

The alternative is to use indirect topologies. In these topologies, processing nodes do not have
routing capabilities, since the router is separated from the processing node®. Routers become
independent devices, known as switches. Processing nodes are connected to a switch of the
network. Moreover, opposite to direct topologies, all the switches have not necessarily an asso-
ciated processing node. In fact, most of the switches are usually connected to other switches but

they are not connected to processing nodes.

The most common indirect networks are multistage interconnection networks (MINs). In MINs,
switches are organized as a set of stages. Processing nodes are connected to the first stage,
and the other stages are connected among themselves using a certain connection pattern that
provides full-connectivity among all processing nodes. Two different types of MINs can be
defined. Unidirectional MINs (UMINSs) use unidirectional switches and links, so the network
is traversed by packets only in one direction. In this case, processing nodes are also attached
to the last stage and a unique path between each source—destination pair is provided (using the
minimum number of stages). Bidirectional MINs (BMINs) use bidirectional links and switches.
So, in order to travel from a source to a destination processing node, packets travel upwards the
network and then downwards. BMINs provide several paths between each source—destination

pair.

Direct topologies with independent routers are also possible.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 47

In MINs, connection patterns between stages are based on permutations of the identifiers of the
processing nodes. Depending on the connection pattern used among adjacent stages, several
MINs have been proposed. The most widely—used MIN in commercial systems is the fat—
tree topology [4], which is a BMIN. However, there are other more recent systems, like the
one proposed in [6], focusing on fault tolerance. Most of the high—performance interconnect
vendors as Mellanox (manufacturer of the Infiniband technology) [7], Myricom (manufacturer
of Myrinet) [8] or Quadrics (manufacturer of QsNet) [48] recommend to use a fat-tree and
provide specific switches for building this topology. Moreover, it has been used in some of the
most powerful supercomputers. For instance, the Tianhe 2 and the Tianhe 1A supercomputers,
the number one and twenty six respectively in the November 2015 Top500 list [1] use this

topology.

The k—ary n—tree is the most widely—used implementation of the fat-tree topology. In what
follows, to distinguish the topology parameters of both direct and indirect topologies, we will
refer to this topology as k;—ary n;—tree>. k; is the number of links that connect a switch to the
next or the previous stage, and n; is the number of stages of the indirect network. So, each
switch has 2k; bidirectional ports in fat-trees (i.e. using switches with d x d ports, k; is d/2).
A fat—tree requires at least logy, IV stages to interconnect N processing nodes. Each stage has

N/k; switches, with a total of (IN/k;)logk, N switches and N = k;"* processing nodes.

In fat-trees, the diameter of the network depends only on the number of stages, and it is given by
2n;, that is 2logy, N, as in the worst case a packet must traverse upwards all stages and all stages
downwards. Notice that, for a UMIN, the distance traversed by packets is always n;, regardless
of the source and destination processing nodes. In summary, for a fixed number N = k;" of
processing nodes of a MIN, when the number of stages n; is increased, k; is decreased but the
distance that packets have to traverse to reach the destination is increased. Also it should be
taken into account that, by using high-degree switches fewer switches will be required, but each
of them will be more complex. On the contrary, if we use low—degree switches, we will require

more switches, but much simpler.

Table 4.1 shows the diameter and bisection bandwidth for both types of topologies. As it can be
seen, the bisection bandwidth is larger for indirect topologies —it depends only on N, without
being divided— and the diameter of indirect topologies depends only on the number of stages

while in direct topologies it depends on the product of n, and k;, which will lead in practice to

T3}

3The subscript “; stands for indirect.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
48 Networks

TABLE 4.1: Parameters of the different analyzed topologies.

| Topology | Diameter | Bisection bandwidth

Mesh nd(k:d — 1) QN/kd
Torus ng(kq/2) 4N/kq
Fat—tree 2n; N

larger diameters. In direct topologies, for a low number of network dimensions (remember that it
is limited by the 3D physical space), the number of nodes per dimension will be high, negatively
impacting diameter and bisection bandwidth. Indirect networks provide better scalability than
direct networks, because they provide smaller diameters and shorter latencies for large network
sizes. Nevertheless, they have a higher cost, because they require a high amount of switches and
links, and their physical implementation is costly since the complexity of network wiring grows

with its size, unlike direct topologies.

4.3 The KNS Family of Hybrid Topologies

This paper proposes a new family of topologies for interconnection networks that allows to
efficiently connect an extremely high number of processing nodes, given the huge size of current
and near future supercomputers [1]. We propose an hybrid topology based on combining an n—
dimensional direct network with small indirect topologies. The aim is to combine the advantages
of direct and indirect topologies to obtain a family of topologies that is able to connect a high
number of processing nodes, providing low latency, high throughput and a high level of fault—
tolerance at a lower hardware cost than indirect networks. In the proposed topology, the nodes
of each dimension are connected through an indirect topology that allows to have a large number

of nodes per dimension without negatively affecting performance.

The new family of topologies will use two different kind of switches in the network (although
this is not entirely true, as we will see later). First, low—degree switches are used to connect
processing nodes to each dimension and move packets across dimensions. We will refer to these
switches as routers. They have, at least, one processing node attached to them and as many
ports as dimensions. Nowadays, it is common that processing nodes are composed of a large
number of cores, and the core count per processing node trend is to increase even further. So,
these processing nodes need network interfaces with high bandwidth to avoid bottlenecks in the

end processing node connection to the network. In fact, there are already some commercial

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 49

solutions which use network interfaces cards with dual ports [47]. Considering the core count
increase trend it is expected that the bandwidth requirements of end processing nodes will be
even higher. Another key point of these network interfaces with several ports is that they provide
fault-tolerance. Using one port network interfaces causes having a single point of failure that
will disconnect a high number of cores. Both, bandwidth and fault tolerance requirements will

provoke increasing the number of ports in the near-future network interfaces.

In this paper we take advantage of these network interface cards with several ports to implement

the routers used in the new family of topologies.

Additionally to these routers, the proposed topology also uses other swifches to implement the

indirect networks that interconnect the routers of each dimension.

4.3.1 Description of the family

The newly proposed topology family arranges processing nodes and their associated routers
(node) in n dimensions like a direct topology. But, contrary to mesh and torus topologies,
routers of a given dimension are not only connected with their adjacent routers in that dimen-
sion. Instead, all the routers of a given dimension are connected by means of a small indirect
network. This indirect network could be even a single switch, considering the number of ports
of current commercial high-radix switches. However, if the number of routers per dimension
exceeds the number of ports of the available switches, the indirect network will be arranged
as a small MIN. We will refer to this MIN as the indirect subnet. This will provide a low la-
tency communication among routers in the same dimension with a small hardware extra cost
compared to direct topologies. In this way, the number of routers per dimension stops being a
bottleneck from the point of view of the performance, as the time to communicate two routers of
the same dimension is constant or grows logarithmically with the number of routers per dimen-
sion. Notice also that each router only requires a bidirectional link per dimension to connect to
the switch of each dimension. On the contrary, a mesh or torus require two bidirectional links

per dimension, one per neighbor node.

The proposed family of topologies is defined by three parameters. Two of them are inherited
from direct networks: the number of dimensions n;,* and the number of routers per dimension

kp,. The number of processing nodes it can interconnect is given by N = k;". In addition

“The subscript " stands for hybrid.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
50 Networks

T

Fat tree

Crossbar

FIGURE 4.1: An example of the KNS topology with nj, = 2, k;, = 4 and d}, = 4.

to these two parameters, there is an additional parameter, the number of stages of the indirect
subnet, referred to as s,. This number depends on the number of routers per dimension kj, and
on the number of ports of the switches used to implement the indirect subnet (which will be
referred to as dp,). The ratio between kj, and dj, defines the way to interconnect the kj, routers of
each dimension. If k;, < dj, a simple switch would be able to interconnect all the routers of the
dimension, and s, will be equal to 1. On the contrary, if k, > dp, a MIN would be required to
interconnect the routers of each dimension, and the number of required stages will be given by
log a,, kp, (remember that in an indirect network built with dj,-port switches, the network radix is
equa21 to %h). We will refer to the new family of topologies proposed in this paper as kj,—ary n,—
direct sp—indirect (KNS), where ky, is the number of routers per dimension, ny, is the number of

dimensions and sy, is the number of stages of the indirect subnets.

In this paper, we have considered two different MINs to connect the routers of a given dimension.
The first one is a BMIN, the fat—tree. The second one is RUFT [5], a UMIN derived from a fat—
tree using a load-balanced deterministic routing algorithm [22], which requires less hardware

resources.

Figure 4.1 shows an example of the new topology with 2 dimensions (n;, = 2), and 4 routers
per dimension (k;, = 4), with a total number of 16 routers. In this case, the routers of the same
dimension are connected by a single 4-port crossbar. However, for a higher number of routers
per dimension, say kj, = 8 and the same switch size, a MIN should be used. In the case of using
fat—tree subnets, for interconnecting the 8 routers of each dimension, it will require 3 stages and

12 bidirectional 4-port switches, implementing in this way a 8—ary 2—direct 3—indirect. In the

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 51

FIGURE 4.2: An example of the KNS topology with nj, = 2, kj, = 4, s;, = 1 and p;, = 2.

case of using RUFT as indirect subnets, it is also a 8—ary 2—direct 3—indirect but built with 4-
port unidirectional switches. We will analyze in more depth the issues of using different indirect

subnets in Section 4.5.

As it can be seen in Figure 4.2, the routers are connected to all dimensions through a different
link (one per dimension). Notice that it is also possible to attach several processing nodes
to the same router. Having more than one processing node attached to each router is known
as concentration in the literature. In fact, the topology shown in the figure already has two
processing nodes attached to each router. Only the corner processing nodes are shown in the
figure for the sake of clarity. This introduces a new parameter on the topology family, py, the
number of processing elements that are connected to each router. In this case, the number of

processing nodes is given by N = pk,".

In Figure 4.1, two different components with switching capabilities can be distinguished. The
switches® (in blue and labelled with a “S” in Figure 4.1) are only connected to other switching
components, whereas the routers (in pink and labelled with an “R” in Figure 4.1) are used to
connect the processing nodes to the network through several dimensions. These routers are
connected on one side with processing nodes and on the other side with switches, and their
degree is ny, + pp, that is, the sum of the number of dimensions and the number of concentrated
processing nodes. As it can be seen in Figure 4.1, if a crossbar is used as indirect subnet,
switches allow packets to change to any position in a given dimension by traversing only two
links, whereas routers allow to travel between dimensions. Thus as, at most, only two hops are

performed per dimension, the diameter of the new topology is 2nj, which is a very low value.

5Tt may be a single switch or a set of switches forming a MIN.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
52 Networks

TABLE 4.2: Parameters of the different analyzed topologies.

Topology Parameters
Mesh or Torus ng # dimensions
kq # of nodes per dimension
Fat—tree n; # of stages
k; switch arity
kp—ary np—direct sp—indirect | ny, # of dimensions
(KNS) kp, # of routers per dimension
sp | # of stages of the indirect subnet
dy, switch degree
pn | # processing nodes per router

If a MIN is used instead of a crossbar as indirect subnet, the diameter of the network will be
the diameter of the used MIN (for a fat-tree, i.e. a BMIN, 2x the number of stages, which
is expected to be a small number due to using high-radix switches) multiplied by nj, that is

28p, * np,.

Table 4.2 summarizes the parameters that define the hybrid family of topologies. Notice that
only one of d, or s;, parameter is necessary, as the another one can be derived from the other
parameters. In addition, the parameters that define traditional direct and indirect topologies are

also shown.

The proposed hybrid topologies can take advantage of the high number of ports available in
current switches. For example, edge switches of up to 36 ports are commercially available [68],
while chassis switches offer up to 648 ports [68]. With such switches, in most cases, a small
MIN with only 2 or 3 stages or even a single switch will be enough to connect the routers in
each dimension. As the MIN is very small, it will introduce low latency and it can be easily

implemented with low wiring complexity.

On the other hand, as already stated, this topology can take advantage of new network interfaces
(like the new commercial HCA cards [47]), that have several ports to connect the processing
nodes to the network. By using these network interfaces, the proposed topologies can be im-
plemented by integrating the router into the processing node as part of the network interface.
These network interfaces will have switching capabilities, so processing nodes equipped with
these new network interfaces will be able, apart from injecting messages in the network, to route
packets that are not destined to them to other processing nodes without ejecting messages from

the network.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 53

The resulting topologies could seem similar to BCube [20] or Hypercrossbar network [21], but
the great difference between our proposal and BCube is that the processing nodes do not eject
messages from the network; the new topology family forwards the messages in the network
interface which highly reduces latency. However, these cases could be considered as particular

configurations of the KNS family of topologies.

The topologies proposed in this paper have several main advantages. First, they allow to highly
reduce the diameter compared to direct topologies. This will lead to network performance im-
provements, decreasing latency and increasing network throughput. Additionally, the number of
required switches and links is reduced compared to an indirect topology that connects the same
number of processing nodes, as will be shown in section 4.5. Therefore, it is expected that the
proposed family of topologies reduces the cost of the network. Finally, it also provides a good

fault—tolerance level (see Section 4.5).

4.4 Routing Algorithms for the KNS Family of Topologies

In this section, we describe the routing algorithms proposed for the new family of topologies. We
will first describe the ones proposed for k,—ary nj,—direct 1-indirect topologies (i.e., a crossbar
is used as indirect subnet). Then, we describe the ones proposed for the general case, that is, for

KNS topologies, using a fat—tree or a RUFT as indirect subnets.

First, we explain how routers and switches are labeled in the KNS topology. Each router is
labeled as in meshes and tori, with a set of components or coordinates (as many as network
dimensions) (ry, —1,7n,—2,-.., I'1,70). Each coordinate represents the position of each router
in each of the dimensions. On the other hand, the switches are labeled by a 2-tuple /d,p], where
d is the dimension the switch is located at, and p is the position of that switch in that dimension.
Notice that routers do not belong to any dimension, since they are connected to all of them, and
packets change dimensions through them. On the contrary, switches do not allow changing the

dimension packets are traversing, they just allow packets to move through that dimension.

4.4.1 Routing in k,—ary n,—direct 1-indirects

Although both deterministic and adaptive routing algorithms could be used, taking into account

that adaptive routing may introduce out-of-order delivery of packets and that leads to a more

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
54 Networks

complex implementation, in this paper, we will focus only on deterministic routing.

The deterministic routing algorithm for kp—ary njp—direct 1-indirect topologies, which will be
referred to as Hybrid—DOR, is a variation of the dimension ordered deterministic routing algo-
rithm (DOR) for meshes, adapted to the kj,—ary njp—direct 1-indirect topology. In DOR, packets
are routed through the different dimensions following an established order until the destination
processing node is reached. At each dimension of the mesh, packets traverse several routers
until the movement in that dimension is exhausted. On the other hand, as each mesh router has
two links per dimension, packets must be forwarded in each dimension through the direction

that guarantees the minimal path.

In Hybrid—-DOR, network dimensions are also crossed in an established order to guarantee dead-
lock freedom, as in DOR. However, there is a unique link per dimension that connects the current
router to a switch that allows directly reaching any of the processing nodes in that dimension.
So, packets do not perform several hops at each dimension. Instead, in Hybrid—-DOR, routers
directly forward packets through the unique link of the dimension they have to traverse, and this
link is connected to the corresponding crossbar that moves the packet to the destination compo-
nent in that dimension. Notice that, contrary to meshes and tori, in kj—ary np—direct 1—indirect
topologies, it is not required to choose the direction at each dimension, as there is only one link
per dimension. The routing in the switches is very straightforward since, they just must for-
ward packets through the link indicated by the destination component in the current dimension,

requiring just one hop to reach next router.

Next, we show the Hybrid—-DOR pseudo—code for the routers and the crossbars of the network.
The number of dimensions of the topology is n;, and the destination and current router coor-
dinates are given by (xy, —1,...,Zd+1,Tds Td—1,-- -, T1,%0), and (Tp, —1,. .., Td4+1,7d, Td—1,
...,T1,70), respectively. In the case of crossbars, the current switch is given by /d,p] (the p*

switch of the d dimension). The chosen link to send the packet is returned in link.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection

Networks 55
Routers: Crossbars:
1= 0; link = x4

Done = False
while (i < ny) A (!Done) do
if 2;! = r; then
Done = True
link =1
end if
t=1+1

end while

As can be seen, routers select the next dimension to forward the packet, which it is also the
link of the router to be used, since there is just one link per dimension, and crossbars merely
select the link given by the destination coordinate of the corresponding dimension to reach the

destination component in that dimension.

4.4.2 Routing in k,—ary n,—direct s,—indirects

In kp—ary nj,—direct s, —indirect topologies, the crossbars are replaced by small MINs. As stated
above, the MINs considered in this paper are fat—trees or RUFTs. In these topologies, all the
switches of a given fat-tree or RUFT are always in the same dimension and in the same position
relative to the routers. In order to identify the switches inside a given fat—tree or RUFT, we
extend the classical switch coordinates from MINs by including the coordinates of the MIN
in the direct topology. In this way, the switch coordinates in kj—ary nj—direct s,—indirect
topologies will be given by a 4-tuple [d,p,e,0], where d is the dimension the MIN belongs to,
p is the position of the MIN in that dimension, e is the stage of the switch inside the MIN, and
o is the order of that switch in that stage. Remember that d and p are the coordinates of the

equivalent crossbar in kp—ary nj—direct 1-indirect topologies.

Since the routers are the same regardless of the indirect topology used, its routing algorithm is
the same as the one shown for kj,—ary nj—direct 1-indirect topologies. However, switch routing

algorithm depends on the particular indirect network used.

First, we focus on the kj—ary nj—direct sp—indirect topology that uses fat—trees in the indirect

subnets. Despite the fact that a fat—tree has several paths for each source—destination pair (i.e.,

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
56 Networks

it allows adaptive routing), we propose to use the deterministic routing algorithm presented in
[22] since it is simpler and is able to outperform adaptive routing. We will summarize that
routing algorithm here. Routing is composed of two subpaths. First, packets are sent upwards to
the common ancestor switch of the source and destination processing nodes and, then, they are
sent downwards to its destination. Traffic is balanced by carefully selecting the links to be used
according to the destination processing node. In particular, the link to be used in both subpaths
is given by the destination coordinate corresponding to the stage where the switch is located at.
For instance, if a switch located at stage e; routes a packet whose destination (in the fat—tree) is
(tnj—1s---stey+1stesstey—1,-- - t1,%0), then the packet is sent through the link k; + ¢, in the
upwards phase and through link ¢, in the downwards phase. Remember that k; is the arity of

the switches of the fat-tree topology. Please see [22] for more details.

In the fat—trees subnets of the kp—ary nj—direct sp—indirect topologies, the routing algorithm
is the same, but only the part of the destination identifier corresponding to the dimension the
fat-tree belongs to (i.e., 4 in our notation) is used. In this way, the packet is delivered to the
same router that would be reached through the corresponding crossbar in a kp—ary nj—direct

1-indirect topology.

This routing algorithm is shown below. Assume that destination coordinates are (z,,, 1, ...,
Xd41,Td, Td—1,- - -, T1, T0), the dimension where the fat-tree is located at is d, Get F'T [denti fier
returns from x4 the fat—tree coordinates to route locally in the fat—tree, U pwardsPhase returns
true if the packet is in its upwards subpath, or false otherwise, and that the stage in the fat-tree

of the switch that is routing the packet is given by e:

Switches:

t = GetFTIdentifier(xq)
if UpwardsPhase() then

link = k; + t,
else

link = t,
end if

Let us consider the case where RUFT is used in the indirect subnets of the KNS topology. In
RUFT, there is a unique path between each source—destination pair and packets have to cross
all the stages, reaching the last stage, which is directly connected back to the processing nodes.

The link to be used by a packet at a particular switch is given by the destination component

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 57

corresponding to the stage the switch is located at. Please see [5] for details. In this case, the

pseudo—code for the switch routing algorithm is the following:

Switches:
t = GetFTIdentifier(xq)
link = t,

If Hybrid-DOR is used in the routers jointly with the aforementioned algorithms for the switches
in the indirect networks, the resulting routing algorithm for the new topology is deterministic
and deadlock-free, since dimensions are crossed in order in the direct topology and the routing

algorithm used in the indirect networks has not any loop in its channel dependency graph [56].

4.5 Evaluation

In this section, we evaluate the KNS topology family, comparing it with other topologies such

as meshes, tori, fat-trees, and flattened-butterflies [11].

4.5.1 Network Model

To evaluate the family of topologies proposed above, a detailed event—driven simulator has been
implemented. The simulator models several topologies, including the new family of topologies
presented in this paper, the KNS. This simulator uses virtual cut—through switching. Each switch
has a full crossbar with queues of two packets both at their input and output ports. Credits are
used to implement the flow control mechanism. We assumed that it takes 20 clock cycles to
apply the routing algorithm; switch and link bandwidth has been assumed to be one flit per
clock cycle; and fly time has been assumed to be 8 clock cycles. These values were used to
model Myrinet networks in [52]. In addition, for the new topology using RUFT as indirect
subnet, the fly time of the long links that connects the output of the unidirectional MIN to the
direct routers is assumed to be 8 clock cycles per stage, in order to take into account that these

links are longer.

‘We have performed the evaluation by using several synthetic traffic patterns: uniform, hot—spot,
tornado, and complement. In the uniform traffic pattern, message destination is randomly cho-

sen among all destinations. In the hot—spot traffic pattern, a percentage of traffic is sent to a small

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
58 Networks

subset of the processing nodes (5% of nodes in this case) and the rest of the traffic is uniformly
distributed. In complement, the destination processing node is obtained by complementing all
the component bits of the source processing node. Therefore, in this traffic pattern, the desti-
nation processing node of all packets generated at a given source processing node is always the
same. In tornado [69], the destination is chosen in such a way that each packet travels n(% -1)
hops. Regarding packet size, the results shown in this paper have been obtained for 256—flit
packets. However, simulations with other packet sizes, such as 16, 128, and 512 flits has been
performed, and the results are consistent with the ones shown here. For each simulation run, the

full range of injected traffic (from low load to saturation) has been tested.

4.5.2 Performance Results

In this section, we compare the KNS using different indirect subnets (crossbar, fat-tree, and
RUFT) against other well-known and frequently—used topologies such as tori, meshes, and fat—
trees. Moreover, we also compare our proposal against the flattened-butterfly (FB) topology
because it is becoming a popular topology in recent research papers (see Section 4.6 for further
details). The FB topology is a variation of the butterfly topology obtained from using high-radix
switches, that results in a direct topology. This topology can be seen as a generalized hypercube
with concentration, as all the switches in the same dimension are directly connected, that is, there
is a link from each switches to the others of the same dimension. Several FB configurations have

been tested and compared to our proposal.

We have evaluated a wide range of network sizes, from 64 to 64K processing nodes. Larger
topologies have not been simulated due to simulator memory constraints. For direct topologies,
we have tested different values of the number of dimensions and number of nodes per dimension.
In particular, we have evaluated networks of 2 dimensions, with 4, 8, 16, 32, 64, and 256 nodes
per dimension; three dimensions, with 4, 8, and 16 nodes per dimension; four dimensions, with
4, 8, and 16 nodes per dimension; six dimensions, with 4 processing nodes per dimension; and
eight dimensions, with 4 nodes per dimension. If not stated the contrary, only one processing
node is attached to each router (i.e. without concentration). If several ones are attached, the z—p
suffix is used, = being the number of processing nodes attached to each router. These networks
are compared with fat—trees and FBs with the same number of processing nodes. Notice that, in
some cases, several configurations are possible. For the sake of clarity, only a subset of the most

representative simulations is shown.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 59

B 9000 ‘ _— ‘ % 7000 ‘ T

§ 8000 —— %%rﬂ I E 1 % 6000 | E %ﬁi ‘l ‘L ‘ |
p —— 16-ary 2-d 14 S 64-ary 2-d 1-i ol

E 7000 = 16ary2.d 24(FT) 8 E ‘L% 64-ary 2-d 2-i(FT) L1

B co00 - -ary 2-d 4-i(FT) | C 5000 F |k 6d-ary 2-d 6-i(FT) *gﬁ‘ [1
5} — »ary 2+ .d 2-i(RUFT), ‘ | o ~—»— 64-ary 2-d 2-i(RUFT) h\ |

‘é 5000 | —+— 16-ary 2:d 4-i(RUFT) | || | !] ‘é 4000 |- [64-ary 2-d 6-i(RUFT) || 8
S —=— FT 16-ary 2-tree T | s = FT l6-ary 3-tree 1

£ 4000 —— FT 2-ary 8-tree ‘ “ S 1 < 3000 F |- FT2-ary 12-tree il i
Iy —— FB 2-ary 7-cube 2-p | | z FB 2-ary 11-cube 2-p

£ 3000 P 8 g

8 —_— FB 4-ary 3-cube 4-p | P S 5000 FB 16-ary 2-cube 16- |
< <

-1 / -

o0 =11)

o o

= =

bn [

> >

< <

2000 j“ |
1000 ¥ | 1000 ha B
O L L O L L L L
0 0.1 02 03 04 05 06 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6
Accepted Traffic (flits/cycle/node) Accepted Traffic (flits/cycle/node)
(a) (b)

" Mesh’ g
—— Torus 14
||| —*— 256-ary 2-d 1-i
8000 | —8— 256-ary 2-d 2-i(FT) ¥
| 256-ary 2-d 8-i(FT)

—a— 256-ary 2-d 2-i(RU
—e— 256-ary 2-d 8-i(RU
——=— FT 16-ary 4-tree
* ——— FT 2-ary 16-tree !
4000 F —~— FB 4-ary 7-cube 4-p |
FB 16-ary 3-cube 16-p

10000 ‘ l

6000 |

4
5055555558085

2000

Avg Msg Latency from Gen Time (cycles)

0 0.1 0.2 0.3 0.4 0.5 0.6
Accepted Traffic (flits/cycle/node)

(©

FIGURE 4.3: Average packet latency from generation vs. accepted traffic for uniform traffic
and 2 dimensions for direct topologies. (a) 256 processing nodes. (b) 4K processing nodes. (c)
64K processing nodes.

Uniform traffic pattern: Figure 4.3.(a) shows results for 2-D small networks (256 processing
nodes) with uniform traffic. As it can be seen, the mesh is the network that achieves the lowest
throughput, followed by torus and the FBs configurations. In this latter case, we have selected
a 4-ary 3—cube and a 2—ary 7—cube FB with concentration in order to compare our proposal
against a topology with a hardware of similar complexity, as we will show later (in Section
4.5.3). The next topologies that achieve a better performance are the two fat—tree configurations.
However, the best absolute throughput is achieved by the family of topologies proposed in this
paper. In particular, the different tested configurations ordered from lower to higher throughput
are the topology that uses a RUFT with two stages as indirect subnet (16—ary 2—d 2—i (RUFT)),
the ones that uses crossbar (16—ary 2—d 1-i), the one that uses RUFT with 4 stages (16-ary
2—d 4-i(RUFT)), the one that uses a FT with two stages (16—ary 2—d 2—i (FT)) and the one that
uses a FT with four stages (16—ary 2—d 4—i (FT)). In particular, the best configuration of the

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
60 Networks

new topology family obtains 3 times more throughput than the worst network (mesh), more than

twice versus torus, more than 20% versus FT and about 40% improvement versus FB.

Figures 4.3.(b) and 4.3.(c) show how throughput is decreased in all the topologies as we increase
the number of processing nodes in the network, keeping constant the number of dimensions in
the direct topologies, and therefore increasing the number of routers (processing nodes) per di-
mension. In the case of mesh and torus topologies, throughput strongly decreases, as the average
distance between two nodes is markedly higher than in the other topologies. Regarding the KNS
topologies, all the tested configurations outperform both the FT and FB configurations analyzed.
The best configurations are again the ones that use the tallest FT as indirect subnet. Notice that

the different topologies have a different hardware cost, which is evaluated in following sections.

In Figures 4.3.(a), 4.3.(b), and 4.3.(c) we can also see the impact of using more stages in the
MINSs of KNS topologies. For the same number of routers per dimension, if we decrease the
number of stages, the arity of the switches is increased, and a lower latency should be obtained.
The plots show that, the higher the number of stages, the higher the base latency (in more detail
the zero-load latency) as more switches have to be crossed by packets. Surprisingly, networks
with more stages also achieve more throughput. This effect is explained by the reduction of the
head-of-line (HoL) blocking effect. For a given number of routers per dimensions, a taller FT
uses smaller switches (i.e. with lower number of ports). As a consequence, each switch port is
potentially demanded by a lower number of input ports and, hence, the effect of HoL blocking is
reduced. From another point of view, with fewer stages, each indirect topology has less switches
to serve the same number of routers. Thus, each switch has to deal with more traffic, leading to

more HoL blocking effect and, hence, less throughput.

Let us analyze the base latency. In a kj—ary n;—direct 1—indirect, base latency does not depend
on the number of routers per dimension. However, in KNS that uses MINs, the base latency
increases with the number of processing nodes because the number of stages in the indirect
subnets also grows in order to connect a larger number of routers. This effect is more prominent
in RUFT, due to the fact that packets traverse always all stages since it is a UMIN topology. In
the case of torus and mesh, base latency strongly depends on the number of nodes per dimension,

as average distance between nodes is increased.

Figure 4.4 analyzes the impact of the number of dimensions in the different topologies. We ana-
lyze a network with 64K processing nodes implemented with a different number of dimensions.

We can distinguish three different behaviors. First, Mesh and torus topologies have a similar

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 61

g 7000 ; ; ; % 5000 ; ; |
3 " Mésh | ft P d 3 ——— Mesh i I i
z 6000 L~ Torus &I : kil z ——— Torus \T i
Y —— 16-ary 4-d 1-i { gl 4 5o S 4000 | o 4ary8-dl-i wl X &
= —=— 16y 4-d4-(FT) [+ 41 ¢ £ E o 4-ary 8-d 2-i(FT) I I
C 5000 16:ary A-d 24(FT) t+ 4 ! 7] C 4-ary 8-d 2-i(RUET) fd 1P
(B — lq‘rary 4-d 4—!(RUFT)‘ s] é (B 3000 E 7 FT 16-ary 4-tree T A8
= 4000 —— ll:%\—zirgXA»d f—l(RUFT) I b J ﬁu b = - — EE i—ary %6—tr§e 4? 1
5 — -ary 4-tree ¥ o % 5 — -ary 7-cube 4-p A%
E 3000 | - FT2-ary 16-tree IT) f i & —— FB 16-ary 3-cube | ¥
2\ ~+ EBdary T-cubedp |4 j o ? 2000 3 %/‘X i
g 000 B 16-ary 3-cube 16 [~ g o
- =5 -

. 1000 . b
0 - e o
) g ee-e g T i 4)
< 1000 Fas= e eesass < pEes et
» AR N
< <

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 02 03 04 05 0.6 0.7
Accepted Traffic (flits/cycle/node) Accepted Traffic (flits/cycle/node)
(a) (b)

FIGURE 4.4: Average packet latency from generation vs. accepted traffic for uniform traffic
with 64K processing nodes and different number of dimensions: (a) 4D and (b) 8D.

behavior. The higher the number of dimensions, the fewer the number of nodes per dimension,
and the higher the achieved throughput. Also, base latency decreases with the number of di-
mensions, because the average distance is reduced. However, the behavior of kj—ary n;—direct
I-indirect is different. Throughput also increases with the number of dimensions because the
size of switches of the indirect network (a crossbar in this case) is reduced, and, hence, the
pernicious effect of HoL blocking is reduced. However, base latency does not improve with
the number of network dimensions. This is due to the fact that the number of hops that pack-
ets must perform also grows with the number of dimensions. Concerning the kp—ary n,—direct
sp—indirect, they have a similar behavior to the previous one, but with a difference. The base
latency, in this case, slightly decreases when the number of dimensions increases. Although
network diameter increases with the number of dimensions, as started above, as there are fewer
routers per dimension, indirect subnets have fewer stages, and, thus, packets have less stages
to cross. Finally, the configurations of the FB shown (the ones with a hardware cost similar
to the one of our proposal, see Section 4.5.3) and FT obtain an intermediate throughput value.
Anyway, we would like to remark that the new family of topologies always obtains the best

throughput regardless of the number of dimensions.

Complement traffic pattern: Figure 4.5 shows the obtained results for this traffic pattern for
different networks (4K and 64K processing nodes). We can distinguish two different behaviors
among the analyzed topologies. In torus, mesh, and FB topologies, the network is rapidly sat-

urated. In the rest of topologies (all the KNS topologies, and fat-trees), the network is able to

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection

62

Networks

4000
3500
3000
2500
2000
1500
1000

500

werage Message Latency from Generation Time (¢

CS]‘?

orus |

4-ary 2-d 1-1

4-ary 2-d 2-i(FT)
4-ary 2-d 2-i(RUFT)
T 16-ary 3-tree
—— ET 2-ary 12-tree
—+— FB 16-ary 2-cube 16-p

-5

—

/= FB 8-ary 3-cube 8-p

—— FB 4-ary 5-cibe 4-p

FB 2-ary ll»fube 2-p
|
|

|

o'
LrvvrgrrrrverTy

S8535

i R

0

0.1 02 03 04 05 06 0.7 08 09
Traffic (flits/cycle/node)

(a)

wverage Message Latency from Generation Time (c

3000

2500

2000

1500

1000

500

0 01 02

03 04 05 06 0.7 0
Traffic (flits/cycle/node)

(b)

8 09 1

FIGURE 4.5: Average packet latency from generation vs. accepted traffic for complement
traffic and (a) 4K processing nodes and (b) 64K processing nodes.

4000
3500
3000
2500
2000
1500
1000
500
0

wverage Message Latency from Generation Time (¢

:
esh
orus |

4-ary 2-d 1-1

4-ary 2-d 2-i(FT)
4-ary 2-d 2-i(RUFT)
T 16-ary S—Free

T 2-ary 12-tree

B 16-ary 2-cube 16-p

ary 5-cube 4-p
ary 11-cube 2-p

FB 8-ary 3-cube 8-p
—~— FB 4-
B 2-
|

5

sty .

0 01 02 03 04 05 06 0.7 08 09
Traffic (flits/cycle/node)

(a)

werage Message Latency from Generation Time (¢

3000

2500

2000

1500

1000

500

T
-

gsﬁry 2t

FB 4-ary 7-clibe 4-p
EIB 16-ary 3-¢ube 16-p

0 01 02 03 04 05 06 07 08 09 1

Traffic (flits/cycle/node)

(b)

FIGURE 4.6: Average packet latency from generation vs. accepted traffic for tornado traffic
and (a) 4K and (b) 64K processing nodes.

cope with all the injected traffic. The reason is that, for this traffic pattern, as an optimal load-

balanced routing algorithm [22] is used in FT and RUFT, the network resources are not shared

among source—destination pairs. The same happens in the indirect subnets of the proposed fam-

ily of topologies as they use the same routing scheme, and, in addition, links connecting routers

and switches only forward packets between a source and a destination, since each router only

has one processing node attached to it and a source processing node only generates traffic to a

given destination. Thus, the path used by packets from a given source-destination pair is not

shared with any other packets destined to another processing node. So, hybrid topologies and

fat-trees are clearly the winners for this traffic pattern, and direct topologies are not a good

option.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 63

S 6000 ‘ : ‘ : — 5 6000 ‘ : — , —
5 —+— Mesh ‘ +\ fl 5} —+— Mesh | |
z ——— Torus ¥ z ——— Torus | \
5 5000 s S-ary2d I \{ T S 5000 [e l6ary2-dli | 1
E = 8-ary 2-d 3-i(FT) I | E = l6-ary 2-d 4-i(FT)
S 4000 L 8-ary 2-d 3-i(RUFT) ToE S 4000 L 16-ary P-d 2-i(FT) |
5 —— FT J-ary 6-tree l Il 5 —o— 16-ary 2-d 4-i(RUFT)
o —+— FT 4-ary 3-tree [y © —— l6-ary 2-d 2-i(RUFT) |
5 3000 F —=— FB2-ary 5-cube2-p | ol A E 3000 | — = FT 16-ary 2-tree PU A
& ~+ FB4-ary2-cube 4-p | 011 & ~—~— FT 2-ary 8-tree | I
oy | i oy —— FB 4-ary 3-cube 4-p | 4
5 2000 b 5 2000 ‘ A . |1
< < 4
3 | B / /J
® 1000 1 %1000 -) =2 1
o0 <)
> 0 > 0
< <
0 0.05 0.1 0.15 02 025 03 035 04 045 0 0.05 0.1 015 02 025 03 035 04 045
Accepted Traffic (flits/cycle/node) Accepted Traffic (flits/cycle/node)
(a) (b)

FIGURE 4.7: Average packet latency from generation vs. accepted traffic for Hot—Spot traffic
at 5% in 2 dimensions. (a) 64 processing nodes. (c) 256 processing nodes.

Tornado traffic pattern: For this traffic pattern, shown in Figure 4.6, we obtain similar results
than in complement traffic pattern. The KNS topologies and fat—trees are able to cope with all
the injected traffic. Again, this very good behavior is due to the use of a load-balanced routing

algorithm and the higher effective bisection bandwidth of these topologies.

Hot—spot traffic pattern: As expected, the concentration of packets sent to a few processing
nodes makes the network saturate at a lower throughput than in other traffic patterns. As it can
be seen in Figure 4.7, the worst topology is again the mesh; the torus saturates also slightly after
it. The remaining topologies obtain a similar throughput, being the best one the hybrid topology

that uses crossbars as subnets.

To summarize, the new family of topologies is able to obtain, in all analyzed traffic patterns
and network configurations, equal or better performance results than the direct and indirect

topologies evaluated for different traffic patterns.

However, each network topology has different complexity. In the next section, we estimate the
complexity and cost of each network. Then, we will perform a comparison of topologies from a

cost-performance point of view.

4.5.3 Cost—-performance analysis

This section estimates and compares the hardware cost of each considered topology connecting
the cost also with the perfomance of each of them. First, we will analyze, for each topology,

the number of links and switches that it requires. However these numbers of links or switches

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
64 Networks

TABLE 4.3: Analytical comparison of the Mesh, Torus, Fat-Tree, Flattened—Butterfly and the
KNS topologies. KNS topologies refers to the arity of indirect switches.

|| Mesh | Torus | Fat-—tree | Flattened—Butterfly |
Switches N N N /k; ky!
links (ka — DK} 'ng+ N | k'ng+ N | N(n; = 1)+ N | k) (ky — D)ng/2+ N
| | KNS
Switches N/pn(spnn/ki)
Routers N/pn
links kZhnh + (Sh — 1)Nnh/ph + N

in isolation is not a good metric, since a network with more complex switches (which are more
expensive) has a lower number of links and switches and (incorrectly) seems to be cheaper.
Therefore, neither the number of links nor the number of switches by themselves are accurate

metrics of the actual cost. This is why we will provide another way to mesure the actual cost.

Table 4.3 shows how to compute the number of links and switches for each topology (it also
shows the number of direct routers for the new family of topologies). For example, in kp—
ary np—direct 1—indirect (i.e. it uses crossbar as subnets), if we have N processing nodes and
pp, concentrated processing nodes per each direct router, we will need N/py, or, what is the
same, k‘Zh direct routers and one switch (crossbar) for each group of kj, routers with the same
dimension component. Then, we will need crossbars with k;, ports (in this case kj, is equal to
k; because a single switch is used in each dimension) to connect the kj direct routers in each

dimension, so we will need N/pj,(ny/kp,) crossbars.

If we use MINs as subnets (fat—tree or RUFT), we will need &, /k; switches per stage to imple-
ment the MIN that replaces the crossbar, yielding N/py(ny,/kp,)(snkn/ki) switches with arity
k;, which can be simplified to N/py,(spnp,/k;) switches.

Regarding links, we will need one link per dimension in each direct router (i.e. k;"ny, links in
total) and one link for each processing node to connect it to its corresponding router (N links in
total). Furthermore, if we use MINSs as subnets (fat—tree or RUFT), each one will have kj, links
between each stage (i.e. (s, — 1)k, per MIN), yielding (s, — 1)k, N/pn(np/ky) in total, which
can be simplified to (s, — 1) Nny,/py, links. Notice that all links are bidirectional except those of
the RUFT indirect subnets that use unidirectional links, and the same occurs with the switches.
In the case of links, their cost is not halved, since much of the cost comes from the connectors.

For this reason, and for easier comparison, we assume the same link cost for unidirectional and

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 65

TABLE 4.4: Results for different 2-D topologies with uniform traffic and 64K processing

nodes.

Topology Base | Throughput Links | Switches | Routers

Latency (KNS)
256-ary 2—direct 386 0.47 196,608 512 | 65,536
1—indirect
256—ary 2—direct 480 0.40 327,680 16,384 | 65,536
2—indirect(RUFT)
256-ary 2—direct 516 0.43 327,680 16,384 | 65,536
2—indirect(FT)
256—ary 2—direct 635 0.41 589,824 | 131,072 | 65,536
4—indirect(RUFT)
256-ary 2—direct 727 0.48 589,824 | 131,072 | 65,536
4—indirect(FT)
256—ary 2—direct 941 0.48 | 1,114,112 | 524,288 | 65,536
8—indirect(RUFT)
256-ary 2—direct 1,129 0.55 | 1,114,112 | 524,288 | 65,536
8—indirect(FT)
FB 16-ary 3-cube 16-p 367 0.39 157,696 4,096 0
FB 4-ary 7-cube 4-p 443 0.38 237,568 16,384 0
FB 2-ary 15-cube 2-p 512 0.41 311,296 32,768 0
FT 16-ary 4-tree 428 0.40 262,114 16,384 0
FT 4-ary 8-tree 596 0.41 524,288 | 131,072 0
FT 2-ary 16-tree 921 0.47 | 1,048,576 | 524,288 0
Torus 4,547 0.02 196,608 65,536 0
Mesh 6,478 0.01 196,096 65,536 0

bidirectional links. Regarding switches, a switch with p unidirectional ports can be implemented

by using a switch with p/2 bidirectional ports.

Table 4.4 shows these metrics for different configurations of 64K—processing node topologies
including also the performance results for the uniform traffic pattern. The network is 2D in the
case of KNS, mesh, and torus topologies. For the FB topology, we have considered different
configurations. As it can be seen, fat-trees and the KNS topologies with more stages are the
topologies that achieve the highest raw throughput (256-ary 2—direct 8—indirect — FT and RUFT
—and FT 2-ary 16-tree). However, if we also consider the cost, these topologies are composed of
a higher number of links and switches. Specially in the case of the 256—ary 2—direct 8—indirect
(FT and RUFT) and the FT 2-ary 16-tree. On the other hand, there are topologies that require a
smaller number of switches, but these switches have more ports, so they may be more expensive.

This is the case of the 256—ary 2—direct 1-indirect or FB 16-ary 3-cube 16-p.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
66 Networks

TABLE 4.5: List price for switches: (a) Edge switches and (b) Chassis switches.

Chassis Switches
Edge Switches Ports ‘ List price ($)
Ports ‘ List price ($) 108 32,650
12 5,361 216 48,778
18 9,850 324 65,875
36 12,523 648 110,177
(a) (b)

TABLE 4.6: List price for links: (a) Copper Links and (b) Fiber Links.

Fiber Links

Length(m) ‘ List price ($)

Copper Links 3 351
Length(m) | List price ($) 5 551
0.5 84 10 580
1 94 15 611
2 107 20 642
3 123 30 730
4 139 50 896
5 172 100 1,347

(a) (b)

In order to get an actual cost figure, we have calculated the cost (in $) that some of these configu-
rations would have when implemented with real commercial products. We have used InfiniBand

products with FDR technology of Mellanox [68] (February 2015) to calculate the cost.

Tables 4.5.(a) and 4.5.(b) show the list price of switches depending on their number of ports.
There are two different types of switches: edge and chassis switches. When preparing the
budget, if there are no switches with the number of ports required by the configuration, we
selected the next one with greater number of ports. For example, we needed to use 256-port

switches for 256—ary 2—direct 1-indirect, so we selected 324-port switches.

Tables 4.6.(a) and 4.6.(b) show the list price of links depending on their length. As copper links
are limited to 5 meters, if a longer link is required, fiber links must be used. We assumed an
average length between cabinets (global links) of 10 meters, and 2 meters for connections in the

same cabinet (local links).

The number of global and local links depends on the topology. For 256—ary 2—direct 1-indirect
and 256-ary 2-direct 4—indirect with FT as subnets, the processing nodes of the same first

dimension can be placed in the same cabinet or in two cabinets (one beside the other). The

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 67

TABLE 4.7: Cost for Network Interface Cards.

NIC | List price ($) |
Connect IB PCle 3.0 16x Single Port 1314
Connect IB PCle 3.0 16x Dual Port 2378

FIGURE 4.8: Total cost of different topology configurations with 64K processing nodes.

links of this dimension are local links, and the links of the second dimension are global links.
Regarding the links interconnecting the stages of the MIN (a fat-tree in this case), we assume
that they are local, since each subnet fits in a cabinet. In flattened-butterfly configurations, for
example FB 16-ary 3-cube 16-p, we use the same approach. The links of the first dimension
are local because the processing nodes of the same first dimension are placed in one or two
cabinets and the links of the remaining dimensions are global. In fat-trees, the links which
connect the processing nodes with the first stage are local, and the remaining links are global. In
torus topology, the configuration is very similar to kp—ary np—direct 1-indirect (local links for
the first dimension and global links for the second dimension). However, in this case, a cabinet
or a group of cabinets that contain processing nodes of the same first dimension, are connected
to the neighboring cabinet or group. So, they will be very close. For this reason, in this case we

have used shorter global links of 5 meters.

As previously stated, multiport NICs can be used to implement the KNS topologies. There are
currently commercially available dual-port NICs that can may used to implement KNS with two
dimensions. With these NICs, neither direct routers nor links between processing nodes and
direct routers are longer required. The prices of dual-port and single—ports NICs are shown in

Table 4.7.

Notice that all prices shown in Tables 4.5, 4.6 and 4.7 are for individual products. If purchased

them massively we will surely enjoy a great discount in all cases.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
68 Networks

TABLE 4.8: Cost—performance analysis for different topology configurations with 64K pro-
cessing nodes. Throughput is measured in flits/cycle/node. Throughput/cost is measured in
flits/cycle/node/$.

Topology 256-ary 256-ary 256-ary FB FB FT FT Torus
2-direct 2-direct 2-direct | 16-ary | 4-ary | l16-ary | 4-ary | 256-ary
l-indirect | 2-indirect | 2-indirect | 3-cube | 7-cube | 4-tree 8-tree 3-cube
(FT) (RUFT) 16-p 4-p

Throughput 0.47 0.43 0.40 0.39 0.38 0.40 0.41 0.02
Total Cost ($) | 235M 420 M 376 M | 266 M | 371 M | 412M | 1,062M | 463 M
Throughput 2.00 1.02 1.06 1.47 1.02 0.97 0.39 0.04
/Cost x107? x1079 x1079 x1079 | x1079 | x1079 | x1079 | x107°

Using these data, we calculated the cost of some selected configurations, which are shown in
Figure 4.8. The configurations shown are the cheapest ones that their perfomance is not very far

to the configuration that obtains the highest throughput.

As can be seen in Figure 4.8, the 256—ary 2—direct 1-indirect configuration obtains the lowest
absolute cost. The fat—tree with 8 stages (FT 4-ary 8-tree)has a very high cost, despite having
very good performance. In the case of torus, its cost is not very high, but it has a low perfor-
mance. Flattened-butterfly has a competitive cost, but it is not lower than the 256—ary 2—direct

I-indirect and it does not reach a better perfomance.

To allow a better comparison of both cost and perfomance, Table 4.8 shows the ratio between
cost and perfomance. If we use KNS topologies, configurations with more stages have better
throughput but also a higher cost and more latency. The same applies to fat-trees. The kj—
ary np—direct 1-indirect combines a good perfomance with a low cost. Although the torus
configuration is not very expensive, it has a very poor perfomance. Flattened—butterflies are
not very expensive and obtain good perfomance. However, the kp—ary nj—direct 1-indirect
configuration obtains the best absolute results in terms of perfomance-cost ratio. As it can be
seen, the worst ratio is provided by the torus, followed by a configuration of the fat—tree (FT

4-ary 8-tree).

4.5.4 Fault-tolerance

The proposed topologies provide a lot of alternative paths for each source—destination pair,
which is very important to tolerate faults. In this section, we will briefly analyze the fault-

tolerance properties of the new topology.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 69

In meshes, the worst case arises when a link connected to a corner node fails. As each corner
node has a number of links equal to the number of network dimensions, the maximum number of
faults that keeps the network connected is equal to the number of dimensions minus 1 (ng — 1).
The torus topology tolerates more faults than the mesh due to the fact that packets can move in
both directions of a dimension (in particular, 2ny — 1 faults). The fat—tree topology tolerates as
many faults as the number of up or down ports of the switches minus one (k; — 1). In the FB,

each router is connected to (k;y — 1)ny routers, so it tolerates as many faults as (kf — 1)ns — 1.

In the case of the KNS family of topologies and considering faults in the links connected to
routers, as long as a router is still connected to one dimension, it may forward packets, providing
that the indirect subnet associated to that dimension is working. Therefore, at least, the number
of tolerated faults is given by the number of dimensions minus 1. If the faults occur in the links
of the indirect network, as long as one subnet of every dimension is working, they will be also
tolerated. Remember that there are kj, subnets per dimensions. Indeed, if fat-trees are used as
the indirect subnets, several faults in each one of them are tolerated. Notice, though, that RUFT
is not fault-tolerant, since there is a unique path for each source—destination pair, so it tolerates 0
faults. However, even when using RUFTs as indirect subnets, as long as other indirect subnets of
the same dimension are working, the number of tolerated link faults in different indirect subnets
should be higher than the one of the links connected to routers. As a consequence, we conclude
that the fault tolerance degree of the new topology is upper bounded by the maximum number
of faults in the routers, that is, the number of dimensions minus one, n;, — 1. This gives us the

same fault tolerance as a mesh with the same number of dimensions.

Another analysis is also possible. Assume that we have routers with p ports available. With such
a router, we could build a mesh with % dimensions that tolerates % — 1 faults or a torus with also
g dimensions that tolerates 2% — 1 = p — 1 faults. In the case of the KNS, we could built a p
dimensional network that tolerates p — 1 faults. That is, for the same router degree, the KNS

tolerates the same number of faults as a torus.

On the other hand, considering the rich connectivity of the newly proposed topology, a higher
number of faults should be tolerated with a very high probability using a fault-tolerant routing
algorithm or reconfiguration mechanism. Finally, it must be noticed that routing should be also
changed to fully support fault tolerance in all topologies. However, an in depth analysis of both

fault-tolerance probability and fault-tolerance routing issues is out of the scope of this paper.

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
70 Networks

We have not considered faults in injection links. Most topologies usually have a single link
that connects the processing node to the network. If this link fails, the processing node will be
isolated. Therefore, considering faults in the injection links, these networks will not tolerate
any fault. However, in the KNS topology family (and also in tori and meshes), if the router
is implemented inside each processing node (for instance using the HCA cards from [47]), the
processing node is actually connected to the network through as many links as dimensions in

the network, therefore tolerating also faults in the injection links.

4.6 Related Work

There are previous works that propose alternative topologies to the ones considered in this paper,
but they have been never or seldom used in commercial products or in supercomputers. This is
the case of the WK-recursive topology that was proposed in [9] for interconnection networks
and more recently for on—chip networks [10], but, to the best of our knowledge, it has never been
used in commercial products. Moreover, this topology has difficulties to guarantee deadlock

freedom in the routing algorithm.

One of the topologies considered for comparison purposes in this paper is the flattened-butterfly[11]
which is a very popular topology in recent papers. It is obtained from combining the routers
in each row of a conventional butterfly MIN, thus obtaining an n—dimensional direct network
where the nodes of each dimension are not connected in a ring fashion like in a torus, or through
a small indirect topology like in our proposal; instead they are fully connected. In this paper, we
have referred to ny as the number of network dimensions and to &y as the number of switches
per dimension. This results in a topology very similar to a generalized hypercube but attaching
several processing nodes to the same switch. Therefore, the flattened—butterfly, like the gen-
eralized hypercube, has a high cost, specially for large machines, which are the focus of our

proposal. This topology is compared against our proposal in Section 4.5.

Other works propose the combination of several topologies, as we do in this paper. Most of
them have been proposed for on—chip networks and therefore the target is different to ours. For
example, in [17], each core is connected to two different tree networks in an on-chip environment
in order to overcome the poor performance provided by trees. This proposal is not suitable for

large machines due to the complexity of the cable layout and the poor performance achieved

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
Networks 71

even with two trees. Another proposal is the multi-ring topology [70], which is composed of

several interconnected rings.

Many of the proposals for on—chip networks are based on hierarchical topologies. Subsets of
cores are connected by small local networks connected in turn, by a global network. This is not
the case of the family of topologies proposed in this paper. Hierarchical designs are expected to
have a higher latency and smaller throughput, since both networks must be traversed for most
of the source—destination pairs. In [12], the authors propose to use as local network a simple
bus, and a mesh as global network. As can be expected, this is not an appropriate topology for
a large machines due to the low performance provided by buses and meshes. The authors of
[13] propose a tool to select the most suitable topology for a given network design. The tool
explores the design space of hybrid Clos-torus networks. However, opposite to our proposal, the
explored designs are hierarchical topologies, where local networks are Clos networks and they
are connected by a global torus network. Another hierarchical topology is the DragonFly[14,
15], which provides a topology that is based on grouping routers virtual routers to increase the
effective radix of the network. This topology uses two different networks, one intra—group,
and another one inter—group. For this topology, it is advisable to use a non-minimal global
adaptive routing to balance the load across the global channels. These global channels, which

link different groups, are long links, so that a high latency can be expected.

A topology closer to the new family proposed in this paper is the mesh of trees (MoT) intro-
duced in [18] and later used also in NoCs [19]. It is based on an n—dimensional topology where
the nodes of a given dimension are connected using a tree. This results in a particular case of
our proposed family of topologies with very poor expected performance due to using a simple
tree for connecting the nodes of a dimension. The Bcube [20] and Hypercrossbar network [21]
also resemble our proposal. Each processing node is connected to several dimensions by using
several NICs. A switch is used to connect the processing nodes of the same dimension. How-
ever, routing is performed through end-processing nodes, by ejecting packets from the network

through a NIC and later reinjecting them through another one.

Finally, in [16] a topology that combines several tori networks is proposed. The proposal focus

216 processing nodes and its wiring

on large supercomputers, but its applicability is limited to
layout is complex for large machines. The proposal starts from a 2-D torus and provides bypass
links in the diagonal direction as many times as needed. This proposal does not improve the

number of hops in a single dimension, since no new links are added to connect nodes of the same

Chapter 4. The k-ary n-direct s-indirect Family of Topologies for Large-Scale Interconnection
72 Networks

dimension, but reduces the number of hops when traversing several dimensions. In addition, this

topology has the same problem with deadlock-free routing than the WK-recursive.

4.7 Conclusions

This paper proposes a new family of hybrid topologies, the KNS, for large—scale interconnec-
tion networks. It is based on an n—dimensional topology where the nodes of each dimension are
connected through a crossbar or a small indirect topology (a fat—tree or a RUFT in this paper).
This results in a new family of topologies that provides high—performance, with latency and
throughput figures of merit close to the ones obtained with indirect topologies, but with a much
lower hardware cost. In particular, from the throughput point of view, the new topologies with
fat—trees as indirect subnet are the best ones. Nevertheless, from the cost—performance point of
view, the new topologies with crossbars as indirect subnets are the winners, as they are able to
obtain better throughput per dollar compared to indirect topologies, and the differences are even
higher when comparing to direct topologies. Moreover, in the new topologies with MIN’s as
indirect subnets, as the indirect subnets are small, the layout of the new topologies is much sim-
pler than the one for indirect topologies with the same number of processing nodes. Concerning
fault—tolerance, the proposed family of topologies is able to tolerate, at least, the same number
of faults as a mesh with the same number of dimensions, regardless the topology used in the

indirect subnets.

Chapter 5

A New Fault-Tolerant Routing
Methodology for KNS Topologies

Authors: Roberto Penaranda (Universidad Politécnica de Valencia), Ernst Gunnar Gran, Tor
Skeie (Simula Research Laboratory, Norway), Maria Engracia Gémez, Pedro Lépez (Uni-

versidad Politécnica de Valencia).
Type: Conference.

Conference: The 2nd IEEE International Workshop on High-Performance Interconnection Net-

works in the Exascale and Big-Data Era (HiPINEB).
Location: Barcelona, Spain.
Year: 2016.
DOI: hitp : //dx.doi.org/10.1109/HIPIN EB.2016.9

URL: http : //ieeexplore.icee.org/document 7457761/

73

74 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

Abstract

Exascale computing systems are being built with thousands of nodes. A key component of these
systems is the interconnection network. The high number of components significantly increases
the probability of failure. If failures occur in the interconnection network, they may isolate a
large fraction of the machine. For this reason, an efficient fault-tolerant mechanism is needed to
keep the system interconnected, even in the presence of faults. A recently proposed topology for
these large systems is the hybrid KNS family that provides supreme performance and connectiv-
ity at a reduced hardware cost. This paper present a fault-tolerant routing methodology for the
KNS topology that degrades performance gracefully in the presence of faults and tolerates a rea-
sonably large number of faults without disabling any healthy node. In order to tolerate network
failures, the methodology uses a simple mechanism: for some source-destination pairs, only if
necessary, packets are forwarded to the destination node through a set of intermediate nodes
(without being ejected from the network) which allow avoiding faults. The evaluation results
shows that the methodology tolerates a large number of faults. Furthermore, the methodology
offers a gracious performance degradation. For instance, performance degrades only 1% for a

2D-network with 1024 nodes and 1% faulty links.

5.1 Introduction

Interconnection networks are used for different purposes, from small devices that use networks
on chip which connect several components to large supercomputers that connect a large number
of nodes. The size of large supercomputers has been growing year after year. The topmost
machines of the top 500 supercomputer list [1] are being built up by using hundreds of thousands
of processing nodes. All these processing nodes work jointly to solve a given problem in as short

a time as possible.

The high amount of hardware that can be found in an interconnection network in high—performance
machines significantly impacts the probability of having a fault in the system. Each component
may independently fail, and therefore, the probability of having a single fault in the whole
system drastically raises with the number of elements that compose it. For this reason, it is

important that systems can keep running although there are several failures on the network.

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 75

One possible solution is to replicate all network elements, and use these additional elements as
spare components. But this significantly increases the cost of the network. On the other hand,
there is another solution which focuses on modifying the routing algorithm to be able to reach

the destination nodes using alternative paths circumventing failures.

In this paper we present a new routing algorithm for KNS networks, a recently proposed hybrid
topology, that is able to tolerate multiple faults and where the performance degrades gracefully.
The algorithm is based on the use of intermediate nodes [46] in tori and meshes, where an
intermediate node is used for some source-destination pairs in order to avoid faults in the packet

paths.

The rest of the paper is organized as follows: Section 5.2 describes briefly different fault tolerant
algorithms proposed previously for other topologies. In Section 5.3, we describe KNS, the
hybrid topology for which this mechanism has been implemented. In Section 5.4, we present
the fault-tolerant methodology proposed in this paper that is based on using intermediate nodes.
In Section 5.5, different configurations of the new routing algorithm are evaluated. Finally, in

Section 5.6, some conclusions are drawn.

5.2 Related Work

There are two different categories of fault tolerant techniques that are based on routing configu-
ration. The first category reconfigures the routing tables when a failure occurs. In this case, we
have to update the routing tables with the new topology after the failure [27-30]. This technique
allows the network to tolerate any number of faults without requiring extra resources [31], as
long as the network is still connected, thanks to its flexibility. But this flexibility may kill per-
formance due to the need of using topology agnostic routing algorithms as the resulting network
topology is irregular. That is, they do not consider the specific characteristics of the topology,

thus they often provide inferior traffic balance.

On the other hand, the second category covers fault-tolerant routing algorithms. A large number
of fault-tolerant algorithms for interconnection networks have been proposed, and specially for
direct network topologies like tori and meshes. Some of them often require many resources
(virtual channels), sometimes depending on the number of tolerated faults [35] or the number of
dimensions of the topology [36]. Other algorithms are based on disabling fault regions [37-41]

or individual nodes [42—44] to route the packets around these fault regions. However, to do this,

76 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

these algorithms disable healthy nodes. In [46], the authors use the technique of Valiant routing
[45] to implement an algorithm that uses intermediate nodes to avoid faults. This methodology
requires a few virtual channels and does not disable healthy nodes. There are other algorithms
that do not require extra virtual channels like [32, 33] or [34]. The first two methods are able to
tolerate only a few faults for low dimension meshes, while the third method can offer more tol-
erance against faults, but needs extra virtual channels in a torus. However, these last algorithms
were designed specifically for meshes and tori, and they provide a bad traffic balance as a lot of

traffic is directed towards a single link which can be easily saturated.

We have focused on direct topologies because of the similarity with the KNS topology.

5.3 Preliminaries

Topologies usually adopt a regular structure to simplify their implementation and the routing
algorithm. Among the different taxonomies of regular topologies, the most commonly-used one

divides them into direct and indirect topologies [2, 3].

Direct topologies usually adopt an orthogonal structure where nodes are organized in an n—
dimensional space, and each processing node has an associated router. The nodes are connected
in each dimension in a ring or array fashion. 2D or 3D direct topologies are relatively easy
to built as each topology dimension is mapped to a physical dimension. Implementing direct
topologies with more than three dimensions implies not only increasing its wiring complexity
but also the length of its links when they are mapped to the 3D physical space. Indeed, the
number of ports of the routers geometrically grows with the number of dimensions (as two
ports per dimension are required). The implementation limitation in the number of dimensions
leads to an increase in the number of nodes per dimension, which increases the communication

latency, negatively impacting performance.

The alternative is to use an indirect topology. The main difference, compared to direct topolo-
gies, is that not all the routers have an associated processing node. The most common indirect
topologies are multistage indirect networks (MINs) where switches are organized in a set of n
stages. Indirect topologies provide better performance for a large number of nodes than direct
ones. However, this is achieved by using a higher amount of switches and links. Furthermore,

their physical implementation is complex due to the fact that the wiring complexity grows with

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 77

T

Crossbar

.

Fat-tree

FIGURE 5.1: An example of the KNS topology with n = 2 and k = 4.

the number of nodes in the system, unlike direct topologies where complexity grows with the

number of topology dimensions.

To overcome the limitations of direct and indirect topologies, hierarchical and hybrid topologies
have been proposed. In [11], the authors propose a variation of the butterfly topology obtained
from using high-radix switches, that results in a direct topology. This topology can be seen as
a generalized hypercube with concentration, as all the nodes in the same dimension are directly
connected. That is, there is a link from each node to the others of the same dimension. As
an extension of this topology, the Dragonfly topology was proposed in [14], which provides a
hierarchical topology that is based on grouping routers in virtual routers to increase the effective
radix of the network. This topology uses two different networks, one intra—group, and one inter—
group. For this topology, it is advisable to use a non-minimal global adaptive routing to balance
the load across the global channels. These global channels, which link different groups, are long

links, so that a high latency can be expected.

To solve the limitations of previous topologies, the k-ary n-direct s-indirect (KNS) was proposed
in [67], an n—dimensional topology, where the rings that connect the nodes in each dimension are
replaced by small indirect networks. In this way, communication latency along each dimension
no longer linearly grows with the number of nodes per dimension. On the other hand, the small
size of this indirect topology allows a reasonable wiring complexity opposite to large indirect
topologies. This combination results in a family of topologies that provides high performance,
with latency and throughput figures of merit close to the ones obtained with indirect topologies,

but at a reduced hardware cost. This topology is defined by three parameters: the number of

78 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

dimensions n, the number of nodes per dimension k, and the number of stages of the indirect

subnetworks s.

In Figure 5.1 we can see an example of this topology. The topology has 2 dimensions and 4
nodes per dimension. We can use different solutions to connect the nodes of the same dimension.
For example, we can use a crossbar or a single switch to connect them or different multistage
topologies like a k-ary n-tree or a RUFT topology [5] if we have a higher number of nodes per
dimension. The number of processing nodes is given by N = k™. In this paper, we focused
in k-ary n-direct 1-indirect topologies, although the proposed algorithm can be implemented in

any KNS topology configuration.

5.4 Fault-Tolerant Routing Methodology

In this paper, we will assume a KNS topology using crossbars as indirect subnetworks with
minimal deterministic routing, Hybrid-DOR [67]. If we have no failure, packets are routed

using this minimal routing algorithm that does not need virtual channels.

We will consider link faults, since a switch fault can be modeled like a switch with failures in all
its links. We assume that if a channel fails then the link fails in both directions. In this paper, we
do not focus on how the failure information propagates to the other nodes. We assume a static
fault model where the whole network has in advance the information about the failures of the

network.

For each source-destination pair without failures in their path, we route packets with Hybrid-
DOR using minimal paths. But, if there is any fault in the path of any source-destination pair, the
methodology uses intermediate nodes, like in [46]. The use of intermediate nodes was proposed
in [45] for other purposes, such as traffic balancing. So, the routing algorithm avoids these faults
by sending the packet to one or several intermediate nodes and from the last intermediate node
to the destination node. The Hybrid-DOR algorithm is used in all subpaths. Notice that the
packets are not ejected from the network when they reach intermediate nodes. The idea is to
avoid the faults by deviating the packet to an intermediate node. The intermediate node for each
source-destination pair is selected with this purpose. If there is not any faulty link in the path

between the source and the destination, then no intermediate node is used.

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 79

The address of intermediate nodes are stored in the packets, in addition to the address of the
destination node. When the intermediate node is reached, its address is removed from the packet.
This procedure is repeated for each intermediate node, if more than one is used. Using more

than one intermediate node allows to tolerated more faults.

For each source—destination pair, it is checked whether it exists a fault-free path. If routing
through intermediate nodes is required, they are computed and stored in a table at every source
node. There is a table entry for each destination node that requires routing through intermediate

nodes.

Like in [46], we will denote the source node as S and the destination node as D. For each inter-
mediate node, we will use the nomenclature I,,, where x represents the index of the intermediate

node (I for the first one, I for the second one and so on).

To ensure deadlock freedom we need at least as many additional virtual channels as intermediate
nodes. For example, if we use up to two intermediate nodes, we need at least three virtual
channels. When a packet reaches an intermediate node, the packet changes the virtual channel
to avoid deadlocks. So, following the example with two intermediate nodes, one virtual channel
is used from S to [, another one from [; to I, and the last one from I3 to D. In this way,
we avoid the occurrence of deadlocks, because we are dividing the network into three virtual
networks, and we use a deadlock-free routing algorithm within each virtual network. We could
also use an adaptive routing algorithm, using several adaptive channels and an escape channel
[56], but in such a case, we would need one escape channel for each virtual network to ensure
deadlock freedom, where the escape channels use Hybrid-DOR. In this paper, we focus on the

deterministic routing algorithm.

In this section, we do not consider the cases where a set of faults physically disconnect one or
more nodes of the network, since in this case the packet would be unable to reach its destination.
Because this methodology does not add new resources. Therefore, these cases, where the whole

network is not connected, are not considered in this section.

Next, we will present how to select the intermediate nodes. First, we will focus on using only
one intermediate node. After that, we show how to extend the methodology to use multiple

intermediate nodes.

80 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

5.4.1 One Intermediate Node

In this case, we will use only one intermediate node when one or more faults affect the minimal
path provided by Hybrid-DOR between a pair of nodes. This intermediate node, I, has to sat-

isfy two rules:

1. I; is reachable from S.

2. D is reachable from I.

A node Y is reachable from X when there is a minimal path provided by Hybrid-DOR between

this pair of nodes, and there is no fault in it.

For direct topologies like tori or meshes, the choice of this intermediate node is very important,
because the number of hops can greatly increase, depending on the selected intermediate node.
In KNS, the number of hops depends on the number of dimensions that the packet must cross.
The methodology prioritizes the use of those intermediate nodes which allow the packet to reach
the destination node without additional hops compared with minimal path between the source

and the destination.

For instance, in Figure 5.2.(A) there is an example of a 4-ary 2-direct 1-indirect network where
there is a fault at the source node (S) in the X dimension link. So, it cannot reach the destination
node (D) using Hybrid-DOR. In this case, the possible intermediate nodes are all nodes of the
same column (surrounded by the dashed line in the figure), but the best choice is the node that
is in the same row as the destination node, because it allows to reach the destination node by a

minimal path.

Lemma 5.1. Given a KNS network with n dimensions, using one intermediate node, the routing

algorithm can tolerate n — 1 failures.

Proof. For a network with n dimensions, each node has n links. Each link allows connecting to
the other nodes of the same dimension by a indirect subnetwork. Let Trg be the set of nodes
reachable from S using Hybrid-DOR, and 7 the set of nodes from which D is reachable using
Hybrid-DOR. As long as T'rs N Tp is not empty for any source-destination pair, the network is
able to handle the fault combination. Therefore, the worst fault combinations are the ones that

reduce the number of nodes in Trg or/and T'p.

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 81

FIGURE 5.2: An example of a set of faults that disconnect the network with a KNS topology
withn = 2and k = 4.

For instance, in Figure 5.2.(A), while T'p set comprises all network nodes (except the source
node), the fault reduces Trg to only 3 nodes. Trs NI cardinal is 3 and the fault is supported.
However, assume that there is another link failure that reduces 7. The worst scenario occurs
when the fault is located on the Y dimension link of D (Figure 5.2.(B)). Thus, Trs N1Tp is
reduced to one node, and the fault is supported. However, if a new failure appears in the links of
the intermediate node (thus, there will be 3 faults), the source—destination pair S—D will become

disconnected. This can be seen in Figure 5.2.(C).

However, the worst scenario happens when the source and the destination nodes are located in
the same row. In this case, with only two faults (the first two faults of the example, a link failure
in X link of the source node and another one in the Y link of destination node) the destination
node is not longer reachable from the source node and Trs N T is empty (see Figure 5.3).
Thus, the network supports one fault. Notice, though, that there are some cases were 2 faults
physically disconnects nodes (i.e. a failure in all links of a node) and it is impossible to reach

them. These cases are obviously unsupported.

In general, for any n-dimensional KNS network, the minimal non tolerated scenario happens
when the source and the destination nodes have the same coordinates but the coordinate of the
first dimension. If T is reduced due to faults on all links of destination node but the one of the
first dimension (which physically disconnect the node) and there is a fault on the link of the first

dimension on the source node, both nodes become disconnected.

Therefore, the minimal number of faults needed to disconnect the network with only one in-

termediate node is n faults (n — 1 failures at the destination node links plus one failure at the

82 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

FIGURE 5.3: An example of the KNS topology with n = 2 and k£ = 4 and 2 faults.

source). Thus, the routing algorithm is able to tolerate n — 1 failures. This means that the routing

algorithm is able to tolerate all the fault combinations with less or equal number of faults. [J

5.4.2 Multiple Intermediate Nodes

There are cases where only one intermediate node is not enough to handle the faults. In these
cases, the routing algorithm can use more than one intermediate node. Assume that a number
of x intermediate nodes I, I, . .. I, are required. Intermediate nodes are selected according to

the following rules:

1. I is reachable from .S.
1. I; 4 is reachable from [;, for 0 < i < .

2. D is reachable from I.

Therefore, we can guarantee that the packet is able to reach its destination node following the

path S-Il-...—Ii-Ii+1-...-Ix-D.

In order to reduce the number of hops we try to use a set of intermediate nodes that does not
increase the number of hops beyond a minimal path. In particular, if there are available non-
minimal paths using 7 intermediate nodes and also a minimal path using j intermediate nodes,

where ¢ < 7, the later will be finally selected.

Lemma 5.2. Given a KNS network with n > 2 dimensions, using two intermediate nodes, the
routing algorithm can tolerate 2 x (n — 1) + k — 3 failures. If n = 2, the routing algorithm can

tolerate 2 x k — 1 faults.

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 83

Proof. Let Tp; be the set of nodes from which the destination node is reachable using Hybrid-
DOR using one intermediate node. That is, the set of nodes that can reach the destination node
using an intermediate node from Tp. In Figure 5.3 we can see an example of a 4-ary 2-direct
1-indirect network with 2 faults. The first one is located at the source node X-link and the
second one at the destination node Y-link. The Figure shows the set of reachable nodes from
the source node (I rg with gray background), the set of nodes which can reach the destination
node (1'p), and the set of nodes that can reach the destination node using any node within 7p
as an intermediate node (7Tp1). Thus, in this case, we have to use one node of Trg N T as
the first intermediate node, and another one of 7 as the second intermediate node. As long as
Trs N Tpy is not empty for any source-destination pair, the network is able to handle the fault
combination. Therefore, the worst fault combinations are these that reduce the number of nodes

in TRS’ TD or/and TDl«

As in Lemma 1, if there are faults on all the destination node links except the one of the first
dimension to avoid disconnecting the network, Tp will be reduced in £ — 1 nodes, the nodes
which share all coordinates with the destination node, except the coordinate of the first dimen-
sion. On the other hand, if some faults appear on all links of the source node, except the one
of the last dimension, T’rg will be reduced in k£ — 1 nodes, the nodes which share all coordi-
nates with the source node except the coordinate of the last dimension. In this way, the possible
second intermediate nodes, T, are only reached by the link of the last dimension. But if we
assume that these links are also faulty, the destination node will not be not longer reachable. So,
we only need n — 1 faults in the source node links, n — 1 faults in the destination node links and
k — 1 faults in the set of possible second intermediate nodes. However, a still worst scenario is
when the source node shares all coordinates with the destination node, except the coordinate of
the first dimension (see Figure 5.3). In this case, the destination node will not be reachable with
only %k — 2 faulty links in T'p set. Hence, the source—destination pair becomes disconnected with
2% (n — 1) + k — 2 faults, ergo, the network can tolerate 2 x (n — 1) + k — 3 faults. This means
that the routing algorithm is able to tolerate all the fault combinations with less or equal number

of faults.

Notice, though, that for 2-dimensional networks, adding faults for every possible second inter-
mediate node (which comprise 1) physically disconnects the row where the destination node

is located, as we can see in Figure 5.3. These cases are unsupported by the methodology.

For these kind of topologies, another combination of faults is needed. For instance, keeping

84 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

the faults of destination node (n — 1 = 1) and source node (n — 1 = 1), and setting faults on
the X-links of nodes of Trg except one of them (k — 2, see Figure 5.3), to avoid physically
disconnecting the column, we have only one node in Trs NI’ p1 which will be the first interme-
diate node. From this first intermediate node there are k — 2 possible paths to the destination,
i.e., one path for each possible second intermediate node which comprises Tp. If there are
faults in these paths, the destination node will not be reachable by the source node, i.e., with
1+1+(k—2)+ (k—2) = 2%k — 2 faults. Thus, the routing algorithm is able to tolerate
2 % k — 1 faults in a 2-D KNS network. O

5.4.3 Extension To Other Indirect Subnetworks

In this paper, we have focused on KNS topologies that use crossbars as indirect subnetworks.
However, we can extend the methodology to KNS topologies that use other indirect subnetworks
like fat-trees or RUFT. To do this, a specifically designed methodology should be also used to
tolerate faults in each indirect subnetwork. Intermediate nodes are used globally and the specific

methodology locally for each subnetwork.

While the subnetworks can avoid faults, the direct routers will work normally. However, if a
node becomes unreachable due to a fault at a given subnetwork, it will be modeled like a fault

in this node, in the link of the corresponding dimension of this subnetwork.

5.5 Experimental Evaluation

To evaluate this methodology, we have divided this section in two parts. First, we analyze the
number of failures that can be tolerated. A fault-tolerant routing algorithm is able to tolerate n
failures if it can provide a valid path between every source-destination pair with any combination
of n failures. There are situations where the failures physically disconnect the network. We

consider these situations as combinations where there is no path for all source-destination pairs.

Second, we evaluate the network performance using this methodology with different number of
faults. To do this, we have simulated different network configurations with different number
of faults under uniform traffic. For each number of faults, we have tested 50 random fault
combinations to obtain the average throughput and latency. In this experiments, the situations

where some nodes are physically disconnected were not taken into account either.

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 85

We have analyzed this methodology for two network configurations: a 32-ary 2-direct 1-indirect
and a 10-ary 3-direct 1-indirect topologies. They have similar number of nodes (1024 and and

1000, respectively), so we can analyze the impact of having a different number of dimensions.

5.5.1 Simulation Model

To perform the simulations, we have used an event-driven simulator which models KNS topolo-
gies with bidirectional links. This simulator uses virtual cut-through switching. Each switch
has a full crossbar with queues of 4 packets both at their input and output ports. Credits are
used to implement the flow control mechanism. Packet length is 16-flit. We assume a pipelined
router with a latency of 4 clock cycles, and switch and link bandwidth is assumed to be one flit

per clock cycle.

5.5.2 Fault Analysis

The number of possible fault combinations increases exponentially with the number of faults.
For this reason, it is not possible to explore all possible fault combinations in a reasonable

amount of time. Therefore, we have used as a tool the statistical analysis.

Specifically, we have analyzed a subset of the fault combinations, where the faults are randomly
chosen. This subset is large enough to obtain results with a confidence level of 99% and an error

lower than 1%.

120
2
& 100+~
©
._é 80
S 60 ~— 1Int. node
B 40 T A 2 Int. nodes
©
% 20
=
=3 O T Lhrimsimeaen
>

RS A IR R I ISR SRS SRR A

Number of faults

FIGURE 5.4: Supported fault combinations by the methodology when using one or two inter-
mediate nodes in a 2D-network with 1024 nodes.

Figures 5.4 and 5.5 show the percentage of supported combinations using one or two intermedi-

ate nodes for a 2D-network with 1024 nodes and a 3D-network with 1000 nodes, respectively.

86 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

120
2
o 100‘ """
®
£ 80
E
o 60 ~—1Int. node
B 40 s T 2 Int. nodes
@
g 20
= S e
< -

0
S Tt T T T e L R U VS
P @ P BB P A o o oS o PP

Number of faults

FIGURE 5.5: Supported fault combinations by the methodology when using one or two inter-
mediate nodes in a 3D-network with 1000 nodes.

These figures show the results from 1 fault to 150 for 2D-networks and 500 for 3D-networks.
First, as expected, the percentage of supported combinations of faults strongly increases when
using two intermediate nodes versus only one. On the other hand, in the 2D-network, the per-
centage of tolerated combinations of faults decreases considerably with a relatively number of
faults if we compare to the 3D-network. However, the 3D-network has more resources. There
are 3000 links in the 3D-network versus 2048 links in the 2D-network. In addition, the fact of
having more dimensions gives more possibilities to route the packet through different paths that
do not share resources, being able to avoid more faults. Therefore, we can see that, with 23
faults in the 2D-network even with two intermediate nodes, the percentage of supported combi-
nations is less than 80%. However, in the 3D-network, more than 100 faults are needed to reach
a percentage less than 80%. Remember that the fault combinations that physically disconnect
the network are included in this analysis. For instance, in 2D-networks, there are unsupported

fault combinations with only 2 faults (or 3 in 3D-networks).

5.5.3 Performance Analysis

In this Section we will analyze the behavior of the fault-tolerant routing methodology in presence
of faults. To do this we have simulated several network scenarios, with 1% faulty links, 3%
faulty links and 5% faulty links. For each fault scenario, we have generated 50 random fault sets,
all of them supported by the methodology. We have used the methodology using 2 intermediate
nodes, since this allows to test fault combinations with more faults. However, the fact of using
two rather than one intermediate node does not strongly impact network performance. This is

because the methodology is able to avoid the fault using only one intermediate node in many

Chapter 5.

A New Fault-Tolerant Routing Methodology for KNS Topologies

Accepted traffic (flits/cycle/node)

0.45 T T T T T T T T
—+&— 0% faults - S
04 F —— 1% fault R A R
0.35 ' |

0.3
0.25
0.2
0.15
0.1
0.05
O 1 1 1 1

0 01 02 03 04 05 06 07 08 09
Injected traffic (flits/cycle/node)

FIGURE 5.6: Accepted traffic versus in-
jected traffic for a 32-ary 2-direct 1-

indirect under uniform traffic.

0.5 T T T T

—=— 0% faults
045 F —s— 1% faults [P‘EEEBE—EIEIEI-EI-EEEIEEE—EIEIE—E—E—E—{
0.4 b~ 3% faults g |

035 5% faultg=+ R s
o g,
0.25

0.2
0.15

0.1
0.05

Accepted traffic (flits/cycle/node)

0 01 02 03
Injected traffic (flits/cycle/node)

04 05 06 07 0.8 09

FIGURE 5.8: Accepted traffic versus in-
jected traffic for a 10-ary 3-direct 1-

indirect under uniform traffic.

Avg. Msg. Lat. from Gen. Time (cycles)

Avg. Msg. Lat. from Gen. Time (cycles)

6000 : . T . . : :
—+&— 0% faults
—— 1% faults
5000 r ———— 3% faults 1
1 5% faults
4000 ,
3000 - b
2000 + b
1000 b
0 i L L L L L
0 01 02 03 04 05 06 07 08 09 1

Injected traffic (flits/cycle/node)

FIGURE 5.7: Average latency versus in-
jected traffic for a 32-ary 2-direct 1-

87

8000
7000
6000
5000
4000
3000
2000
1000

indirect under uniform traffic.

—&— 0% faults
—*— 1% faults
1 3% faults
1 5% faults

et

0.1 02 03 04 05 06 07 08 09 1
Injected traffic (flits/cycle/node)

FIGURE 5.9: Average latency versus in-
jected traffic for a 10-ary 3-direct 1-

indirect under uniform traffic.

cases, although it is able to use two. Therefore, the methodology only uses 2 intermediate nodes

in a few cases, which does not impact the performance to a large extent.

In order to measure the performance, we obtained the accepted traffic and average message

latency versus injected traffic. Accepted traffic is measured as the amount of data per node and

per time that the network can accept (flits/cycle/node). Network throughput is the peak value of

accepted traffic. Average message latency is measured as the mean of the elapsed from message

injection into the network at the source node until its ejection at the destination node.

We can see the results for a 32-ary 2-direct 1-indirect network under uniform traffic in Figures

5.6 and 5.7. In this case, we have a degradation of about 1% in throughput with 1% faulty

links (21 links) compared to the same configuration without faults. For 3% and 5% faulty links

88 Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies

performance degradation increases to 3,8% and 6,5%, respectively. Latency is affected as well,
increasing the average value with respect to the fault-free. In particular, at saturation, latency is

increased by 67% with 1% faulty links.

In the case of using a 10-ary 3-direct 1-indirect network (Figures 5.8 and 5.9) we can see that the
degradation, with the same percentage of faulty links, is higher In particular, network throughput
degrades by about 9% with 1% links with faults (30 faults) compared to the fault-free network,
and by 13% and 15% with 3% and 5% faulty links, respectively. The increase in latency, for
the 1% link faults, is 1.8 times at the saturation point. In part, this is because this network
has more or less the same number of nodes, but more dimensions, so more links than the 2-
dimensional configuration and, therefore, a higher number of absolute link faults for the same
fault percentage. Therefore, mode more paths are affected. On the other hand, as shown in
Figures 5.4 and 5.5, the fact of having a higher number of dimensions with the same number
of nodes improves the probability of avoiding a given fault combination. Therefore, although
throughput is degraded 3.8% with 3% faulty links in the 2D-network against a degradation of
13% with 3% faulty links in the 3D-network, the of supporting a combination with this number

of faults in the 3D-network is about 97%, against only 16% in the 2D-network.

To summarize, the proposed methodology offers a better avoidance of faults in networks with
more dimensions, but this does not mean a better performance, because it depends on the fault
combination and the selected intermediate nodes. With more dimensions, the selected interme-
diate nodes can increase the number of hops to a greater extent, because the distance between

two nodes in a KNS topology increases with the number of dimensions.

5.6 Conclusions

We have proposed a fault-tolerant routing algorithm for k-ary n-direct 1-indirect topologies.
This algorithm is based on using intermediate nodes and assumes a static fault model. It can
tolerate a large number of faults without suffering a great fall in performance. This algorithm
does not disable any healthy node, unlike other algorithms, and does not require too many
resources. The algorithm only requires one extra virtual channel per intermediate node. This
algorithm has been evaluated by simulation under uniform traffic, and the results show that the
performance only suffers a small degradation. For instance, using only two intermediate nodes

(2 extra virtual channels), the results show a degradation in performance of 1% for a 2D-network

Chapter 5. A New Fault-Tolerant Routing Methodology for KNS Topologies 89

with 1024 nodes, 1% faulty links (21 faults). The proposed methodology can be easily extend

to other configurations of the KNS network topology.

Chapter 6

A Fault-Tolerant Routing Strategy for
KNS Topologies Based on Intermediate
Nodes

Authors: Roberto Pefiaranda, Maria Engracia Goémez, Pedro Lopez (Universidad Politécnica

de Valencia), Ernst Gunnar Gran, Tor Skeie (Simula Research Laboratory, Norway).
Type: Journal.
Journal: Journal of Concurrency and Computation: Practice and Experience.
Publisher: Wiley.
ISSN: 1532-0634.
State: Accepted.
Impact Factor: 0.942

JRC ranking: Q2

91

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
92

Abstract

Exascale computing systems are being built with thousands of nodes. The high number of com-
ponents of these systems significantly increases the probability of failure. A key component for
them is the interconnection network. If failures occur in the interconnection network, they may
isolate a large fraction of the machine. For this reason, an efficient fault-tolerant mechanism is
needed to keep the system interconnected, even in the presence of faults. A recently proposed
topology for these large systems is the hybrid k-ary n-direct s-indirect (KNS) family that pro-
vides optimal performance and connectivity at a reduced hardware cost. This paper presents
a fault-tolerant routing methodology for the KNS topology that degrades performance grace-
fully in presence of faults and tolerates a large number of faults without disabling any healthy
computing node. In order to tolerate network failures, the methodology uses a simple mech-
anism. For any source-destination pair, if necessary, packets are forwarded to the destination
node through a set of intermediate nodes (without being ejected from the network) with the aim
of circumventing faults. The evaluation results shows that the proposed methodology tolerates a
large number of faults. For instance, it is able to tolerate more than 99.5% of fault combinations
when there are ten faults in a 3-D network with 1,000 nodes using only one intermediate node
and more than 99.98% if two intermediate nodes are used. Furthermore, the methodology offers
a gracious performance degradation. As an example, performance degrades only by 1% for a

2-D network with 1,024 nodes and 1% faulty links.

6.1 Introduction

The size of large supercomputers has been growing year after year. The topmost machines of the
top 500 supercomputer list [1] are being built up by hundreds of thousands of processing nodes.
For instance, the current (June 2016) number one has 10,649,600 computing cores comprising
40,960 nodes. All these processing nodes work jointly to solve a given problem as fast as

possible. A high-speed interconnect among nodes allows running processes to communicate.

The large amount of hardware that can be found in the interconnection network of large high—
performance machines significantly impacts the probability of having a fault in the system. Each
component may independently fail, and therefore, the probability of having a single fault in the

whole system drastically raises with the number of elements that compose it. Therefore, it is

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
93

extremely important that systems can keep running despite the presence of several failures in

the network.

A trivial alternative that has been followed in some proposals is to replicate network compo-
nents, and use these additional elements as spare parts. The main problem of this alternative is
that it significantly increases the cost of the network. Taking into account that interconnection
network topologies usually provide different alternative paths between source—destination node
pairs, it is possible to modify the routing algorithm to circumvent failures. Hence, destination

nodes can be reached using alternative paths not affected by failures.

In [71] we presented a routing algorithm for the recently proposed KNS topology [67] that is able
to tolerate multiple faults with minimal performance degradation in presence of failures. In this
paper, we extend this previous work, providing a more detailed description of the mechanism,

including implementation details and presenting new evaluation results.

The rest of the paper is organized as follows. Section 6.2 briefly describes different fault tolerant
algorithms previously proposed for other topologies. In Section 6.3, we describe KNS, the
hybrid (direct-indirect) topology the proposed mechanism has been implemented for. In Section
6.4, we present the fault-tolerant methodology proposed in this paper that is based on using
intermediate nodes. Section 6.5 evaluates different configurations of the new routing algorithm.

Finally, in Section 6.6 some conclusions are drawn. Finally, some conclusions are drawn.

6.2 Related Work

In this section, we will give some background on fault-tolerant routing algorithms. We will

focus on direct topologies because of the similarity with the KNS topology.

There are two different categories of fault tolerant techniques that rely on the routing algorithm.
The first category reconfigures the routing tables when a failure occurs. In this case, routing ta-
bles should be updated according to the new topology that results after the failure [27-30]. This
technique allows the network to tolerate any number of faults without requiring extra resources
[31] as long as the network is still connected, thanks to its flexibility. However, this flexibil-
ity may kill performance due to the need of using topology agnostic routing algorithms [72],

as the resulting network topology may become irregular. Irregular topologies do not consider

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
94

and, hence, do not take advantage of the specific characteristics of the topology, thus they often

provide inferior performance.

On the other hand, the second category covers fault-tolerant routing algorithms. A large num-
ber of fault-tolerant routing algorithms for interconnection networks have been proposed in the
literature, and specially for direct network topologies like tori and meshes. Some of them re-
quire adding resources (virtual channels), usually depending on the number of tolerated faults
[35] or the number of dimensions of the topology [36]. Other routing algorithms are based on
disabling faulty regions [37—41] or individual nodes [42—44] to route the packets around these
faulty regions. However, to do this, these algorithms usually disable healthy nodes. In [46], the
authors use the technique of Valiant routing [45] to implement an algorithm that uses intermedi-
ate nodes to avoid faults. This methodology requires a few virtual channels and does not disable
healthy nodes. There are other routing algorithms that do not require extra virtual channels, like
[32, 33] or [34]. The first two methods are able to tolerate only a few faults for low dimension
meshes, while the third method can offer more tolerance against faults, but needs extra virtual
channels in tori. These routing algorithms were specifically designed for meshes and tori and
they provide bad traffic balance as a lot of traffic is directed towards a single link, which can be

easily saturated, thus degrading interconnection network performance.

6.3 The k-ary n-direct s-indirect (KNS) topology

The topology of the interconnection network defines the connection pattern among its nodes.
Topologies usually adopt a regular structure to simplify their implementation and the routing
algorithm. Among the different taxonomies of regular topologies, the most commonly-used one

divides them into direct and indirect topologies [2, 3].

Direct topologies usually adopt an orthogonal structure where nodes are organized in an n—
dimensional space, and each processing node has an associated router. The nodes are connected
in each dimension in a ring (torus) or array (meshes) fashion. 2-D or 3-D direct topologies are
relatively easy to built as each topology dimension is mapped to a physical dimension. However,
implementing direct topologies with more than three dimensions implies not only increasing its
wiring complexity, but also the length of its links when they are mapped to the 3-D physical
space. Indeed, the number of ports of the routers geometrically grows with the number of

dimensions of the topology (as two ports per dimension are required). Therefore, for large

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
95

e

Crossbar

n

Fat—tree

RUFT

FIGURE 6.1: An example of the KNS topology with n = 2 and k = 4.

topologies, the implementation limitation in the number of dimensions leads to an increase in
the number of nodes per dimension, which increases the communication latency, negatively

impacting performance.

The alternative is to use an indirect topology. The main difference, compared to direct topolo-
gies, is that not all the routers have an associated processing node. The most common indirect
topologies are multistage indirect networks (MINs), where switches are organized as a set of
stages. For a large number of nodes, indirect topologies provide better performance than direct
ones. However, this is achieved by using a higher amount of switches and links. Furthermore,
their physical implementation may become very complex due to the fact that the wiring com-
plexity grows with the number of nodes in the system, unlike direct topologies where complexity

grows with the number of topology dimensions.

To overcome the limitations of direct and indirect topologies, hierarchical and hybrid topologies
have been proposed. In [11], the authors propose the Flattened Butterfly, a variation of the
butterfly topology obtained by using high-radix switches, that results in a direct topology. This
topology can be seen as a generalized hypercube with concentration (i.e., several processing
nodes are attached to every router), as all the nodes in the same dimension are fully connected
(i.e., there is a link from each node to all the others of the same dimension). As an extension
of this topology, the Dragonfly topology was proposed in [14], which provides a hierarchical
topology that is based on grouping routers in virtual ones to increase the effective radix of
the network. This topology uses two different networks, one intra—group and one inter—group.
There are global channels that link different groups. It is advisable to use a non-minimal global
adaptive routing to balance the load among the global channels. However, global channels are

long links so that a high latency can be expected.

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
96

To solve the limitations of previous topologies, the k-ary n-direct s-indirect (KNS) was recently
proposed [67]. Like meshes and tori, it is organized as an n—dimensional topology, but the rings
or arrays that connect the nodes in each dimension are replaced by small indirect networks.
In this way, communication latency along each dimension no longer linearly grows with the
number of nodes per dimension. On the other hand, the small size of this indirect topology
allows a reasonable wiring complexity opposite to large indirect topologies. This combination
results in a family of topologies that provides high performance, with latency and throughput
figures of merit close to the ones obtained with indirect topologies, but at a reduced hardware
cost. The KNS topology is defined by three parameters: the number of network dimensions n,
the number of nodes per dimension k, and the number of stages of the indirect subnetworks s
that interconnect the nodes of each dimension. The total number of processing nodes is given

by N = k™.

Figure 6.1 shows an example of the KNS topology, with 2 dimensions and 4 nodes per dimen-
sion. Several solutions are feasible to connect the nodes of the same dimension. The simplest
option is using a crossbar (i.e. a single switch, leading to a k-ary n-direct 1-indirect) to connect
them, but a multistage topology like a fat-tree or a RUFT topology [5] can be used for a high
number of nodes per dimension. Finally, any number of processing nodes can be attached to
every network node (i.e., concentration). In KNS, we also refer to network nodes as routers, as
opposed to the switches of the indirect subnets. In this paper, we focused only on k-ary n-direct
1-indirect topologies, although the proposed routing algorithm can be implemented in any KNS

topology configuration.

6.4 Description of the Fault-Tolerant Routing Methodology

As stated above, in what follows, we will assume a KNS topology using crossbars as indirect
subnetworks. Concerning routing, Hybrid-DOR [67] is used. It is a deterministic routing algo-

rithm that crosses network dimensions in increasing order.

Hybrid-DOR works much like DOR (Dimension Order Routing) [3] for direct topologies. When
a packet is injected, the router connected to the source node computes and compares the coor-
dinates of the source (i.e., Sp—1...5150) and destination (i.e., dy—1 ... d1dp) nodes in every
dimension, and it sends the packet through the link that corresponds to the first dimension (i.e,

f) the packet has to cross. Once the packet reaches the indirect subnetwork that corresponds

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
97

to the crossed dimension, the packet is routed to reach the node of the same dimension that has
as coordinate in this dimension the one corresponding to the destination node (i.e., dy). How
to route the packet in the subnetwork depends on the subnetwork topology. If a single switch
is used as an indirect subnetwork, the routing algorithm merely selects the output link which
reaches the next router. If other topologies are used to implement the indirect subnetworks, any
deadlock-free routing algorithm suitable for these topologies could be used. Notice that this is a
local routing algorithm of the indirect subnetwork. This process is repeated for each dimension
where the coordinates of the source and destination nodes are different. An increasing order is
followed to ensure deadlock freedom. Notice that this routing algorithm is minimal and does

not require virtual channels.

Let us analyze how to deal with network faults. We will only consider link faults, since a
switch fault can be easily modeled as a switch with failures in all of its links. However, notice
that in this case, link failures of a switch would be correlated. Moreover, as network links are
bidirectional, we assume that if there is a link fault, then it fails in both directions. In this paper,
we do not focus on how the failure information propagates to network nodes. In this way, a
static fault model is assumed. This means that when a fault is discovered all the processes are
stopped, the network is emptied, and a management application is run in order to deal with the
fault. Checkpointing techniques must also be used so that applications can be brought back to a
consistent state prior to the fault occurred. Detection of faults, checkpointing, and distribution
of routing info is assumed to be performed as part of the static fault model, and are therefore not

further discussed in this paper.

For each source-destination pair without failures in their path, packets are routed using Hybrid-
DOR following minimal paths. But, if there is any fault in the path of a given source-destination
pair, the methodology routes packets through intermediate nodes, like in [46]. The use of inter-
mediate nodes was proposed in [45] for other purposes, such as traffic balancing. In our case,
the idea is to avoid the faults by deviating the packet to an intermediate node. Therefore, a
suitable intermediate node for each source-destination pair with faults in their path needs to be
selected. The routing algorithm avoids faults by first sending the packet to an intermediate node
and then, from this intermediate node, to the destination node. Several intermediate nodes could
be also used for each pair of nodes, where packets are forwarded through these nodes until the
destination node is reached. Notice that the Hybrid-DOR algorithm is used in all sub-paths.
Using more than one intermediate node allows the mechanism to tolerate more faults by having

more control over the global path followed by the packet. Notice also that the packets are not

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
98

Source ———JpIntermediate node —Jp-Destination

‘I‘ Int ‘ Dst ‘Data‘ I Dst

Header 1 Header 2 Header 2
Int: Intermediate node. I: The number of intermediate
Dst: Destination node. nodes that remains to be crossed.

FIGURE 6.2: Header for packets using the intermediate node methodology.

ejected from the network when they reach intermediate nodes. In Sections 6.4.1 and 6.4.2 we
will describe in detail how intermediate nodes are selected for the case of requiring only one, or

several of them, respectively.

Regarding the structure of packets, several fields should be added to the packet header to support
routing through intermediate nodes. Figure 6.2 shows the packet header. First, the number
of intermediate nodes that the packet has to cross is stored in a new field (I in the figure).
In addition to the destination node, the addresses of intermediate nodes are also stored in the
packet header. Every time an intermediate node is reached, its address is removed from the
packet header and the I field is decreased. Other implementations are possible, such as storing
in the packet header a pointer to the field that should be considered for routing. As soon as the
packet reaches an intermediate node, this field will point to the next intermediate one or, finally,

to the destination node.

For each source—destination pair, the mechanism checks whether the deterministic Hybrid-DOR
path is fault-free or not. If not, routing through intermediate nodes is required. A list of inter-
mediate nodes should be computed for paths with faults. This list will be stored in a table at
every source node. There is a table entry for each destination node that requires routing through
intermediate nodes. This table can be implemented as linear (i.e., with as many entries as the
network size) or as random (i.e., as content-addressable memories) tables. The size of the latter
table depends on the number of faults the network has to tolerate. The higher this number, the
higher the number of affected source—destination pairs. In practice, though, it is expected that
it should be enough to tolerate a relatively low number of faults, as if a network suffers a high

number of faults, the problem should be solved in another way.

However, the size of these tables also depends on how we codify the info stored in them. For
example, considering a 2-D network, if the fault is located at the first dimension link of a node
(i.e. the one that connects to the nodes of the same row), each source node in the same row

(except the one connected to the faulty link) requires routing through intermediate nodes to reach

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
99

every other node located in the same column of the fault. However, in the same example, the
source node that is connected with the faulty link needs an intermediate node for each destination
node in every other columns. This means that & * (k — 1) destination nodes need an intermediate
node to reach them from this source node. Generally speaking, for more network dimensions, if
a fault occurs at a link of the ¢ dimension, the source node requires using intermediate nodes to
reach (k" ~1)) % (k — 1) destinations. Moreover, if there are more faulty links in this source
node, each fault will involve a number of destinations according to this equation. Therefore, a
table design where there is an entry for each destination that needs an intermediate node could
require a big size in large networks. In such cases, an alternative design based on the use
of masks, similar to IP routing tables, could be used. The table would have two fields (id to
compare and mask to select the bits) and an option flag. The option flag indicates whether the
corresponding entry is considered when the comparison is satisfied or not. Of course, there is
also a field to store the possible intermediate nodes. In general, each entry can be used for a set
of destinations, thus reducing the size of the table. However, some destination nodes may need
specific intermediate nodes. Additional entries for them will be included in the table, which will
lead to several hits for the same destination node. The solution is to insert the entries in the table

following a given priority order and then selecting the entry with higher priority.

As in [46], we will refer to the source node as S and the destination node as D. For each
intermediate node, we will use the notation [, where x represents the index of the intermediate
node (I; for the first one, I5 for the second one and so on). To ensure deadlock freedom, the
routing algorithm needs at least as many additional virtual channels as intermediate nodes for
fault-tolerant routing. For example, if we use up to two intermediate nodes, we need at least
three virtual channels (i.e., the original plus two additional ones). When a packet reaches an
intermediate node, the packet is re-injected into the network using a new virtual channel to avoid
deadlocks. For instance, assume that two intermediate nodes are used. One virtual channel (vy)
is used from S to I, another one (v9) from I; to I5, and the last one (v3) from Iy to D. In this
way, deadlocks are avoided because the network is split into three virtual networks, deadlock-
free routing algorithm is used within each virtual network, and each virtual network transition is
performed following a strict order (v; — vo — v3 in the example). Adaptive routing could also
be used. In this case, several virtual channels can be used for adaptive routing provided that there
is an escape channel to break cyclic dependencies for each subpath [56]. Routing in the escape
channels uses Hybrid-DOR. Adaptive channels can be used in any of the sub-paths. However, in

such a case, a different escape channel is required in each sub-path to ensure deadlock freedom.

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
100

In this paper, though, we only focus on deterministic routing.

There are some combinations of failures that physically disconnect one or more nodes of the
network. As the proposed methodology does not add new resources to the network, these sets
of faults can not be supported. The aim of the proposed methodology is to provide a path for
every source—destination pair, provided that they are physically connected by the interconnection

network.

Next, we will present how the intermediate nodes are selected. First, we will focus on using
only one intermediate node. After that, we show how to extend the methodology to use multiple

intermediate nodes.

6.4.1 One Intermediate Node

In this case, we will use only one intermediate node when one or more faults affect the minimal
path provided by Hybrid-DOR between a pair of nodes. This intermediate node, I, has to

satisfy two rules:

R1. I is reachable from S.

R2. D is reachable from I;.

We say that a node Y is reachable from X if there is a minimal path provided by Hybrid-DOR

between this pair of nodes, and there is no fault in it.

For direct topologies like tori or meshes, the choice of this intermediate node is very important,
because the number of hops can greatly increase, depending on the selected intermediate node.
However, in the KNS topology, the number of hops only depends on the number of dimensions
that the packet must cross. The proposed methodology prioritizes the use of those intermediate
nodes which allow the packet to reach the destination node without additional hops compared

to the original minimal path between the source and the destination nodes.

For instance, Figure 6.3.(a) shows a 4-ary 2-direct 1-indirect network with a fault at the source
node S in the = dimension link. So, it cannot reach the destination node D using Hybrid-DOR.
In this case, the possible intermediate nodes are all the nodes of the same column (surrounded

by the dashed line in the figure). The best choice, however, is the node that is located in the same

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
101

< Faulty link S Source node D Destination node

FIGURE 6.3: Examples of fault combinations in a KNS topology with n = 2 and k = 4.

row as the destination node, because it allows to reach the destination node by using a minimal

path.

We say that a fault-tolerant routing algorithm is able to tolerate f failures if it can provide a valid

path between every source-destination pair for any combination of up to f failures.

Lemma 6.1. Given a KNS network with n dimensions, using one intermediate node, the routing

algorithm can tolerate up ton — 1 failures.

Proof. For a KNS network with n dimensions, each node has n links. Each link allows con-
necting to the other nodes of the same dimension by an indirect subnetwork. Let Trg be the
set of nodes reachable from S using Hybrid-DOR, and Tp the set of nodes from which D is
reachable using Hybrid-DOR. As long as Trs N T'p is not empty for any source-destination
pair, the network is able to handle the fault combination by using one intermediate node located
in this set. Therefore, the worst fault combinations are the ones that reduce the number of nodes

in Trg and/or T set.

For instance, in Figure 6.3.(a), while Tp set comprises all network nodes (except S), the fault
reduces Trg to only 3 nodes. TrsNT'p cardinal is 3 and therefore the fault is tolerated. However,
assume that, then, there is another link failure that reduces T'p. The worst scenario occurs when
the fault is located at the Y dimension link of D (Figure 6.3.(b)). In this case, Trs NTp is
reduced to one node, and the fault is still tolerated. However, if a new failure appears in the
links of this unique intermediate node (thus, there will be 3 faults in the network), the source—
destination pair S—D will become disconnected. Remember that this example corresponds to

one intermediate node. This situation can be seen in Figure 6.3.(c).

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
102

However, the worst scenario occurs when the source and the destination nodes are located in
the same row, i.e., when all coordinates but the one of the first dimension are the same for both
the source and destination nodes. In this case, with only two faults (the first two faults of the
previous example: a link failure at the x link of the source node and another one at the y link
of the destination node), the destination node is no longer reachable from the source node, and
Trs N'Tp is empty (see Figure 6.4). This means that the network is able to tolerate all the fault
combinations of 1 fault, but neither of 2 faults, and therefore, the network supports one fault.
Additionally, there are also 2-fault combinations that physically disconnect nodes (i.e. a failure
in all links of a node) and therefore they are not reachable, and not all the source-destination

pairs are able to communicate. These cases are not tolerated.

In general, for any n-dimensional KNS network, there is a non-tolerated scenario that happens
when the source and the destination nodes have the same coordinates but the coordinate of the
first dimension. If T is reduced due to faults on all links of the destination node but the one of
the first dimension (which physically disconnects the node) and there is a fault on the link of the
first dimension of the source node, both nodes become disconnected as there is not any suitable

intermediate node.

Therefore, the minimal number of faults needed to disconnect the network with only one in-
termediate node is n faults (n — 1 failures at the destination node links plus one failure at the

source). Thus, the routing algorithm is able to tolerate n — 1 failures. O

6.4.2 Multiple Intermediate Nodes

There are cases where only one intermediate node is not enough to handle the network fault
combination. In these cases, the routing algorithm can use more than one intermediate node to
have more chances of finding a set of fault-free deterministic Hybrid-DOR paths between the
source and destination nodes. Assume that a number of x intermediate nodes [, I, ... I, are

required. Intermediate nodes are selected according to the following rules:

R1. I is reachable from S.
R2. I;4 is reachable from [;, for 0 < i < z, z > 1.

R3. D isreachable from I,.

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
103

> Faulty link

S Source node

D Destination node

FIGURE 6.4: An example of the KNS topology with n = 2 and k£ = 4 and 2 faults.

Therefore, we can guarantee that the packet is able to reach its destination node following the

path S-Il-...-IZ‘-IH_l-...—Im-D.

In order to avoid non-minimal routing, the methodology tries to use a set of intermediate nodes
that does not increase the number of hops beyond a minimal path. In particular, if there are non-
minimal available paths using 7 intermediate nodes and also a minimal path using j intermediate

nodes, where ¢ < j, the latter will be finally selected.

Lemma 6.2. Given a KNS network with n > 2 dimensions, using two intermediate nodes, the
routing algorithm can tolerate 2 x (n — 1) + k — 3 failures. If n = 2, the routing algorithm can

tolerate 2 x k — 1 faults.

Proof. Let Tpy be the set of nodes from which the destination node is reachable using Hybrid-
DOR using one intermediate node. That is, the set of nodes that can reach the destination node
using an intermediate node from 7. In Figure 6.4 we can see an example for a 4-ary 2-direct
1-indirect network with 2 faults. The first failure is located at the source node x-link and the
second one at the destination node y-link. The Figure shows the set of reachable nodes from
the source node (1rg with gray background), the set of nodes which can reach the destination
node (Tp), and the set of nodes that can reach the destination node using any node within 7T
as an intermediate node (I'p1). Thus, in this case, we have to use one node of Trs N Ty as
the first intermediate node, and another one of Tp as the second intermediate node. As long as
Trs N Tpy is not empty for any source-destination pair, the network is able to handle the fault
combination. Therefore, the worst fault combinations are those that reduce the number of nodes

in TRS’ TD and/or TDl«

As in Lemma 1, if all the destination node links fail except the link of the first dimension (to

avoid disconnecting the network), Tp will be reduced to £ — 1 nodes. Tp includes the nodes

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
104

which share all coordinates with the destination node, except the coordinate of the first dimen-
sion. On the other hand, if all links of the source node fail, except the one of the last dimension,
Trs will be reduced to & — 1 nodes. Trg includes the nodes which share all coordinates with
the source node except the coordinate of the last dimension. In this way, the possible second
intermediate nodes, Tp, are only reached by the link of the last dimension. But if we assume
that these links are also faulty, the destination node will be no longer reachable. So, with n — 1
faults at the source node links, n — 1 faults at the destination node links and & — 1 faults in the

set of possible second intermediate nodes, the fault combination is not tolerated.

However, the worst scenario occurs when the source node shares all coordinates with the des-
tination node, except the coordinate of the first dimension (see Figure 6.4). In this case, the
destination node will not be reachable with only k£ — 2 faulty links in the T» set. Hence, the
source—destination pair becomes disconnected with 2 x (n — 1) + k — 2 faults, ergo, the network

can tolerate 2 * (n — 1) + k — 3 faults.

Notice, though, that for 2-D networks, adding faults for every possible second intermediate node
(which comprises T'p) physically disconnects the row where the destination node is located at,

as we can see in Figure 6.4. These corner cases are not tolerated by the methodology.

For 2-D topologies, the scenario is different. For instance, keeping the same number of faults
at the destination node (n — 1 = 1 fault) and at the source node (n — 1 = 1 fault), and setting
faults on the z-links of nodes in Trg except one of them (k — 2, see Figure 6.4), to avoid
physically disconnecting the column, we have only one node in Trs N T'p1, which will be the
first intermediate node. From this first intermediate node, there are k£ — 2 possible paths to the
destination, i.e., one path for each possible second intermediate node which comprises Tp. If
there are faults in all these paths, the destination node will not be reachable by the source node,
ie, 1+ 1+ (k—2)+ (k—2) = 2xk — 2 faults are necessary to not tolerating the fault
combination. Thus, the routing algorithm is able to tolerate 2 * k£ — 1 faults in a 2-D KNS

network. O

6.4.3 Extension To Any Indirect Subnetwork

In this paper, we have focused on KNS topologies that use crossbars as indirect subnetworks.
However, we can extend the methodology to KNS topologies that use other indirect subnetworks

like fat-trees or RUFT. To do this, a specifically designed methodology should also be used to

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
105

tolerate faults on each indirect subnetwork. Therefore, intermediate nodes are used globally,

while a specific methodology to tolerate faults will be used locally on each subnetwork.

While the subnetworks can avoid faults, the direct routers will work normally. However, if a
node becomes unreachable due to a fault located at a given subnetwork, it will be modeled like

a link fault at this node, in the link of the corresponding dimension of this faulty subnetwork.

6.5 Evaluation Results

To evaluate the proposed methodology, we have performed two kind of analysis. First, we
analyze the number of network failures that can be tolerated. Remember that a fault-tolerant
routing algorithm is able to tolerate n failures if it can provide a valid path between every source-
destination pair for any combination of n failures. Notice that there are situations where the
failures physically disconnect the network. We consider these situations as combinations where

there is no path for all source-destination pairs and therefore the combination is not tolerated.

Second, we evaluate the network performance degradation in presence of faults when using the
proposed methodology. To do this, we have simulated different tolerated network configura-
tions with a varying number of faulty links under uniform traffic. For each number of faults,
we have tested 50 random fault combinations to obtain the average network throughput and la-
tency. In those experiments, the combinations where some nodes are physically disconnected

are discarded and not simulated since only tolerated combinations are simulated.

‘We have analyzed the proposed methodology for two network configurations: a 32-ary 2-direct
1-indirect topology and a 10-ary 3-direct 1-indirect topology. Both configurations have a similar
number of nodes (1,024 and 1,000 nodes, respectively), so we can analyze the impact of the

number of dimensions on the behavior of the fault-tolerant routing algorithm proposed in this

paper.

6.5.1 Simulation Model

To perform the simulations, we have used a simulation environment developed at our research
group. A prior version of this tool was used to provide evaluation results in [3]. This tool is an
event-driven simulator which models KNS topologies with bidirectional links and uses virtual

cut—through switching. Each switch has a full crossbar with queues of 4 packets both at their

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
106

100
o 90
k=) 80
g 70
E oo
5 © e
© 30 '
§ 20
s 10 ; .
00 20 40 60 80 100 120 140

Number of faults

FIGURE 6.5: Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 2-D network with 1,024 nodes.

100 e
2 90 .
S 80
g 70
e
5w e
g 30 :
5 20
N 10 .
0 -)

0 50 100 150 200 250 300 350 400 450 500

Number of faults

FIGURE 6.6: Fault combinations tolerated by the methodology when using one or two inter-
mediate nodes in a 3-D network with 1,000 nodes.

input and output ports. Credits are used to implement the flow control mechanism. Packet length
is 16-flit. We assume a pipelined router with a latency of 4 clock cycles, while the switch and

link bandwidth is assumed to be one flit per clock cycle.

6.5.2 Fault Analysis

The number of possible fault combinations exponentially increases with the number of faults.
For this reason, it is not possible to explore all possible fault combinations for a given number
of faults in a reasonable amount of time. Therefore, we have used statistical analysis as a tool.
Specifically, we have analyzed a subset of the fault combinations, where the faults are randomly
chosen. This subset is large enough to obtain results with a confidence level of 99% and an error

lower than 1%.

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
107

TABLE 6.1: Percentage of paths that use one or two intermediate nodes when at most two
intermediate nodes are used: (a) 1,024-node 2-D network and (b) 1,000-node 3-D network.

Link % of paths Link % of paths

faults || 1 inter. | 2 inter. faults || 1 inter. | 2 inter.
1 0.19% 0% 1 0.18% 0%
2 0.38% | 0.000003% 2 0.36% 0%
3 0.57% | 0.000009% 3 0.54% | <0.000001%
4 0.75% | 0.00018% 4 0.72% | <0.000001%
5 0.94% | 0.000031% 5 0.90% | <0.000001%
6 1.13% | 0.000046% 6 1.08% | <0.000001%
7 1.32% | 0.000067% 7 1.25% | <0.000001%
8 1.50% | 0.000087% 8 1.43% | <0.000001%
9 1.69% | 0.000115% 9 1.61% | <0.000001%
10 1.88% | 0.000145% 10 1.79% | <0.000001%
11 2.06% | 0.000179% 11 1.96% | <0.000001%
12 2.25% | 0.000216% 12 2.14% | 0.000001%
13 2.43% | 0.000257% 13 2.32% | 0.000002%
14 2.61% | 0.000307% 14 2.50% | 0.000002%
15 2.80% | 0.00036% 15 2.67% | 0.000002%

(a) (b)

Figures 6.5 and 6.6 show the percentage of tolerated fault combinations for different number
of faults using one or two intermediate nodes for a 2-D network with 1,024 nodes and a 3-D
network with 1,000 nodes, respectively. The results are shown for a number of link faults up to
150 for 2-D networks and 500 for 3-D networks. First, as expected, the percentage of tolerated
combinations of faults strongly increases when using two intermediate nodes instead of only
one because there is more control over the path followed by the packet. That is, using two
intermediate nodes instead of only one provides more alternative paths or, what is the same,
we have more options to configure the final path to the destination node, avoiding the faults.
On the other hand, in the 2-D network, the percentage of tolerated combinations of faults is
considerably lower than in the 3-D one because more alternative paths are available in the latter
for each source-destination pair. In the case of the 3-D network, the methodology is able to
tolerate more than 99.5% of the 10-fault combinations with only one intermediate node and
more than 99.98% for the configurations of 15 faults with 2 intermediate nodes. The fact of
having more dimensions gives more probablity to route the packet through different paths that
do not share resources, being able to avoid more faults. However, the 3-D network has more
resources. There are 3,000 links in the 3-D network versus 2,048 links in the 2-D network. This
is why, for 23 faults in the 2-D network even with two intermediate nodes, the percentage of

tolerated combinations is lower than 80%. However, in the 3-D network, more than 100 faults

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
108

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0 L L L L L L L L L 0 /Hw L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

6000 : . ,

—&— 0% faults
—— 1% faults
5000 [3% faults
1 5% faults

4000

3000

2000

1000

Accepted traffic (flits/cycle/node)

Avg. Msg. Lat. from Gen. Time (cycles)

Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 6.7: 32-ary 2-direct 1l-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

are needed to reach a percentage of tolerated combinations lower than 80%.

Tables 6.1.(a) and 6.1.(b) show the percentage of paths that have to use intermediate nodes
to reach the destination node, and how many intermediate nodes are needed when up to two
intermediate nodes can be used for a 2-D network with 1,024 nodes and a 3-D network with
1,000 nodes, respectively. These tables only show the information for up to 15 faulty links.
Regarding the percentage of paths using intermediate nodes, we can see that it is quite low for
one intermediate node, and much lower using a second intermediate node. Even for 15 faults,
less than 3% of the paths use intermediate nodes. Therefore, it is expected that the extra latency
due to the intermediate nodes does not significantly impact the final average latency, as the
number of affected paths is extremely low. In the case of 3-D networks, the percentage of paths

that use intermediate nodes is even lower.

6.5.3 Performance Analysis

In this Section we analyze the performance degradation suffered by the network when applying
the fault-tolerant routing methodology in presence of faults. To do this, we have simulated
several network scenarios with 1% faulty links, 3% faulty links and 5% faulty links. For each
fault scenario, we have generated 50 random fault combinations, all of them tolerated by the
methodology. That is, all source-destination pairs are able to communicate. Up to 2 intermediate
nodes can be used, since this allows to test fault combinations with a higher number of faults.

However, the fact of using two rather than only one intermediate node does not strongly impact

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
109

0.5 —— 2 8000 ———

. —+&— 0% faults o —&— 0% faults

) 045 1 —— 1% faults @ =Fe@mecoEoastes—Eee— S 7000 - 1% faults

3 N il 3 N

g 04— 3% faults | ~ > 3% faults

) ’ 5% faultg*=) 2 6000 | — 5% faults

& 035 - £ IRT REE—F E_:

o -

E 03 - rreryrz 4 £ 5000

2 &

S o5t Z 4000

= o

E 02t f 3000 -

< 0I5 |

2 :' 2000 -

S o1t & ‘

Q I

<005 o 1000 3 |
& i
<

0 H I I I I I I I I I 0 get L L L -
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)

(a) (b)

FIGURE 6.8: 10-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

network performance. This is because the methodology is able to avoid the fault using only one
intermediate node in most of the cases, although it is able to use two (as shown in Table 6.1.(a)

and 6.1.(b)).

In order to measure the performance degradation, we obtained the accepted traffic and average
latency form generation time versus injected traffic. We consider average latency form gener-
ation time to consider the time spent by the packet at the injection queue. Accepted traffic is
measured as the amount of data per node and per time that the network can accept (flits/cycle/n-
ode). Network throughput is the peak value of accepted traffic. Average latency form generation
time is measured as the mean of the elapsed time from message generation at the source node
until its ejection at the destination node. For network load, source nodes inject traffic following

a uniform traffic pattern (i.e., randomly selecting the destination node).

Figures 6.7.(a) and 6.7.(b) show results for a 32-ary 2-direct 1-indirect network under uniform
traffic. In this case, the network suffers a performance degradation of about 1% in throughput
with 1% faulty links (21 links) compared to the same network without faults. For 3% and 5%
faulty links, performance degradation increases to 3,8% and 6,5%, respectively. Latency is
affected as well, increasing the average value with respect to the fault-free case. In particular, at

saturation, latency is increased by 67% with 1% faulty links.

For the 10-ary 3-direct 1-indirect network (Figures 6.8.(a) and 6.8.(b)) the performance degra-
dation, for the same percentage of faulty links, is higher when compared to the 32-ary 2-direct
1-indirect network. In particular, network throughput degrades by about 9% with 1% faulty
links (30 faults) compared to the fault-free network, and by 13% and 15% with 3% and 5%

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
110

6000 : .
—+— 0% faults
1% faults

——— 0% faults
04 r ——— 1% faults
5000

3
: 5
g
;:3 0.35 E
5 03 & 4000 F /
£ o025 3 -
< £ 3000 /o
% 0.2 f:i
= 0.15] 2000 r
'E)
2 0.1 5 /
3 s 1000 #
2 005 i ;
0 E 0 Leme x A—*—v—*——**‘*—*‘%}\z L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 6.9: 64-ary 2-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

faulty links, respectively. The increase in latency for the 1% link faults case, is 1.8 times at the
saturation point. Notice that the increase in latencies is because the network with faults saturates
before than the one without faults. If we focus on the base latency or the latency before satura-
tion, we can see that there is almost no impact. This is because the use of intermediate nodes
is only required for a low percentage of source—destination pairs (Tables 6.1.(a) and 6.1.(b)).
Although both networks have roughly the same number of nodes, they have a different number
of links and, for the same number of relative link faults, the 3-D network involves more faulty
links. Therefore, more paths are affected. On the other hand, as shown in Figures 6.5 and 6.6,
the fact of having a higher number of dimensions with the same number of nodes improves the
probability of avoiding a given fault combination. Therefore, although throughput is degraded
by 3.8% with 3% faulty links in the 2-D network versus a performance degradation of 13%
with 3% faulty links in the 3-D network, the probability of supporting a combination with this

number of faults in the 3-D network is about 97%, against only 16% in the 2-D network.

We can see the same behavior in Figures 6.9.(a), 6.9.(b), 6.10.(a), 6.10.(b), 6.11.(a) and 6.11.(b),
where results for larger networks are shown. In this case, we consider 4,096-node networks
and we only checked a number of faults equal to 1% of the links. Again, for 2-D networks,
the performance is not affected to any large extent. On the other hand, for 3-D networks, the
performance degradation is more intense, but remember that this network has a higher absolute
number of faulty links for the same percentage of faults. Remember also that the higher the
number of network dimensions, the higher the number of tolerated faults. Therefore, there is

a trade-off. If we have a network with a very low probability of faults, or the faults can be

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes

111
0.45 ‘ : ‘ = 6000 ‘ ‘
. —+— 0% faults] o —+— 0% faults
) 04 |~ 1% faults 1 ES e 1% faults y
2) 2 5000 f ,
= L L N o 4
B 0.35 % £
> 03+ - = 4000 + o
3 s
- o
= 025 1)
< Z 3000) /
% 02 r 7 ng /
S 015 1 S 2000 - A / 1
E -
2 0l 1 & / /
8 = 1000 y 1
2 005+ 1 - N
< &h /
0 | | | | | E 0 5 e Lol |
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 6.10: 16-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

0.5 T T T T T 2 6000 T T T T T
. —— 0% faults] 2 —— 0% faults
) 045 F 1% faults | i‘%‘ ——— 1% faults
% 04 & “ \g 5000 - 1
5 035y 1B 4000]
2 0.3 - 8 g
S o025t 1 Z 3000 F
2 S ¥
£ o02f 1 % /
5 0I5 1§ 2000¢ i/ 1
= L 1 %
8 0.1 2 1000 | ¥]
2005 1 & A/
0 i E 0 L= %%—H«—*%Wiﬁ I
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 6.11: 8-ary 4-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

repaired in a short period of time, we should choose a network configuration with a low number
of dimensions. Otherwise, if the probability of faults is higher, network configurations with

more dimensions would be a better choice.

To summarize, the proposed methodology offers a better tolerance of faults for networks with
more dimensions, but this does not necessarily mean a better performance, because it depends on
the fault combination and the selected intermediate nodes. With more dimensions, the selected
intermediate nodes can increase the number of hops to a greater extent, as the distance between

two nodes in a KNS topology increases with the number of dimensions.

Chapter 6. A Fault-Tolerant Routing Strategy for KNS Topologies Based on Intermediate Nodes
112

6.6 Conclusions

This paper proposes and evaluates a fault-tolerant routing algorithm for k-ary n-direct 1-indirect
topologies. This new routing algorithm is based on the use of intermediate nodes assuming
a static fault model. It is able to tolerate a large number of faults without suffering a great
fall in performance. This routing algorithm does not disable any healthy node, unlike other
algorithms, and does not require any additional resources except one extra virtual channel per
each intermediate node used. The mechanism is able to tolerate 99.5% of 10-fault combinations
with only one intermediate node and more than 99.98% for the configurations of 15 faults with
2 intermediate nodes in a 3-D network with 1,000 nodes. The proposed fault-tolerant routing
algorithm has been evaluated by simulation under uniform traffic and the results show that the
network performance only suffers a small degradation. For instance, using only two intermediate
nodes (2 extra virtual channels), the evaluation results show a performance degradation of 1%
for a 2-D network with 1024 nodes and 1% faulty links (21 faults). The proposed methodology

can be easily extended to other configurations of the KNS network topology.

Chapter 7

IODET: A HoL-blocking-aware
Deterministic Routing Algorithm for

Direct Topologies

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Maria Engracia Gémez, Pedro Lépez, Jose Duato (Universi-

dad Politécnica de Valencia).
Type: Conference.

Conference: IEEE 18th International Conference on Parallel and Distributed Systems (IC-

PADS).
Location: Singapore.
Year: 2012.
DOI: http : //dz.doi.org/10.1109/ICPADS.2012.103

URL: http : //ieeexplore.iece.org/zpls/abs_all.jsp?arnumber = 6413629

113

Chapter 7. IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct
114 Topologies

Abstract

In large parallel computers routing is a key design point to obtain the maximum possible per-
formance out of the interconnection network. Routing can be classified into two categories
depending on the number of routing options that a packet can use to go from its source to its
destination. If the packet can only use a single predetermined path then the routing is determin-
istic, whereas if several paths are possible it is adaptive. It is a well-known fact that adaptive
routing usually outperforms deterministic routing; but in this paper we take the challenge of
developing a HOL-blocking-aware deterministic routing algorithm that can obtain a similar or
even better performance than adaptive routing, while decreasing its implementation complexity
and providing some inherent advantages to deterministic routing such as in-order delivery of
packets. In this large computers regular direct topologies are widely-used, so in this paper we

focus on meshes and tori.

7.1 Introduction

The interconnection network performance strongly impacts the performance of the large par-
allel computers. Latency and throughput are the key performance metrics of interconnection
networks [2, 3]. To achieve the required performance level, the designer manipulates three
main parameters [2, 3]: topology, routing and switching. Topology usually adopts a regular
structure that simplifies routing, implementation and expansion capability. Among the different
taxonomies of regular topologies, the most commonly one divides them into direct topologies
and indirect topologies. Taking into account that many of the very large machines of the top500
list [1] adopt a direct network topology, in this paper, we will focus on direct networks, although
its conclusions could be extrapolated to indirect networks. Routing is a critical design issue of
interconnection networks [3]. Routing algorithms can be deterministic or adaptive. In determin-
istic routing schemes, an injected packet traverses a unique, fixed, predetermined path between
source and destination, while in adaptive routing schemes several paths are available. However,
as several routes are possible, a choice of the path that will finally used is required, which makes
routing operation more complex. In addition, several concerns about deadlock-freedom must be
taking into account. Moreover, adaptive routing introduces the problem of out-of-order delivery
of packets, which occurs when a packet sent from a given source arrives to a given destination

before another one sent previously from the same source. In-order packet delivery is important

Chapter 7. IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct
Topologies 115

for cache coherence protocols and communication libraries. While there are solutions to this
problem (for instance by using a reordering buffer at destinations [53]), they are not simple,
as they require the use of storage resources and control packets. Instead, deterministic routing

guarantees in-order packet delivery.

In this paper, we explore the behavior of both deterministic and adaptive routing on direct topolo-
gies using VCT switching. We also propose a new deterministic routing algorithm designed to

reduce the HoL blocking effect.

The rest of the paper is organized as follows. Section 7.2 introduces background knowledge
about direct topologies and routing in them. In Section 7.3, we present the proposed techniques
to utilize the virtual channels in the deterministic routing. Section 7.4 evaluates the different
topologies (torus and mesh) with different routing algorithms. Finally, some conclusions are

drawn.

7.2 Direct topologies

This kind of topologies is known as k—ary n—cubes, being k the number of nodes in each of the
n dimensions. In these topologies, nodes are labeled by an identifier with as many components
as dimensions in the topology (p,—1, ..., po), and the value of the component associated to each
dimension ranges from 0 to k& — 1 (i.e., nodes are numbered from (0,0, ...,0) to (k — 1,k —

1. k—1)).

Deterministic routing in meshes and tori can be implemented with the DOR (dimension-order
routing) routing algorithm [3]. This algorithm routes packets by crossing dimensions in strictly
increasing (or decreasing) order. However, in tori, it is not enough to obtain a deadlock-free
routing algorithm. Cycles are broken by splitting each physical channel into two virtual channels
(VCs) [54]. Another technique used to avoid deadlocks in tori with deterministic routing is the

bubble flow control mechanism [55].

Adaptive routing can be achieved in meshes and tori by allowing packets to cross dimensions
in any order. According to Duato’s theory [56], we add a new VC (or more) that may be used
to cross network dimensions in any order. Deadlock freedom is achieved by providing a escape

path to packets.

Chapter 7. IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct
116 Topologies

7.3 A HoL-blocking-aware Deterministic Routing Algorithm

Adaptive routing requires more resources than deterministic routing. Indeed, more VCs imply
not only increasing the number of buffers but also increasing the crossbar size and the routing
algorithm complexity since it has to deal with a higher number of output ports'. In this paper,

we design a new deterministic routing algorithm which tries to reduce the HoL-blocking effect.

A first approach is using deterministic routing with several VCs which offer several routing
options (the number of VCs) and requires the use of a selection function as adaptive routing does.
This routing algorithm improves network performance over the baseline deterministic routing.
However, switch complexity and routing time will be increased. Moreover, deterministic routing
with several VCs may also introduce out-of-order delivery of packets. For this reason, we will

refer to this mechanism as OODET (Out-of-Order DETerministic routing).

However, with a different method used to assign packet destinations to VCs, the resulting rout-
ing algorithm will preserve all the advantages associated to deterministic routing (simpler, faster
and guaranteeing in-order delivery). The idea is to take into account packet destination to select
the VC that will finally be used. The final output VC is selected using the component of the des-
tination corresponding to the dimension in which the packet is being routed modulo the number
of VCs. In [25], a similar mechanism was used but considering the whole destination identifier.
In our proposal, we assign packets to VCs according to the component of the dimension. A nice
property of this mechanism is that, it preserves, by design, in-order delivery of packets. On the
other hand, VC selection is easily done, as only the LSBs of a component from destination iden-
tifier are required. In contrast to OODET, we will refer to this mechanism as IODET (In-Order

DETerministic routing).

7.4 Experimental Evaluation

In this section, we compare by simulation adaptive routing versus deterministic routing in
meshes and tori. Each node has a switch based on a full crossbar with queues of two pack-
ets both at their input and output ports. We assume that switch and link bandwidth is one flit
per clock cycle, and fly time is 1 clock cycle. Each node has 20 clock cycles to implement the

routing algorithm in the baseline deterministic routing with one virtual channel. However, when

! Even if the crossbar is multiplexed, VCs will add the multiplexers and arbiters to choose which VC will access
the crossbar each time.

Chapter 7. IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct
Topologies 117

700

—— OODET 2 VC |
600 r —— Adaptive routing |
—+=— IODET 1 VC |

—— IODET2VC | []
o

Tt

IODET 1 big VC f | /

500
400

300

Average Message Latency (cycles)

200 + Ry
FHHHANIHRHHIHTT i At
DIV LS gaas L L
eeansasRRETTTIT

0 005 01 015 02 025 03 035 04
Traffic (flits/cycle/node)

FIGURE 7.1: Average packet network latency vs. accepted traffic with uniform traffic pattern
for 2D torus with 64 nodes..

several routing options are available and one has to be selected, we have increased the routing
delay using Chien’s model ([57, 58]). This model states that routing time depends on the degree
of freedom (i.e., the number of routing options) of the routing algorithm. In particular, it is the
sum of a constant time (i.e. the one required to apply the routing function) plus a component
that grows logarithmically with the number of routing options. If this fact is taken into account,
OODET and adaptive routing would take more clock cycles to complete the routing of a packet

than IODET.

7.4.1 Performance analysis

Regarding the behavior of the mesh, adaptive routing outperforms the baseline deterministic
routing, with one VC. But adaptive routing uses two VCs of size 2 packets. For this reason, it
has been compared to a deterministic routing with one VC with double size, 4 packets (big VC).
But, although it improves the baseline deterministic routing, it does not reach the performance
of adaptive routing. If we compare it with the same number of VC, both IODET as OODET

improves the adaptive routing.

Figure 7.1 shows the behavior of a 2D torus with 64 nodes. In this case, adaptive routing
works better than in mesh. This is because the mesh is not a regular topology and the adaptive
routing concentrates the traffic in the center of the network, lowering performance. We can
see that OODET and the adaptive routing outperform IODET. But IODET has a lower cost,
because the number of switching elements required is reduced by the restrictions presented by
this routing algorithm. So we take this cost difference to add more virtual channels and achieve

the performance of OODET and adaptive routing, also offering in-order delivery.

Chapter 7. IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct
118 Topologies

7.5 Conclusions

This paper focuses on developing a HOL-blocking-aware deterministic routing for direct topolo-
gies that uses a similar amount of resources to adaptive routing, i.e., uses the same number of
VCs. Moreover, this routing algorithm keeps most of the good features of deterministic routing
over adaptive one: simplicity, low routing times and in-order delivery of packets. The differ-
ences between adaptive and deterministic routing are shifted towards deterministic, becoming
the best routing option in most of the cases. Furthermore, if we consider the cost of each routing
algorithm, the proposed deterministic routing algorithm becomes the best routing option, since
although the same of VCs is used in deterministic routing, the amount of switching elements

required is much smaller, being even half the amount required by adaptive routing.

Chapter 8

Deterministic Routing with
HoL-Blocking-Awareness for Direct

Topologies

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Maria Engracia Gémez, Pedro Lépez, Jose Duato (Universi-

dad Politécnica de Valencia).
Type: Conference.
Conference: International Conference on Computational Science (ICCS).
Location: Barcelona, Spain.
Year: 2013.
DOI: hitp : //dx.doi.org/10.1016/5.procs.2013.05.432

URL: http : //www.sciencedirect.com/science/article/pii/S1877050913005759

119

120 Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies

Abstract

Routing is a key design factor to obtain the maximum performance out of interconnection net-
works. Depending on the number of routing options that packets may use, routing algorithms
are classified into two categories. If the packet can only use a single predetermined path, rout-
ing is deterministic, whereas if several paths are available, it is adaptive. It is well-known that
adaptive routing usually outperforms deterministic routing. However, adaptive routers are more
complex and introduces out-of-order delivery of packets. In this paper, we take up the challenge
of developing a deterministic routing algorithm for direct topologies that can obtain a similar
performance than adaptive routing, while providing the inherent advantages of deterministic
routing such as in-order delivery of packets and implementation simplicity. The proposed deter-
ministic routing algorithm is aware of the HoL-blocking effect, and it is designed to reduce it,

which, as known, it is a key contributor to degrade interconnection network performance.

8.1 Introduction

The interconnection network performance strongly impacts on the performance of large parallel
computers. Latency and throughput are the key performance metrics of interconnection net-
works [2, 3]. To achieve the required performance level, the designer manipulates three main
parameters [2, 3]: topology, routing and switching. The switching mechanism decides how
resources are allocated to the messages while they advance through the network. Topology usu-
ally adopts a regular structure that simplifies routing, implementation and expansion capability.
Among the different taxonomies of regular topologies, the most commonly one divides them
into direct and indirect topologies. Taking into account that many of the very large machines
of the top500 list [1] adopt a direct network topology, in this paper, we will focus on direct
networks, although its conclusions could be extrapolated to indirect networks. Routing is a crit-
ical design issue of interconnection networks [3]. Routing algorithms can be deterministic or
adaptive. In deterministic routing schemes, an injected packet traverses a unique, fixed, prede-
termined path between source and destination, while in adaptive routing schemes, several paths
are available. However, as several routes are possible, a choice or selection of the path that will
be finally used is required, which makes routing operation more complex. In addition, several
concerns about deadlock-freedom must be taking into account. Moreover, adaptive routing in-

troduces the problem of out-of-order delivery of packets, which occurs when a packet sent from

Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies 121

a given source arrives to a given destination before another one sent previously from the same
source to the same destination. In-order packet delivery is important for cache coherence pro-
tocols and communication libraries. While there are solutions to this problem (for instance by
using a reordering buffer at destinations [53]), they are not simple, as they require the use of
storage resources and control packets. Instead, deterministic routing guarantees in-order packet
delivery by design. Another issue to consider when designing routing algorithms is to avoid
interference among packets destined to different nodes [22, 59], since the Head-Of-Line (HoL)

blocking effect may limit the throughput of the switch up to 58% of its peak value [60-62].

In this paper, we explore the behavior of both deterministic and adaptive routing on direct topolo-
gies, also proposing a new deterministic routing algorithm that takes advantage of virtual chan-

nels to reduce the HoL blocking effect.

The rest of the paper is organized as follows. Section 8.2 introduces some background. In
Section 8.3, we present the new HoL-blocking-aware deterministic routing algorithm with vir-
tual channels. Section 8.4 evaluates different topologies (torus and mesh) with different routing

algorithms. Finally, some conclusions are drawn.

8.2 Direct topologies

The most important regular direct topology is the k—ary n—cube, which has k£ nodes in each of
its n dimensions, connected in a ring fashion. In this topology, nodes are labeled by an identifier
with as many components as dimensions in the topology (p,—1, ..., po), and the value of the
component associated to each dimension ranges from 0 to £ — 1 (i.e., nodes are numbered from
(0,0,...,0) to (k — 1,k — 1,....,k — 1)). This topology is popularly known as torus. A mesh
is a particular case where the k£ nodes of each dimension are connected by a linear array (i.e.

without wraparound links).

Deterministic routing in meshes and tori can be implemented with the DOR (dimension-order
routing) routing algorithm [3]. This algorithm routes packets by crossing dimensions in strictly
increasing (or decreasing) order. Despite that DOR is deadlock-free in meshes, it is not in tori
due to the wraparound links. Channel dependence graph cycles has to be broken by splitting
each physical channel into two VCs [54]. Another technique used to avoid deadlocks in tori

with deterministic routing is the bubble flow control mechanism [55].

122 Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies

Adaptive routing can be achieved in meshes and tori by allowing packets to cross dimensions
in any order. According to Duato’s theory [56], we add a set of VCs that may be used to cross
network dimensions in any order. Deadlock freedom is achieved by providing a escape path
to packets, by means of using a deadlock-free routing algorithm (for instance, DOR) in other

virtual channel.

8.3 A HoL-blocking-aware Deterministic Routing Algorithm

Adaptive routing requires more resources (i.e. VCs) than deterministic routing. Indeed, more
VCs imply not only more buffers but also increasing the crossbar size and the routing algorithm
complexity. We will analyze alternatives to improve network performance also based on the use

on VCs but trying to reduce this complexity.

A first approach is to use deterministic routing with several VCs, which offer as many rout-
ing options as VCs, also requiring a selection function as adaptive routing does. Although this
routing algorithm improves network performance over the baseline deterministic routing (see
Section 8.4), switch complexity and therefore routing time are still increased. Moreover, deter-
ministic routing with several VCs may also introduce out-of-order delivery of packets. For this

reason, we will refer to this mechanism as OODET (Out-of-Order DETerministic routing).

What is actually needed is a method to assign packets to VCs. We propose to classify them
depending on their destinations. If a packet destined to a given node is only assigned to one VC,
always the same, the result is a deterministic routing algorithm, with all its advantages (simpler,
faster and in-order delivery of packets). In particular, VCs are assigned to packets according
to the component of its destination node in the dimension in which the packet is being routed,
modulo the number of VCs. As a consequence, the proposed mechanism classifies packets
among the VCs, thus contributing to reduce the interference among packets, and, therefore, to
reduce the HoL-blocking effect. A nice property of this mechanism is, that, as only one routing
option is provided for each destination, it preserves, by design, in-order delivery of packets. On
the other hand, VC selection is easily done, as only the LSBs of a component from destination
identifier are required. In contrast to OODET, we will refer to this mechanism as IODET (In-

Order DETerministic routing).

In [25], a similar mechanism (DBBM) was proposed, but considering the whole destination

identifier modulo the number of VCs to assign packets to VCs. The fact of only considering

Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies 123

800

—— VOQsw5VC | |

1200 | —— pBBM2VC] 7 —— DBBM 2 VC [TT7

—— IODET 1 VC + \ b 700 |~ IODET 1 VC [|

—— IODET I big VC ‘ | ET —+— IODET 1 big VC | | |

1000 f —=— OODET 2 VC | ¢] 600 | —=— OODET2VC | | |

Adaptive rouling ‘ “ Adaptive routing x‘ ‘\‘ f’

800 L — IODET2VC | L , 500 I —~— IODET 2 VC | / /
¥

—— VOQsw 5 VC

600

400

200 -

Avg Msg Latency from Gen Time (cycles)
Avg Msg Latency from Gen Time (cycles)

0 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0 005 01 015 02 025 03 035 04
Traffic (flits/cycle/node) Traffic (flits/cycle/node)

(a) 8 x 8 Mesh (b) 8 x 8 Torus

FIGURE 8.1: Average packet latency vs. accepted traffic for uniform traffic.

the LSBs of the destination provides lower opportunities of classifying packets among VCs (see
Section 8.4). DBBM is a simplification of VOQnet [23], which needs as many VCs as nodes in
the network, and associates each VC to a different destination. Another scheme is VOQsw [24],
in which VCs are selected according to the next output port the packet will use. VOQsw and
VOQnet are not scalable as the number of VCs they require depends on the system or switch

size, respectively.

8.4 Experimental Evaluation

In this section, we compare by simulation adaptive versus deterministic routing in meshes and
tori. Each node has a switch based on a full crossbar with queues of two packets both at their
input and output ports. Switch and link bandwidth is one flit per clock cycle, and link fly time
is 1 clock cycle. We also assume that each node require 20 clock cycles to apply the routing
algorithm in the baseline deterministic routing (with one VC). To consider the increased com-
plexity of adaptive routing, we have assumed a higher routing time. In particular, we have used
Chien’s model ([57, 58]). This model states that routing time depends on the degree of freedom
(i.e., the number of routing options) of the routing algorithm. It is the sum of a constant time
(i.e. the one required to apply the routing function) plus a component that grows logarithmi-
cally with the number of routing options (i.e. the selection function delay). If this fact is taken
into account, OODET and adaptive routing would take more clock cycles to route a packet than

IODET, DBBM, and VOQsw.

In Figure 8.1.(a) we can see the behavior of 2D mesh with 64 nodes. As expected, adaptive
routing outperforms the baseline deterministic routing, with one VC. But adaptive routing uses

two VCs, each one with space for two packets. For this reason, we have also included in the

124 Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies

TABLE 8.1: Comparison of the number of switching elements for the torus topology

Dimensions | Virtual channels || OODET | Adaptive | IODET
2 2 48 64 40
3 2 96 144 84
4 2 160 256 144
6 2 336 576 312
2 4 160 224 112
3 4 336 528 264
4 4 576 960 480
6 4 1248 2208 1104
Dimensions | Virtual channels || OODET | Adaptive | IODET
2 6 336 480 216
3 6 720 1152 540
4 6 1248 2112 1008
6 6 2736 4896 2376
2 8 576 832 352
3 8 1248 2016 912
4 8 2176 3712 1728
6 8 4800 8640 4128

comparison a deterministic routing with one VC but with double size (4 packets, big VC in the
Figure). Although it improves the baseline deterministic routing, it does not reach the perfor-
mance of adaptive routing. On the other hand, IODET and OODET with 2 VCs outperform
adaptive routing. This is due to the ability of IODET to classify packets and the increased rout-
ing delay of adaptive routing. Notice that DBBM does not improve very much the performance
of deterministic routing. The reason is that, as it uses the modulo of the whole packet destination
identifier, packets may not classified in all dimensions. In fact, in some dimensions, all packets
may use the same VC, wasting the other VCs. Finally, regarding VOQsw, in spite of using 5

VCs, it obtains a worse performance than adaptive routing.

Figure 8.1.(b) shows the behavior of a 2D torus with 64 nodes. In this case, adaptive routing
works better than in mesh. This is because the mesh is not a true regular topology and the
adaptive routing algorithm concentrates the traffic in the center of the network, lowering perfor-
mance. We can see that OODET, VOQsw and adaptive routing outperform IODET. However,
IODET has a lower cost, because the number of switching elements required is strongly reduced
if the restrictions introduced by the routing algorithm are considered in the design of the switch.
This can be seen in Table 8.1. Notice that VOQsw needs the same number of switching ele-

ments as OODET if the same number of VCs are used, because in a given dimension a packet

Chapter 8. Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies 125

in VOQsw can change the VC at each hop, like OODET. As it can be seen, IODET requires the

lowest number of switching elements in all analyzed cases.

8.5 Conclusions

This paper proposes a new HoL-blocking-aware deterministic routing algorithm (IODET) for
direct regular topologies. It uses virtual channel flow-control, and assigns packets to VCs ac-
cording to a subset of bits of the destination identifier (i.e., the component that corresponds to
the dimension the packet is traversing). The result is a deterministic routing algorithm which
exhibits its well-known advantages over adaptive routing: simplicity, low routing times and
in-order delivery of packets. If routing times are scaled according to the number of routing
options of each routing algorithm, IODET is able to outperform adaptive routing in meshes,
while it reaches a performance half-way between the baseline deterministic and adaptive rout-
ing algorithms in torus. In addition, IODET also simplifies switch design. This combination
of a moderate improvement in performance with a simple implementation makes IODET an

interesting alternative to consider when selecting the routing algorithm.

Chapter 9

HoL-blocking Avoidance Routing

Algorithms in Direct Topologies

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Maria Engracia Gémez, Pedro L6pez, Jose Duato (Universi-

dad Politécnica de Valencia).
Type: Conference.

Conference: IEEE International Conference on High Performance Computing and Communi-

cations (HPCC).
Location: Paris, France.
Year: 2014.
DOI: hitp : //dx.doi.org/10.1109/HPCC.2014.9

URL: http : //ieeexplore.icee.org/xzpls/abs_all.jsp?arnumber = 7056591

127

128 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

Abstract

Routing is a key parameter in the design of the interconnection network of large parallel comput-
ers. Depending on the number of routing options available for each packet, routing algorithms
are classified into two different categories: deterministic (one available path) and adaptive (sev-
eral ones). It is well-known that adaptive routing outperforms deterministic routing. Usually,
adaptive routing uses virtual channels to provide routing flexibility and to guarantee deadlock
freedom. On the other hand, deterministic routing is simpler and therefore has lower routing
delay and does not introduce out-of-order packet delivery. This is why, in this paper, we take
the challenge of developing new routing algorithms for direct topologies that exploit virtual
channels in an efficient way while still maintaining the good properties of deterministic routing.
This is accomplished by tackling one of the main performance degradation contributors of inter-
connection networks, which is the HoL-blocking effect. To do that, this paper analyzes several
simple mechanisms to perform an efficient distribution of packets among virtual channels based
on their destination. The resulting deterministic routing mechanisms obtain similar or even bet-
ter performance than adaptive routing while keeping the simplicity of deterministic routing and

guaranteeing in-order delivery of packets by design.

9.1 Introduction

The interconnection network strongly impacts the performance of large parallel computers. La-
tency and throughput are the key performance metrics of interconnection networks [2, 3]. La-
tency is the elapsed time between message injection into the network and its arrival at des-
tination, and is the sum of two components: one related to the time required to traverse the
network in absence of traffic and the other one related to the delay suffered by messages due
to contention. If minimal routing is used, as commonly done, then the first latency component
is constant for each source-destination pair as the number of hops does not change. The sec-
ond component highly depends on the routing algorithm and the traffic load. Throughput refers
to the maximum amount of data the network can deliver per time unit. The designers’ goal is
to minimize message latency while maximizing network throughput. To achieve this goal, the
designer manipulates, among others, two main parameters [2, 3]: topology and routing. The
topology provides the connection pattern among the nodes and routing decides the paths fol-

lowed by messages through the network. This paper focuses on direct topologies, which are the

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 129

ones used in several machines that have occupied the topmost positions of the Top500 list of

supercomputers [1].

Routing algorithms can be either deterministic or adaptive. In deterministic routing, an injected
packet traverses a unique, predetermined path between source and destination. Opposite to
this, adaptive routing schemes allow several paths for each source-destination pair, which, on
one hand, helps to avoid congested network areas by allowing packets to take alternative paths
to reach their destination, but, on the other hand, this also has a negative impact on packet
contention because it increases the Head-of-Line (HoL) blocking effect. This effect occurs
when a packet at the head of a queue blocks, preventing the rest of packets in that queue from
advancing, even if they could do so. The HoL-blocking effect may limit the throughput of the
switch up to about 58% of its peak value [60-62]. To reduce it, it is very important to isolate as
much as possible those packets destined to different nodes [22, 59]. However, adaptive routing

tends to spread packet destinations in all the network.

Adaptive routing algorithms typically outperform deterministic ones [3], thus improving net-
work throughput and reducing message latency. Nevertheless, deterministic routing has other
interesting properties such as an easier implementation and easier deadlock-freedom guarantee.
In adaptive routing, as several paths are available for each packet, a selection function must
be implemented to choose the path that will be finally used. As a consequence, routing delay is
higher compared to deterministic routing. In addition, deterministic routing provides, by design,
in-order packet delivery, which is important for cache coherence protocols and communication
libraries, while adaptive routing requires complementary techniques to guarantee in-order deliv-
ery of packets. On the other hand, adaptive routing usually relies on virtual channels [63]. The
availability of several virtual channels could be also exploited to design routing algorithms that

try to reduce the HoL-blocking effect, which is the main contribution of this paper.

The rest of the paper is organized as follows. Section 9.2 introduces some background. In
Section 9.3, we present some deterministic routing algorithms that use virtual channels to reduce

the HoL-blocking effect, evaluating them in Section 9.4. Finally, some conclusions are drawn.

9.2 Routing in Direct Topologies

In direct topologies, nodes are organized in an n—dimensional space. The regularity of these

networks greatly simplifies their deployment and the routing algorithm implementation. The

130 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

movement of a packet in a dimension does not modify the number of remaining hops in the
other dimensions to reach the packet destination. The most commonly—used direct topologies
are the mesh, the torus, and the hypercube. Direct topologies have been used in several of the

most powerful supercomputers (see the Top500 list [1]).

In meshes and tori, the distance between current and destination nodes is calculated as the sum
of the offsets in each dimension. Minimal routing algorithms will reduce one of those offsets at
each routing step. The simplest minimal routing algorithm, known as dimension-order routing
(DOR) [3], consists of reducing an offset to zero before considering the offset in the next dimen-
sion. For n-dimensional meshes, to enforce deadlock-freedom, DOR routes packets by crossing

dimensions in strictly increasing (or decreasing) order.

However, in tori, crossing network dimensions in order is not enough to obtain a deadlock-
free routing algorithm as the channel dependency graph is not acyclic [3]. Cycles are broken by
splitting each physical channel into two virtual channels (VCs) [54]. More than two VCs may be
used for performance improvement purposes [63]. Another technique used to avoid deadlocks
in tori with deterministic routing is the bubble flow control mechanism [55]. This mechanism
avoids deadlocks in each ring of the torus by ensuring that there is always an empty buffer that

allows packets to advance along the ring.

Adaptive routing in meshes and tori allows packets to cross dimensions in any order. Therefore,
all the minimal paths between each source-destination pair can be used by packets. However,
by doing so, deadlock-freedom has to be ensured with additional mechanisms. According to
[56], some VCs may be used to cross network dimensions in any order if deadlock freedom is
guaranteed by providing an escape path to packets. This escape path is provided by means of
a deadlock-free routing algorithm (for instance, DOR) in another set of VCs. With the bubble
flow control mechanism, only one VC is required for escape path implementation in tori and

meshes, and the remaining VCs are used for adaptive routing.

9.3 HoL-Blocking-Aware Deterministic Routing Algorithms

As mentioned above, adaptive routing provides more flexibility to move packets in the network.

This routing freedom has two opposite effects. The positive one is that temporally congested

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 131

ONONONGC,

. vco O
OROBONO e
N N ves O
(&) (9 (1)

N

N
) @ ()
FIGURE 9.1: How DBBM assigns destinations to VCs in a 4 x 4 mesh with 4 VCs.

TABLE 9.1: How DBBM assigns destinations to node 0 VCs in a 4 x 4 mesh with 4 VCs.

Dim VC#0 VC#1 VC#2 VC#3
X Nodest. | 4: 1,5,9,13 | 4: 2,6,10,14 | 4: 3,7,11,15
Y 3:4,8,12 | No dest. No dest. No dest.

network areas can be avoided. However, the negative effect is that packets with different desti-
nation nodes may be highly interleaved in the switch queues, which significantly increases the

HoL-blocking effect, which could degrade network performance.

In this paper we tackle the challenge of reducing the HoL-blocking effect by taking advantage of
the availability of VCs to classifying destinations among them while still maintaining the good
properties of deterministic routing (in-order delivery of packets and easier implementation). The
main idea is that the HoL-blocking reduction will allow the network to achieve a performance

close to or even greater than adaptive routing.

The aim of reducing the HoL-blocking effect by using VCs has been pursued before by previous
approaches. VOQnet [23] needs as many VCs as nodes in the network and associates each
destination to a different VC. VOQnet completely removes HoL-blocking from the network, but
the required number of VCs is unaffordable even in small networks since it grows linearly with
the network size. However, it is used for comparison purposes since it achieves the hypothetical
maximum performance that could be achieved by completely removing HoL-blocking from
a network. Another option is VOQsw [24], which has as many VCs as switch output ports,
and associates the set of reachable destinations through a given output port to the same VC.
Therefore, VCs are selected according to the next output port the packet will use. VOQsw leads
to a worse classification of packets than VOQnet and it is also not scalable, as the number of

required VCs depends on switch degree.

DBBM was introduced in [25], as a scalable version of VOQnet. This mechanism selects VCs
by using the destination identifier modulo the number of VCs. However, when using DBBM

in a 2D torus, all the nodes in a given column are assigned to the same VC. Figure 9.1 shows

132 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

how DBBM assigns destinations with 4 VCs per physical channel. Indeed, Table 9.1 shows the
assignment of destinations to VCs for node 0. For instance, VC#1 of the X-dimension is used
to reach 4 nodes (1, 5, 9, 13). As it can be seen, all the VCs in the Y-dimension are never
used but one per port. This lack of classification in the last dimension (Y") would lead to a huge
congestion due to HoL.-blocking that, at the end, could be propagated to the whole network due

to upstream flow control pressure.

Regarding implementation of the VC selection mechanism, DBBM is very simple, provided that
the number of VCs is a power of two. In that case, the modulo operation by the #VCs is as easy
as selecting the log(#V C's) least significant bits of the packet destination (see Figure 9.2(a)).
On the other hand, notice that, as VC assignment only depends on the packet destination, packets
use the same VC while it traverses the network. Therefore, VC assignment can be done once in
the source node, since the rest of nodes that a packet crosses across the network merely forwards
the packet through the same VC from which the packet arrived. Indeed, this fact also leads to a
very low switch complexity. As there is not need to move packets from one VC to another, the
internal switch of the nodes can be implemented as one independent switch per VC, instead of

deploying a fully-connected crossbar. We will further analyze switch complexity later.

01234567 01234567 diml(Y) | dimo0 (X)

Dest. Id Dest. Id Dest. Id Dest. Id

MUX

vc vc IMUX

01234567

vc

E

vC

(a) DBBM (b) BBQ (c) IODET (d) XORDET

FIGURE 9.2: Implementation of VC selection for a 256-node 2-D network and 4 VCs.

In order to overcome the bad classification of packets in the last dimension, BBQ mechanism
[26] was proposed. BBQ also uses the destination identifier to choose the VC for each packet.
Indeed, it uses the destination log(#V C's) most significant bits, see Figure 9.2(b). That is, BBQ
divides the network in as many horizontal bands as VCs, in such a way that the nodes in each
column are spread as much as possible among the VCs. However, the problem is that all the
nodes inside each horizontal band use the same VC, and therefore they may suffer from HoL-
blocking in the first dimension. As in DBBM, BBQ never changes the VC of a packet, and it

can be assigned once at injection time.

In [64] we proposed the IODET mechanism, that we better explore in this paper. IODET assigns

destinations to VCs considering not the whole destination identifier but the component of the

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 133

TABLE 9.2: How IODET assigns destinations to node 0 VCs in a 4 x 4 mesh. #VCs is 4

Dim | VC#0 | VC#1 VC#2 VC#3
X No dest. | 4: 1,5,9,13 | 4: 2,6,10,14 | 4: 3,7,11,5
Y No dest. | 1: 4 1: 8 1: 12

packet destination corresponding to the dimension in which the packet is being routed. Again,
the final VC to be used is obtained by performing the modulo operation, but, in this case, it
considers the dimension coordinates of the destination. That is, given a packet destined to node
{pn-1,---,01,P0}> When routed in dimension d it will use the VC given by p; mod #VC's.
This mechanism does a good job classifying packets compared to DBBM, as shown in Table
9.2, which shows the assignment of destinations to VCs for node 0 for 4 VCs. Almost all the
VCs are used in this case, but VC#0, that is not used because the network has only 4 nodes per

dimension. If the network had more than 4 nodes per dimension this VC would be also used.

Regarding implementation of VC selection, IODET is also very simple, as can be seen in Figure
9.2(c). However, as the assignment of destinations to VCs depends on the dimension the packet
is traversing, it must be computed at each node (at least when there is a dimension change).
Indeed, the node internal switch must allow the change in the VC assignment. Therefore, switch

implementation is not as easy as DBBM one. We will analyze this issue later.

9.3.1 XORDET: XOR DETerministic Routing

In this paper, in order to overcome the lack of classification in one of the dimensions of DBBM
and BBQ and, at the same time, provide a simpler switch implementation than IODET, we
propose a new mechanism to assign destinations to VCs. As the previous ones do, our proposal
assigns destinations to VCs by applying an arithmetic-logic transformation to the destination
identifier. This transformation is required to comply with two conditions: i) it must be simple
and i) it must provide a good destinations classification. In particular, we propose to use the
bitwise exclusive or (xor) operation since it provides a balanced distribution of destination nodes
between the different VCs. As the resulting routing algorithm is also deterministic, the proposed
mechanism will be referred to as XORDET. Destinations are assigned to VCs by performing a
bitwise xor operation to the bits of the destination, as follows. Given n bits of the destination
identifier and provided that there are v VCs available, [= logwv bits are required to denote a
virtual channel, and these bits are obtained by xoring 7 bits of the destination, considering them

in an interleaved fashion.

134 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

© @ @ 6
ONORONC) vee

vC1
VvC 2

» @ W e
@ @ @

FIGURE 9.3: How XORDET assigns destinations to VCs in a 4 x 4 mesh with 4 VCs.

0000

TABLE 9.3: How XORDET assigns destinations to node 0 VCs in a 4 x 4 mesh with 4 VCs.

Dim VC#0 VC#1 VC#2 VC#3
X 3:5,10,15 | 3: 1,11,14 | 3:2,7,13 | 3: 3,6,9
Y No dest. 1: 4 1: 8 1: 12

Note that by means of applying the operation to interleaved bits of the destination, the destina-
tions are also shuffled through the VCs. Figure 9.3 shows how destination nodes are assigned to
VCs for a 16-node 2D-network for 4 VCs. Packets destined to the different nodes of any row or
column are assigned to different VCs in a balanced way, leading to a uniform utilization of the
VCs in all the dimensions, see Table 9.3. Again, VC#0 is not used in some cases as the number

of nodes per dimensions is low; it would be used in any other scenario.

In addition, XORDET implementation of VC selection is very simple. As shown in Figure
9.2(d), only some xor gates are required per source node. In particular, for v VCs, [= logv
xor gates are required. Each one of them will have 7 inputs, n being the number of bits of the
destination identifier. If n is not divisible by /, some gates will have an extra input. We would like
to highlight that, as in DBBM, the assignment of destinations to VCs does not change as packet
travels through the network. Therefore, this assignment is performed only once when the packet
is injected into the network. As a consequence, the network could be considered as several
virtual independent networks, without interconnection among them, and the internal node switch
can be implemented as several independent switches. As a consequence, the implementation of
XORDET is very simple (as in DBBM) but it also allows maximizes the VC utilization (as in
IODET).

9.3.2 Implementation issues

As stated above, the different routing algorithms demand different complexity in the internal
switch of the nodes. Usually, a switch that allows connections among all input ports to all the

output ports is used. In fact, such a switch is required for adaptive routing, where any input port

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 135

can forward packets to any output port. However, in the case of deterministic routing, some
of the connections provided by the internal switch are unused due to routing restrictions. For
instance, if DOR deterministic routing is used, a packet can only use those ports that connect
to the same or higher dimensions than the one it arrived. Therefore, switch could be simplified
if routing restrictions are considered, most important, without affecting performance. We will

analyze in more depth switch complexity in Section 9.4.2.

Besides switch complexity, the routing complexity of selecting the VC must be taken into ac-
count for the different approaches. Adaptive routing requires the use of both a routing and a
selection function. Deterministic routing only requires the routing function. In any case, both
the output port and the VC to be used will be returned by the routing algorithm. Regarding the
HoL-blocking aware routing algorithms considered in this paper, minor changes are required in
the routing function to compute the VC to use at the output port (see Figure 9.2). In the case
BBQ and DBBM, the VC to be used is obtained directly from the destination node in the packet
header. For IODET, some multiplexers to select the proper bits are required in the routing func-
tion of each switch. For XORDET, a few xor gates to calculate the VC are required in the source
nodes. As it can be seen, these overhead is negligible compared to the switch complexity, with

no changes in router complexity and speed.

9.4 Experimental Evaluation

1400 — + Baseline
~—— DBBM2VC
L —— BBQ2VC
1200 o IODET 2 VC
OODET 2 VC
—=—— Adaptive routing
g0 I XORDET 2 VC
—=— VOQnet 64 VC
—— VOQsw 5 VC

1400 — + Baseline ‘Tl
~—— DBBM2VC |
L —— BBQ2VC

1200 o IODET 2 VC ‘
OODET 2 VC

—=— Adaptive routing |

g0 I XORDET 2 VC
—=—— VOQnet 64 VC

—— VOQsw 5 VC

1000 - 1000 -

Avg Msg Latency from Gen Time (cycles)
Avg Msg Latency from Gen Time (cycles)

600 1 600 | 1
400 1 400 1
200 P b 200 __,15* : b
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05
Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)

FIGURE 9.4: Avg. packet lat. vs. accepted traffic. 64-node 2D-mesh. 2 VCs are used. Uniform
traffic. Routing times are scaled in (b).

136 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

1000 1000

< — Baseline ‘ ‘ “ 1 |2 “ 5 — Baseline ‘ “ TS “
z ~ < DBBM2VC RN z ~——— DBBM2VC e |
> g00 | —=— BBQ2VC Jr | Lt P 200 | —— BBQ2VC | [
E —=— IODET2 VC ‘ IR E —=— IODET2 VC ‘ [
C OODET2VC | « i | c OODET2VC | « |
& 600 I Adaptive routing | | | & 600 I Adaptive routing | | ‘ |

—— XORDET 2 VC | ¥ b —— XORDET 2 VC [7] “‘1 |
g —=— VOQnet 64 VC | | 74 F £ —=— VOQnet 64 VC | | Nl
E —~— VOQsw5VC || ‘ £ —— VOQsw5VC || 7
Z 400 | e Z 400 | /s |
k k /4
w200 w200 F I
= =
50 50 B
> 0 , ‘ ‘ ‘ ‘ ‘ . > 0 , ‘ ‘ ‘ ‘ ‘ .
< <

0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)

FIGURE 9.5: Avg. packet lat. vs. accepted traffic. 64-node 2D-torus. 2VCs are used. Uniform
traffic. Routing times are scaled in (b).

In this section, we evaluate by simulation the deterministic routing algorithm proposed in this
paper, comparing it with other routing algorithms. Deterministic routing algorithms such as
IODET, DBBM, BBQ, VOQsw and VOQnet are included in the comparison, but also adaptive
routing and a deterministic routing that randomly selects a VC. This latter algorithm, which is
actually partially adaptive, does not guarantee in-order packet delivery. For this reason, we will
refer to it as OODET (Out-of-Order DETerministic routing). To guarantee deadlock-freedom
in tori, the bubble flow control mechanism is used. As adaptive routing uses several VCs per
physical channel, to perform a fair comparison, we will use the same number of VCs with
deterministic routing. If not stated the contrary, 2 VCs will be assumed. Different torus and
meshes configurations with virtual cut-through switching are evaluated. Each node has a switch
based on a full crossbar with 4-packet queues both at their input and output ports. Packet length
is 16-flit. We assume a pipelined router with a latency of 4 clock cycles and switch and link
bandwidth is assumed to be one flit per clock cycle. If not stated the contrary, for traffic load, a

uniform distribution of message destinations is used.

9.4.1 Performance analysis

First, we focus on evaluating the mesh topology. Figure 9.4.(a) shows results for a 8§ x 8 mesh.
We have also included in the comparison the baseline deterministic routing, based on XY routing
with only one VC. As it can be seen, the best results are obtained by VOQnet, which requires 64
VCs, followed by OODET. As expected, DBBM does not improve very much the performance

of the baseline deterministic routing due to its poor classification of destinations. IODET and

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 137

XORDET obtains similar results. Finally, despite VOQsw requires 5 VCs, it does not obtains
better performance than XORDET. Figure 9.5.(a) shows results for a 8 x 8 torus. As expected,
the best results are obtained by VOQnet, followed by VOQsw, adaptive routing and OODET.
IODET and XORDET follows closely these algorithms, obtaining a 93% of the throughput of
adaptive routing, but providing in addition in-order delivery of packets'. Notice that VOQsw
and VOQnet require a higher number of VCs (5 and 64, respectively). As expected, DBBM does
not improve very much the performance over the baseline system due to its already-commented

poor classification of packets, as it happens in BBQ.

TABLE 9.4: Routing times (in cycles) for adaptive and OODET.

Dimensions | Virtual channels || OODET | Adaptive

2 2 5 6

3 2 5

4 2 5 6

6 2 5 7

2 4 6 7

3 4 6 7

4 4 6 8

6 4 6 8
Dimensions | Virtual channels || OODET | Adaptive

2 6 7 8

3 6 7 8

4 6 7 8

6 6 7 9

2 8 7 8

3 8 7 9

4 8 7 9

6 8 7 10

However, adaptive routing is more complex, which may lead to a higher routing delay. We have
used a simple model ([57, 58]) to estimate the routing delays of the different routing algorithms.
This model states that the routing delay depends on the number of routing options. In particular,
it is the sum of a constant time (i.e. the one required to apply the routing function) plus a
component that grows logarithmically with the number of routing options. Adaptive routing
would take more clock cycles to complete the routing of a packet than OODET; and OODET
more than IODET, XORDET, VOQsw, VOQnet and DBBM. The more options to choose in the

selection function, the more clock cycles required for routing. The effect of considering the

!The required reordering mechanism to provide in-order delivery of packets in the adaptive algorithms would
reduce their performance if in-order delivery of packets is required [22].

138 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

complexity of the different routings is shown in Table 9.4%. Figure 9.4.(b) presents the same
results as Figure 9.4.(a) but now scaling the routing times according to Table 9.4. In this case,
we can see that adaptive routing increases its latency and achieves a lower throughput. The same
happens with OODET, although at a lower extent. In torus, Figure 9.5.(b) shows the results with
scaled routing times. In this case, IODET and XORDET obtain closely the same throughput
as adaptive routing, but with much lower latency and providing in-order delivery of packets. In

what follows, results are shown with scaled routing times to perform fairer comparison.

3000

4000 1 ; ; T
—— DBBM2VC

— DBBM2VC | [
3500 - — < BBQ2VC i |
>‘F

|

|

|

|

——— BBQ2VC
2500 | —— IODET 2 VC
—=&— OODET2 VC

L Adaptive routing
2000 F . XORDET2VC
—e— VOQnet 256 VC
1500 - —=— VOQsw 5 VC

—— IODET 2 VC
3000 - —<=— OODET2VC
Adaptive routing
2500 F —— XORDET 2 VC
—— VOQnet 512 VC
2000 + —=— VOQsw 7 VC

1500

1000
1000
500

500

Avg Msg Latency from Gen Time (cycles)
Avg Msg Latency from Gen Time (cycles)

0 nalies | | L L L L () EEEEE i 7 T L L
0 005 01 015 02 025 03 035 04 0 01 02 03 04 05 06 07 08
Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)

FIGURE 9.6: Average packet latency vs. accepted traffic. Uniform traffic. (a) 256-node 2D-
torus and (b) 512-node 3D-torus.

We have also analyzed the impact of increasing the number of nodes per dimension (Figure
9.6.(a)). The best results are obtained by VOQnet with 256 VCs and adaptive routing, followed
by VOQsw (with 5 VCs) and OODET. The best results for deterministic routing with 2 VCs are
obtained by IODET and XORDET. For more network dimensions (Figure 9.6.(b)), similar con-
clusions can be drawn. Although the number of routing options of adaptive routing is strongly
increased, the impact of routing delay kills its advantages. The case of VOQnet and VOQsw
is different. As they have the highest number of VCs by design (512 and 7 VCs, respectively),

they obtain better performance than any other routing algorithm.

We also analyzed the impact of the number of VCs. Figure 9.7 shows results for a 256-node 2D
torus with 4 and 8 VCs, taking into account the higher routing delay of OODET and adaptive
routing. As the number of VCs is increased (even with a few VCs), the throughput of all the

HoL-blocking-aware deterministic routing algorithms strongly increases, being able to reach

>The deterministic routing algorithms have the base delay of 4 cycles.

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 139

g 3000 ‘ ‘ ‘ 2 3000 ‘ ‘ ‘ ‘
3 — DBBM4VC 9 ——— DBBM§ VC \ ;
3z = BBQ4VC 3z = BBQ8VC l
v 2500 f —=— IODET 4 VC 1 5 2500 f —=— IODET 8 VC {1
é 5 OODET 4 VC é 5 OODET 8 VC

L Adaptive routing | L Adaptive routing |
& 2000 . XORDET 4 VC g 2000 . XORDET 8 VC |
E 1500 | 1 E 1500 | ° g
& &
>~ >~
Q Q
5 1000 g 5 1000 g
< <
-1 e
% 500 1 oD 500 J
= =
o) m o o ow o
E 0 T I I L L L L E 0 T I i I L L L

0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04

Traffic (flits/cycle/node) Traffic (flits/cycle/node)
(a) (b)

FIGURE 9.7: Avg. packet lat. vs. accepted traffic. 256-node 2D-torus. Uniform traffic. (a) 4
VCs and (b) 8 VCs.

S 3000 ‘ : : ‘ % 3000 ‘ : : ‘

5 ——+— DBBM 4 VC 3 ——+— DBBM 4 VC

2z ——— BBQ4VC z ——— BBQ4VC

» 2500 | —=— IODET 4 VC 5 2500 | —=— IODET 4 VC

g —=— OODET 4 VC £ = OODET 4 VC

E 2000 - XORDET 4 VC z 2000 - XORDET 4 VC

5 —=— VOQnet 256 VC 5 —=— VOQnet 256 VC

‘é —— VOQsw 5 VC © —— VOQsw 5 VC

g 1500 5 1500 -

& &

> >

Q Q

§ 1000 5 1000

< <

- -

%500 5500

= =

on ——————e on ———————

> 0 ., J | I L L L L > 0 o, J L L L L L L

< <

0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
Traffic (flits/cycle/node) Traffic (flits/cycle/node)

(a) (b)

FIGURE 9.8: Avg. packet lat. vs. accepted traffic. 256-node 2D-torus and 4 VCs. Uniform
traffic (a) X+Y+X-Y- routing. (b) XY routing.

the same performance as adaptive routing. But remember that they provide in-order delivery of

packets by design. The exception is DBBM, which obtains a worse performance.

These results are for uniform traffic and DOR (XY) routing. However, the designer may be inter-
ested in using other routing algorithms that, for instance, provide fault-tolerance like X+Y+X-Y-
[65]. Figure 9.8.(a) shows the behavior of the analyzed deterministic routing algorithms in a
256-node 2D torus with X+Y+X-Y- routing. Figure 9.8.(b) shows results with XY routing for
comparison purposes. 4 VCs are used. IODET and XORDET roughly obtains the same results
in both figures (although IODET shows more differences) showing that both are able to obtain
a good performance with different routing algorithms. However, VOQsw and BBQ are strongly

affected when changing the routing algorithm.

140 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

Next, we will analyze a scenario where the HoL-blocking awareness of the routing algorithm
has a great importance. Assuming that we have uniform traffic in the network, but we introduce
a hot-spot where 25% of nodes send packets only to the hot-spot node at some point of time.
Traffic injection rate to the hot-spot is computed in such a way that it does not exceed the node
ejection bandwidth. In particular, we assumed 0.4 flits/cycle to the hot-spot. In addition, the
remaining nodes continue generating traffic with a uniform pattern. In this situation, a HoL-
blocking-aware routing algorithm should be able to isolate the traffic destined to the hot-spot.
Figure 9.9 shows the results for a 256-node 2D torus with 8 VCs. We can see a completely
different behavior of the analyzed routing algorithms. Adaptive routing, OODET and VOQsw
rapidly spread congestion as packets destined to hot-spot interferes other packets, leading to
a reduction in the delivered traffic rate and strongly increasing latency. Only when the hot
spot traffic disappears and after a high number of cycles, the network recovers its initial status.
Notice that, after this point, traffic increases for some cycles, due to the high number of messages
queued at the injection nodes. On the contrary, the HoL-blocking-aware deterministic routing
algorithms have a very good behavior, close to the one of VOQnet (which requires 256 VCs).

The exception is DBBM, which requires more cycles to recover from the hot-spot.

3 0,325 +OODET _ pnipilly 8 55.000 s

€ 0,300 Yooy g e, $.50.000 &,

5 Y - o o ol 5

< 0,275 e 3 45.000 ’i" % . .

20,250 £ 40.000 A z\{;ﬁt"’e routing

£0,225 E 35.000 i %

£0,200 &30.000 *L(OODREDTET i]

%) > i

£ 0.175 £ 25.000| . 8gQ g1

£0,150 £20.000

50125 215.000

% 0,100 £ 10.000

90,075 £ s 000 ‘ :

8 0,050 4 > A 20 o

<Y o 0 SRS AN
100.000 200.000 300.000 400.000 £ 100.000 200.000 300.000 400.000

Time (cycles) Time (cycles)

FIGURE 9.9: Results for hot-spot. 256-node 2D-torus and 8 VCs

9.4.2 Switch Cost Analysis

This section estimates the cost, measured in switching elements per switch, for the different
configurations analyzed in this paper. To do so, we compare the number of required connec-
tions in the crossbar for each configuration. Several switch configurations can be used with
virtual channels [63]. We will assume a fully demultiplexed crossbar to implement the inter-

nal switch of routers. Although multiplexed crossbar configurations leads to less hardware, it

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 141

requires more complex arbitration and internal speedup. Although a full crossbar (i.e. with a
number of ports equal to the product of the number of physical channels by the number of VCs)
is able to cope with any of the analyzed routing algorithms, some connections are not actually
required, which may lead to simplify it. For instance, packets are not forwarded to the same
port it arrived. Indeed, with DOR, packets may only be forwarded to dimensions higher than the
one they entered the router. As a consequence, the output multiplexers corresponding to higher
dimensions will have more inputs (and hence, more switching elements) than the ones located
in the lower dimensions’ channels. On the other hand, with adaptive routing, a packet entering
through a channel may be forwarded to any other output channel. When several VCs are used
and/or the number of network dimensions is high, the number of options grows considerably.
In addition, the injection and ejection channels must be also taken into account. To quantify
switch complexity, we will measure the number of required switching elements per switch. We
assume that a —input multiplexer needs 7 switching elements. Table 9.5 show the expressions
used to compute the number of switching elements for each analyzed routing algorithm taking
into account routing restrictions, n being the number of network dimensions and v the num-
ber of virtual channels per physical channel. Notice that DBBM, BBQ (both not shown) and
XORDET have the same number of switching elements as XORDET because all of them rely
on using virtual networks; and that VOQsw (also not shown) needs the same number of switch-
ing elements as OODET (for the same number of VCs, but VOQsw usually requires a higher
number of them) because at a given dimension a packet can change the VC at each hop, like
OODET. VOQnet requires the same number of connections in the switch as DBBM one, but

remember that it needs as many VCs as nodes.

TABLE 9.5: Number of switching elements for each routing algorithm

| Routing || Switching Elements

Adaptive || 4v°n? — 2v°n + 4un
OODET 20°n? + 4on

IODET 20°n? — 2v°n + 6un
XORDET 2vn* + 4on

Table 9.6 shows the number of required switching elements for adaptive routing, OODET and
the four HoL-blocking-aware deterministic routing algorithms considered in this paper: IODET,
DBBM, BBQ and XORDET. As it can be seen, DBBM, BBQ and XORDET requires a crossbar
with fewer connections than the other configurations. That is, it requires not only a cheaper but

also a simpler crossbar which may also help in reducing switch delay (this issue is not considered

142 Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies

TABLE 9.6: Comparison of the number of switching elements

Dimensions | Virtual channels || OODET | Adaptive | IODET | XORDET

2 1 16 - 16 16

3 1 30 - 30 30

4 1 48 - 48 48

6 1 96 - 96 96

2 2 48 64 40 32

3 2 96 144 84 60

4 2 160 256 144 96

6 2 336 576 312 192
Dimensions | Virtual channels || OODET | Adaptive | IODET | XORDET

2 4 160 224 112 64

3 4 336 528 264 120

4 4 576 960 480 192

6 4 1248 2208 1104 384

2 8 576 832 352 128

3 8 1248 2016 912 240

4 8 2176 3712 1728 384

6 8 4800 8640 4128 768

in this paper). This is due to the fact that messages traversing a given dimension cannot return
to the previous dimensions, since DOR routing is used. Therefore, we could dispose of those
switching elements that connect with lower dimensions. In addition to using DOR, the VC used
by a given packet does not change along the path in the network, like in virtual networks. Hence,
there is no need to have a crossbar connection (and the corresponding switching elements) to
allow packets to perform VC transitions. Opposite to that, in OODET, the crossbar would require
those connections since packets are allowed to change from one VC to another in the same
dimension. Regarding IODET, the VC used by a given packet does not change along the path
in the same dimension. Hence, IODET does not need the connections to switch between VCs
of the same dimension, but it needs these connections when changing the dimension. Finally,
adaptive routing would require a crossbar that enables almost all combinations of physical and
VCs (the only exception are connections related to escape paths, which must be traversed in

order).

As it can be seen, as the number of VCs is increased, the number of required switching elements
further increases, specially for adaptive routing with a high number of dimensions, which more

than doubles this number over XORDET.

Chapter 9. HoL-blocking Avoidance Routing Algorithms in Direct Topologies 143

9.5 Conclusions

This paper revisits the pros and cons of adaptive routing, analyzing alternative deterministic
routing algorithms specially designed to reduce the HoL-blocking effect. In particular, we pro-
posed a new HoL-blocking-aware deterministic routing algorithm (XORDET) for direct regular
topologies. It uses virtual channels to classify packets based on their destination node. In par-
ticular, the VC used by a packet is obtained by performing bitwise xor operations to selected
bits of its destination. As a result, we obtain an efficient and simple routing algorithm that takes
advantage of the available VCs, keeping the good properties of deterministic routing such as
in-order delivery of packets, and low routing delay. Compared to other deterministic routing
algorithms that also classify packets, XORDET allows a simpler design and/or offers more rout-
ing flexibility, as its good destination classification properties are not affected by the order the
underlying routing algorithm traverses dimensions. The evaluation shows that it is able to obtain
performance results halfway between the baseline deterministic and adaptive routing. However,
when the impact of adaptivity on routing time is considered, the differences between adaptive
and deterministic routing are reduced, or even eliminated for a relatively small number of VCs.
We have also shown the ability of HoL-blocking-aware routing algorithms to cope with hot-
spot traffic situations, being able to isolate the packets destined to the hot-spot, reducing the
interference to the rest of traffic. Furthermore, if we also consider the estimated switch cost
of each routing algorithm, the proposed deterministic routing algorithm becomes absolutely the

best routing option.

Chapter 10

XORAdap: A HoL-blocking aware

adaptive routing algorithm

Authors: Roberto Pefiaranda (Universidad Politécnica de Valencia), Crispin Gémez (Universi-
dad de Castilla La Mancha), Marfa Engracia Gémez, Pedro Lépez (Universidad Politécnica

de Valencia).
Type: Conference.

Conference: 23rd Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP).
Location: Turku, Finland.
Year: 2015.
DOI: hittp : //dx.doi.org/10.1109/PDP.2015.50

URL: http : //ieeexplore.icee.org/xpls/abs_all.jsp?arnumber = 7092699

145

146 Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm

Abstract

Routing is a key parameter in the design of the interconnection network of large parallel comput-
ers. Depending on the number of routing options available for each packet, routing algorithms
can be deterministic (one available path) or adaptive (several ones). Adaptive routing usually
outperforms deterministic routing but it also may increase the Head-of-Line blocking effect.
Usually, adaptive routing uses virtual channels to provide routing flexibility and to guarantee
deadlock freedom. On the other hand, deterministic routing is simpler and therefore it has lower
routing delay. In this paper, we take the challenge of developing new routing algorithms for
direct topologies that exploit virtual channels in an efficient way combining the good proper-
ties of both routing algorithms types: flexibility and reduced HoL blocking. To do that, this
paper proposes several hybrid (combination of adaptivity and determinism) simple mechanisms
to perform an efficient distribution of packets among virtual channels based on their destination.
The resulting routing mechanisms are able to adapt to the different traffic patterns to obtain the

best performance while keeping the simplicity of routing.

10.1 Introduction

The interconnection network strongly impacts the performance of large parallel computers. La-
tency and throughput are the key performance metrics of interconnection networks [2, 3]. La-
tency is the sum of two components: one related to the time required to traverse the network
and the other one related to the delay suffered by messages due to contention. If minimal
routing is used, as commonly done, then the first latency component is constant for each source-
destination pair as the number of hops does not change. The second component highly depends
on the routing algorithm and the traffic load. Throughput refers to the maximum amount of data
the network can deliver per time unit. The designers’ goal is to minimize message latency while
maximizing network throughput. To achieve this goal, the designer manipulates, among others,
two main parameters [2, 3]: topology and routing. The topology provides the connection pat-
tern among the nodes and routing decides the paths followed by messages through the network.
This paper focuses on direct topologies, which are the ones used in several machines that have

occupied the topmost positions of the Top500 list of supercomputers [1].

Routing algorithms can be either deterministic or adaptive. In deterministic routing, an injected

packet traverses a unique, predetermined path between source and destination. Opposite to this,

Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm 147

adaptive routing allow several paths for each source-destination pair, which, on the one hand,
helps to avoid congested network areas by allowing packets to take alternative paths to reach
their destination, but, on the other hand, this also has a negative impact on packet contention
because it increases the Head-of-Line (HoL) blocking effect. This effect occurs when a packet
at the head of a queue blocks, preventing the rest of packets in that queue from advancing, even
if they could do so. The HoL-blocking effect may limit the throughput of the switch up to about
58% of its peak value [60]. To reduce HoL-blocking, it is very important to isolate as much
as possible those packets destined to different nodes [22]. However, adaptive routing tends to

spread packet destinations in all the network.

In general, adaptive routing algorithms outperform deterministic ones [3], thus improving net-
work throughput and reducing message latency. Nevertheless, deterministic routing can be de-
signed to isolate destinations in order to reduce the HoL blocking effect, which enables deter-
ministic routing to outperform adaptive routing for some traffic patterns such as hot-spot traffic.
Moreover, deterministic routing has other interesting properties such as an easier implementa-
tion and easier deadlock-freedom guarantee. In adaptive routing, as several paths are available
for each packet, a selection function must be implemented to choose the path that will be finally
used. As a consequence, routing delay is higher compared to deterministic routing. On the other
hand, adaptive routing usually relies on virtual channels [63]. In this paper we focus on combin-
ing the good properties of adaptive (routing flexibility) and deterministic routing (reduced Hol.
blocking effect) to obtain routing algorithm that are able to do a good work under all the traffic
pattern. The idea behind these routing algorithms is to exploit virtual channels in an hybrid way,
providing some degree of adaptivity for each destination, but at the same time also determin-
ism since the destinations are confined in a subset of virtual channels which reduces the HoL

blocking effect.

The rest of the paper is organized as follows. Section 10.2 introduces some background and Sec-
tion 10.3 present some deterministic routing algorithms that use VCs to reduce the HoL-blocking
effect. In Section 10.4, a new HoL-blocking aware adaptive routing algorithm is proposed, eval-

uating it in Section 10.5. Finally, some conclusions are drawn.

148 Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm

10.2 Routing in Direct Topologies

In direct topologies, nodes are organized in an n—dimensional space. The regularity of these net-
works greatly simplifies their deployment and the routing algorithm implementation. The most
commonly-used direct topologies are the mesh, the torus, and the hypercube. Direct topologies

have been used in several of the most powerful supercomputers (see the Top500 list [1]).

In meshes and tori, the distance between current and destination nodes is calculated as the sum
of the offsets in each dimension. Minimal routing algorithms reduce one of those offsets at
each routing step. The simplest minimal routing algorithm, known as dimension-order routing
(DOR) [3], consists of reducing an offset to zero before considering the offset in the next dimen-
sion. For n-dimensional meshes, to enforce deadlock-freedom, DOR routes packets by crossing

dimensions in strictly increasing (or decreasing) order.

However, in tori, crossing network dimensions in order is not enough to obtain a deadlock-free
routing algorithm as the channel dependency graph is not acyclic [3]. Cycles are broken by
splitting each physical channel into two virtual channels (VCs) [54]. More than two VCs may
be used for performance improvement purposes [63]. An alternative is the bubble flow control
mechanism [55], which avoids deadlocks in each ring of the torus by ensuring that there is

always an empty buffer that allows packets to advance along the ring.

Adaptive routing in meshes and tori allows packets to cross dimensions in any order. Therefore,
all the minimal paths between each source-destination pair can be used by packets. However,
additional mechanisms are required to avoid deadlocks. According to [56], some VCs may be
used to cross network dimensions in any order if deadlock freedom is guaranteed by providing
an escape path to packets. This escape path is provided by means of a deadlock-free routing
algorithm (for instance, DOR) in another set of VCs. With the bubble flow control mechanism,
only one VC is required for escape path implementation in tori and meshes, and the remaining

VCs can be used for adaptive routing.

10.3 HoL-Blocking-Aware Deterministic Routing Algorithms

As mentioned above, adaptive routing provides more freedom to move packets in the network.
This has two opposite effects. First, its flexibility allows avoiding temporally congested network

areas. However, packets with different destination nodes may be highly interleaved in the switch

Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm 149

queues, which significantly increases the HoL-blocking effect, which could degrade network
performance. On the other hand, deterministic routing does not have such flexibility but its HoL.

blocking effect is lower.

In this paper we tackle the challenge of combining flexibility and HoL blocking reduction. The
idea is to confine destinations in a subset of the VCs. Thus, a given destination can use several
VCs, having some degree of adaptivity, but also they are confined in a subset of the available

VCs, which limits the HoL-blocking effect.

The aim of reducing the HoL-blocking effect by using VCs has been pursued before. VOQnet
[23] needs as many VCs as nodes in the network and associates each destination to a different
VC. It completely removes HoL-blocking from the network, but the required number of VCs
is unaffordable even in small networks since it grows linearly with the network size. Another
option is VOQsw [24], with as many VCs as switch output ports, and associates the set of
reachable destinations through a given output port to the same VC. VCs are selected according
to the next output port the packet will use. VOQsw leads to a worse classification of packets than

VOQnet and it is also not scalable, as the number of required VCs depends on switch degree.

DBBM was introduced in [25] as a scalable version of VOQnet. It selects VCs by using the
destination identifier modulo the number of VCs. However, in a 2D torus, all the nodes at a
given column are assigned to the same VC. Its implementation is simple. Provided that the
number of VCs is a power of two, the modulo operation by the #VCs is as easy as selecting
the log(#V C's) least significant bits of the packet destination. As packets use the same VC
while it traverses the network, VC assignment can be done once in the source node. Moreover,
as there is not need to move packets from one VC to another, the internal switch of the nodes
can be implemented as one independent switch per VC, instead of deploying a fully-connected

crossbar.

In order to overcome the bad classification of packets in the last dimension, BBQ [26] uses
the destination log(#V C's) most significant bits to assign destinations to VCs thus dividing the
network into as many horizontal bands as VCs. However, all the nodes inside each horizontal
band use the same VC and, therefore, they may suffer from HolL-blocking in the first dimension.
As in DBBM, BBQ never changes the VC of a packet, and it can be assigned once at injection

time.

150 Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm

Bottleneck

1 -

O O @) O @) O O @)

FIGURE 10.1: Paths of source-destination pairs of the first row with Bit-reversal pattern traffic.

IODET [64] assigns destinations to VCs considering not the whole destination identifier but the
component of the packet destination corresponding to the dimension the packet is being routed
in. Again, the final VC to be used is obtained by performing the modulo operation, but, in this
case, it considers the dimension coordinates of the destination. However, as the assignment of
destinations to VCs depends on the dimension the packet is traversing, it must be computed at
each node (at least when there is a dimension change). Thus, switch implementation is not as

easy as DBBM one.

In XORDET [66] destinations are assigned to VCs by performing a bitwise xor operation to
the destination bits. Let n be the bits of the destination identifier. With v available VCs, | =
log v bits are required to denote a virtual channel, which are obtained by xoring 7 bits of the
destination, considering them in an interleaved fashion. In addition, XORDET implementation
of VC selection is very simple. In particular, [= log v xor gates are required, each one with 7
inputs. If n is not divisible by /, some gates will have an extra input. In addition, as in DBBM,

the assignment of destinations to VCs does not change as packet travels through the network.

Although these deterministic routing approaches are able to isolate traffic destined to different
nodes, their performance depends on the traffic pattern injected in the network. While they
work very well to avoid bottlenecks caused by hot-spots, for some other traffic patterns, adaptive
routing is preferred. For this reason, in this paper we propose a hybrid mechanism that is able to
combine the routing flexibility provided by adaptive routing with the traffic isolation provided

by HoL-blocking aware routing to obtain good performance results for all traffic patterns.

10.4 XORADAP: XOR ADAPtive Routing

As stated above, adaptive routing usually improves network performance but it does not work
well for some specific traffic patterns. In particular, when there is a hot-spot node in the network,
a HoL-blocking aware deterministic algorithm works better than adaptive routing [66]. The

problem arises in the VCs that provide the routing flexibility (i.e., the ones that can be used

Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm 151

1st Group

Adaptive channels

2nd Group

1st Group

2nd Group
3rd Group
4th Group

1st Group
®

—>
Escape channek/y

FIGURE 10.2: How XORADAP assigns groups to VCs with 8 VCs.

®
®
8th Group

LI T mnm

to cross the network dimensions without following any order). When there is a hot-spot node,
adaptive routing trends to distribute traffic among all the available VCs, filling all the buffers
with packets destined to the hot spot that will interfere with other traffic, thus creating the HoL-

blocking problem.

On the contrary, although HoL-blocking aware routing algorithms like IODET or XORDET
have a very good behavior with hot-spot traffic and even with uniform traffic pattern, they ob-
tain a poor performance for other traffic patterns. For instance, for the bit-reversal or matrix
transpose traffic patterns, a lot of source-destination pairs use the same links, leaving many un-
used links. This fact creates a bottleneck since many packets have to cross through the same link.
We can see this behavior in Figure 10.1, which shows the paths used by the source nodes be-
longing to the first row in a 2D torus for the bit-reversal traffic pattern. For these kinds of traffic
patterns, adaptive routing can take advantage of this unused links, providing a better utilization

of the network, and, therefore, improving network performance.

In order to provide flexibility and also reduce the negative effect of HoL.-blocking, we propose a
new adaptive routing algorithm. This routing algorithm has several “adaptive VCs” that provide
the routing flexibility and also the set of VCs that implement the escape paths. Up to this point, it
is similar to the traditional adaptive routing algorithm. But, in this case, although the routing al-
gorithm allows to cross the network dimensions following any order, we restrict the use of VCs,
thus classifying the traffic depending on the destination node. To assign VCs to destinations,
any mechanism could be used. In this paper, taking into account its good behaviour, we propose
using the same xor function used in XORDET. For this reason, the resulting routing algorithm

will be referred to as XORADAP. Therefore, we split the adaptive VCs in different groups, so

152 Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm

each group can be composed by 1, 2 or more VCs. Given a packet, it will be forwarded to one

of the groups, selecting any of the VCs that composes the group.

Figure 10.2 shows an example of the different configurations that can be set with 9 VCs, one
escape VC and 8 adaptive VCs. As the number of groups must be a power of two, in this case,
three configurations are possible: 2, 4 and 8 groups. As it can be seen, the result is a set of
different virtual networks, each one with several VCs and the packets of the different virtual
networks are not mixed together, effectively separating flows. Notice that, if we use a group
for all channels, we obtain the generic adaptive algorithm, and, if each group has only one VC,
we obtain something very similar to the XORDET deterministic routing algorithm (XORADAP
also provides the escape path). We use a function similar to that used in XORDET, but this time
we use groups instead of VCs to classify traffic. In particular, for g groups, [= log g xor gates
are required. Each one of them will have 7 inputs, n being the number of bits of the destination

identifier.

10.5 Experimental Evaluation

1400 - — Adaptivg routing 9 VCs

——— XORADAP 9 VCs 8 groups

1200 I —— XORAI)AP 9 VCs 4 groups

——=— XORAIDAP 9 VCs 2 groups
XORDET 8 VCs

—— XORDET 16 VCs

800 i T : T .

—— Adaptive routing 9 VCs i
700 —— XORADAP 9 VCs 8 groups 8
——x— XORADAP 9 VCs 4 groups \‘
600 - — = — XORADAP9 VCs 2 groups
XORDET 8 VCs

500 f —*— XORDET 16 VCs 1000

400 + 800 r

Avg. Msg. Lat. from Gen. Time (cycles)
Avg. Msg. Lat. from Gen. Time (cycles)

300 | 600
200 F 400
100 200 |-
0 I I I I I I I 0 I I I I I
0 005 01 0.5 02 025 03 035 04 0 0.05 0.1 0.15 0.2 0.25 0.3
Accepted traffic (flits/cycle/node) Accepted traffic (flits/cycle/node)
(a) (b)

FIGURE 10.3: 256-node 2D-torus. Average packet latency vs accepted traffic: Uniform (a)
and Bit-reversal (b) traffic patterns.

In this section, we evaluate by simulation the HoL-blocking aware adaptive algorithm proposed
in this paper, XORADAP. We compare it with XORDET [66], which obtained the best results
among the HoL-blocking aware deterministic algorithms (IODET, DBBM, BBQ...). Also, a
pure adaptive routing algorithm is evaluated and compared. To guarantee deadlock-freedom in

tori, the bubble flow control mechanism was used. Regarding the number of VCs per physical

Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm 153

channel, it must be a power of two in XORDET. In XORADAP, the number of VCs must be a
power of two plus one (the escape channel). To perform a fair comparison, traditional adaptive
routing will use the same number of VCs as the one used in XORADAP. Each node has a switch
based on a full crossbar with 4-packet queues both at their input and output ports. Packet length
is 16-flit. We assume a 4-stage pipelined router, and switch and link bandwidth is assumed to be

one flit per clock cycle.

First, we analyze network performance for the uniform traffic pattern. Figure 10.3.(a) shows the
results for a 2-D torus with 16 nodes per dimension. 9 VC (8 adaptive channels and 1 escape
channel) were used in adaptive and XORADAP routing algorithms, and 8 VCs and 16 VCs in
XORDET. In XORADAP, three different configurations were tested: two groups with 4 VCs
each, 4 groups with 2VCs and 8 groups with only one VC per group. We can see that all of them
achieve roughly the same throughput. Regarding latency, for medium to high traffic rates, the
more routing flexiblity leads to higher latency values, due to the HoL-blocking effect generated
by interfering traffic flows. Therefore, we can see how the XORADAP with more groups, less
adaptive, has a lower latency; and both configurations of XORDET obtain the lowest latency

values.

The behavior for bit-reversal traffic pattern is shown in Figure 10.3.(b), where there is a bottle-
neck when using deterministic routing. In this case, XORDET obtains a lower throughput than
any adaptive routing algorithm, even using more VCs. In particular, adaptive routing achieves
almost 3X throughput than deterministic routing. Any of the configurations of XORADAP helps
to reach such performance. The poor behavior of XORDET, and, in general, of any determinis-
tic routing, is due to the unbalanced distribution of traffic, which leads to an over-utilization of

some links while other are unused.

As the results presented up to now show, XORADAP achieves one of its design goals. It is
as good as adaptive routing for the traffic patterns the latter works well, improving XORDET,
and deterministic routing in general (not shown). Now, we will analyze a different scenario,
where the HoL-blocking awareness of the routing algorithm has a great importance. Assume
that we have uniform traffic in the network, but we introduce a hot-spot, where 25% of nodes
send packets only to one node (the hot-spot node) at some point in time. So, we have two
traffic flows: 75% of nodes generate ing packets with an uniform pattern and 25% generating
packets destined to the hot-spot. In this situation, a HoL-blocking-aware routing algorithm

should be able to isolate the traffic destined to the hot-spot, thus avoiding interfering the other

154 Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm

©
o

27.500

= Adaptive routing 9 VCs
-+ XORADAP 9 VCs 8 groups
+~XORADAP 9 VCs 4 groups
9 +XORADAP 9 VCs 2 groups
>
G'22.500] - xORDET 16 VCs

XORDET 8 VCs

©
1=}

; 25.000

)
o

']
.

Ve

o
%80 g 20.000
) [
£ 5 17.500
=
S o
g’ £ 15.000
= o
56 in 500
T
260 ? f T 10.000
oy * | Lﬁ .
ﬁ 55 ;‘ gt Adaptive routing 9 VCs 2500
< i ~XORADAP 9 VCs 8 groups

i

+XORADAP 9 VCs 4 groups
+XORADAP 9 VCs 2 groups
1 ~=XORDET 16 VCs

XORDET 8 VCs

w
=)
==

Avg Msg Latenc

IS
[l

40 0
100.000 200.000 300.000 400.000 500.000 600.000 100.000 200.000 300.000 400.000 500.000 600.000
Time (cycles) Time (cycles)

(a) (b)

FIGURE 10.4: 256-node 2D-torus. Uniform traffic with hot-spot. Accepted traffic (a) and
average packet latency (b) vs. time.

flows. On the other hand, a pure adaptive algorithm mixes the different flows, spreading the
possible congestion to the whole network. This behavior can be seen in Figure 10.4 for a 256-
node 2-D torus. As it can be seen, for adaptive routing, as soon as traffic to the hot-spot is
injected, delivered traffic reduces and packet latency strongly increases. Only when the hot spot
traffic disappears (at cycle 260.000 approx.) and after a high number of cycles, the network with
adaptive routing recovers its initial performance. On the other hand, XORDET performs a good
isolation of the hot-spot traffic flows, and, thus, limits the congestion it generates. Delivered
traffic is almost unaltered and latency is only slightly increased. Regarding the number of VCs
per physical channel, as expected, the greater the better performance, as hot-spot flows affect
less other flows. Regarding XORADAP, it achieves a behavior halfway between adaptive and
XORDET routing. XORADAP configurations with more groups can better isolate the hot-spot

traffic flows, obtaining a result very similar to XORDET in the best case (with 8 groups).

The analysis shown before demonstrates that XORADAP achieves its second design goal. It
is as good as a HoL-blocking aware deterministic routing algorithm classifying and isolating
traffic, thus improving adaptive routing. Therefore, summarizing, the hybrid routing algorithm
proposed in this paper, XORADAP, combines the best features of both adaptive routing and
HoL-aware deterministic routing, being an interesting design option to consider when choosing

the routing algorithm.

Chapter 10. XORAdap: A HoL-blocking aware adaptive routing algorithm 155

10.6 Conclusions

This paper proposes a new HoL-blocking-aware adaptive routing algorithm (XORADAP) for di-
rect regular topologies. This routing algorithm tries to combine the best features of both adaptive
(flexibility) and deterministic routing algorithms specially designed to reduce the HoL.-blocking
effect (traffic isolation). To do so, it uses virtual channels to classify packets based on their
destination node while it allows to use different paths to arrive to the destination. In particular,
virtual channels are split into groups, and the routing algorithm can select any virtual channel
of a group, like in adaptive routing; and the group used by a packet is obtained as a function
of its destination, like in HoL-blocking aware deterministic routing. In particular, in this paper,
the group is selected by performing bitwise xor operations to selected bits of its destination,
but other strategies are also possible. As a result, we obtain a hybrid routing algorithm that
takes advantage of the HoL-blocking awareness, while keeping the good properties of adaptive
routing such as flexibility to route. The evaluation results show that XORADAP obtains similar
performance results than either deterministic or adaptive routing with uniform traffic pattern.
Most important, it is the best analyzed routing option for these complementary scenarios: i) it
achieves a similar behavior to adaptive routing for those traffic patterns where routing flexibility
is required to avoid bottlenecks, and ii) it is able to cope with hot-spot traffic situations, being
able to isolate the packets destined to the hot-spot, reducing the interference to the rest of traffic,

like HoL-blocking aware deterministic routing does.

Chapter 11

XOR-based HoL-blocking reduction
Routing Mechanisms for Direct

Networks

Authors: Roberto Pefiaranda, Crispin Gémez, Maria Engracia Gémez, Pedro Lopez (Universi-

dad Politécnica de Valencia).
Type: Journal.
Journal: Parallel Computing.
Publisher: Elsevier.
ISSN: 0167-8191.
State: Under review.
Impact Factor: 1.511

JRC ranking: Q1 (2014)

157

158 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

Abstract

Routing is a key design parameter in the interconnection network of large parallel computers.
Routing algorithms are classified into two different categories depending on the number of rout-
ing options available for each source-destination pair: deterministic (there is one path available)
and adaptive (there are several ones). Adaptive routing has two opposed effects on network
performance. On one hand, it provides routing flexibility that may help on avoiding a congested
network area, thus improving network performance. On the other hand, it also may increase the
Head-of-Line blocking effect due to more destination nodes sharing the port queues. Usually,
adaptive routing uses virtual channels to provide routing flexibility and to guarantee deadlock
freedom. Deterministic routing is simpler, which implies lower routing delay and it introduces
less Head-of-Line blocking effect. In this paper, we propose an adaptive and HoL-blocking
reduction routing algorithm for direct topologies that tries to combine the good properties of
both worlds: It provides routing flexiblity but also reduces the Head-of-Line blocking effect. To
do that, this paper proposes several functions which use the XOR operation to efficiently dis-
tribute the packets among virtual channels based on their destination node. The resulting routing
mechanisms have different properties depending on whether they enforce routing flexibility or

Head-of-Line blocking reduction.

11.1 Introduction

A key component in the performance of large parallel computers is the interconnection network.
Performance of these systems is increasingly determined by how data is communicated among
the huge number of computing resources. Latency and throughput are the key performance
metrics of interconnection networks [2, 3]. Latency is the elapsed time between message in-
jection into the network and its arrival at its destination, and it is the sum of two components,
one related to the time required to traverse the network in absence of traffic (base latency) and
the other one related to the delay suffered by messages due to contention. If minimal routing
is used, as commonly done, then the base latency is constant for each source-destination pair
as the number of hops does not change. The second component of latency depends on network
contention. Throughput refers to the maximum amount of data the network can deliver per time
unit. The main goal is to minimize message latency while maximizing network throughput. To

achieve this goal, we have to consider, among others, two main parameters [2, 3]: topology and

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 159

routing. The topology provides the connection pattern among the nodes. This paper focuses on
direct topologies, which are one of the options used to build large parallel machines. In fact,
several machines that have occupied the topmost positions of the Top500 list of supercomputers
[1] are based on direct topologies, like the ones that occupy the 3rd, 4th and 5th positions in the
June 2016 list.

The routing algorithm decides the paths followed by messages through the network. A routing
algorithm can be either deterministic or adaptive. In deterministic routing, an injected packet
traverses a unique, predetermined path between each source-destination pair. Opposite to this,
adaptive routing schemes allow several paths for each source-destination pair. This, on the one
hand, helps avoiding congested network areas by allowing packets to take alternative paths to
reach their destination. However, this flexibility has a negative impact on packet contention be-
cause it may increase the Head-of-Line (HoL) blocking effect. This effect occurs when a packet
at the head of a queue blocks, and prevents the rest of packets in that queue from advancing,
even if they could do so because the required resources are free. The HoL-blocking effect may
be highly pernicious and may limit the throughput of the switch up to about 58% of its peak
value [60-62]. In order to reduce the HoL-blocking effect, it is very important to isolate as
much as possible those packets destined to different nodes [22, 59]. However, adaptive routing
tends to spread packet destinations all over the network, which may have a very negative effect
when a destination is saturated since it will spread the congestion to other network areas and

prevent more packets to arrive to other non-saturated destinations.

Adaptive and deterministic routing algorithms have different properties. While adaptive routing
algorithms outperform deterministic ones [3] for some traffic patterns because of their routing
flexibility, thus improving network throughput and reducing message latency deterministic rout-
ing better isolates destinations reducing the HoLL blocking effect, which enables deterministic
routing to outperform adaptive routing for some other traffic patterns such as traffic with hot-spot
destinations. Moreover, adaptive routing usually leads to a more complex implementation and it
is more deadlock-prone [73, 74]. Adaptive routing usually relies on the use of virtual channels
(VCs) [63] to avoid deadlocks. On the other hand, adaptive routing requires a selection function
to choose the path that will be finally used, as several paths are available for each packet. As
a consequence, routing delay for adaptive routing is usually higher compared to deterministic

routing [58, 75, 76].

160 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

In this paper we focus on combining the good properties of adaptive (routing flexibility) and de-
terministic routing (reduced HoL blocking effect) to design a hybrid routing algorithm. The idea
behind this routing algorithm is to take advantage of virtual channels, usually used in adaptive
routing to provide flexibility, but with a revisited aim: confining destinations in subsets of virtual
channels in order to reduce the HoL blocking effect while providing some degree of flexibility.
In order to select the VCs that can be used by a given packet, the proposed routing algorithm
uses a XOR function of the destination identifier which provides a balanced usage of VCs for all
traffic patterns. A deterministic version of the proposed routing algorithm was presented in [66]
and a first version of the adaptive routing algorithm based on the XOR function was published
in [77]. The current paper unifies both proposals under a common framework, explaining in
more depth how the use of the XOR operation helps reducing the Head-of-Line blocking effect
both for deterministic and adaptive routing. This paper also include new performance evaluation

results.

The rest of the paper is organized as follows. Section 11.2.1 introduces some background on
routing in direct topologies. In Section 11.2.2, we present some previous deterministic routing
algorithms that use virtual channels to reduce the HoL-blocking effect. In Section 11.3.1, we
present the XOR-based HoL-blocking reduction deterministic routing algorithm. And, in Sec-
tion 11.3.2, we extend the proposal of Section 11.3.1 to propose the HoL-blocking reduction
adaptive routing algorithm that is able to combine the benefits of deterministic and adaptive
routing algorithms. These algorithms are evaluated in Section 11.4. Finally, some conclusions

are drawn.

11.2 Background

11.2.1 Direct Topologies

A direct network consists of a set of nodes, each one being directly connected to a subset of
other nodes in the network. The most popular direct topologies organize nodes in an orthogonal
n—dimensional space. The regularity of these networks greatly simplifies their deployment and
routing algorithm implementation. The movement of a packet in a dimension does not modify
the number of remaining hops in the other dimensions to reach the packet destination. The most
commonly-used direct topologies are the mesh, the torus, and the hypercube. These topologies

have been used in several of the most powerful supercomputers (see the Top500 list [1]).

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 161

The distance between source and destination nodes is computed as the sum of the offsets in
each dimension. Minimal routing algorithms will reduce one of those offsets at each routing
step. The simplest minimal routing algorithm, known as dimension-order routing (DOR) [3],
consists of reducing an offset to zero before considering the offset in the next dimension. For n-
dimensional meshes, to enforce deadlock-freedom, DOR routes packets by crossing dimensions

in strictly increasing (or decreasing) order.

However, in tori, crossing network dimensions in order is not enough to obtain a deadlock-free
routing algorithm as the channel dependency graph is cyclic [3]. Cycles are broken by splitting
each physical channel into two virtual channels (VCs) [54]. More than two VCs may be used
for performance improvement purposes [63]. Another technique used to avoid deadlocks in tori
with deterministic routing is the bubble flow control mechanism [78]. This mechanism avoids
deadlocks in each ring of the torus by ensuring that there is always an empty buffer that allows

packets to advance along the ring.

Many adaptive routing algorithms have been published in the literature [79-82]. Fully adaptive
routing [3, 56] in meshes and tori allows packets to reduce dimension offsets following in any
order. Therefore, all the minimal paths between each source-destination pair can be used by
packets. However, this may introduce cycles and deadlock-freedom has to be ensured with
additional mechanisms. According to [56], VCs may be used to cross network dimensions in
any order if deadlock freedom is guaranteed by providing an escape path to packets. This escape
path is provided by means of a deadlock-free routing algorithm (for instance, DOR) in another
set of VCs. Notice that with the bubble flow control mechanism, only one VC is required for
escape path implementation in tori and meshes, and the remaining VCs can be used for adaptive

routing.

11.2.2 Related Work

As mentioned in the previous section, adaptive routing provides flexibility in the path followed
by packets and in the use of VCs since it uses VCs with complete freedom, except the ones
used as escape channels. This routing freedom has two opposite effects over performance.
The positive one is that temporally congested network areas can be avoided and therefore, for
some traffic patterns, packets can make a better use of the network resources. However, the
negative effect is that packets with different destination nodes may be highly interleaved in

the switch queues, which significantly increases the HoL-blocking effect with hot-spot traffic

162 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

()
®
O,
®

° vco O
vei O

N D N vez O
SR/ (2 13 ves O

(@))
N/ B>/ o/
@ @ ©
W/ W/ N
® ® &
® @ ©® ® &
(@) Q)
\o/ NV
@) ®)
XV o/ NabZ
® @ ®
® ® ® 6

&>/
)

O) ()

() (@ Gy G (5 Gs)
G (7 MG

FIGURE 11.1: How DBBM assigns destinations to VCs in a 8 x 8 mesh with 4 VCs.

patterns, leading to degrade network performance for all the network (as we can see in Section
11.4). On the other hand, deterministic routing does not provide that flexibility, which may
negatively affect performance for some traffic patterns, but its contribution to the HoL-blocking

effect is lower.

The idea of reducing the HoL-blocking effect by using VCs has been pursued before by pre-
viously proposed deterministic routing algorithms. The key idea behind these proposals is to
classify destinations into VCs, according to some criteria. Virtual Output Queueing at network
level (VOQnet) [23] needs as many VCs as nodes in the network and associates each destination
to a different VC. VOQnet completely removes the HoL-blocking effect from the network, but
the required number of VCs is unaffordable even in small networks since it grows linearly with
the network size. However, it is often used for comparison purposes since it provides an upper
bound that could be achieved by completely removing HoL-blocking from a network. Another
option is Virtual Output Queueing at switch level (VOQsw) [24], which requires as many VCs
as switch output ports, and associates the set of reachable destinations through a given output
port to the same VC. Therefore, VCs are selected according to the next output port the packet
will use. VOQsw leads to a worse classification of packets than the one obtained with VOQnet

and it is also not scalable, as the number of required VCs depends on switch degree.

Destination-Based Buffer Management (DBBM) was introduced in [83], as an attempt to ob-
tain a scalable version of VOQnet. This mechanism selects VCs by using the destination node

identifier modulo the number of VCs. While it works for other topologies, when using DBBM

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 163

Dim | VC#0 | VC#1 VC#2 VC#3
X 8 16 16 16
Y 7 No dest. | No dest. | No dest.

TABLE 11.1: How many destinations DBBM assigns to node 0 VCs in a 8 X 8 mesh with 4
VCs.

01234567 01234567 dim1 (Y) dim0 (X)

Dest. Id Dest. Id Dest. Id

vC

VC vC MUX

(a) DBBM (b) BBQ (c) IODET

FIGURE 11.2: Implementation of VC selection for a 256-node 2D network and 4 VCs.

in a 2D mesh or torus, all the nodes in a given column are assigned to the same VC, as shown
in Figure 11.1 for an 8x8 mesh with 4 VCs per physical channel. Indeed, Table 11.1 shows
the number of destinations assigned to different VCs for a node of the network (node 0). For
instance, VC#0 of the X -dimension is used to reach 8 nodes (the 4 row), while VC#1 of the
X -dimension is used to reach 16 nodes (the 1 and 5" row). As it can be seen, all the VCs in
the Y -dimension are never used but one per port. This lack of classification in the last dimension
(Y) lead to congestion due to the HoL-blocking effect that, at the end, could be propagated to

the whole network due to upstream flow control pressure.

If we analyze the implementation complexity of the VC selection mechanism, DBBM is very
simple, provided that the number of VCs is a power of two. This mechanism uses the modulo
operation by the #VCs and its implementation is as easy as selecting the log(#V C's) least
significant bits of the packet destination (see Figure 11.2(a)). Additionally, notice that, as VC
assignment depends only on the packet destination, packets use the same VC while it traverses
the network. This is a nice feature, as VC assignment can be done once at the source node, and
the rest of nodes that a packet crosses across the network merely forwards the packet through the
same VC from which the packet arrived to, like in virtual networks [84], without requiring VC
transitioning [54]. Furthermore, this fact also leads to a reduced switch complexity. As there
is not need to move packets in a switch from one input VC to another output VC, the internal
switch of the nodes can be implemented as one independent switch per VC, instead of deploying
a fully-connected crossbar. We will further analyze switch complexity later considering all these

aspects.

164 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

Dim | VC#0 | VC#1 | VC#2 | VC#3
X 8 16 16 16
Y 1 2 2 2

TABLE 11.2: How IODET assigns destinations to node 0 VCs in a 8 x 8 mesh. #VCs is 4

Band-Based Queuing (BBQ) mechanism [26] was proposed in order to overcome the bad clas-
sification of packets in the last dimension of DBBM. BBQ also uses some bits of the destination
identifier to choose the VC for each packet, but opposite to DBBM, BBQ uses the destination
log(#V C's) most significant bits (see Figure 11.2(b)). That is, BBQ divides the network in
as many horizontal bands as VCs, in such a way that the nodes in each column are distributed
as much as possible among the VCs. However, the problem is that all the nodes inside each
horizontal band use the same VC, and, therefore they may suffer from HoL-blocking in the first
dimension. As in DBBM, BBQ never changes the VC of a packet during its path in the network.

It can be assigned once at injection time keeping the same VC along its path in the network.

In-Order DETerministic routing (IODET) [64] follows a different approach and it selects the VC
by considering not the whole destination identifier but the component of the packet destination
corresponding to the dimension in which the packet is being routed. The VC to be used by a
packet is obtained by performing the modulo operation of the dimension coordinates of the des-
tination. That is, given a packet destined to node {p;,,_1, ..., p1, po }, when routed in dimension
d it will use the VC given by py mod #V C's. This mechanism does a better job classifying
packets than DBBM as can be seen in Table 11.2, which shows the number of destinations as-
signed to different VCs for node O for an 8x8 mesh with 4 VCs. As it can be seen, all the VCs

in both dimensions are used when applying IODET to distribute destination among VCs.

Considering the implementation complexity of the VC selection, IODET is also very simple,
as displayed in Figure 11.2(c) which shows an example for 4 VCs. As it can be seen, the least
significant bits of the component for each dimension is used to select the VC. However, as the
assignment of destinations to VCs depends on the dimension the packet is traversing, the VC
is changed when there is a dimension change and, therefore, in those nodes the new VC to use
must be computed. As a consequence, the node internal switch must allow the change in the VC
assignment and the switch implementation is not as easy as the DBBM one. We will analyze

this issue later.

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 165

11.3 XOR-based HoL-blocking Reduction Routing

In this section, we present a mechanism to assign destinations to VCs based on the use of
XOR function. We apply this destination distribution to two different routing algorithms: first
a deterministic routing mechanism (XORDET) [66] is designed, and then an adaptive version
(XORADAP) [77] is proposed. The idea of this second algorithm is to combine the good prop-
erties of both, deterministic and adaptive routing to adapt to any traffic pattern to obtain optimal

performance results.

11.3.1 XORDET: XOR DETerministic Routing

XORDET is a deterministic routing algorithm that reduces the HoL-blocking effect and per-
forms a balanced distribution of destinations among VCs. For doing that, opposite to the previ-
ously presented deterministic algorithms that use a subset of the node destination bits, XORDET
distributes destinations among VCs by performing a bitwise XOR operation to all the bits of the
destination node, as follows. Assume that there are v VCs available. Then, [= log, v bits are
required to denote a virtual channel. If destination identifiers are n bits long, then, for each
destination, the VC to use is obtained by performing [XOR operations in parallel. In each XOR
operation ' bits of the destination are XORed, taking them in an interleaved fashion. In par-
ticular, given a packet destined to node {p,_1, ..., p1,P0}, it will use the VC given by the bits
{VCj_4,...,VC1,VCy}, computed as follows:

VCo = po ® poti © potar - - © Potp(z_1y
VO =p1®piy & praar- - proz_1y
VCi—1 = pi—1 ® P11 © pr—1421- - S Dr14(2 1)1

Figure 11.3 shows how the VC selection will be implemented in a network with 4 VCs and 8-bit
node identifiers. Each VC bit is obtained by XORing 4 bits of the node destination identifier in
an interleaved fashion. Notice that XORDET implementation of VC selection is very simple, as
only some XOR gates are required per source node. In particular, for v VCs, I = logv XOR
gates are required. Each one of them will have 7 inputs, n being the number of bits of the
destination identifier. If n is not divisible by /, some gates will have an extra input. Notice that

this implementation assumes that the number of VCs is a power of two. On the other hand,

we would like to highlight that, as in DBBM, the assignment of destinations to VCs does not

166 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

01234567

i

Dest. Id

L.

VC

(a) XORDET

FIGURE 11.3: Implementation of VC selection in XORDET for a 256-node 2D network and 4
VCs.

@ @ @
) W) @ @ 4 B @ @ vco O
velr O
ONONCCINCINCINC NIV
o) &) NN ves O

) (1) (o (9 (o () (2 @
1) (1) (8 (9 (0 (2

. I\ 7o\

390 (3Y

W

®
® ®
&) (%)
@ @
N NV
& ®
® ®
DD
(&)
@)
o/

“/ =\

%\
®
®
®)
®
®
®

N D@
0 v (@ (3 (9 (3

&) w0 &) @ @
o€ 7 \60) (8% ‘

FIGURE 11.4: How XORDET assigns destinations to VCs in a 8 x 8 mesh with 4 VCs.

AN
NV
T

change as packet travels through the network. Therefore, this assignment can be performed only
once when the packet is injected into the network. As a consequence, the network could be
considered as several virtual independent networks, without interconnection among them, and
the internal node switch can be implemented as several independent switches. As a consequence,
the implementation of XORDET is very simple (as in DBBM) but, as will we shown in Section

11.4, it also allows the VCs to maximize its utilization (as in IODET).

XORDET is able to isolate traffic destined to different nodes and also balancing destinations
among VCs. Figure 11.4 shows how destinations are distributed among VCs in a network with
64 nodes and 4 VCs. As it can be seen, XORDET does a very good job, as traffic destined
to either rows or columns will be distributed among the VCs. Table 11.3 shows how many

destinations are assigned to each VC of node 0 of the network.

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 167

Dim | VC#0 | VC#1 | VC#2 | VC#3
X 14 14 14 14
Y 1 2 2 2

TABLE 11.3: How many destinations XORDET assigns to node 0 VCs in a 8 x 8 mesh with 4
VCs.

As shown, XORDET balances node destinations among VCs which will balance traffic for uni-
form random traffic pattern. But XORDET is a deterministic routing algorithm and this means
that, for some adversarial traffic patterns, it may suffer from performance drops due to the lim-
ited routing flexibility. While XORDET works very well to avoid congestion caused by hot-
spots, for some other traffic patterns, adaptive routing is able to outperform deterministic routing
in general and, in particular, XORDET. For this reason, in this paper we propose an adaptive
HoL-blocking reduction routing algorithm that is able to combine the routing flexibility pro-
vided by adaptive routing with the destination isolation provided by HoL-blocking reduction

routing to obtain optimal performance results for all traffic patterns.

11.3.2 XORADAP: XOR ADAPtive Routing

As mentioned above, deterministic routing lacks flexibility to adapt to some adversarial traffic
patterns while adaptive routing does not encourage HoL-blocking effect reduction, which is very
important for some traffic patterns. In particular, with a hot-spot node in the network, a HoL-
blocking reduction deterministic algorithm that isolates the hot-spot traffic works better than
adaptive routing [66] that spreads that traffic over the network avoiding other traffic to progress

in the network. Let us analyze what happens in this case.

With adaptive routing, the problem arises in the VCs of all the network dimensions that provide
the routing flexibility (i.e. the ones that can be used to cross the network dimensions without
following any order). When there is a hot-spot node, adaptive routing trends to distribute traffic
among all the available VCs, filling all the buffers with packets destined to the hot-spot node.
Those packets will interfere with other traffic flows all over the network, thus creating the HoL-

blocking problem.

On the contrary, HoL-blocking reduction algorithms like IODET or XORDET have a very good
behavior with hot-spot traffic because they confine the hot-spot traffic in just one of the VCs,
allowing the rest of traffic to progress normally across other VCs. These routing algorithms

also work well with uniform random traffic pattern as it will be shown, but they obtain a poor

168 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

o
O O O O 0o O

O O O O 0o O

O O O O 0o O

©c o o o O o o o o O O O O

© o o o o o o © o o o o O O O O
© o o o o o o O o o o o O O O O

(a) (b)

FIGURE 11.5: Paths of source-destination pairs of the first row with different pattern traffics:
(a) Bit-reversal and (b) Matrix Transpose.

performance for some adversarial traffic patterns. For instance, consider the bit-reversal or
matrix transpose traffic patterns [3]. In these cases, if deterministic routing is used, a lot of
source-destination pairs will use the same links due to the destination distribution leaving many
links unused. This fact creates a bottleneck since many messages have to cross the same link.
We can see this behavior in Figure 11.5. This figure shows the paths used by the source nodes
belonging to the first row in a 2D torus for the bit-reversal and matrix transpose traffic patterns
using a deterministic routing algorithm. In particular, DOR was used. As it can be observed
in the figure, the links of the topmost leftmost node become a bottleneck with deterministic
routing. For these kinds of traffic patterns, adaptive routing can take advantage of all the network
resources, providing a better utilization of the network links and therefore, improving overall

network performance for this adversarial traffic pattens.

In order to provide flexibility for adversarial traffic patterns and also reduce the negative effects
of HoL-blocking, we propose an adaptive HoLL blocking-reduction routing algorithm. In this
routing algorithm, VCs are organized as in a fully adaptive routing algorithm: there is a group
of adaptive VCs that can be used without restrictions and also there is an escape channel. We
assume that bubble flow control is used in the escape channel. However, this routing algorithm
confines each node destination identifier in a subset of the adaptive VCs instead of allowing the

use of any of them. Contrary to deterministic routing, the routing algorithm allows crossing the

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 169

2 Groups 4 Groups 8 Groups

Adaptive channels (4 VCs) (2 VCs) (1 VCs)

il

~

/1]
AN

l
| ||

S | L

Di
-

Escape channel

i

FIGURE 11.6: How XORADAP may assign VCs to groups with 8 VCs.

network dimensions following any order (and therefore allowing more flexibility) but restricting
the use of VCs depending on the destination node and thus confining the congested destinations
in some VCs and allowing the packets located in the rest of VCs to progress. As a consequence,
it provides some degree of flexibility but, at the same time, it limits the impact of the HoL-

blocking effect because only a subset of the VCs can be used for a given destination.

To assign destinations to VCs, any mechanism could be used. In this paper, taking into account
its good balancing behavior, we propose to use a variant of the XOR function which is used
in XORDET. For this reason, the resulting routing algorithm will be referred to as XORADAP
(XOR ADAPtive). The VC assignment works as follows. We split the adaptive VCs into several
groups. Each group can be composed of 1, 2 or more VCs. Given a packet, it will be forwarded
to one of those groups depending on the packet destination, and any of the VCs of that group

could be used.

As mentioned above, we use a function similar to the one used in XORDET, but, in this case, we
select a group of VCs for each destination instead of just a single VC to classify traffic. In partic-
ular, with g groups of VCs, [= log g XOR gates are required. Given a packet destined to node
{Pn-1,---»01,P0}, it will use the VC group given by the bits {VCG;_1,...,VCG1,VCGy},

computed as follows:
VCGo = po D po+1 D Po+at - - - D Pot(n-1y1
VOGL = p1 O pry1 O praar-- - S pryp(n_iy

VOGI1 = pio1 @ pr—141 © Prot2i - - - D Pro14(2 1)1

170 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

Each of the XOR gates will have 7 inputs, n being the number of bits of the destination identifier.
As in XORDET, the % inputs come from interleaved bits in the destination identifier. Notice that

the number of groups og VCs must be a power of two.

As stated above, each group is composed of several VCs. Several configurations can be used.
If there are V,, VCs available for adaptive routing, each group may contain from 1 to V, virtual
channels. Notice that, if we use only one group with all the virtual channels, we obtain the
generic fully adaptive algorithm. On the contrary, if each group has only one VC, we obtain
an adaptive version of XORDET that allows packets to cross dimensions following any order.
Figure 11.6 shows an example of the different configurations that can be set for 9 VCs, one
escape VC and 8 adaptive VCs. In this case, three configurations are possible for XORADAP:
2,4 and 8 groups (with 4, 2 and 1 VC per group, respectively). As it can be seen, the resulting
network is a set of different virtual networks, each one with several VCs. This means that
packets of the different virtual networks are not mixed together, effectively separating flows.

The escape channel is used by all the groups of virtual networks.

11.3.3 Implementation issues

As stated above, the different routing algorithms analyzed in this paper demand different imple-
mentation complexity in the internal switch of the nodes. A fully demultiplexed crossbar [63]
provides the highest flexibility, allowing connections among all input VCs to all the output VCs
(i.e. it can map any input VC onto any output VC). In fact, such a switch is required for adaptive
routing, where any input port can forward packets to any output port. However, in the case of
deterministic routing, some of the connections provided by the internal switch are unused due
to routing restrictions. For instance, if DOR deterministic routing is used, a packet can only use
those ports that connect to the same or higher dimensions than the one it arrived. Therefore,
the switches could be simplified if routing restrictions are considered, most important, without

affecting performance.

Let us consider the routing algorithms proposed in this paper. In XORDET, as the VC is selected
as a function of the destination node, packets do not change the VC while they travel across the
network, thus leading to a even simpler internal switch design than the traditional deterministic
routing with the same number of VCs. In XORDET, VC assignment can be done once at the
source node, and the rest of nodes that a packet crosses across the network merely forwards the

packet through the same VC from which the packet arrived to. Traditional deterministic routing

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 171

with multiple VCs would have to select the output VC to forward the packet. As a consequence,
as there is no need to move packets in a switch from one input VC to another output VC, the
internal switch of the nodes can be implemented as one independent switch per VC (i.e. several
virtual networks), instead of deploying a fully-connected crossbar, which is cheaper and faster,

as switch delay depends on the number of switch ports [58, 75, 76].

In the same way, XORADAP also simplifies switch implementation. In this case, packets may
change the VC used but they do not change the assigned group of VCs. The internal switch of
the nodes can be implemented as one independent switch per group of VCs. Therefore, we could
use a simpler internal switch design than fully adaptive routing. Notice that for a configuration

of one group of all of the adaptive VCs, the complexity will be the same as fully adaptive routing.

We will analyze in more depth switch complexity for different routing algorithms in Section

11.4.2.

Concerning routing mechanics, deterministic routing only requires applying the routing function
[3] while adaptive routing requires the use of both the routing and the selection function [3]. In
any case, both the output port and the VC to be used will be returned by the routing algorithm.
For both XORDET and XORADAP, a few XOR logic gates are required at the source nodes
to compute the corresponding VC or group of VCs, respectively. In XORADAP, a selection
function is also required to select the VC inside the assigned group. However, the number of
routing choices is smaller than with fully adaptive routing. As routing delay depends on the
number of routing choices [58, 75, 76], XORADAP may lead to a faster implementation than

fully adaptive routing.

11.4 Experimental Evaluation

In this section, we evaluate by simulation the HoL-blocking reduction routing algorithms de-
scribed in this paper, XORADAP and XORDET comparing them with previously proposed
ones. We used a simulation environment developed at our research group. A prior version of
this tool was used to provide evaluation results in [3]. First, we will compare XORDET with
other HoL-blocking reduction deterministic algorithms like IODET, DBBM, BBQ, VOQnet and
VOQsw. We will also consider a fully adaptive routing algorithm and a DOR deterministic rout-
ing which allows packets to use all the VCs of the selected dimension, that is a deterministic

routing algorithm without destination node classification. Notice that this latter algorithm is

172 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

actually partially adaptive (as it allows several routing options) and does not guarantee in-order
delivery of packets. For this reason, we will refer to it as Out of Order DETerministic routing
(OODET). To guarantee deadlock-freedom in tori, the bubble flow control mechanism was used

(either in all the VCs for deterministic routing or in the escape VC for fully adaptive routing).

After the evaluation of XORDET, we will evaluate XORADAP to analyze how it behaves under
different traffic patterns and we will show how a hybrid approach is able to combine the best of

two worlds and obtain good performance results for any traffic pattern.

Regarding the number of VCs per physical channel, it must be a power of two in XORDET. In
XORADAP, the number of groups of VCs must be a power of two and also an escape channel
is required. To perform a fair comparison, for traditional fully adaptive routing, we will use the
same number of VCs as the one used in XORADAP. Each node has a switch based on a full
crossbar with 4-packet queues both at their input and output ports. Packet length is 16 flits. We
assume a pipelined router with a latency of 4 clock cycles, and switch and link bandwidth is
assumed to be one flit per clock cycle. Source nodes implement VOQnet in the injection. This
means that messages with different destinations do not harm the injection of each other. We
have modeled different network sizes with different number of dimensions: 64 and 256 nodes

with 2 dimensions and 512 nodes with 3 dimensions.

Regarding network traffic, we have considered several widely-used synthetic traffic patterns
[3]: uniform random, matrix transpose, and bit-reversal. In addition, as we are interested in
analyzing the impact of the HoL-blocking effect, we also evaluated a hot-spot traffic pattern,

whose parameters will be described in detail later.

11.4.1 Performance analysis

11.4.1.1 XORDET evaluation

First, we will analyze the behavior of XORDET versus the other HoL-blocking reduction de-
terministic routing algorithms. Figure 11.7 shows the obtained results for a 2D torus with 256
nodes and uniform random traffic pattern. With only a few number of VCs (4 or 8), any HoL-
blocking algorithm is able to reach nearly the same performance as VOQnet, which is the upper
bound. The exception is DBBM that, due to its poor destination classification in the last di-

mension (see Section 11.2.2), it obtains a worse performance. Notice the importance of the

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 173
0.4 2 4000 ; ;
. 2 —— DBBM 4VC ol
Q — e
g 035 r > 3500 < BBQ4VC A 4
g 2 —— I0DET 4VC]
S 03f £ 3000 | —= OODET4VC -
2 = Adaptive routing 4VC
> 025 | 2 2500 | —=— XORDET 4VC
= 3 —e— VOQnet 256VC
5 02zp DBBM 4VC £ 2000 F = VOQsw5VC 1
& BBQ 4VC £
g 0I5y IODET 4VC 5 1500 1
9 OODET 4VC 3
2, 0.1 Adaptive routing 4VC s 1000 1
] XORDET 4VC <
2 005 ¢ VOQnet 256VC o 000 1
VOQsw 5VC > _
0 L L ‘Q W L < 0 T I L L
0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(@) (b)
0.4 2 4000 ; ;
— ks ——— DBBM 8VC
2 035} > 3500 - — BBQB8VC
g 2 —— IODET 8VC
5 03F 2 3000 | —=— OODETS8VC
58 = Adaptive routing 8VC
> 025 | & 2500 | —=— XORDET 8VC
= 3 —e— VOQnet 256VC
5 02 DBBM 8VC = 2000 —=— VOQsw 5VC I
sl BBQ 8VC £
g 0I5y IODET 8VC = 1500 |
- OODET 8VC 3
2, 0.1 r Adaptive routing 8VC o 1000 1
8 XORDET 8VC <
2 005 ¢ VOQnet 256VC o 000 1
0 L L VQQSW SVC\ 2 0 L \‘ L \ L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(©) (d)

FIGURE 11.7: Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) 4 VCs and (c,d) 8 VCs.

dimension ordering followed by the routing algorithm. Unexpectedly, BBQ, which also con-
siders a subset of the node destination identifier bits to classify packets, works quite well. The
difference between DBBM and BBQ is that the former consider the least significant bits while
the latter considers the most significant ones. As XORDET considers all the node destination
bits to classify packets, it should not be affected by changes in the dimension ordering followed
by the routing algorithm. On the other hand, fully adaptive routing suffers the typical perfor-
mance rollback after network saturation [85]. Figure 11.8 shows the results for a 3D torus with

512 nodes and uniform random traffic. As it can be seen, results are qualitatively the same.

In Figure 11.7, the traditional DOR routing following XY order was used. However, using
other deterministic routing algorithms could be interesting. For instance, in [65], X+Y+Z+X-Y-
Z- direction-order routing was proposed instead of dimension order routing for fault tolerance

purposes. Direction order routing allows packets to be routed in both directions of a dimension

174 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

2000 ‘ — — —
—+— DBBM 4VC | [N
—— BBQ4VC w [
—— IODET 4VC | [1]
1500 F —=— OODET 4VC |
Adaptive routing 4YC
—— XORDET 4VC |
—+— VOQnet 512VC |
1000 - —=— VOQsw 7VC |

DBBM 4VC]
BBQ4VC ———
IODET 4VC —*—]
OODET 4VC —=—
Adaptive routing 4VC]
XORDET 4VC —~—
VOQnet 512VC —=—

500

Acepted traffic (flits/cycle/node)
<)
~

Avg. Msg. Lat. from Gen. Time (cycles)

0 L L L VOQSW 7YC \A 0 L L L L L L L
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)

FIGURE 11.8: Average packet latency and accepted traffic vs offered load. 512-node 3D-torus.
Uniform random traffic pattern. 4VCs.

and, therefore, offers greater flexibility to avoid faults. Furthermore, direction order routing
allows routing through non-minimal paths. For 2D networks, the X+Y+X-Y- direction order
routing counterpart would be used. Packets are routed following an ascending dimension order,
but taking first the positive dimension directions, and then the negative ones. Figure 11.9 shows
evaluation results for the different HOL-blocking reduction mechanisms but using X+Y+X-Y-
with minimal paths as the baseline deterministic routing. We can see how the fact of traversing
dimensions in a different order changes the behavior of some algorithms like BBQ, which drives
down its performance significantly. This effect is similar to the one produced by DBBM before
and is due to the fact of using a subset of the destination node identifier bits to select the VC
to use. The dimension ordering followed by the routing algorithm may generate an unfair use
of the VCs, overloading some of them while others are barely used. However, XORDET or
IODET, which consider all the destination node identifier bits, are less affected by the change
in the routing algorithm and obtain roughly the same performance as the one obtained with XY

routing.

After analyzing the behavior of the different algorithms under uniform random traffic pattern,
next we analyze them under other traffic patterns. First, we will analyze a scenario where the
HoL-blocking reduction ability of the routing algorithm may have a great impact. Assume
that we have uniform random traffic pattern in the network, but we also introduce a hot-spot
node: 25% of network nodes send packets only to one node (the hot-spot node) during some
period of time. Traffic injection rate to the hot-spot is computed in such a way that it does

not exceed the node ejection bandwidth (1 flit/cycle). The hot-spot traffic starts at clock cycle

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 175

0.4 e g 4000 OBBM Ve ‘ r
3035 Z 3500 - < BBQ4VC
] ~ —— JODET 4VC
5 037 2 3000 - = OODET4VC
2 = XORDET 4VC
2 0.25 + = 2500 F —=— VOQnet 256VC
2 & —— VOQsw 5VC
=
£ 02t = 2000 f
2 DBBM 4VC £
ks 0.15 BBQ4VC | = 1500 |
= IODET 4VC —+— | §
}15: 0.1 [OODET4VC —=— 7 . 1000 r
3 XORDET 4VC <
< 005 ¢ VOQnet 256VC = | . 500 ©
0 L L VQQSW SVC\ 2 0 L s T L - L L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)
0.4 ‘ = 4000 ; ;
v % —+— DBBM4VC
g 0.35 > 3500 BBQ 4VC
2 = —+— IODET 4VC
5 03t 2 3000] —=— OODET4VC
g = XORDET 4VC
2 0.25 + = 2500 F —=— VOQnet 256VC
2 3 —— VOQsw 5VC
S 02} £ 2000 -
2 DBBM 4VC £
= 0.15 - BBQ4VC 1| = 1500 f
b IODET 4VC —— | 5
% 0.1 [OODET 4VC —=— 1 o 1000
3 XORDET 4VC <
< 0057 VOQnet 256VC —~— 1 T, 500 f
O L L VQQSW SVC\ 2 0 L L L L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(©) (d)

FIGURE 11.9: Average packet latency and accepted traffic vs offered load. 256-node 2D-torus.
Uniform random traffic pattern. (a,b) XY routing and (c,d) X+Y+X-Y- routing. 4 VCs.

100,000 and is active until a number of packets (10,000 in our experiment) have been delivered.
This corresponds to clock cycle 260,000. In addition, the remaining nodes (75%) continue
generating traffic following a uniform random traffic pattern, that is, sending packets to all the
destinations except the hot-spot node. Therefore, during this period of time, the network has two
traffic flows: 75% of nodes generate packets with an uniform random traffic pattern and 25%
generate packets destined to the hot-spot node. In such a situation, a HoL-blocking reduction
routing algorithm should be able to isolate the traffic destined to the hot-spot (i.e. hot flows),
thus avoiding interfering the other flows (i.e. cold flows). On the other hand, a fully adaptive
algorithm mixes the different flows, spreading the possible congestion to the whole network. To
perform this experiment, we have implemented large injection queues at source nodes so that

they always can queue a packet if the packet cannot be injected into the network.

This scenario is evaluated in Figure 11.10 for a 256-node 2D torus. We can see a completely

176 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

— Adaptive routing
0,325| ~BBQ JJF\,
~ DBBM " \
- |ODET [
— OODET [
XORDET [
VOQnet |
~ VOQsw M g

0,300

ol

Accepted traffic (flits/cycle/node)

(= o =] (= o
= = N N N
ul ~ o N ul
=) v S v o

I
I
r

|

|

0,125

bl
»W"\’JJ‘
|

100.000 200.000 300.000 400.000 500.000 600.000 700.000

Time (cycles)

(a)

37.500
7 35.000
[}

T 32.500
>

£30.000
£ 27.500
i 25.000
<

[}

& 22.500
£ 20.000
217500
215.000
§ 12.500
8

5 10.000
& 7.500
5.000

=
2
I 2.500

— Adaptive routirﬂg
BQ

—IODET
~ OODET

i

mi
MM;‘ \M‘;\

\»\4

»«

- DBBM “
I

XORDET
VOQnet
— VOQsw

Lo

(
pd

Lo

o

LY M r /“\“J\
LA
I L ‘U'\‘

»M 1L ‘\w
'
Wv",

%

R

0 \ " _
100.000 200.000 300.000 400.000 500.000 600.000 700.000

Time (cycles)

(b)

FIGURE 11.10: Results for hot-spot. 256-node 2D-torus and 8 VCs.

0.35

0.3

=

Qo

9 -

<2 -

£ 0.25

=

Q

= I l Tt

£

3 0.2

o,

153

S L 1

<

0.15

0.1 I I I I I I I I
o0 o b= = = | 151 S
g jaa) [8a] 53] 17
: 5= &8 5 5 g g ¢
= - = 3 S > >
e ~
S
<

Configurations

FIGURE 11.11: How the hot-spot traffic affects the different routing algorithms.

different behavior of the analyzed routing algorithms. On the one hand, fully adaptive routing,

OODET and VOQsw rapidly spread congestion as packets destined to the hot-spot node inter-

feres other packets, leading to a high reduction in the delivered traffic rate (Figure 11.10.(a))

and strongly increasing latency (Figure 11.10.(b)). Only when the hot-spot traffic disappears

and after a high number of cycles, the network recovers. Notice that, after the hot-spot traffic

is removed, accepted traffic increases for some cycles, due to the high number of messages that

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 177

have been queued at the injection nodes.

On the other hand, the HoL-blocking reduction deterministic routing algorithms show a much
better behavior, close to the one of VOQnet (which requires 256 VCs) without impacting the net-
work throughput and latency in spite of the hot-spot traffic. The exception is DBBM, which re-
quires a higher number of cycles to recover from the hot-spot traffic. This is because the injected
uniform random traffic pattern is on the edge of saturation in DBBM. For a better understanding
of this behavior, Figure 11.11, shows the maximum, minimum and average values of accepted
traffic in Figure 11.10.(a). The average value represents the accepted traffic corresponding to
uniform random traffic pattern, when it is not affected by the hot-spot. The minimum value is
reached when the hot-spot is active. And, finally, the maximum value is the one reached after the
end of the hot-spot traffic, where queued messages at the injection nodes begin to be received.
The closer the three plotted values, the better the behavior of the routing algorithm as it is less
affected by the hot-spot traffic. We can see how fully adaptive routing, OODET and VOQsw
are strongly affected, obtaining a minimum value more distant to the average value than the

remaining routing algorithms.

To summarize, XORDET and IODET were able to reach (with only a few VCs) the same perfor-
mance as fully adaptive algorithm for uniform random traffic pattern (see Figure 11.7). Contrary
to DBBM and BBQ, they are less affected by changes in the routing algorithm (i.e. the order in
which dimensions are crossed, see Figure 11.9) and they are able to efficiently isolate the hot-
spot traffic (see Figure 11.10). The advantage of XORDET versus IODET is that it is simpler to
implement at the internal switch. Remember that XORDET uses virtual networks, but IODET

performs VCs changes in the network, which requires additional internal switch connections.

11.4.1.2 XORADAP evaluation

We will first analyze XORADAP with uniform random traffic pattern. Figure 11.12 shows the
results (8 VCs for fully adaptive routing and 1 VC for the escape path). For XORADAP, we
selected three different configurations with 9 VCs: two groups with 4 VCs each, 4 groups with
2 VCs and 8 groups with only one VC per group. Remember that more groups of VCs leads to a
better packet classification but a lower routing flexibility. Regarding fully adaptive routing, we
used the same number of VCs as XORADAP for the sake of fairness. As the number of VCs in
XORDET must be a power of two, we evaluated it by using both 8 and 16 VCs.

178 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

0.4 > 500 e
2 —+— Adaptive routing 9 VCs ¢
3 035 s ——— XORADAP9 VCs8Gs |
g S 400 | — XORADAP9VCs4 Gs]
< 03 - 2 ~—— XORADAP 9 VCs 2 Gs
E = XORDET 8 VCs
g o2t £ 300 —* XORDETI16VCs]
=2 O
% 0.2 £
£ £]
T 015 Adaptive routing 9 VCs f 200
= XORADAP 9 VCs 8 Gs —— 3
2 0.1 1 XORADAP 9 VCs 4 Gs —— % 100 |
5 XORADAP9 VCs2 Gs — & <
< 005F XORDET 8 VCs 1 5
XORDET 16 VCs —=— >
0 L L L L I I L L L < 0 L L L L L L L L L
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 045 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)

FIGURE 11.12: 256-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and
(b) average packet latency vs. offered traffic.

2 500 T T i T ‘ ;
0.8 k) —— Adaptive routing 5 VCs
% ——— XORADAP 5 VCs 4 Gs

3 o7l e T | —+— XORADAP 5 VCs 2 Gs]
E .l g 0 . XORDET4VCs
< 0.6 -)m_/‘ 1 = XORDET 8 VCs
o .
> e =

L J 300 - 1
E 0.5 y A 3
€ 047 I { E
5 o 2
2 g S 200 | :
S 03 r o 7 a'
5 Adaptive routing 5 VCs —+— ~
2 02 j‘ﬁ XORADAPS5VCs4Gs —— | 5 100 |]
5 o XORADAP 5 VCs2 Gs — s e
< 01p XORDET4VCs —=— | s A

| XORDET 8 VCs >

0 L L L L 1 I | L 1 < O L L L L L 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)

FIGURE 11.13: 64-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and
(b) average packet latency vs. offered traffic.

We can see that all the routing algorithms evaluated obtain roughly the same throughput. Notice,
though, that the fully adaptive algorithms suffer a performance degradation after its saturation
point [85]. Regarding latency, (Figure 11.12.(b)), for medium to high traffic rates (i.e. 0.3
flits/cycle/node), a higher routing flexibility (i.e., fully adaptive routing or XORADAP with
less number of groups of VCs) leads to higher latency values due to the HoL-blocking effect
generated by interfering traffic flows. We can see how the XORADAP routing algorithm with
more groups of VCs, less adaptive behavior, obtains a slightly lower latency. Both configurations

of XORDET obtain the lowest latency values, with almost no differences between them.

Let us analyze networks with different geometry. Figure 11.13 shows some results for a smaller

network with a lower number of nodes per dimension (64-node 2D torus). Figure 11.14 shows

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 179

Acepted traffic (flits/cycle/node)

Acepted traffic (flits/cycle/node)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

) 4 Adaptive routing 5 VCs
a XORADAP 5 VCs 4 Gs
XORADAP 5 VCs 2 Gs

XORDET 4 VCs
XORDET 8 VCs,

.
V.
e
R

0

0 01 02 03 04 05 06 0.7 08 09

Offered traffic (flits/cycle/node)

(a)

Avg. Msg. Lat. from Gen. Time (cycles)

400
350
300 r
250
200
150
100
50

‘Adap‘tive foutiné 5VCs

XORDET 4 VCs
XORDET 8 VCs

XORADAP 5 VCs 4 Gs
XORADAP 5 VCs 2 Gs

02 03 04 05 06

0.7 0.8 09

Offered traffic (flits/cycle/node)

(b)

FIGURE 11.14: 512-node 3D-torus. Uniform random traffic pattern. (a) Accepted traffic and
(b) average packet latency vs. offered traffic.

0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Adaptive routing 9 VCs
XORADAP 9 VCs 8 Gs
XORADAP 9 VCs 4 Gs
XORADAP 9 VCs 2 Gs

XORDET 8 VCs
‘ ‘ XORDET 16 VCs

0.05 0.1 0.15 0.2
Offered traffic (flits/cycle/node)

(a)

0.25

0.3

Avg. Msg. Lat. from Gen. Time (cycles)

1000

800 |

600

400

200

XORAD
XORADA
XORAD

P9 VCs 8 G

XORDET 8 VCs
XORDET 16 VCs

Adaptive outiﬂg 9 VCs

P9 VCs 4 Gs
P9 VCs2Gs

S

0.05 0.1 0.15

0.2 0.25

Offered traffic (flits/cycle/node)

(b)

FIGURE 11.15: 256-node 2D-torus. Matrix transpose traffic. (a) Accepted traffic and (b)
average packet latency vs. offered traffic.

0.3

results for a larger network with a higher number of dimensions (512-node 3D torus). In addi-

tion, we also tested a different number of virtual channels per physical channel. In particular, 5

VCs (4 adaptive channels plus 1 escape channel) were used for XORADAP and fully adaptive

routing. In this case, for XORADAP, we have two groups with 2 VCs each and 4 groups with

only one VC per group. 4 VCs and 8 VCs were used in XORDET. As it can be seen, in both

cases, the network shows the same behavior we saw in the 256-node 2D torus. As expected,

network throughput is higher in these configurations, since we have 8 nodes per dimension in-

stead of 16 and, thus, a better bisection bandwidth. However, the results are qualitatively the

same obtained for the 256-node network: more routing flexibility (i.e. fully adaptive routing or

XORADAP with a low number of groups of VCs) leads to slightly higher latency.

180 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

1000

0.3

—— Adaptive routing 9 VCs

——— XORADAP 9 VCs 8 Gs

800 - —* XORADAP9VCs4Gs 7

—5— XORADAP9 VCs2Gs
XORDET 8 VCs j
XORDET 16 VCs

0.25

02 r 600 |

0.15

400

0.1 r Adaptive routing 9 VCs —— 1
XORADAP9 VCs 8 Gs
XORADAP9 VCs 4 Gs —*—
XORADAP9 VCs 2 Gs —&—]

XORDET 8 VCs

200 ¢

Acepted traffic (flits/cycle/node)

Avg. Msg. Lat. from Gen. Time (cycles)

))) ‘XORD‘ET 16 YCS — L | | . | | .
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)

(a) (b)

0

FIGURE 11.16: 256-node 2D-torus. Bit-reversal traffic. (a) Accepted traffic and (b) average
packet latency vs. offered traffic.

As we mentioned in Section 11.3.2, there are some adversarial traffic patterns that significantly
impact the performance of the network with deterministic routing algorithms. Nevertheless,
XORADAP obtains good performance results not only with uniform random traffic pattern, but

it is also able to obtain good results with those adversarial traffic patterns.

To illustrate this behavior, we have conducted some experiments with the matrix-transpose and
bit-reversal traffic patterns. In Figure 11.15, we compare the behavior of XORDET, fully adap-
tive routing and the different configurations of XORADAP for the matrix transpose traffic pat-
tern in a 256-node 2D torus. 9 VCs (8 adaptive channels and 1 escape channel) were used in
fully adaptive and XORADAP routing algorithms, and 8 VCs and 16 VCs in XORDET. In XO-
RADAP, the three aforementioned configurations were tested: two groups with 4 VCs each, 4

groups with 2VCs and 8 groups with only one per group.

As expected, XORDET obtains a significantly lower throughput than any adaptive algorithm,
in spite of using more VCs. In particular, fully adaptive routing more than doubles XORDET
performance. This is the weakest point of deterministic routing. It is not able to efficiently cope
with adversarial traffic patterns. The poor behavior of XORDET, and, in general, of any deter-
ministic routing, is due to the unbalanced distribution of traffic for this pattern, which leads to
overutilization of some links while other are unused [86]. Concerning the hybrid routing algo-
rithm proposed in this paper, XORADAP, it obtains roughly the same results as fully adaptive

routing, since it takes advantage of its flexibility making a better use of the links.

We can see a similar behavior for the bit-reversal traffic pattern in Figure 11.16. Again, there

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 181

= Adaptive routing 9 VCs
0,325 +XORADAP 9 VCs 8 Gs
+XORADAP 9 VCs 4 Gs

3 0,300{| +XORADAP 9 VCs 2 Gs
H ~XORDET 16 VCs
£ XORDET 8 VCs
2 0.275
]
>
¥0,250
)
=
=0,225
v
E
© 0,200
H
T
L0175
Q
S
0,150

0,125

100.000 150.000 200

.000 250.000

Time (cycles)

FIGURE 11.17: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Accepted

(a)

300.000

350.000

17.000

16.000
@ 15.000
_514.000
<13.000
£ 12.000
" 11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000

Avg Msg Latency from Gen

0
100.000

= Adaptive routing 9 VCs
- XORADAP 9 VCs 8 Gs
+ XORADAP 9 VCs 4 Gs
+~XORADAP 9 VCs 2 Gs
~XORDET 16 VCs
XORDET 8 VCs

300.000

200.000 250.000
Time (cycles)

(b)

150.000

traffic (a) and average packet latency (b) vs. simulation time.

140.000

E 130.000
%120 000
=110.000
u§, 100.000
90.000
80.000
70.000
60.000
50.000
40.000
30.000
20.000
10.000

~XORDET 16 VCs
XORDET 8 VCs

Avg Msg Latency from Gen T

150.000

0
100.000

FIGURE 11.18: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Average
packet latency (a) and network latency (b) for packets destined to the hot-spot vs. simulation

200.000

= Adaptive routing 9 VCs
<+ XORADAP 9 VCs 8 Gs
+XORADAP 9 VCs 4 Gs
+~XORADAP 9 VCs 2 Gs

250.000
Time (cycles)

(a)

300.000

350.00C

350.000

140.000
= Adaptive routing 9 VCs
130.000| «XORADAP 9 VCs 8 Gs
~XORADAP 9 VCs 4 Gs

120.0004 _ ¥ ORADAP 9 VCs 2 Gs]

110.000{ =XORDET 16 VCs |
< XORDET 8 VCs "{
8 100.000 !
5 90.000 I
S w0 i
> 80.000
H !
£ 70.000] Bt I
= 60.000 4
> Sl
& 50.000 b
2 40.000 !
<

30.000

20.000

10.000

Py
100.000 150.000 200.000 250.000 300.000

time.

Time (cycles)

(b)

350.000

is a bottleneck when using XORDET deterministic routing. In particular, fully adaptive rout-

ing achieves almost 3X throughput than deterministic routing. Any of the configurations of

XORADAP is able to reach the same performance obtained with fully adaptive routing.

Considering the results presented up to now, we can confirm that XORADAP achieves its first

design goals. It is as good as fully adaptive routing for adversarial traffic patterns, thus improv-

ing XORDET and deterministic routing in general.

Next, we will analyze XORADAP behavior in the hot-spot scenario, where the HoL-blocking

reduction is very important. Figure 11.17 shows the results for the same experiment performed

in Section 11.4.1.1. Remember that the hot-spot traffic starts at clock cycle 100,000 and it is

182 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

‘ ‘ ‘ 100 —
—+— Adaptive routing 9 VCs ﬁ
45 5 e XORADAP9 VCs 8 Gs#/ | I r
40 | —*— XORADAPY VCs4 Gy 5 90 1
—=— XORADAPY VCs2 Gs b 4
L 35r XORDET 8 VCs ‘ & g0l };
] | —— XORDET 16 VCs ,f 1 2
g 30 1 E Fi
z 4 z 7
= 25 2 70t 7
iE 1 & 4
20+ 1 & Adati)]
° 4 60 I — aptive routing 9 ¥Cs
15 | I S ~—— XORADAP9 VCs8'Gs |
| « B % | —%— XORADAP 9 VCs 4 Gs
10 %, 2 §\ 50 = XORADAPQVCSQG%
5L % i XORDET 8 VCs
- - Y 4o L_—*— XORDET 6 VCs Md
100000 150000 200000 250000 300000 350000 100000 150000 200000 250000 300000 350000
Time (cycles) Time (cycles)
(a) (b)

FIGURE 11.19: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Completely
full (a) and empty (b) queues in the network vs. simulation time.

active until clock cycle 260,000. As expected, XORADAP helps to achieve a better behavior
than fully adaptive routing. In particular, XORADAP configurations with more groups of VCs
can better isolate the hot-spot traffic flows, obtaining a more stable value of accepted traffic
(in fact very close to XORDET in the best case -XORADAP with 8 groups of VCs-) and a
smaller average packet latency. On the other hand, if we use a XORADAP configuration with a
few number of groups of VCs, two for example, we obtain a result more close to fully adaptive
routing, but with smaller impact on the variability of delivered traffic and reducing packet latency

with respect to fully adaptive routing.

Figure 11.18 confirms this behaviour. It shows the average message latency and network latency
for packets destined to the hot-spot. As we can see in Figure 11.18-(a), latency strongly peaks at
cycle 260,000 (i.e. when the hot-spot traffic becomes inactive) for XORDET and XORADAP.
However, the network latency (i.e. without considering the time spent at source queues) plotted
in Figure 11.18-(b) does not show the peak. As a consequence, this increase is due to packets that
were waiting for long at the injection queues. As the routing algorithm restricted the resources
(i.e. the VCs) they can use, packets destined to the hot-spot can not enter the network and must
wait at the injection queues. Once the network is able to accept more traffic, these packets
can be injected into the network, but the high time they waited at the source injection queues
leads to a very high latency. Again, XORADAP with a high number of groups of VCs shows a
behaviour close to XORDET, while XORADAP with a low number of groups of VCs is close
to fully adaptive routing. Therefore, despite for uniform random and adversarial traffic patterns
the number of XORADAP groups of VCs did not affect the performance results, for hot-spot

traffic a configuration with a high number of groups of VCs seems the best design option.

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 183

Another interesting evidence of the behaviour of the evaluated routing algorithms is shown in
Figure 11.19, which shows the percentage of completely full (Figure 11.19-(a)) or empty (Figure
11.19-(b)) VC queues in a 256-node 2D network. In order to perform a fair comparison, the
shown percentages are relative to the number of VCs of the routing algorithm. As it can be
seen, fully adaptive routing tends to fill up queues along the time the hot-spot is active, which
is a symptom of spreading congestion. On the contrary, XORDET keeps most queues empty
thanks to the traffic classification it performs. As expected, XORADAP shows a behavior that
is half-way between fully adaptive and XORDET routing, depending on the number of groups
of VCs.

The analysis shown before demonstrates that XORADAP also achieves its second design goal. It
can be as good as a HoL.-blocking reduction deterministic routing algorithm to classify and iso-
late traffic, outperforming fully adaptive routing under hot-spot traffic. To sum up, XORADAP
routing algorithm combines the flexibility of adaptive routing with HoL-blocking reduction,
being able to efficiently cope with varying networks loads, including uniform random traffic,
adversarial or hot-spot traffic. Indeed, for a given number of VCs, several configurations are

possible.

11.4.2 Switch Cost Analysis

This section estimates the cost of the different routing algorithms analyzed in this paper. To do
so, we will take into account the number of required connections at the internal switch for each

configuration.

Several internal switch configurations can be used with virtual channels [63]. We will assume a
fully demultiplexed crossbar to implement the internal switch of routers. Although multiplexed
crossbar configurations lead to less hardware, it requires more complex arbitration and also

internal speedup.

However, although a full crossbar (i.e. with a number of ports equal to the product of the number
of physical channels per the number of VCs) is able to cope with any of the analyzed routing
algorithms, some connections are not actually required. By removing these connections, switch
could be simpler. For instance, in all the routing algorithms, packets are never forwarded to the
same port it arrived. Indeed, with DOR, packets may only be forwarded to dimensions higher

than the one they entered the router. As a consequence, if the crossbar is implemented by, for

184 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

‘ Routing H Switching Elements ‘
Fully adaptive 203 0 (2nv — 2n+2i —v + 1) 4+ 2un
OODET 203" (20 —1)+v+1)+2un
IODET 203" (2u(i—1)+1+4+1)+2vn
XORADAP [[2377, (200 —2n +2i —v + 1) +2(v — 1) 31, (P22 — 22 +2i — 2+ 1) 4 2un
XORDET 20y (206 —1)+1+1)+2un

TABLE 11.4: Number of switching elements for each routing algorithm.

instance, using a multiplexer at each output port, the ones corresponding to higher dimensions
will have more inputs (and hence, more switching elements) than the ones located in the lower
dimensions’ ports. On the other hand, with fully adaptive routing, a packet entering through a
port may be forwarded to any other output port. When several VCs are used and/or the number
of network dimensions is high, the number of internal switch ports grows considerably. In

addition, the injection and ejection ports must be also taken into account in any case.

To quantify switch complexity, we will measure the number of required switching elements per
switch. We assume that an ¢—input multiplexer needs ¢ switching elements. Table 11.4 shows
the expressions of the number of switching elements for each analyzed routing algorithm taking
into account its routing restrictions, n being the number of network dimensions, v the number
of VCs per physical channel, and g the number of groups of VCs in the case of XORADAP
routing algorithm. As an example, in OODET, output ports of last dimension can be requested
by all input ports of lower dimensions (for each VC and for each direction) and by some ports
of the same dimension (for each VC from the another direction) and, finally, by the injection
port. So, we have 2v(n — 1) + v + 1 possible requests per virtual channel for each direction of
the last dimension and, in general, 2v(¢ — 1) + v + 1 per virtual channel for each direction of
the 7 dimension. Moreover, we have to add the necessary connections to the ejection port from
each virtual channel per direction per dimension, 2vn. The total number of required switching

elements is then given by:

n

20> (20(i —1) +v+1)+ 2vn
=1

Table 11.5 shows the number of required switching elements for the routing algorithms analyzed
in this paper for different network configurations (number of network dimensions and number of
VCs). Notice that we count an extra virtual channel in adaptive algorithms because XORADAP

needs a number of virtual channels that needs to be power of to plus the escape channel. As

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 185

#Dim | #VC Fully | OODET | IODET | XORADAP | XORADAP | XORADAP | XORDET
adaptive 2Gs 4 Gs 8 Gs

2 2(+1) 120 48 40 94 - - 32

3 2(+1) 270 96 84 210 - - 60

4 2(+1) 480 160 144 368 - - 96

6 2(+1) 1080 336 312 816 - - 192
2 4(+1) 320 160 112 224 176 - 64

3 4(+1) 750 336 264 510 390 - 120
4 4(+1) 1360 576 480 912 688 - 192
6 4(+1) 3120 1248 1104 2064 1536 - 384
2 8(+1) 1008 576 352 624 432 336 128
3 8(+1) 2430 1248 912 1470 990 750 240
4 8(+1) 4464 2176 1728 2672 1776 1328 384
6 8(+1) 10368 4800 4128 6144 4032 2976 768
2 16(+1) 3536 2176 1216 2000 1232 848 256
3 16(+1) 8870 4800 3360 4830 2910 1950 480
4 16(+1) 16048 8448 6528 8880 5296 3504 768
6 16(+1) || 37536 18816 15936 20640 12192 7968 1536

TABLE 11.5: Comparison of the number of switching elements

expected, XORDET requires a crossbar with the fewest number of switching elements. This
is due to two facts. First, messages traversing a given dimension cannot return to the previous
dimensions, since DOR routing is used. Therefore, we could dispose those switching elements
that connect input ports with output ports of lower dimensions. Second, the VC used by a given
packet does not change along the path in the network, like in virtual networks. Hence, there
is no need to have a crossbar connection (and the corresponding switching elements) to allow

packets to perform VC transitioning in the same dimension and in the dimension changes.

Both IODET and OODET with DOR routing take also advantage of the first mentioned issue,
that is, the connections to previous dimensions can be removed internally at the switch. But
regarding the use of virtual networks, neither IODET nor OODET cannot use them. This is
because IODET changes the VC when the dimension changes and OODET allows using any of
the VCs in the dimension which is being currently crossed. However, for IODET, connections
among input and output VCs of the same dimension are not required, but for OODET they are
required. Regarding connections to the output VCs of higher dimensions, they are required by
both routing algorithms. The worst case is the fully adaptive routing, as it requires a crossbar
that enables almost all combinations of physical and VCs (the only exception are connections
related to escape paths, which must be traversed in order). On the other hand, XORADAP also
needs all combinations to different physical channels since dimensions are used in any order,
but connecting only VCs of the same group. There is no need to have a crossbar connection to

allow packets to perform VC transitions among different groups of VCs. The more the number

186 Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks

of groups of VCs, the less the number of VCs per group and the simpler the crossbar. The
connections of escape paths are also required. XORADAP requires a switch complexity that is
always lower than fully adaptive routing and, depending on the number of groups of VCs, it can

be strongly reduced.

In all cases, as the number of VCs is increased, the number of required switching elements
further increases, specially for fully adaptive routing with a high number of dimensions. The
deterministic routing design, XORDET, obtains the lowest number of required switching ele-
ments. Therefore, XORDET is a good option because of its low cost. But if what is required
is an algorithm which provides flexibility in addition to HoL-blocking reduction, XORADAP is
a very good choice because it strongly reduces these requirements compared to fully adaptive

routing algorithm, specially for the configurations with a high number of groups of VCs.

11.5 Conclusions

This paper presents a XOR-based routing mechanism which reduces the HoL-Blocking effect
taking advantage of the available virtual channels. Packets are classified in the VCs by perform-
ing a XOR bitwise function of their destination node identifiers. This mechanism is used to
design both deterministic and adaptive routing algorithms (XORDET and XORADAP, respec-
tively). XORDET deterministic routing obtains performance results close to traditional fully
adaptive routing under uniform random traffic pattern. Most important, with hot-spot traffic
situations, it is able to isolate the packets destined to the hot-spot node, reducing the interfer-
ence to the rest of traffic. Furthermore, XORDET keeps the good properties of deterministic
routing such as in-order delivery of packets, and simpler switch implementation. However,
there are some adversarial traffic patterns which reduce accepted traffic rate with deterministic
routing, and XORDET is not an exception. XORADAP routing algorithm tries to combine the
best features of both adaptive routing (flexibility under some adversarial traffic patterns) and
deterministic routing algorithms specially designed to reduce the HoL-blocking effect (desti-
nation isolation). The evaluation results show that (i) XORADAP obtains similar performance
results to either deterministic or fully adaptive routing with uniform random traffic pattern; (ii)
it achieves a similar behavior to traditional fully adaptive routing for those traffic patterns where
routing flexibility is required to avoid bottlenecks balancing link utilization; and (iii) it is also
able to cope with hot-spot traffic situations, being able to isolate the packets destined to the hot-

spot, reducing the interference to the rest of traffic, like HoL-blocking reduction deterministic

Chapter 11. XOR-based HoL-blocking reduction Routing Mechanisms for Direct Networks 187

routing does. Indeed, several configurations of the VCs are possible in XORADAP to enhance
either its routing flexibility (i.e. adaptive routing behavior flavour) or its destination isolation

(i.e. HoL-blocking reduction deterministic routing behavior flavour).

Chapter 12

General Discussion of Results

In this thesis, we have made several proposals to increase the efficiency of interconnection net-
works, specially important for current large systems. First, the KNS topology family is pro-
posed. This family is based on a hybrid topology where we combine the benefits of both direct
and indirect topologies. We also propose some routing algorithms for these new topologies, in-
cluding a fault-tolerant routing algorithm to deal with the increasing problem of fault-tolerance

in current massively parallel systems.

Additionally, this thesis also deals with designing routing algorithms specially targeted to avoid

the HoL-blocking effect. These routing algorithms are intended for direct topologies.

In this chapter we will do a brief description of these proposals and present some discussion
about the obtained results. A complete description of each of them can be found in the corre-

sponding chapters.

12.1 kp—ary n,—direct s;,—indirect (KNS) topology

This thesis proposes a new family of topologies for interconnection networks that allows to
efficiently connect an extremely high number of processing nodes, given the huge size of current
and near future supercomputers [1]. We propose an hybrid topology based on combining an n—
dimensional direct network with small indirect topologies. The aim is to combine the advantages
of direct and indirect topologies to obtain a family of topologies that is able to connect a high
number of processing nodes, providing low latency, high throughput and a high level of fault—
tolerance at a lower hardware cost than indirect networks. In the proposed topology, the nodes

189

190 Chapter 12. General Discussion of Results

of each dimension are connected through an indirect topology that allows to have a large number

of nodes per dimension without negatively affecting performance.

The new family of topologies will use two different kind of switches in the network (although
this is not entirely true, as we will see later). First, low—degree switches are used to connect
processing nodes to each dimension and move packets across dimensions. We will refer to these
switches as routers. They have, at least, one processing node attached to them and as many
ports as dimensions. Nowadays, it is common that processing nodes are composed of a large
number of cores, and the core count per processing node trend is to increase even further. So,
these processing nodes need network interfaces with high bandwidth to avoid bottlenecks in the
end processing node connection to the network. In fact, there are already some commercial
solutions which use network interfaces cards with dual ports [47]. Considering the core count
increase trend it is expected that the bandwidth requirements of end processing nodes will be
even higher. Another key point of these network interfaces with several ports is that they provide
fault-tolerance. Using one port network interfaces causes having a single point of failure that
will disconnect a high number of cores. Both, bandwidth and fault tolerance requirements will

provoke increasing the number of ports in the near-future network interfaces.

In this thesis we take advantage of these network interface cards with several ports to implement

the routers used in the new family of topologies.

Additionally to these routers, the proposed topology also uses other switches to implement the

indirect networks that interconnect the routers of each dimension.

12.1.1 Description of the family

The newly proposed topology family arranges processing nodes and their associated routers
(node) in n dimensions like a direct topology. But, contrary to mesh and torus topologies,
routers of a given dimension are not only connected with their adjacent routers in that dimen-
sion. Instead, all the routers of a given dimension are connected by means of a small indirect
network. This indirect network could be even a single switch, considering the number of ports
of current commercial high-radix switches. However, if the number of routers per dimension
exceeds the number of ports of the available switches, the indirect network will be arranged
as a small MIN. We will refer to this MIN as the indirect subnet. This will provide a low la-

tency communication among routers in the same dimension with a small hardware extra cost

Chapter 12. General Discussion of Results 191

compared to direct topologies. In this way, the number of routers per dimension stops being a
bottleneck from the point of view of the performance, as the time to communicate two routers of
the same dimension is constant or grows logarithmically with the number of routers per dimen-
sion. Notice also that each router only requires a bidirectional link per dimension to connect to
the switch of each dimension. On the contrary, a mesh or torus require two bidirectional links

per dimension, one per neighbor node.

The proposed family of topologies is defined by three parameters. Two of them are inherited
from direct networks: the number of dimensions n;,' and the number of routers per dimension
kj,. The number of processing nodes it can interconnect is given by N = k;". In addition
to these two parameters, there is an additional parameter, the number of stages of the indirect
subnet, referred to as s,. This number depends on the number of routers per dimension kj, and
on the number of ports of the switches used to implement the indirect subnet (which will be
referred to as dp). The ratio between kj, and dj, defines the way to interconnect the kj, routers of
each dimension. If k;, < dj, a simple switch would be able to interconnect all the routers of the
dimension, and s;, will be equal to 1. On the contrary, if ky > dp, a MIN would be required to
interconnect the routers of each dimension, and the number of required stages will be given by
log %h kp, (remember that in an indirect network built with dj,-port switches, the network radix is
equal to %h). We will refer to the new family of topologies proposed in this thesis as kjp—ary np—
direct s,—indirect (KNS), where kj, is the number of routers per dimension, 7, is the number of

dimensions and s, is the number of stages of the indirect subnets.

In this thesis, we have considered two different MINs to connect the routers of a given dimen-
sion. The first one is a BMIN, the fat—tree. The second one is RUFT [5], a UMIN derived
from a fat-tree using a load—balanced deterministic routing algorithm [22], which requires less

hardware resources.

Figure 12.1 shows an example of the new topology with 2 dimensions (n, = 2), and 4 routers
per dimension (k;, = 4), with a total number of 16 routers. In this case, the routers of the same
dimension are connected by a single 4-port crossbar. However, for a higher number of routers
per dimension, say kj, = 8 and the same switch size, a MIN should be used. In the case of using
fat—tree subnets, for interconnecting the 8 routers of each dimension, it will require 3 stages

and 12 bidirectional 4-port switches, implementing in this way a 8—ary 2—direct 3—indirect. In

!"The subscript /" stands for hybrid.

192 Chapter 12. General Discussion of Results

T

Fat tree

FIGURE 12.2: An example of the KNS topology with n;, = 2, k, = 4, s, = 1 and p, = 2.

the case of using RUFT as indirect subnets, it is also a 8—ary 2—direct 3—indirect but built with

4-port unidirectional switches.

As it can be seen in Figure 12.2, the routers are connected to all dimensions through a different
link (one per dimension). Notice that it is also possible to attach several processing nodes
to the same router. Having more than one processing node attached to each router is known
as concentration in the literature. In fact, the topology shown in the figure already has two
processing nodes attached to each router. Only the corner processing nodes are shown in the
figure for the sake of clarity. This introduces a new parameter on the topology family, py, the
number of processing elements that are connected to each router. In this case, the number of

processing nodes is given by N = ppk,".

In Figure 12.1, two different components with switching capabilities can be distinguished. The

Chapter 12. General Discussion of Results 193

TABLE 12.1: Parameters of the different analyzed topologies.

Topology Parameters
Mesh or Torus ng # dimensions
kq # of nodes per dimension
Fat-tree n; # of stages
k; switch arity
kp—ary np—direct sp—indirect | ny, # of dimensions
(KNS) kp, # of routers per dimension
sp | # of stages of the indirect subnet
dp, switch degree
Dh # processing nodes per router

switches? (in blue and labelled with a “S” in Figure 12.1) are only connected to other switching
components, whereas the routers (in pink and labelled with an “R” in Figure 12.1) are used
to connect the processing nodes to the network through several dimensions. These routers are
connected on one side with processing nodes and on the other side with switches, and their
degree is ny + pp, that is, the sum of the number of dimensions and the number of concentrated
processing nodes. As it can be seen in Figure 12.1, if a crossbar is used as indirect subnet,
switches allow packets to change to any position in a given dimension by traversing only two
links, whereas routers allow to travel between dimensions. Thus as, at most, only two hops are
performed per dimension, the diameter of the new topology is 2ny, which is a very low value.
If a MIN is used instead of a crossbar as indirect subnet, the diameter of the network will be
the diameter of the used MIN (for a fat—tree, i.e. a BMIN, 2x the number of stages, which
is expected to be a small number due to using high-radix switches) multiplied by ny, that is

25y * ny,.

Table 12.1 summarizes the parameters that define the hybrid family of topologies. Notice that
only one of dj, or s;, parameter is necessary, as the another one can be derived from the other
parameters. In addition, the parameters that define traditional direct and indirect topologies are

also shown.

The proposed hybrid topologies can take advantage of the high number of ports available in
current switches. For example, edge switches of up to 36 ports are commercially available [68],
while chassis switches offer up to 648 ports [68]. With such switches, in most cases, a small

MIN with only 2 or 3 stages or even a single switch will be enough to connect the routers in

It may be a single switch or a set of switches forming a MIN.

194 Chapter 12. General Discussion of Results

each dimension. As the MIN is very small, it will introduce low latency and it can be easily

implemented with low wiring complexity.

On the other hand, as already stated, this topology can take advantage of new network interfaces
(like the new commercial HCA cards [47]), that have several ports to connect the processing
nodes to the network. By using these network interfaces, the proposed topologies can be im-
plemented by integrating the router into the processing node as part of the network interface.
These network interfaces will have switching capabilities, so processing nodes equipped with
these new network interfaces will be able, apart from injecting messages in the network, to route
packets that are not destined to them to other processing nodes without ejecting messages from

the network.

The resulting topologies could seem similar to BCube [20] or Hypercrossbar network [21], but
the great difference between our proposal and BCube is that the processing nodes do not eject
messages from the network; the new topology family forwards the messages in the network
interface which highly reduces latency. However, these cases could be considered as particular

configurations of the KNS family of topologies.

The topologies proposed in this thesis have several main advantages. First, they allow to highly
reduce the diameter compared to direct topologies. This will lead to network performance im-
provements, decreasing latency and increasing network throughput. Additionally, the number of
required switches and links is reduced compared to an indirect topology that connects the same
number of processing nodes. Therefore, it is expected that the proposed family of topologies

reduces the cost of the network. Finally, it also provides a good fault—tolerance level.

12.1.2 Routing Algorithms for the KNS Family of Topologies

In this section, we describe the routing algorithms proposed for the new family of topologies. We
will first describe the ones proposed for kp—ary npy—direct 1—indirect topologies (i.e., a crossbar
is used as indirect subnet). Then, we describe the ones proposed for the general case, that is, for

KNS topologies, using a fat—tree or a RUFT as indirect subnets.

First, we explain how routers and switches are labeled in the KNS topology. Each router is
labeled as in meshes and tori, with a set of components or coordinates (as many as network
dimensions) (ry, —1,7n,—2,. .., r'1,70). Each coordinate represents the position of each router

in each of the dimensions. On the other hand, the switches are labeled by a 2-tuple /d,p], where

Chapter 12. General Discussion of Results 195

d is the dimension the switch is located at, and p is the position of that switch in that dimension.
Notice that routers do not belong to any dimension, since they are connected to all of them, and
packets change dimensions through them. On the contrary, switches do not allow changing the

dimension packets are traversing, they just allow packets to move through that dimension.

12.1.2.1 Routing in kj,—-ary n,—direct 1-indirects

Although both deterministic and adaptive routing algorithms could be used, taking into account
that adaptive routing may introduce out-of-order delivery of packets and that leads to a more

complex implementation, we will focus only on deterministic routing.

The deterministic routing algorithm for kj,—ary nj—direct 1—indirect topologies, which will be
referred to as Hybrid—DOR, is a variation of the dimension ordered deterministic routing algo-
rithm (DOR) for meshes, adapted to the kp—ary nj—direct 1-indirect topology. In DOR, packets
are routed through the different dimensions following an established order until the destination
processing node is reached. At each dimension of the mesh, packets traverse several routers
until the movement in that dimension is exhausted. On the other hand, as each mesh router has
two links per dimension, packets must be forwarded in each dimension through the direction

that guarantees the minimal path.

In Hybrid-DOR, network dimensions are also crossed in an established order to guarantee dead-
lock freedom, as in DOR. However, there is a unique link per dimension that connects the current
router to a switch that allows directly reaching any of the processing nodes in that dimension.
So, packets do not perform several hops at each dimension. Instead, in Hybrid—-DOR, routers
directly forward packets through the unique link of the dimension they have to traverse, and this
link is connected to the corresponding crossbar that moves the packet to the destination compo-
nent in that dimension. Notice that, contrary to meshes and tori, in kp—ary nj—direct 1-indirect
topologies, it is not required to choose the direction at each dimension, as there is only one link
per dimension. The routing in the switches is very straightforward since, they just must for-
ward packets through the link indicated by the destination component in the current dimension,

requiring just one hop to reach next router.

Next, we show the Hybrid—-DOR pseudo—code for the routers and the crossbars of the network.
The number of dimensions of the topology is n;, and the destination and current router coor-

dinates are given by (xy, _1,...,Zd+1, Tds Td—1,---,T1,%0), and (rp, —1,...,Td4+1,7d, Td—1,

196 Chapter 12. General Discussion of Results

...,T1,70), respectively. In the case of crossbars, the current switch is given by [d,p] (the pth

switch of the d dimension). The chosen link to send the packet is returned in link.

Routers: Crossbars:
1= 0; link = x4
Done = False
while (i < ny) A (!Done) do

if z;! = r; then
Done = True
link =1

end if

t=1+1

end while

As can be seen, routers select the next dimension to forward the packet, which it is also the
link of the router to be used, since there is just one link per dimension, and crossbars merely
select the link given by the destination coordinate of the corresponding dimension to reach the

destination component in that dimension.

12.1.2.2 Routing in kj,—-ary n,—direct s,—indirects

In kp—ary nj,—direct s, —indirect topologies, the crossbars are replaced by small MINs. As stated
above, the MINs considered in this thesis are fat—trees or RUFTs. In these topologies, all the
switches of a given fat—tree or RUFT are always in the same dimension and in the same position
relative to the routers. In order to identify the switches inside a given fat-tree or RUFT, we
extend the classical switch coordinates from MINs by including the coordinates of the MIN
in the direct topology. In this way, the switch coordinates in kj—ary nj—direct s,—indirect
topologies will be given by a 4-tuple [d,p,e,0], where d is the dimension the MIN belongs to,
p is the position of the MIN in that dimension, e is the stage of the switch inside the MIN, and
o is the order of that switch in that stage. Remember that d and p are the coordinates of the

equivalent crossbar in kj,—ary ny—direct 1-indirect topologies.

Since the routers are the same regardless of the indirect topology used, its routing algorithm is
the same as the one shown for kj,—ary nj—direct 1-indirect topologies. However, switch routing

algorithm depends on the particular indirect network used.

Chapter 12. General Discussion of Results 197

First, we focus on the kj—ary nj—direct sp—indirect topology that uses fat—trees in the indirect
subnets. Despite the fact that a fat—tree has several paths for each source—destination pair (i.e.,
it allows adaptive routing), we propose to use the deterministic routing algorithm presented in
[22] since it is simpler and is able to outperform adaptive routing. We will summarize that
routing algorithm here. Routing is composed of two subpaths. First, packets are sent upwards to
the common ancestor switch of the source and destination processing nodes and, then, they are
sent downwards to its destination. Traffic is balanced by carefully selecting the links to be used
according to the destination processing node. In particular, the link to be used in both subpaths
is given by the destination coordinate corresponding to the stage where the switch is located at.
For instance, if a switch located at stage e routes a packet whose destination (in the fat—tree) is
(tnj—1s---stey+1steystey—1,- - -, t1,10), then the packet is sent through the link k; + ¢, in the
upwards phase and through link ., in the downwards phase. Remember that k; is the arity of

the switches of the fat—tree topology. Please see [22] for more details.

In the fat—trees subnets of the kp—ary nj—direct s,—indirect topologies, the routing algorithm
is the same, but only the part of the destination identifier corresponding to the dimension the
fat-tree belongs to (i.e., z4 in our notation) is used. In this way, the packet is delivered to the
same router that would be reached through the corresponding crossbar in a kp—ary nj—direct

1-indirect topology.

This routing algorithm is shown below. Assume that destination coordinates are (z, 1, ...,
Tga1,Td, Td—1,- - -, T1, To), the dimension where the fat-tree is located at is d, Get F'T [denti fier
returns from x4 the fat—tree coordinates to route locally in the fat—tree, U pwardsPhase returns
true if the packet is in its upwards subpath, or false otherwise, and that the stage in the fat-tree

of the switch that is routing the packet is given by e:

Switches:

t = GetFTIdentifier(xq)
if UpwardsPhase() then

link = k; + t,
else

link = t,
end if

Let us consider the case where RUFT is used in the indirect subnets of the KNS topology. In

RUFT, there is a unique path between each source—destination pair and packets have to cross

198 Chapter 12. General Discussion of Results

all the stages, reaching the last stage, which is directly connected back to the processing nodes.
The link to be used by a packet at a particular switch is given by the destination component
corresponding to the stage the switch is located at. Please see [5] for details. In this case, the

pseudo—code for the switch routing algorithm is the following:

Switches:

t = GetFTIdentifier(zy)
link = t,

If Hybrid-DOR is used in the routers jointly with the aforementioned algorithms for the switches
in the indirect networks, the resulting routing algorithm for the new topology is deterministic
and deadlock-free, since dimensions are crossed in order in the direct topology and the routing

algorithm used in the indirect networks has not any loop in its channel dependency graph [56].

12.2 Fault tolerance for k,—ary n,—direct s;—indirect

Next, we deal with proposing a fault-tolerant routing algorithm for the new topologies. For this
proposal, we will assume a KNS topology using crossbars as indirect subnetworks. Concerning
routing, Hybrid-DOR [67] is used. As above mentioned, Hybrid-DOR is a deterministic routing

algorithm that crosses network dimensions in increasing order.

Let us analyze how to deal with network faults. We will only consider link faults, since a
switch fault can be easily modeled as a switch with failures in all of its links. However, notice
that in this case, link failures of a switch would be correlated. Moreover, as network links are
bidirectional, we assume that if there is a link fault, then it fails in both directions. In this thesis,
we do not focus on how the failure information propagates to network nodes. In this way, a
static fault model is assumed. This means that when a fault is discovered all the processes are
stopped, the network is emptied, and a management application is run in order to deal with the
fault. Checkpointing techniques must also be used so that applications can be brought back to a
consistent state prior to the fault occurred. Detection of faults, checkpointing, and distribution
of routing info is assumed to be performed as part of the static fault model, and are therefore not

further discussed in this thesis.

For each source-destination pair without failures in their path, packets are routed using Hybrid-

DOR following minimal paths. But, if there is any fault in the path of a given source-destination

Chapter 12. General Discussion of Results 199

Source ——Jp-Intermediate node - Jp-Destination

‘I‘ Int ‘ Dst ‘Data‘ I Dst

Header 1 Header 2 Header 2
Int: Intermediate node. I: The number of intermediate
Dst: Destination node. nodes that remains to be crossed.

FIGURE 12.3: Header for packets using the intermediate node methodology.

pair, the methodology routes packets through intermediate nodes, like in [46]. The use of inter-
mediate nodes was proposed in [45] for other purposes, such as traffic balancing. In our case,
the idea is to avoid the faults by deviating the packet to an intermediate node. Therefore, a
suitable intermediate node for each source-destination pair with faults in their path needs to be
selected. The routing algorithm avoids faults by first sending the packet to an intermediate node
and then, from this intermediate node, to the destination node. Several intermediate nodes could
be also used for each pair of nodes, where packets are forwarded through these nodes until the
destination node is reached. Notice that the Hybrid-DOR algorithm is used in all sub-paths.
Using more than one intermediate node allows the mechanism to tolerate more faults by having
more control over the global path followed by the packet. Notice also that the packets are not
ejected from the network when they reach intermediate nodes. In Sections 12.2.1 and 12.2.2 we
will describe in detail how intermediate nodes are selected for the case of requiring only one, or

several of them, respectively.

Regarding the structure of packets, several fields should be added to the packet header to support
routing through intermediate nodes. Figure 12.3 shows the packet header. First, the number
of intermediate nodes that the packet has to cross is stored in a new field (I in the figure).
In addition to the destination node, the addresses of intermediate nodes are also stored in the
packet header. Every time an intermediate node is reached, its address is removed from the
packet header and the I field is decreased. Other implementations are possible, such as storing
in the packet header a pointer to the field that should be considered for routing. As soon as the
packet reaches an intermediate node, this field will point to the next intermediate one or, finally,

to the destination node.

For each source—destination pair, the mechanism checks whether the deterministic Hybrid-DOR
path is fault-free or not. If not, routing through intermediate nodes is required. A list of inter-
mediate nodes should be computed for paths with faults. This list will be stored in a table at

every source node. There is a table entry for each destination node that requires routing through

200 Chapter 12. General Discussion of Results

intermediate nodes. This table can be implemented as linear (i.e., with as many entries as the
network size) or as random (i.e., as content-addressable memories) tables. The size of the latter
table depends on the number of faults the network has to tolerate. The higher this number, the
higher the number of affected source—destination pairs. In practice, though, it is expected that
it should be enough to tolerate a relatively low number of faults, as if a network suffers a high

number of faults, the problem should be solved in another way.

However, the size of these tables also depends on how we codify the info stored in them. For
example, considering a 2-D network, if the fault is located at the first dimension link of a node
(i.e. the one that connects to the nodes of the same row), each source node in the same row
(except the one connected to the faulty link) requires routing through intermediate nodes to reach
every other node located in the same column of the fault. However, in the same example, the
source node that is connected with the faulty link needs an intermediate node for each destination
node in every other columns. This means that & * (k — 1) destination nodes need an intermediate
node to reach them from this source node. Generally speaking, for more network dimensions, if
a fault occurs at a link of the ¢ dimension, the source node requires using intermediate nodes to
reach (E("~*=1) x (k — 1) destinations. Moreover, if there are more faulty links in this source
node, each fault will involve a number of destinations according to this equation. Therefore, a
table design where there is an entry for each destination that needs an intermediate node could
require a big size in large networks. In such cases, an alternative design based on the use
of masks, similar to IP routing tables, could be used. The table would have two fields (id to
compare and mask to select the bits) and an option flag. The option flag indicates whether the
corresponding entry is considered when the comparison is satisfied or not. Of course, there is
also a field to store the possible intermediate nodes. In general, each entry can be used for a set
of destinations, thus reducing the size of the table. However, some destination nodes may need
specific intermediate nodes. Additional entries for them will be included in the table, which will
lead to several hits for the same destination node. The solution is to insert the entries in the table

following a given priority order and then selecting the entry with higher priority.

As in [46], we will refer to the source node as S and the destination node as D. For each
intermediate node, we will use the notation [, where x represents the index of the intermediate
node (I for the first one, I5 for the second one and so on). To ensure deadlock freedom, the
routing algorithm needs at least as many additional virtual channels as intermediate nodes for
fault-tolerant routing. For example, if we use up to two intermediate nodes, we need at least

three virtual channels (i.e., the original plus two additional ones). When a packet reaches an

Chapter 12. General Discussion of Results 201

intermediate node, the packet is re-injected into the network using a new virtual channel to avoid
deadlocks. For instance, assume that two intermediate nodes are used. One virtual channel (v1)
is used from S to I, another one (v9) from I; to I5, and the last one (v3) from I5 to D. In this
way, deadlocks are avoided because the network is split into three virtual networks, deadlock-
free routing algorithm is used within each virtual network, and each virtual network transition is
performed following a strict order (v; — v9 — v3 in the example). Adaptive routing could also
be used. In this case, several virtual channels can be used for adaptive routing provided that there
is an escape channel to break cyclic dependencies for each subpath [56]. Routing in the escape
channels uses Hybrid-DOR. Adaptive channels can be used in any of the sub-paths. However, in
such a case, a different escape channel is required in each sub-path to ensure deadlock freedom.

In this section, though, we only focus on deterministic routing.

There are some combinations of failures that physically disconnect one or more nodes of the
network. As the proposed methodology does not add new resources to the network, these sets
of faults can not be supported. The aim of the proposed methodology is to provide a path for
every source—destination pair, provided that they are physically connected by the interconnection

network.

Next, we will present how the intermediate nodes are selected. First, we will focus on using
only one intermediate node. After that, we show how to extend the methodology to use multiple

intermediate nodes.

12.2.1 One Intermediate Node

In this case, we will use only one intermediate node when one or more faults affect the minimal
path provided by Hybrid-DOR between a pair of nodes. This intermediate node, I, has to

satisfy two rules:

R1. I is reachable from S.

R2. D is reachable from 1.

We say that a node Y is reachable from X if there is a minimal path provided by Hybrid-DOR

between this pair of nodes, and there is no fault in it.

For direct topologies like tori or meshes, the choice of this intermediate node is very important,

because the number of hops can greatly increase, depending on the selected intermediate node.

202 Chapter 12. General Discussion of Results

FIGURE 12.4: Example of a faulty link in a KNS topology withn = 2 and k& = 4.

However, in the KNS topology, the number of hops only depends on the number of dimensions
that the packet must cross. The proposed methodology prioritizes the use of those intermediate
nodes which allow the packet to reach the destination node without additional hops compared

to the original minimal path between the source and the destination nodes.

For instance, Figure 12.4 shows a 4-ary 2-direct 1-indirect network with a fault at the source
node S in the = dimension link. So, it cannot reach the destination node D using Hybrid-DOR.
In this case, the possible intermediate nodes are all the nodes of the same column (surrounded
by the dashed line in the figure). The best choice, however, is the node that is located in the same
row as the destination node, because it allows to reach the destination node by using a minimal

path.

We say that a fault-tolerant routing algorithm is able to tolerate f failures if it can provide a valid

path between every source-destination pair for any combination of up to f failures.

12.2.2 Multiple Intermediate Nodes

There are cases where only one intermediate node is not enough to handle the network fault
combination. In these cases, the routing algorithm can use more than one intermediate node to
have more chances of finding a set of fault-free deterministic Hybrid-DOR paths between the
source and destination nodes. Assume that a number of x intermediate nodes [, I, ... I, are

required. Intermediate nodes are selected according to the following rules:

R1. I is reachable from S.

R2. I;4 is reachable from [;, for 0 < ¢ < z, z > 1.

Chapter 12. General Discussion of Results 203

R3. D is reachable from I.

Therefore, we can guarantee that the packet is able to reach its destination node following the

path S'[l'---'[z"[z'+1‘---‘Im'D-

In order to avoid non-minimal routing, the methodology tries to use a set of intermediate nodes
that does not increase the number of hops beyond a minimal path. In particular, if there are non-
minimal available paths using 7 intermediate nodes and also a minimal path using j intermediate

nodes, where 7 < j, the latter will be finally selected.

12.2.3 Extension To Any Indirect Subnetwork

In the proposal of this fault-tolerant routing algorithm, we have focused on KNS topologies
that use crossbars as indirect subnetworks. However, we can extend the methodology to KNS
topologies that use other indirect subnetworks like fat-trees or RUFT. To do this, a specifically
designed methodology should also be used to tolerate faults on each indirect subnetwork. There-
fore, intermediate nodes are used globally, while a specific methodology to tolerate faults will

be used locally on each subnetwork.

While the subnetworks can avoid faults, the direct routers will work normally. However, if a
node becomes unreachable due to a fault located at a given subnetwork, it will be modeled like

a link fault at this node, in the link of the corresponding dimension of this faulty subnetwork.

12.3 Reducing the HoL-blocking effect in Direct Topologies

The HoL-blocking effect has a great impact in network performance. Direct topologies were
initially chosen due to their popularity and because they are the basis of the KNS topology. To
achieve this goal, we have proposed some routing algorithms that takes advantage of virtual
channels of switches in order to confine packets depending on their destinations. The algorithm
used to classify the different packets in virtual channels is very important and affects intercon-
nection network performance. An important point to consider is the number of destinations that
are assigned to a given virtual channel. If some virtual channels are overloaded and other ones

are less used, the most saturated channels probably kill network performance. In this thesis we

204 Chapter 12. General Discussion of Results

Dim | VC#0 | VC#1 | VC#2 | VC#3
X 8 16 16 16
Y 1 2 2 2

TABLE 12.2: How IODET assigns destinations to node 0 VCs in a 8 x 8 mesh. #VCs is 4

dim1 (Y) dimO (X)

Dest. Id

VvC

(a) IODET

FIGURE 12.5: Implementation of VC selection in IODET for a 256-node 2D network and 4
VCs.

have proposed three different routing algorithms with the objective of achieving a good perfor-
mance when there is not network congestion and isolating different destinations when there is

network congestion.

12.3.1 IODET: In Order DETerministic Routing

In-Order DETerministic routing (IODET) [64] selects the VC by considering not the whole des-
tination identifier but the component of the packet destination corresponding to the dimension
in which the packet is being routed. The VC to be used by a packet is obtained by performing
the modulo operation of the dimension coordinates of the destination. That is, given a packet
destined to node {p,—_1, ..., p1,Po}, when routed in dimension d it will use the VC given by
pqg mod #V C's. This mechanism does a better job classifying packets than DBBM as can be
seen in Table 12.2, which shows the number of destinations assigned to different VCs for node
0 for an 8x8 mesh with 4 VCs. As it can be seen, all the VCs in both dimensions are used when

applying IODET to distribute destination among VCs.

Considering the implementation complexity of the VC selection, IODET is also very simple,
as displayed in Figure 12.5 which shows an example for 4 VCs. As it can be seen, the least
significant bits of the component for each dimension is used to select the VC. However, as the
assignment of destinations to VCs depends on the dimension the packet is traversing, the VC

is changed when there is a dimension change and, therefore, in those nodes the new VC to use

Chapter 12. General Discussion of Results 205

must be computed. As a consequence, the node internal switch must allow the change in the VC

assignment and the switch implementation is not as easy as the DBBM one.

12.3.2 XOR-based HoL.-blocking Reduction Routing

In this section, we present a mechanism to assign destinations to VCs based on the use of
XOR function. We apply this destination distribution to two different routing algorithms: first
a deterministic routing mechanism (XORDET) [66] is designed, and then an adaptive version
(XORADAP) [77] is proposed. The idea of this second algorithm is to combine the good prop-
erties of both, deterministic and adaptive routing to adapt to any traffic pattern to obtain optimal

performance results.

12.3.2.1 XORDET: XOR DETerministic Routing

XORDET is a deterministic routing algorithm that reduces the HoL-blocking effect and per-
forms a balanced distribution of destinations among VCs. For doing that, opposite to the previ-
ously presented deterministic algorithms that use a subset of the node destination bits, XORDET
distributes destinations among VCs by performing a bitwise XOR operation to all the bits of the
destination node, as follows. Assume that there are v VCs available. Then, [= log, v bits are
required to denote a virtual channel. If destination identifiers are n bits long, then, for each
destination, the VC to use is obtained by performing [XOR operations in parallel. In each XOR
operation 7 bits of the destination are XORed, taking them in an interleaved fashion. In par-
ticular, given a packet destined to node {p,_1, ..., p1,P0}, it will use the VC given by the bits
{VCi—1,...,VC1,VCp}, computed as follows:

VCo = po @ poti © potar - - © Por(z_1)
VO =p1 © iy @ prgar- - © i1y
VCi1=p1® P14 ®pr1421- - S Pro14(2 1)1

Figure 12.6 shows how the VC selection will be implemented in a network with 4 VCs and 8-bit
node identifiers. Each VC bit is obtained by XORing 4 bits of the node destination identifier in
an interleaved fashion. Notice that XORDET implementation of VC selection is very simple,
as only some XOR gates are required per source node. In particular, for v VCs, [= logv

XOR gates are required. Each one of them will have 7 inputs, n being the number of bits

206 Chapter 12. General Discussion of Results

01234567

i

Dest. Id

L.

VC

(a) XORDET

FIGURE 12.6: Implementation of VC selection in XORDET for a 256-node 2D network and 4
VCs.

@ @ @
) W) @ @ 4 B @ @ vco O
velr O
ONONCCINCINCINC NIV
o) &) NN ves O

=)
&/
=)
N
™
o/
N
=

o/
W)
=/

W

®
® ®
&) (%)
@ ()
N NV
®» &
® @
/‘\\ TN
&/
(w)
o/

6 (2N
&/
® &
© ®
® ®
® @
@ =

NV
® ®
(o) 6

o/

: N N
o€ 7 \60) (8%

FIGURE 12.7: How XORDET assigns destinations to VCs in a 8 x 8 mesh with 4 VCs.

7
NV
o\

s

of the destination identifier. If n is not divisible by [, some gates will have an extra input.
Notice that this implementation assumes that the number of VCs is a power of two. On the
other hand, we would like to highlight that, as in DBBM, the assignment of destinations to
VCs does not change as packet travels through the network. Therefore, this assignment can
be performed only once when the packet is injected into the network. As a consequence, the
network could be considered as several virtual independent networks, without interconnection
among them, and the internal node switch can be implemented as several independent switches.
As a consequence, the implementation of XORDET is very simple (as in DBBM) but it also

allows the VCs to maximize its utilization (as in IODET).

XORDET is able to isolate traffic destined to different nodes and also balancing destinations

among VCs. Figure 12.7 shows how destinations are distributed among VCs in a network with

Chapter 12. General Discussion of Results 207

Dim | VC#0 | VC#1 | VC#2 | VC#3
X 14 14 14 14
Y 1 2 2 2

TABLE 12.3: How many destinations XORDET assigns to node 0 VCs in a 8 x 8 mesh with 4
VCs.

64 nodes and 4 VCs. As it can be seen, XORDET does a very good job, as traffic destined
to either rows or columns will be distributed among the VCs. Table 12.3 shows how many

destinations are assigned to each VC of node 0 of the network.

As shown, XORDET balances node destinations among VCs which will balance traffic for uni-
form random traffic pattern. But XORDET is a deterministic routing algorithm and this means
that, for some adversarial traffic patterns, it may suffer from performance drops due to the lim-
ited routing flexibility. While XORDET works very well to avoid congestion caused by hot-
spots, for some other traffic patterns, adaptive routing is able to outperform deterministic routing
in general and, in particular, XORDET. For this reason, in this thesis we propose an adaptive
HoL-blocking reduction routing algorithm that is able to combine the routing flexibility pro-
vided by adaptive routing with the destination isolation provided by HoL-blocking reduction

routing to obtain optimal performance results for all traffic patterns.

12.3.2.2 XORADAP: XOR ADAPtive Routing

As mentioned above, deterministic routing lacks flexibility to adapt to some adversarial traffic
patterns while adaptive routing does not encourage HoL-blocking effect reduction, which is very
important for some traffic patterns. In particular, with a hot-spot node in the network, a HoL-
blocking reduction deterministic algorithm that isolates the hot-spot traffic works better than
adaptive routing [66] that spreads that traffic over the network avoiding other traffic to progress

in the network. Let us analyze what happens in this case.

With adaptive routing, the problem arises in the VCs of all the network dimensions that provide
the routing flexibility (i.e. the ones that can be used to cross the network dimensions without
following any order). When there is a hot-spot node, adaptive routing trends to distribute traffic
among all the available VCs, filling all the buffers with packets destined to the hot-spot node.
Those packets will interfere with other traffic flows all over the network, thus creating the HoL-

blocking problem.

208 Chapter 12. General Discussion of Results

o
O O O O 0o O

O O O O 0o O

O O O O 0o O

©c o o o O o o o o O O O O

© o o o o o o © o o o o O O O O
© o o o o o o O o o o o O O O O

(a) (b)

FIGURE 12.8: Paths of source-destination pairs of the first row with different pattern traffics:
(a) Bit-reversal and (b) Matrix Transpose.

On the contrary, HoL-blocking reduction algorithms like IODET or XORDET have a very good
behavior with hot-spot traffic because they confine the hot-spot traffic in just one of the VCs,
allowing the rest of traffic to progress normally across other VCs. These routing algorithms
also work well with uniform random traffic pattern as it will be shown, but they obtain a poor
performance for some adversarial traffic patterns. For instance, consider the bit-reversal or
matrix transpose traffic patterns [3]. In these cases, if deterministic routing is used, a lot of
source-destination pairs will use the same links due to the destination distribution leaving many
links unused. This fact creates a bottleneck since many messages have to cross the same link.
We can see this behavior in Figure 12.8. This figure shows the paths used by the source nodes
belonging to the first row in a 2D torus for the bit-reversal and matrix transpose traffic patterns
using a deterministic routing algorithm. In particular, DOR was used. As it can be observed
in the figure, the links of the topmost leftmost node become a bottleneck with deterministic
routing. For these kinds of traffic patterns, adaptive routing can take advantage of all the network
resources, providing a better utilization of the network links and therefore, improving overall

network performance for this adversarial traffic pattens.

In order to provide flexibility for adversarial traffic patterns and also reduce the negative effects
of HoL-blocking, we propose an adaptive HoL blocking-reduction routing algorithm. In this

routing algorithm, VCs are organized as in a fully adaptive routing algorithm: there is a group

Chapter 12. General Discussion of Results 209
2 Groups 4 Groups 8 Groups
(4 VCs) (2 VCs) (1 VCs)

Adaptive channels

il

~

/1]
AN

l
| ||

S | L

Di
-

Escape channel

i

FIGURE 12.9: How XORADAP may assign VCs to groups with 8 VCs.

of adaptive VCs that can be used without restrictions and also there is an escape channel. We
assume that bubble flow control is used in the escape channel. However, this routing algorithm
confines each node destination identifier in a subset of the adaptive VCs instead of allowing the
use of any of them. Contrary to deterministic routing, the routing algorithm allows crossing the
network dimensions following any order (and therefore allowing more flexibility) but restricting
the use of VCs depending on the destination node and thus confining the congested destinations
in some VCs and allowing the packets located in the rest of VCs to progress. As a consequence,
it provides some degree of flexibility but, at the same time, it limits the impact of the HoL-

blocking effect because only a subset of the VCs can be used for a given destination.

To assign destinations to VCs, any mechanism could be used. In this thesis, taking into account
its good balancing behavior, we propose to use a variant of the XOR function which is used
in XORDET. For this reason, the resulting routing algorithm will be referred to as XORADAP
(XOR ADAPtive). The VC assignment works as follows. We split the adaptive VCs into several
groups. Each group can be composed of 1, 2 or more VCs. Given a packet, it will be forwarded
to one of those groups depending on the packet destination, and any of the VCs of that group

could be used.

As mentioned above, we use a function similar to the one used in XORDET, but, in this case, we
select a group of VCs for each destination instead of just a single VC to classify traffic. In partic-
ular, with g groups of VCs, [= log g XOR gates are required. Given a packet destined to node
{Pn—-1,-, 01,00}, it will use the VC group given by the bits {VCG,_1,...,VCG1,VCGy},

computed as follows:

VCGo = po D po+1 D Po+at - - - D Pot(n -1y

210 Chapter 12. General Discussion of Results

VCOG1 =p1 S pryr B pryar- - S Pry(z-1)
VOGI_1 = pim1 @ pro141 D Pror420 - - - D Pro14(2 1)1

Each of the XOR gates will have 7 inputs, n being the number of bits of the destination identifier.
As in XORDET, the 7 inputs come from interleaved bits in the destination identifier. Notice that

the number of groups og VCs must be a power of two.

As stated above, each group is composed of several VCs. Several configurations can be used.
If there are V, VCs available for adaptive routing, each group may contain from 1 to V/, virtual
channels. Notice that, if we use only one group with all the virtual channels, we obtain the
generic fully adaptive algorithm. On the contrary, if each group has only one VC, we obtain
an adaptive version of XORDET that allows packets to cross dimensions following any order.
Figure 12.9 shows an example of the different configurations that can be set for 9 VCs, one
escape VC and 8 adaptive VCs. In this case, three configurations are possible for XORADAP:
2,4 and 8 groups (with 4, 2 and 1 VC per group, respectively). As it can be seen, the resulting
network is a set of different virtual networks, each one with several VCs. This means that
packets of the different virtual networks are not mixed together, effectively separating flows.

The escape channel is used by all the groups of virtual networks.

12.3.2.3 Implementation issues

As stated above, the different routing algorithms analyzed in this thesis demand different imple-
mentation complexity in the internal switch of the nodes. A fully demultiplexed crossbar [63]
provides the highest flexibility, allowing connections among all input VCs to all the output VCs
(i.e. it can map any input VC onto any output VC). In fact, such a switch is required for adaptive
routing, where any input port can forward packets to any output port. However, in the case of
deterministic routing, some of the connections provided by the internal switch are unused due
to routing restrictions. For instance, if DOR deterministic routing is used, a packet can only use
those ports that connect to the same or higher dimensions than the one it arrived. Therefore,
the switches could be simplified if routing restrictions are considered, most important, without

affecting performance.

Let us consider the routing algorithms proposed in this section. In XORDET, as the VC is se-
lected as a function of the destination node, packets do not change the VC while they travel

across the network, thus leading to a even simpler internal switch design than the traditional

Chapter 12. General Discussion of Results 211

deterministic routing with the same number of VCs. In XORDET, VC assignment can be done
once at the source node, and the rest of nodes that a packet crosses across the network merely
forwards the packet through the same VC from which the packet arrived to. Traditional deter-
ministic routing with multiple VCs would have to select the output VC to forward the packet.
As a consequence, as there is no need to move packets in a switch from one input VC to another
output VC, the internal switch of the nodes can be implemented as one independent switch per
VC (i.e. several virtual networks), instead of deploying a fully-connected crossbar, which is

cheaper and faster, as switch delay depends on the number of switch ports [58, 75, 76].

In the same way, XORADAP also simplifies switch implementation. In this case, packets may
change the VC used but they do not change the assigned group of VCs. The internal switch of
the nodes can be implemented as one independent switch per group of VCs. Therefore, we could
use a simpler internal switch design than fully adaptive routing. Notice that for a configuration

of one group of all of the adaptive VCs, the complexity will be the same as fully adaptive routing.

Concerning routing mechanics, deterministic routing only requires applying the routing function
[3] while adaptive routing requires the use of both the routing and the selection function [3]. In
any case, both the output port and the VC to be used will be returned by the routing algorithm.
For both XORDET and XORADAP, a few XOR logic gates are required at the source nodes
to compute the corresponding VC or group of VCs, respectively. In XORADAP, a selection
function is also required to select the VC inside the assigned group. However, the number of
routing choices is smaller than with fully adaptive routing. As routing delay depends on the
number of routing choices [58, 75, 76], XORADAP may lead to a faster implementation than

fully adaptive routing.

12.4 Evaluation Results

In this section, some results are shown in order to discuss the different advantages of using the
main proposals of this thesis. First, a brief description of the simulation tool is presented. After

that, we show the results for the different proposals of the thesis.

212 Chapter 12. General Discussion of Results

12.4.1 Network Model

To perform the simulations, we have used a simulation environment developed at our research
group. A prior version of this tool was used to provide evaluation results in [3]. The simulator
models several topologies, including the new family of topologies presented in this thesis, the
KNS. This simulator uses virtual cut—through switching. Each switch has a full crossbar with
queues at their input and output ports. Credits are used to implement the flow control mech-
anism. We have performed the evaluation by using several synthetic traffic patterns: uniform,
hot—spot and matrix transpose. In the uniform traffic pattern, message destination is randomly
chosen among all destinations. In the hot—spot traffic pattern, a percentage of traffic is sent to
one or a small subset of the processing nodes and the rest of the traffic is uniformly distributed.
In matrix transpose, for 2-dimensional networks, the destination processing node is obtained by
transposing the coordinates of the source processing node. Therefore, in this traffic pattern, the
destination processing node of all packets generated at a given source processing node is always

the same.

124.2 kp-ary nj,—direct s,—indirect (KNS) topology

In this section, we evaluate the KNS topology family, comparing its performance and cost with
the ones provided by other topologies such as meshes, tori, fat-trees, and flattened-butterflies

[11].

12.4.2.1 Performance Results

In this section, we compare the KNS using different indirect subnets (crossbar, fat-tree, and
RUFT) against other well-known and frequently—used topologies such as tori, meshes, and fat—
trees. Moreover, we also compare our proposal against the flattened—butterfly (FB) topology
because it is becoming a popular topology in recent research papers. The FB topology is a
variation of the butterfly topology obtained from using high-radix switches, that results in a
direct topology. This topology can be seen as a generalized hypercube with concentration, as
all the switches in the same dimension are directly connected, that is, there is a link from each
switches to the others of the same dimension. Several FB configurations have been tested and

compared to our proposal.

Chapter 12. General Discussion of Results 213

—— Mesh 1
8000 - ——— Tgurue v
ary 2-d 1-i
7000 | e 16-ary 2-d 2-i(FT) I
2 -ary 2-d 4-i(FT)
—o— l6-ary 2- 'd 2-i(RUFT) |
5000 | —*— l6-ary 2-d 4- -I(RUFT) |
—=— FT 16-ary 2-tree ¥ ‘
4000 r —— FT 2-ary 8-tree ‘\‘
—— FB 2-ary 7-cube 2-
3000 FB4 g3 cube4§

7000 T . .
jf_‘zz Mesh l ‘JL
L Torus
6000 6d-ary 2-d 1-i | ‘

L= 64-ary 2-d 2-i(FT) ‘

5000 F | & g4ary 2.d 64(FT) Il
7+ 64-ary 2-d 2-i(RUFT) ||

——=— 64-ary 2-d 6-i(RUFT) |
FT 16-ary 3-tree

FT 2-ary 12-tree

ﬂ_ﬁ

4_d7
FB 2-ary 11-cube 2-p
FB 16-ary 2-cube 16-

4000

3000 |

2000

) ’U

Avg Msg Latency from Gen Time (cycles)
Avg Msg Latency from Gen Time (cycles)

2000 j“ |
1000 ' i 1000 35 o 8
O L L L L L L O L L L L L
0 0.1 02 03 04 05 06 07 0 0.1 0.2 0.3 0.4 0.5 0.6
Accepted Traffic (flits/cycle/node) Accepted Traffic (flits/cycle/node)
(a) (b)
10000 . . . :
l —+— Mesh g
— Torus b4
||| —— 256-ary 2-d 1-i |
8000 | —=— 256-ary 2-d 2-i(FT) ¥
‘ 256-ary 2-d 8-i(FT) {

o 256-ary 2-d 2-i(RU

6000 \‘/ —e— 256-ary 2-d 8-i(RU
) ——=— FT 16-ary 4-tree

% ——— FT 2-ary 16-tree 1

4000 '+ FB 4-ary 7-cube 4-p

~—~— FB 16-ary 3-cube 16

~ o
NN
D%\T—EE—EEEEEEEEEEE
e
|

2000

Avg Msg Latency from Gen Time (cycles)

0 0.1 0.2 0.3 0.4 0.5 0.6
Accepted Traffic (flits/cycle/node)

(©

FIGURE 12.10: Average packet latency from generation vs. accepted traffic for uniform traffic
and 2 dimensions for direct topologies. (a) 256 processing nodes. (b) 4K processing nodes. (c)
64K processing nodes.

We have evaluated a wide range of network sizes, from 256 to 64K processing nodes. Larger
topologies have not been simulated due to simulator memory constraints. For direct topologies,
we have tested different values of the number of dimensions and number of nodes per dimension.
In particular, we show results for networks of 2 dimensions, with 16, 64, and 256 nodes per
dimension; four dimensions, with 16 nodes per dimension; and eight dimensions, with 4 nodes
per dimension. If not stated the contrary, only one processing node is attached to each router
(i.e. without concentration). If several ones are attached, the z—p suffix is used, x being the
number of processing nodes attached to each router. These networks are compared with fat—
trees and FBs with the same number of processing nodes. Notice that, in some cases, several
configurations are possible. For the sake of clarity, only a subset of the most representative

simulations is shown.

Figure 12.10.(a) shows results for 2-D small networks (256 processing nodes) with uniform

214 Chapter 12. General Discussion of Results

traffic. As it can be seen, the mesh is the network that achieves the lowest throughput, followed
by torus and the FBs configurations. In this latter case, we have selected a 4—ary 3—cube and a
2—ary 7—cube FB with concentration in order to compare our proposal against a topology with
a hardware of similar complexity. The next topologies that achieve a better performance are the
two fat—tree configurations. However, the best absolute throughput is achieved by the family
of topologies proposed in this thesis. In particular, the different tested configurations ordered
from lower to higher throughput are the topology that uses a RUFT with two stages as indirect
subnet (16—ary 2—d 2—i (RUFT)), the ones that uses crossbar (16—ary 2—d 1-i), the one that uses
RUFT with 4 stages (16—ary 2—-d 4-i(RUFT)), the one that uses a FT with two stages (16—ary
2—-d 2-i (FT)) and the one that uses a FT with four stages (16—ary 2—d 4—i (FT)). In particular,
the best configuration of the new topology family obtains 3 times more throughput than the
worst network (mesh), more than twice versus torus, more than 20% versus FT and about 40%

improvement versus FB.

Figures 12.10.(b) and 12.10.(c) show how throughput is decreased in all the topologies as we
increase the number of processing nodes in the network, keeping constant the number of dimen-
sions in the direct topologies, and therefore increasing the number of routers (processing nodes)
per dimension. In the case of mesh and torus topologies, throughput strongly decreases, as the
average distance between two nodes is markedly higher than in the other topologies. Regarding
the KNS topologies, all the tested configurations outperform both the FT and FB configurations
analyzed. The best configurations are again the ones that use the tallest FT as indirect sub-
net. Notice that the different topologies have a different hardware cost, which is evaluated in

following section.

In Figures 12.10.(a), 12.10.(b), and 12.10.(c) we can also see the impact of using more stages in
the MINs of KNS topologies. For the same number of routers per dimension, if we decrease the
number of stages, the arity of the switches is increased, and a lower latency should be obtained.
The plots show that, the higher the number of stages, the higher the base latency (in more detail,
the zero-load latency) as more switches have to be crossed by packets. Surprisingly, networks
with more stages also achieve more throughput. This effect is explained by the reduction of the
head-of-line (HoL) blocking effect. For a given number of routers per dimensions, a taller FT
uses smaller switches (i.e. with lower number of ports). As a consequence, each switch port is
potentially demanded by a lower number of input ports and, hence, the effect of HoL blocking is

reduced. From another point of view, with fewer stages, each indirect topology has less switches

Chapter 12. General Discussion of Results 215

g 7000 ; ‘ ‘ 2 5000 ‘ ‘ . :
3 " Mésh | ft P i 3 " Mesh f I i
z 6000 L~ Torus &I : kil z ———— Torus \T *on
P —— 16-ary 4-d 1-i { gl 4 5o S 4000 - o 4ary8-dl-i wl X &
£ = l6qary 4-d4-i(FT) 7 o7 ¢ b E —e— 4-ary 8-d 2-i(FT) I 17
C 5000 16dary 4-d 2-i(FT) ¥4 3/ ¢ 1 < 4-ary 8-d 2-i(RUET) ‘ fd 1P
8 —=— 16rary 4-d 4-i(RUFT) s 7 o1 S 3000 L~ FT I6-ary 4-trec |7 [TA |
© 4000 - —— I6tary 4-d 2-i(RUFT) ‘I PaEE o —e— FT 2-ary 16-tree ||] A
5 —=— FT l6-ary 4-tree 3 o / £ —+— FB 4-ary 7-cube 4ip / X
E 000l - Flodylewee 1f 44 # | & ~~ FB 16-ary 3-cube/}
2\ ~+ EBdary Tcubedp |4 j o ? 2000 3 %/‘X i
g 000 B 16-ary 3-cube 16 [~ g o
- , i o 1000 et o]
2} e T T i B)
s 1000 feass S e = e E=STEEC s oh
2 0 ‘ ‘ ‘ ‘ ‘ 2 0 ‘ ‘ ‘ ‘ ‘ ‘
< <
0 0.1 0.2 0.3 0.4 0.5 0.6 0 01 02 03 04 05 06 07
Accepted Traffic (flits/cycle/node) Accepted Traffic (flits/cycle/node)
(a) (b)

FIGURE 12.11: Average packet latency from generation vs. accepted traffic for uniform traffic
with 64K processing nodes and different number of dimensions: (a) 4D and (b) 8D.

to serve the same number of routers. Thus, each switch has to deal with more traffic, leading to

more HoL blocking effect and, hence, less throughput.

Let us analyze the base latency. In a kj—ary nj—direct 1—indirect, base latency does not depend
on the number of routers per dimension. However, in KNS that uses MINs, the base latency
increases with the number of processing nodes because the number of stages in the indirect
subnets also grows in order to connect a larger number of routers. This effect is more prominent
in RUFT, due to the fact that packets traverse always all stages since it is a UMIN topology. In
the case of torus and mesh, base latency strongly depends on the number of nodes per dimension,

as average distance between nodes is increased.

Figure 12.11 analyzes the impact of the number of dimensions in the different topologies. We
analyze a network with 64K processing nodes implemented with a different number of dimen-
sions. We can distinguish three different behaviors. First, Mesh and torus topologies have a
similar behavior. The higher the number of dimensions, the fewer the number of nodes per di-
mension, and the higher the achieved throughput. Also, base latency decreases with the number
of dimensions, because the average distance is reduced. However, the behavior of kj—ary nj—
direct 1-indirect is different. Throughput also increases with the number of dimensions because
the size of switches of the indirect network (a crossbar in this case) is reduced, and, hence, the
pernicious effect of HoL blocking is reduced. However, base latency does not improve with
the number of network dimensions. This is due to the fact that the number of hops that pack-
ets must perform also grows with the number of dimensions. Concerning the kp—ary n,—direct

sp—indirect, they have a similar behavior to the previous one, but with a difference. The base

216 Chapter 12. General Discussion of Results

latency, in this case, slightly decreases when the number of dimensions increases. Although
network diameter increases with the number of dimensions, as started above, as there are fewer
routers per dimension, indirect subnets have fewer stages, and, thus, packets have less stages to
cross. Finally, the configurations of the FB shown and FT obtain an intermediate throughput
value. Anyway, we would like to remark that the new family of topologies always obtains the

best throughput regardless of the number of dimensions.

12.4.2.2 Cost—performance analysis

This section estimates and compares the hardware cost of each considered topology and analyz-

ing the performance-cost ratio obtained for each of them.

In order to get an actual cost figure, we have calculated the cost (in $) that some of these configu-
rations would have when implemented with real commercial products. We have used InfiniBand

products with FDR technology of Mellanox [68] (February 2015) to calculate the cost.

When preparing the budget, if there are no switches with the number of ports required by the

configuration, we selected the next one with greater number of ports.

As copper links are limited to 5 meters, if a longer link is required, fiber links must be used.
We assumed an average length between cabinets (global links) of 10 meters, and 2 meters for

connections in the same cabinet (local links).

The number of global and local links depends on the topology. For 256—ary 2—direct 1-indirect
and 256-ary 2—direct 4—-indirect with FT as subnets, the processing nodes of the same first
dimension can be placed in the same cabinet or in two cabinets (one beside the other). The
links of this dimension are local links, and the links of the second dimension are global links.
Regarding the links interconnecting the stages of the MIN (a fat—tree in this case), we assume
that they are local, since each subnet fits in a cabinet. In flattened-butterfly configurations, for
example FB 16-ary 3-cube 16-p, we use the same approach. The links of the first dimension
are local because the processing nodes of the same first dimension are placed in one or two
cabinets and the links of the remaining dimensions are global. In fat-trees, the links which
connect the processing nodes with the first stage are local, and the remaining links are global. In
torus topology, the configuration is very similar to kp—ary np—direct 1-indirect (local links for
the first dimension and global links for the second dimension). However, in this case, a cabinet

or a group of cabinets that contain processing nodes of the same first dimension, are connected

Chapter 12. General Discussion of Results 217

FIGURE 12.12: Total cost of different topology configurations with 64K processing nodes.

TABLE 12.4: Cost—performance analysis for different topology configurations with 64K pro-
cessing nodes. Throughput is measured in flits/cycle/node. Throughput/cost is measured in
flits/cycle/node/$.

Topology 256-ary 256-ary 256-ary FB FB FT FT Torus

2-direct 2-direct 2-direct | 16-ary | 4-ary | l6-ary | 4-ary 256-ary
1-indirect | 2-indirect | 2-indirect | 3-cube | 7-cube | 4-tree 8-tree 3-cube
(FT) (RUFT) 16-p 4-p

Throughput 0.47 0.43 0.40 0.39 0.38 0.40 0.41 0.02
Total Cost ($) | 235M 420 M 376 M | 266 M | 371 M | 412M | 1,062M | 463 M
Throughput 2.00 1.02 1.06 1.47 1.02 0.97 0.39 0.04
/Cost x1077 x1079 x10~9 x1079 | x107° | x107? | x1079 | x10~?

to the neighboring cabinet or group. So, they will be very close. For this reason, in this case we

have used shorter global links of 5 meters.

Using these data, we calculated the cost of some selected configurations, which are shown in
Figure 12.12. The configurations shown are the cheapest ones that their performance is not very

far to the configuration that obtains the highest throughput.

As can be seen in Figure 12.12, the 256—ary 2—direct 1-indirect configuration obtains the lowest
absolute cost. The fat—tree with 8 stages (FT 4-ary 8-tree)has a very high cost, despite having
very good performance. In the case of torus, its cost is not very high, but it has a low perfor-
mance. Flattened—butterfly has a competitive cost, but it is not lower than the 256—ary 2—direct

1-indirect and it does not reach a better performance.

To allow a better comparison of both cost and performance, Table 12.4 shows the ratio between
cost and performance. If we use KNS topologies, configurations with more stages have better
throughput but also a higher cost and more latency. The same applies to fat-trees. The kj—
ary np—direct 1—indirect combines a good performance with a low cost. Although the torus

configuration is not very expensive, it has a very poor performance. Flattened—butterflies are

218 Chapter 12. General Discussion of Results

not very expensive and obtain good performance. However, the kj—ary nj—direct 1-indirect
configuration obtains the best absolute results in terms of performance-cost ratio. As it can be
seen, the worst ratio is provided by the torus, followed by a configuration of the fat-tree (FT

4-ary 8-tree).

12.4.3 Fault tolerance for k,—ary n,—direct s,—indirect topologies

In this section, we analyze the fault-tolerance capability of the new family of topologies when
using the routing algorithm methodology presented in Section 12.2. To evaluate the proposed
fault-tolerance methodology, we have performed two kind of analysis. First, we analyze the
number of network failures that can be tolerated. Remember that a fault-tolerant routing algo-
rithm is able to tolerate f failures if it can provide a valid path between every source-destination
pair for any combination of f failures. Notice that there are situations where the failures phys-
ically disconnect the network. We consider these situations as combinations where there is no

path for all source-destination pairs and therefore the combination is not tolerated.

Second, we evaluate the network performance degradation in presence of faults when using the
proposed methodology. To do this, we have simulated different tolerated network configura-
tions with a varying number of faulty links under uniform traffic. For each number of faults,
we have tested 50 random fault combinations to obtain the average network throughput and la-
tency. In those experiments, the combinations where some nodes are physically disconnected

are discarded and not simulated since only tolerated combinations are simulated.

12.4.3.1 Fault Analysis

The number of possible fault combinations exponentially increases with the number of faults.
For this reason, it is not possible to explore all possible fault combinations for a given number
of faults in a reasonable amount of time. Therefore, we have used statistical analysis as a tool.
Specifically, we have analyzed a subset of the fault combinations, where the faults are randomly
chosen. This subset is large enough to obtain results with a confidence level of 99% and an error

lower than 1%.

Figures 12.13 and 12.14 show the percentage of tolerated fault combinations for different num-
ber of faults using one or two intermediate nodes for a 2-D network with 1,024 nodes and a

3-D network with 1,000 nodes, respectively. The results are shown for a number of link faults

Chapter 12. General Discussion of Results 219

100 -
2 90
S 80
g 70
5 o \
g 4 2 nedes
8 30 :
é 20
s 10 N
% 20 40 60 80 100 120 140

Number of faults

FIGURE 12.13: Fault combinations tolerated by the methodology when using one or two in-
termediate nodes in a 2-D network with 1,024 nodes.

100
2 90 \
S 80
g 70
£ ©
g « e,
g 30 \ :
é 20 \ =
N 10 \\\ o
0 -)

0 50 100 150 200 250 300 350 400 450 500

Number of faults

FIGURE 12.14: Fault combinations tolerated by the methodology when using one or two in-
termediate nodes in a 3-D network with 1,000 nodes.

up to 150 for 2-D networks and 500 for 3-D networks. First, as expected, the percentage of
tolerated combinations of faults strongly increases when using two intermediate nodes instead
of only one because there is more control over the path followed by the packet. That is, using
two intermediate nodes instead of only one provides more alternative paths or, what is the same,
we have more options to configure the final path to the destination node, avoiding the faults.
On the other hand, in the 2-D network, the percentage of tolerated combinations of faults is
considerably lower than in the 3-D one because more alternative paths are available in the latter
for each source-destination pair. In the case of the 3-D network, the methodology is able to tol-
erate more than 99.5% of the 10-fault combinations with only one intermediate node and more
than 99.98% for the configurations of 15 faults with 2 intermediate nodes. The fact of having
more dimensions gives more probability to route the packet through different paths that do not
share resources, being able to avoid more faults. However, the 3-D network has more resources.
There are 3,000 links in the 3-D network versus 2,048 links in the 2-D network. This is why,

for 23 faults in the 2-D network even with two intermediate nodes, the percentage of tolerated

220 Chapter 12. General Discussion of Results

0.45 : : " : . . . : 2 6000 : : " :
. —&— 0% faults . — R 2 —&— 0% faults e o s
[5) 0.4 1 —— 1% faultgfi i oot i x4 =, —— 1% faults R -
3 o faulid e 8 5000 F - 39 faults]
2 0.35] 2 5% faults
5 03 1B 000 |]
2z)
= 0.25 1 O
< £ 3000]
% 0.2 1 E
s 015 1 52000 1
B)
2 0.1 4 5o
3 = 1000 q
£ 0.05 q Ry
N.;‘S > .
0 E L L L L L L L L L < 0 I L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 12.15: 32-ary 2-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

0.5 T T T T A 8000 T T T T
5 ous | o O%fats 8 —=— 0% faults
[} X Fo—sx— 1% faults & oo EmecEees-088-888—1 = 7000 F 1% faults A
B o4l 3% faults e ;& 3% faults S
£ . o i
) 5% faul _ B £ 6000 F —+— 5% faults oy EXEREE—
§ 03 | SES— g 5000 r A e cen-ome- 0B
S o2t 1 F 4000 f]
= S
S o2y TS 3000]
<
= 0.15 1 =
g % 2000]
3 0.1 - 1 ﬁ f
2005t 1 G 1000 #]
0 L L L L L L L L L :: 0 EF‘ L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Injected traffic (flits/cycle/node) Injected traffic (flits/cycle/node)
(a) (b)

FIGURE 12.16: 10-ary 3-direct 1-indirect under uniform traffic: (a) Accepted traffic and (b)
average latency versus injected traffic.

combinations is lower than 80%. However, in the 3-D network, more than 100 faults are needed

to reach a percentage of tolerated combinations lower than 80%.

12.4.3.2 Performance Analysis

In this Section we analyze the performance degradation suffered by the network when applying
the fault-tolerant routing methodology in presence of faults. To do this, we have simulated
several network scenarios with 1% faulty links, 3% faulty links and 5% faulty links. For each
fault scenario, we have generated 50 random fault combinations, all of them tolerated by the
methodology. That is, all source-destination pairs are able to communicate. Up to 2 intermediate

nodes can be used, since this allows to test fault combinations with a higher number of faults.

Chapter 12. General Discussion of Results 221

However, the fact of using two rather than only one intermediate node does not strongly impact
network performance. This is because the methodology is able to avoid the fault using only one

intermediate node in most of the cases, although it is able to use two.

In order to measure the performance degradation, we obtained the accepted traffic and average
latency form generation time versus injected traffic. We consider average latency form gener-
ation time to consider the time spent by the packet at the injection queue. Accepted traffic is
measured as the amount of data per node and per time that the network can accept (flits/cycle/n-
ode). Network throughput is the peak value of accepted traffic. Average latency form generation
time is measured as the mean of the elapsed time from message generation at the source node
until its ejection at the destination node. For network load, source nodes inject traffic following

a uniform traffic pattern (i.e., randomly selecting the destination node).

Figures 12.15.(a) and 12.15.(b) show results for a 32-ary 2-direct 1-indirect network under uni-
form traffic. In this case, the network suffers a performance degradation of about 1% in through-
put with 1% faulty links (21 links) compared to the same network without faults. For 3% and
5% faulty links, performance degradation increases to 3,8% and 6,5%, respectively. Latency is
affected as well, increasing the average value with respect to the fault-free case. In particular, at

saturation, latency is increased by 67% with 1% faulty links.

For the 10-ary 3-direct 1-indirect network (Figures 12.16.(a) and 12.16.(b)) the performance
degradation, for the same percentage of faulty links, is higher when compared to the 32-ary
2-direct 1-indirect network. In particular, network throughput degrades by about 9% with 1%
faulty links (30 faults) compared to the fault-free network, and by 13% and 15% with 3% and
5% faulty links, respectively. The increase in latency for the 1% link faults case, is 1.8 times
at the saturation point. Notice that the increase in latencies is because the network with faults
saturates before than the one without faults. If we focus on the base latency or the latency before
saturation, we can see that there is almost no impact. This is because the use of intermediate
nodes is only required for a low percentage of source—destination pairs. Although both networks
have roughly the same number of nodes, they have a different number of links and, for the same
number of relative link faults, the 3-D network involves more faulty links. Therefore, more paths
are affected. On the other hand, as shown in Figures 12.13 and 12.14, the fact of having a higher
number of dimensions with the same number of nodes improves the probability of avoiding a
given fault combination. Therefore, although throughput is degraded by 3.8% with 3% faulty

links in the 2-D network versus a performance degradation of 13% with 3% faulty links in the

222 Chapter 12. General Discussion of Results

3-D network, the probability of supporting a combination with this number of faults in the 3-D

network is about 97%, against only 16% in the 2-D network.

12.4.4 Reducing the HoL-blocking effect in Direct Topologies

In this section, we evaluate by simulation the HoL-blocking reduction routing algorithms pro-
posed in this thesis (IODET, XORDET and XORADAP) comparing them with previously pro-
posed ones. First, we will compare the deterministic routing algorithms, IODET and XORDET,
with other HoL-blocking reduction deterministic algorithms like DBBM, BBQ, VOQnet and
VOQsw. We will also consider a fully adaptive routing algorithm and a DOR deterministic rout-
ing which allows packets to use all the VCs of the selected dimension, that is a deterministic
routing algorithm without destination node classification. Notice that this latter algorithm is
actually partially adaptive (as it allows several routing options) and does not guarantee in-order
delivery of packets. For this reason, we will refer to it as Out of Order DETerministic routing
(OODET). To guarantee deadlock-freedom in tori, the bubble flow control mechanism was used

(either in all the VCs for deterministic routing or in the escape VC for fully adaptive routing).

After the evaluation of IODET and XORDET, we will evaluate XORADAP to analyze how
it behaves under different traffic patterns and we will show how a hybrid approach is able to

combine the best of two worlds and obtain good performance results for any traffic pattern.

Regarding the number of VCs per physical channel, it must be a power of two in XORDET. In
XORADAP, the number of groups of VCs must be a power of two and also an escape channel
is required. To perform a fair comparison, for traditional fully adaptive routing, we will use the
same number of VCs as the one used in XORADAP. Source nodes implement VOQnet in the
injection. This means that messages with different destinations do not harm the injection of each

other.

12.4.4.1 Deterministic routing algorithms evaluation

First, we will analyze the behavior of IODET and XORDET versus the other HoL-blocking
reduction deterministic routing algorithms. Figure 12.17 shows the obtained results for a 2D
torus with 256 nodes and uniform random traffic pattern. With only a few number of VCs (4 or
8), any HoL-blocking algorithm is able to reach nearly the same performance as VOQnet, which

is the upper bound. The exception is DBBM that, due to its poor destination classification in the

Chapter 12. General Discussion of Results 223
0.4 2 4000 ; ;
. 2 —— DBBM 4VC ol
Q — e
2 035 > 3500 < BBQ4VC S
g 2 —— I0DET 4VC]
S 03f £ 3000 | —= OODET4VC -
2 = Adaptive routing 4VC
> 025 | 2 2500 | —=— XORDET 4VC
= 3 —e— VOQnet 256VC
5 02zp DBBM 4VC = 2000 | = VOQsw5VC |
g BBQ4VC —— | £
g 0I5y [ODET 4VC —+— 1 = 1500 |
9 OODET4VC —=— | §
2, 0.1 r Adaptive routing 4VC e 1000 1
] XORDET 4VC —— <
2 005 ¢ VOQnet 256VC —e— o 000 1
VOQsw 5VC —=— >)
0 L L ‘Q W L < 0 T I L L
0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(@) (b)
0.4 2 4000 ; ;
— ks ——— DBBM 8VC
< 035 > 3500 -~ BBQS8VC
g 2 —— IODET 8VC
E 03 | g 3000 = OODETS8VC
58 = Adaptive routing 8VC
> 025 | & 2500 | —=— XORDET 8VC
= 3 —e— VOQnet 256VC
5 02r DBBM 8VC = 2000 | = VOQsw5VC P
sl BBQ8VC —— £
g 0I5y [ODET 8VC —»— 1 = 1500 |
- OODET 8VC —=— | 3
2, 0.1 r Adaptive routing 8VC o 1000 1
] XORDET 8VC —~— <
2 005 ¢ VOQnet 256VC —e— o 000 1
0 ‘ ‘ VOQsw 5VC —=— z I R ‘ - |
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(©) (d)

FIGURE 12.17: Average packet latency and accepted traffic vs offered load. 256-node 2D-
torus. Uniform random traffic pattern. (a,b) 4 VCs and (c,d) 8 VCs.

last dimension, it obtains a worse performance. Notice the importance of the dimension ordering
followed by the routing algorithm. Unexpectedly, BBQ, which also considers a subset of the
node destination identifier bits to classify packets, works quite well. The difference between
DBBM and BBQ is that the former consider the least significant bits while the latter considers
the most significant ones. As IODET and XORDET considers all the node destination bits to
classify packets, it should not be affected by changes in the dimension ordering followed by
the routing algorithm. On the other hand, fully adaptive routing suffers the typical performance

rollback after network saturation [85].

In Figure 12.17, the traditional DOR routing following XY order was used. However, using
other deterministic routing algorithms could be interesting. For instance, in [65], X+Y+Z+X-Y-
Z- direction-order routing was proposed instead of dimension order routing for fault tolerance

purposes. Direction order routing allows packets to be routed in both directions of a dimension

224

Chapter 12. General Discussion of Results

0.4 ———— 7 4000 ; ; .
e ke ——+— DBBM 4VC ‘
3035 ' > 3500 - BBQ4VC
g e —— [ODET 4VC
o) 0.3 g 3000 ——=— OODET 4VC
S = XORDET 4VC
o 0.25 = 2500 —— VOQnet 256VC
2 & —— VOQsw 5VC
=
2 02} = 2000
& DBBM 4VC £
E 0.15 BBQ4VC —~ 1 = 1500
= IODET 4VC —+— 3
R OODET4VC —=— 71 1000
8 XORDET 4VC <
< 005 ¢ VOQnet 256VC —=— | . 500
VOQsw 5VC —e— > L
0 L L ‘Q w L < 0 s T I L L
0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)
0.4 : ~ 4000 ‘ ‘
S % —+— DBBM 4VC
3 0.35 r Z 3500 —— BBQ4VC
g e —— IODET 4VC
© 0.3 =} 3000 ——=— OODET 4VC
g = XORDET 4VC
2 0.25 + = 2500 —— VOQnet 256VC
2 3 —— VOQsw 5VC
=
£ 02t = 2000
= DBBM 4VC £
E 0.15 + BBQ4VC 1 = 1500
= IODET 4VC —— | §
ER OODET 4VC —=— 71 5 1000
8 XORDET 4VC <
< 0057 VOQnet 256VC —~— | T 500
VOQsw 5VC —e— s
0 L L L L < 0 T I L L
0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(©) (d)

FIGURE 12.18: Average packet latency and accepted traffic vs offered load. 256-node 2D-
torus. Uniform random traffic pattern. (a,b) XY routing and (c,d) X+Y+X-Y- routing. 4 VCs.

and, therefore, offers greater flexibility to avoid faults. Furthermore, direction order routing
allows routing through non-minimal paths. For 2D networks, the X+Y+X-Y- direction order
routing counterpart would be used. Packets are routed following an ascending dimension order,
but taking first the positive dimension directions, and then the negative ones. Figure 12.18 shows
evaluation results for the different HOL-blocking reduction mechanisms but using X+Y+X-Y-
with minimal paths as the baseline deterministic routing. We can see how the fact of traversing
dimensions in a different order changes the behavior of some algorithms like BBQ, which drives
down its performance significantly. This effect is similar to the one produced by DBBM before
and is due to the fact of using a subset of the destination node identifier bits to select the VC
to use. The dimension ordering followed by the routing algorithm may generate an unfair use
of the VCs, overloading some of them while others are barely used. However, XORDET or

IODET, which consider all the destination node identifier bits, are less affected by the change

Chapter 12. General Discussion of Results

225

37.500

— Adaptive routirﬂg
BBQ

— Adaptive routing » 35.000(_
0,325| ~BBQ I 3 -
T ~DBBM ({ "u 522299 DBBM \
8 0,300 ~1ODET A 5 0000 :IC?CI)DSET I
20300 _ 5opeT [y g 27.500 | i
? XORDET [g JORDET oML
20,275| vOQnet \ :25.000 VOQnet “m‘ NI
g n 822500 VOQsw r WINN
- f 1A
£0.250 ‘ £ 20.000 NN
£ s I LS
20,225 : & 17.500 r‘ a h, ”HV\\"J\ i
& 215.000 "%‘ “‘“J\\\‘ML'WH
£ 0,200 § 12.500 1l WN,\ " Hy
® " ;‘“ [}
50’175 ;10.000)
g o 7.500
< 0,150 i 5.000 M{ N fl‘
> Ll b .
2.500 i | PRI LV
0,125 < 0 el r'\b laf \5) b
100.000 200.000 300.000 400.000 500.000 600.000 700.000 100.000 200.000 300.000 400.000 500.000 600.000 700.00C
Time (cycles) Time (cycles)
(a) (b)

FIGURE 12.19: Results for hot-spot. 256-node 2D-torus and 8 VCs.

in the routing algorithm and obtain roughly the same performance as the one obtained with XY

routing.

After analyzing the behavior of the different algorithms under uniform random traffic pattern,
next we analyze them under other traffic patterns. We will analyze a scenario where the HolL-
blocking reduction ability of the routing algorithm may have a great impact. Assume that we
have uniform random traffic pattern in the network, but we also introduce a hot-spot node: 25%
of network nodes send packets only to one node (the hot-spot node) during some period of time.
Traffic injection rate to the hot-spot is computed in such a way that it does not exceed the node
ejection bandwidth (1 flit/cycle). The hot-spot traffic starts at clock cycle 100,000 and is active
until a number of packets (10,000 in our experiment) have been delivered. This corresponds to
clock cycle 260,000. In addition, the remaining nodes (75%) continue generating traffic follow-
ing a uniform random traffic pattern, that is, sending packets to all the destinations except the
hot-spot node. Therefore, during this period of time, the network has two traffic flows: 75%
of nodes generate packets with an uniform random traffic pattern and 25% generate packets
destined to the hot-spot node. In such a situation, a HoL-blocking reduction routing algorithm
should be able to isolate the traffic destined to the hot-spot (i.e. hot flows), thus avoiding in-
terfering the other flows (i.e. cold flows). On the other hand, a fully adaptive algorithm mixes
the different flows, spreading the possible congestion to the whole network. To perform this
experiment, we have implemented large injection queues at source nodes so that they always

can queue a packet if the packet cannot be injected into the network.

This scenario is evaluated in Figure 12.19 for a 256-node 2D torus. We can see a completely

226 Chapter 12. General Discussion of Results

different behavior of the analyzed routing algorithms. On the one hand, fully adaptive routing,
OODET and VOQsw rapidly spread congestion as packets destined to the hot-spot node inter-
feres other packets, leading to a high reduction in the delivered traffic rate (Figure 12.19.(a))
and strongly increasing latency (Figure 12.19.(b)). Only when the hot-spot traffic disappears
and after a high number of cycles, the network recovers. Notice that, after the hot-spot traffic
is removed, accepted traffic increases for some cycles, due to the high number of messages that

have been queued at the injection nodes.

On the other hand, the HoL-blocking reduction deterministic routing algorithms show a much
better behavior, close to the one of VOQnet (which requires 256 VCs) without impacting the
network throughput and latency in spite of the hot-spot traffic. The exception is DBBM, which
requires a higher number of cycles to recover from the hot-spot traffic. This is because the

injected uniform random traffic pattern is on the edge of saturation in DBBM.

To summarize, XORDET and IODET were able to reach (with only a few VCs) the same per-
formance as fully adaptive algorithm for uniform random traffic pattern (see Figure 12.17).
Contrary to DBBM and BBQ, they are less affected by changes in the routing algorithm (i.e. the
order in which dimensions are crossed, see Figure 12.18) and they are able to efficiently isolate
the hot-spot traffic (see Figure 12.19). The advantage of XORDET versus IODET is that it is
simpler to implement at the internal switch. Remember that XORDET uses virtual networks,
but IODET performs VCs changes in the network, which requires additional internal switch

connections.

12.4.4.2 XORADAP evaluation

We will first analyze XORADAP with uniform random traffic pattern. In this case, we only show
results of XORDET as representative of deterministic routing algorithms with the HoL-blocking
reduction ability to offer greater clarity, since the other routing algorithms work worse or equal
to XORDET. Figure 12.20 shows the results (8 VCs for fully adaptive routing and 1 VC for the
escape path). For XORADAP, we selected three different configurations with 9 VCs: two groups
with 4 VCs each, 4 groups with 2 VCs and 8 groups with only one VC per group. Remember
that more groups of VCs leads to a better packet classification but a lower routing flexibility.
Regarding fully adaptive routing, we used the same number of VCs as XORADAP for the sake
of fairness. As the number of VCs in XORDET must be a power of two, we evaluated it by
using both 8 and 16 VCs.

Chapter 12. General Discussion of Results 227

0.4 2 500 ———
o —+— Adaptive routing 9 VCs

3 035} 5 ~—— XORADAP 9 VCs 8 Gs
3 S 400 | — XORADAP9 VCs4 Gs 1
5 03 - 2 —s— XORADAP 9 VCs 2 Gs
E = XORDET 8 VCs
g 025t £ 300 —* XORDET16VCs |
B] N
= 02 =
9 S
= E J
T 015 Adaptive routing 9 VCs -2
by XORADAP 9 VCs 8 Gs —— 3
g 0.1 1 XORADAP 9 VCs 4 Gs —— | 9 100 |
b33 XORADAP9 VCs2Gs —5— ﬁ
< 005T XORDET 8 VCs 1 m

XORDET 16 VCs —=— >

0 L L L I I L L L < 0 L L L L L L L L L
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 045 0.5 0 005 0.1 0.15 0.2 025 0.3 0.35 04 045 0.5
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)

FIGURE 12.20: 256-node 2D-torus. Uniform random traffic pattern. (a) Accepted traffic and
(b) average packet latency vs. offered traffic.

@ 1000 T T — T TF
0.22 : : . . K3} —+— Adaptive routing 9 VCs /

_ 02 b 2 ——— XORADAP 9 VCs 8 Gs
3z : 2 ggg | —* XORADAP9 VCs4 Gs ,
g o8y 2 ~——5— XORADAP 9 VCs 2 Gs
% 0.16 ja XORDET 8 VCs
g 014 | g 600 L XORDET 16 VCs |
% 0.12 =

L S
g 0.1 . A= 400 - 4
s 0.08 Adaptive routing 9 VCs <
h 0.06 F XORADAP9 VCs 8 Gs —=— | =
2 ’ XORADAP 9 VCs 4 Gs —*— oo 200 |- |
3 0.04 - XORADAP9 VCs2 Gs —=— s
< 0m XORDET 8 VCs 1%

XORDET 16 VCs —=— >
0 L L I L L < 0 L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Offered traffic (flits/cycle/node) Offered traffic (flits/cycle/node)
(a) (b)

FIGURE 12.21: 256-node 2D-torus. Matrix transpose traffic. (a) Accepted traffic and (b)
average packet latency vs. offered traffic.

We can see that all the routing algorithms evaluated obtain roughly the same throughput. Notice,
though, that the fully adaptive algorithms suffer a performance degradation after its saturation
point [85]. Regarding latency, (Figure 12.20.(b)), for medium to high traffic rates (i.e. 0.3
flits/cycle/node), a higher routing flexibility (i.e., fully adaptive routing or XORADAP with
less number of groups of VCs) leads to higher latency values due to the HoL-blocking effect
generated by interfering traffic flows. We can see how the XORADAP routing algorithm with
more groups of VCs, less adaptive behavior, obtains a slightly lower latency. Both configurations

of XORDET obtain the lowest latency values, with almost no differences between them.

As we mentioned in Section 12.3.2.2, there are some adversarial traffic patterns that significantly

impact the performance of the network with deterministic routing algorithms. Nevertheless,

228 Chapter 12. General Discussion of Results

17.000
= Adaptive routing 9 VCs 16.000 = Adaptive routing 9 VCs .
0,325« XORADAP 9 VCs 8 Gs - +XORADAP 9 VCs 8 Gs 1.0
+~XORADAP 9 VCs 4 Gs $ 15.000| +~XORADAP 9 VCs 4 Gs s‘vJu 11
50,300 ~XORADAP 9 VCs 2 Gs 'S 14.000| ~XORADAP 9 VCs 2 Gs !
3 ~ XORDET 16 VCs & 15000/ ~XORDET 16 VCs
£ XORDET 8 VCs XORDET 8 VCs
50275 £12.000
5 = 11.000
50250 & 10.000
s £ 9.000
=0,225 °
o £ 8.000
E
0,200 g 7.000
= § 6.000
T -
L0175 5 5.000
8 D 4.000
0,150 im 3.000
3 2.000
0,125 1.000 e
(s e ST i .
100.000 150.000 200.000 250.000 300.000 350.000 100.000 150.000 200.000 250.000 300.000 350.000
Time (cycles) Time (cycles)
(a) (b)

FIGURE 12.22: 256-node 2D-torus. Uniform random traffic pattern with hot-spot. Accepted
traffic (a) and average packet latency (b) vs. simulation time.

XORADAP obtains good performance results not only with uniform random traffic pattern, but

it is also able to obtain good results with those adversarial traffic patterns.

To illustrate this behavior, we have conducted some experiments with the matrix-transpose traf-
fic pattern. In Figure 12.21, we compare the behavior of XORDET, fully adaptive routing and
the different configurations of XORADAP for the matrix transpose traffic pattern in a 256-node
2D torus. 9 VCs (8 adaptive channels and 1 escape channel) were used in fully adaptive and
XORADAP routing algorithms, and 8 VCs and 16 VCs in XORDET. In XORADAP, the three
aforementioned configurations were tested: two groups with 4 VCs each, 4 groups with 2VCs

and 8 groups with only one per group.

As expected, XORDET obtains a significantly lower throughput than any adaptive algorithm,
in spite of using more VCs. In particular, fully adaptive routing more than doubles XORDET
performance. This is the weakest point of deterministic routing. It is not able to efficiently cope
with adversarial traffic patterns. The poor behavior of XORDET, and, in general, of any deter-
ministic routing, is due to the unbalanced distribution of traffic for this pattern, which leads to
overutilization of some links while other are unused [86]. Concerning the hybrid routing algo-
rithm proposed in this thesis, XORADAP, it obtains roughly the same results as fully adaptive

routing, since it takes advantage of its flexibility making a better use of the links.

Considering the results presented up to now, we can confirm that XORADAP achieves its first
design goals. It is as good as fully adaptive routing for adversarial traffic patterns, thus improv-

ing XORDET and deterministic routing in general.

Chapter 12. General Discussion of Results 229

Next, we will analyze XORADAP behavior in the hot-spot scenario, where the HoL-blocking
reduction is very important. Figure 12.22 shows the results for the same experiment performed
in Section 12.4.4.1. Remember that the hot-spot traffic starts at clock cycle 100,000 and it is
active until clock cycle 260,000. As expected, XORADAP helps to achieve a better behavior
than fully adaptive routing. In particular, XORADAP configurations with more groups of VCs
can better isolate the hot-spot traffic flows, obtaining a more stable value of accepted traffic
(in fact very close to XORDET in the best case -XORADAP with 8 groups of VCs-) and a
smaller average packet latency. On the other hand, if we use a XORADAP configuration with a
few number of groups of VCs, two for example, we obtain a result more close to fully adaptive
routing, but with smaller impact on the variability of delivered traffic and reducing packet latency

with respect to fully adaptive routing.

The analysis shown before demonstrates that XORADAP also achieves its second design goal. It
can be as good as a HoL-blocking reduction deterministic routing algorithm to classify and iso-
late traffic, outperforming fully adaptive routing under hot-spot traffic. To sum up, XORADAP
routing algorithm combines the flexibility of adaptive routing with HoL-blocking reduction,
being able to efficiently cope with varying networks loads, including uniform random traffic,
adversarial or hot-spot traffic. Indeed, for a given number of VCs, several configurations are

possible.

Chapter 13

Conclusions

This thesis has proposed a new family of hybrid topologies, the KNS, for large—scale intercon-
nection networks. It keeps the dimensional organization from direct topologies, but connecting
the nodes of a dimension in a different way which is able to provide as good performance and

scalability as indirect topologies do, but with a low hardware cost.

In addition, this dissertation has presented a routing algorithm for this family of topologies. This
routing algorithm a deterministic routing algorithm, Hybrid-DOR, and it is based on the DOR
algorithm for direct topologies. This algorithm has a good behavior, obtaining good performance

with a low latency.

On the other hand, this thesis proposes a new fault-tolerant mechanism for this new family of
topologies. It is based on Valiant mechanism. In this case, a packet which have to pass across a
path with one or more faults could avoid these faults by using intermediate nodes which allows
using another path which, for some fault combinations, could be longer but it allows packets to

achieve their destination.

Finally, three different routing algorithms have been presented in this thesis in order to reduce
the HoL-blocking effect in direct topologies. The first one, IODET, takes advantage of the di-
mensionality of direct topologies, classifying packets to the different virtual channels depending
on the destination identifier component in the dimension where the packet is traveling. The sec-
ond one, XORDET could be implemented at a lower cost and easier implementation than other
proposals because the packet should not change the virtual channel to reach its destination. It
uses the XOR operation, xoring the bits from the destination identifier to select a virtual channel.
And the last one, XORADAP, uses the same XOR operation with an adaptive algorithm, using
231

232 Chapter 13. Conclusions

several adaptive channels and one escape channel at least. The adaptive channels allow packets
to cross the network following any dimensional order. But in this case, the XOR operation is not
used to choose a virtual channel. The adaptive channels are divided in different groups, with one

or more virtual channels. Packets are confined to these groups depending on the XOR operation.

The deterministic algorithms, IODET and XORDET, work as expected regarding isolation of
congested traffic flows (e.g. hotspot nodes.) Despite this, the performance drops when there are
some adversarial traffics like bit-reversal or transpose patterns. However, XORADAP, thanks to
its routing flexibility, it is able to deal with these adversarial traffic patterns, without losing the

feature of isolating congested traffic flows.

Chapter 13. Conclusions 233

13.1 Future Directions

As for future work, first, we plan to improve the fault-tolerant mechanism for KNS topologies.
In this thesis, a mechanism is presented, and we describe how the algorithm works with a given
fault information. However, we have not studied yet how to distribute this information to the
different nodes and switches and how it could affect to the network performance. It can be
done statically or dynamically. The static fault model is easier because we only need to stop
the network and give the information to the different network components. But, to do this, we
need to be able to do checkpoints to save the status of the network and restore it when the fault
information is delivered. On the other hand, in the dynamic fault model, the fault information
is sent while the network is working. Therefore, the time to reconfigure the network is very
important. The idea could be to develop both of them, having different options to solve the

problem in different scenarios.

2" dim links

2™ dim links 1" dim links 3" dim links 1 dim links

R/

I
Sdoy e

Processing nodes Processing nodes

FIGURE 13.1: Different configurations for 8-port switches.

There are other aspects of KNS that can be studied, like attaching several processing nodes
to the same router or using parallel links. For example, if we have routers with 8 ports, we

could attach 4 processing nodes and configure a 2-dimensional network, using 2 links for each

234 Chapter 13. Conclusions

dimension, or attach 2 processing nodes and configure a 3-dimensional network, using 2 links

for each dimension too (see Figure 13.1).

On the other hand, this thesis presents new routing algorithms to avoid the HoL-blocking effect
in direct topologies. These algorithms are able to work in KNS topologies. However, they are
not specifically developed for these topologies. So, it would be interesting to study its behavior

in these topologies in more detail.

In addition, we can join the proposed HoL-blocking reduction routing algorithms with injection
control techniques. Some related work has been recently published focusing on this technique.
These mechanisms help to reduce the traffic flows which induce to generate congestion. There-
fore, if we design a new injection control technique and we use it together to our HoL.-blocking

reduction routing algorithms, we can obtain better results.

Chapter 13. Conclusions 235

13.2 Other Publications

In addiction to the papers shown above, other related papers have been published in domestic

conferences:

R. Pefiaranda, C. Gémez, M.E. Gémez, P. Lopez, and J. Duato. KNS: Familia de Topologias
Hbridas para la Interconexion de Redes de Gran Escala. In Actas de las XXIV Jornadas

de Paralelismo (JP), pages 109-114, Madrid, Spain, 2013.

e R. Pefiaranda, C. Gémez, M.E. Gémez, P. Lépez, and J. Duato. Deterministic versus
adaptive routing in direct topologies. In Actas de las XXIV Jornadas de Paralelismo (JP),
pages 115-120, Madrid, Spain, 2013.

e R. Pefaranda, C. Gémez, M.E. Gémez, P. L6pez, and J. Duato. On the Reduction of HoL-
blocking in Direct Topologies with Deterministic Routing. In Actas de las XXV Jornadas
de Paralelismo (JP), pages 423-432, Valladolid, Spain, 2014.

e R. Pefiaranda, C. Gémez, M.E. Gémez and P. Lépez. Reduccion del HoL-blocking con
encaminamiento adaptativo. In Actas de las XXVI Jornadas de Paralelismo (JP), pages

48-52, Cérdoba, Spain, 2015.

e R.Pefiaranda, E. Gunnar Gran, T. Skeie, M.E. Gémez and P. L6pez. Una nueva metodologia
para encaminamiento tolerante a fallos en topologias KNS. In Actas de las XXVII Jor-

nadas de Paralelismo (JP), pages 335-343, Salamanca, Spain, 2016.

236 Chapter 13. Conclusions

13.3 Funding Acknowledgments

This thesis was partially supported by:

e the Spanish Ministerio de Economia y Competitividad (MINECO), by FEDER funds un-
der Grant TIN2009-14475-C04-01.

e the Spanish Ministerio de Economia y Competitividad (MINECO), by FEDER funds un-
der Grant TIN2012-38341-C04-01.

e the Spanish Ministerio de Economia y Competitividad (MINECO), by FEDER funds un-
der Grant TIN2015-66972-C5-1-R.

e the Programa de Ayudas de Investigacion y Desarrollo (PAID), from Universitat Politécnica

de Valencia.

e the financial support of the FP7 HIPEAC Network of Excellence, under grant agreement
287759.

e the Ayudas para Primeros Proyectos de Investigacién from Universitat Politécnica de

Valencia, under grant ref. 2370.

All works listed above are exclusively related with this thesis. The specific contributions of
the Ph.D. candidate reside mostly in the implementation of the proposed techniques, the setup
and execution of most simulation experiments, the writing of the paper drafts describing the
work as well as the presentation in the conferences. Along these processes, the co-authors have
repeatedly provided useful hints and advice, which the Ph.D. candidate has then applied to make

the work evolve into its final version.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

TOP500 Supercomputer Site. http://www.top500.0rg Accessed 3 Feb 2016.

W.J. Dally and B. Towles. Principles and practices of interconnection networks. Morgan

Kaufmann, 2004.

J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An Engineering

Approach. Morgan Kaufmann Publishers Inc., USA, 2002. ISBN 1558608524.

Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.

IEEE Trans. Comput., 34(10):892-901, October 1985. ISSN 0018-9340.

C. Gémez, F. Gilabert, M.E. G6émez, P. Lopez, and J. Duato. RUFT: Simplifying the
Fat-Tree Topology. In Parallel and Distributed Systems, 2008. ICPADS '08. 14th IEEE
International Conference on, pages 153-160, dec. 2008. doi: 10.1109/ICPADS.2008.44.

D Bermudez Garzon, Maria Eugenia Gomez, Pierre Lopez, Jose Duato, and Christopher
Gomez. FT-RUFT: A Performance and Fault-Tolerant Efficient Indirect Topology. In
Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro Inter-
national Conference on, pages 405-409. IEEE, 2014.

Mellanox Technology. http://www.mellanox.com.
Myricom. http://www.myri.com.

G. Della Vecchia and C. Sanges. Recursively Scalable Networks for Message Passing
Architectures. Proceedings of International Conference on Parallel Processing and Appli-

cations, pages 33-10, 1987.

237

238

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Rahmati, A.E. Kiasari, S. Hessabi, and H. Sarbazi-Azad. A Performance and Power
Analysis of WK-Recursive and Mesh Networks for Network-on-Chips. In Computer De-
sign, 2006. ICCD 2006. International Conference on, pages 142—147, oct. 2006. doi:
10.1109/1CCD.2006.4380807.

J. Kim, W.J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for high-
radix networks. In Proceedings of the 34th annual international symposium on Computer
architecture, ISCA 07, pages 126-137, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-706-3. doi: 10.1145/1250662.1250679.

R. Das, S. Eachempati, A.K. Mishra, V. Narayanan, and C.R. Das. Design and evaluation
of a hierarchical on-chip interconnect for next-generation CMPs. In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on, pages
175-186, feb. 2009. doi: 10.1109/HPCA.2009.4798252.

A.K. Gupta and W.J. Dally. Topology optimization of interconnection networks. Computer
Architecture Letters, 5(1):10-13, jan.-june 2006. ISSN 1556-6056. doi: 10.1109/L-CA.
2006.8.

J. Kim, W.J. Dally, S. Scott, and D. Abts. Technology-Driven, Highly-Scalable Dragonfly
Topology. In Proceedings of the 35th Annual International Symposium on Computer Ar-
chitecture, ISCA 08, pages 77-88, Washington, DC, USA, 2008. IEEE Computer Society.
ISBN 978-0-7695-3174-8. doi: 10.1109/ISCA.2008.19.

Marina Garcia, Enrique Vallejo 0001, Ramén Beivide, Cristobal Camarero, Mateo Valero,
German Rodriguez, and Cyriel Minkenberg. On-the-fly adaptive routing for dragonfly
interconnection networks. The Journal of Supercomputing, 71(3):1116-1142, 2015.

Yulu Yang, A. Funahashi, A. Jouraku, H. Nishi, H. Amano, and T. Sueyoshi. Recursive
diagonal torus: an interconnection network for massively parallel computers. Parallel and
Distributed Systems, IEEE Transactions on, 12(7):701-715, jul 2001. ISSN 1045-9219.
doi: 10.1109/71.940745.

H. Matsutani, M. Koibuchi, and H. Amano. Performance, Cost, and Energy Evaluation of
Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Network. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1-10, march 2007.
doi: 10.1109/IPDPS.2007.370271.

References 239

[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

ET. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hyper-

cubes. Number v. 1. M. Kaufmann Publishers, 1992. ISBN 9781558601178.

A.O. Balkan, Gang Qu, and U. Vishkin. Mesh-of-Trees and Alternative Interconnection
Networks for Single-Chip Parallelism. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 17(10):1419-1432, oct. 2009. ISSN 1063-8210. doi: 10.1109/TVLSI.
2008.2003999.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: a high performance,
server-centric network architecture for modular data centers. In SIGCOMM ’09:
Proceedings of the ACM SIGCOMM 2009 conference on Data communication,
pages 63-74, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-594-9.
doi: 10.1145/1592568.1592577. URL http://www.bibsonomy.org/bibtex/
23a5da89fbf099e3c70£4559ab38082c5/chesteve.

Taisuke Boku, Kisaburo Nakazawa, Hiroshi Nakamura, Takeshi Sone, Takeshi Mishima,
and Ken’ichi Itakura. Adaptive routing technique on hypercrossbar network and its evalu-

ation. Systems and Computers in Japan, 27(4):55-64, 1996.

C. Gémez, F. Gilabert, M.E. Gémez, P. L6pez, and J. Duato. Deterministic versus Adaptive
Routing in Fat-Trees. In Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1-8, march 2007. doi: 10.1109/IPDPS.2007.370482.

P. Carvey L. Dennison W.J. Dally. Architecture of the avici terabit switch/router.

in: Proceedings of Hot Interconnects, 6, August 1998.

Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker. High-
speed switch scheduling for local-area networks. ACM Trans. Comput. Syst., 11(4):319—
352, 1993. ISSN 0734-2071. doi: 10.1145/161541.161736.

T. Nachiondo, J. Flich, and J. Duato. Buffer Management Strategies to Reduce HoLL Block-
ing. IEEE Trans. on Paral. and Distributed Systems, 21:739-753, 2010. ISSN 1045-9219.
doi: 10.1109/TPDS.2009.63.

Pedro Yebenes, Jesus Escudero-Sahuquillo, Crispin Gomez, Pedro Javier Garcia, Fran-
cisco J Quiles, and Jose Duato. BBQ: a straightforward queuing scheme to reduce
hol-blocking in high-performance hybrid networks. In Euro-Par 2013, pages 699-712.
Springer, 2013.

240

References

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Ruben Casado, Aurelio Bermudez, Jose Duato, Francisco J Quiles, and José L. Sanchez.
A protocol for deadlock-free dynamic reconfiguration in high-speed local area networks.

Parallel and Distributed Systems, IEEE Transactions on, 12(2):115-132, 2001.

Timothy Mark Pinkston, Ruoming Pang, and José Duato. Deadlock-free dynamic recon-
figuration schemes for increased network dependability. Parallel and Distributed Systems,
IEEE Transactions on, 14(8):780-794, 2003. URL http://ieeexplore.iecee.

org/xpls/abs_all.jsp?arnumber=1225057.

Olav Lysne, Timothy Mark Pinkston, and Jose Duato. A methodology for developing dy-
namic network reconfiguration processes. In Parallel Processing, 2003. Proceedings. 2003
International Conference on, pages 77-86. IEEE, 2003. URL http://ieeexplore.

ieee.org/xpls/abs_all. jsp?arnumber=1240568.

Olav Lysne, José Miguel Montafiana, Timothy Mark Pinkston, José Duato, Tor
Skeie, and José Flich. Simple deadlock-free dynamic network reconfiguration. In
High Performance Computing-HiPC 2004, pages 504-515. Springer, 2005. URL
http://link.springer.com/chapter/10.1007/978-3-540-30474—-6_
53;http://ceng.usc.edu/smart/people/publications/archives/

HiPCO4tpink.pdf.

Valentin Puente, José A. Gregorio, Fernando Vallejo, and Ramén Beivide. Immunet:
A Cheap and Robust Fault-Tolerant Packet Routing Mechanism. In ISCA, pages 198—
211. IEEE Computer Society, 2004. ISBN 0-7695-2143-6. URL http://dblp.
uni-trier.de/db/conf/isca/isca2004.html#PuenteGVB04;http:
//dl.acm.org/citation.cfm?id=1006718;http://www.bibsonomy.

org/bibtex/2c62c803fc6736322fb95£595¢c76502fa/dblp.

Christopher J. Glass and Lionel M. Ni. Fault-Tolerant Wormhole Routing in Meshes with-
out Virtual Channels. IEEE Trans. Parallel Distrib. Syst., 7(6):620-636, 1996.

Olav Lysne, Tor Skeie, and Thomas Waadeland. One-fault tolerance arid beyond in worm-

hole routed meshes. Microprocessors and Microsystems, 21(7):471-480, 1998.

Nils Agne Nordbotten and Tor Skeie. A routing methodology for dynamic fault tolerance in
meshes and tori. In High Performance Computing—HiPC 2007, pages 514-527. Springer,
2007.

References 241

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

William J. Dally and Hiromichi Aoki. Deadlock-Free Adaptive Routing in Multicomputer
Networks Using Virtual Channels. IEEE Trans. Parallel Distrib. Syst., 4(4):466-475, 1993.

Daniel H. Linder and James C. Harden. An Adaptive and Fault Tolerant Wormhole Routing
Strategy for k-Ary n-Cubes. IEEE Trans. Computers, 40(1):2—12, 1991.

Rajendra V Boppana and Suresh Chalasani. Fault-tolerant wormhole routing algorithms

for mesh networks. Computers, IEEE Transactions on, 44(7):848-864, 1995.

Andrew A. Chien and Jae H. Kim. Planar-Adaptive Routing: Low-cost Adaptive Networks
for Multiprocessors. In Allan Gottlieb, editor, ISCA, pages 268-277. ACM, 1992. ISBN
0-89791-509-7.

Suresh Chalasani and Rajendra V Boppana. Communication in multicomputers with non-

convex faults. Computers, IEEE Transactions on, 46(5):616—622, 1997.

Chun-Lung Chen and Ge-Ming Chiu. A Fault-Tolerant Routing Scheme for Meshes with
Nonconvex Faults. IEEE Trans. Parallel Distrib. Syst., 12(5):467-475, 2001.

Suresh Chalasani and Rajendra V Boppana. Fault-tolerant wormhole routing in tori.
In Proceedings of the 8th International Conference on Supercomputing, pages 146—155.
ACM, 1994.

Chris M. Cunningham and Dimiter R. Avresky. Fault-Tolerant Adaptive Routing for Two-
Dimensional Meshes. In HPCA, pages 122-131. IEEE Computer Society, 1995. ISBN
0-8186-6445-2.

Christopher J Glass and Lionel M Ni. The turn model for adaptive routing. In ACM
SIGARCH Computer Architecture News, volume 20, pages 278-287. ACM, 1992.

José Duato. A Thory of Fault-Tolerant routing in Wormhole Networks. In Lionel M. Ni,
editor, ICPADS, pages 600-607. IEEE Computer Society, 1994. ISBN 0-8186-6555-6.

Leslie G. Valiant. A Scheme for Fast Parallel Communication. SIAM J. Comput., 11(2):
350-361, 1982.

Maria Engracia Gémez, José Duato, Jose Flich, Pedro Lépez, Antonio Robles, Nils Agne
Nordbotten, Olav Lysne, and Tor Skeie. An Efficient Fault-Tolerant Routing Methodology

for Meshes and Tori. Computer Architecture Letters, 3, 2004.

242

References

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Connect-IB. http://www.mellanox.com/related-docs/prod_adapter_

cards/PB_Connect—-IB.pdf.
Quadrics homepage. http://www.quadrics.com.

H. Litz, H. Froning, M. Nuessle, and U. Bruning. HyperTransport NIC for Ultra-low
Latency Message Transfer. feb 2008.

S. Scott, D. Abts, J. Kim, and W.J. Dally. The BlackWidow High-Radix Clos Network.
SIGARCH Comput. Archit. News, 34(2):16-28, May 2006. ISSN 0163-5964. doi: 10.
1145/1150019.1136488.

N. Binkert, Al Davis, N.P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and
Jung Ho Ahn. The role of optics in future high radix switch design. SIGARCH Comput. Ar-
chit. News, 39(3):437-448, June 2011. ISSN 0163-5964. doi: 10.1145/2024723.2000116.

J. Flich, M.P. Malumbres, P. Lépez, and J. Duato. Improving Routing Performance
in Myrinet Networks. Parallel and Distributed Processing Symposium, International,

page 27, 2000. ISSN 1530-2075. doi: 10.1109/IPDPS.2000.845961.

J. C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato. In-Order Packet Delivery in
Interconnection Networks using Adaptive Routing. In IEEE International Parallel and

Distributed Processing Symp, 2005.

W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multiprocessor Intercon-
nection Networks. Computers, IEEE Transactions on, C-36(5):547-553, may 1987. ISSN
0018-9340. doi: 10.1109/TC.1987.1676939.

V. Puente, R. Beivide, J.A. Gregorio, J.M. Prellezo, J. Duato, and C. Izu. Adaptive bubble
router: a design to improve performance in torus networks. In Parallel Processing, 1999.
Proceedings. 1999 International Conference on, pages 58—67, 1999. doi: 10.1109/ICPP.
1999.797388.

J. Duato. A Necessary and Sufficient Condition for Deadlock-Free Routing in Cut-Through
and Store-and-Forward Networks. IEEE Transactions on Parallel and Distributed Systems,

7:841-854, 1996. ISSN 1045-9219. doi: 10.1109/71.532115.

A.A. Chien. A cost and speed model for k-ary n-cube wormhole routers. Parallel and
Distributed Systems, IEEE Transactions on, 9(2):150-162, feb 1998. ISSN 1045-9219.
doi: 10.1109/71.663877.

References 243

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

J. Duato and P. Lopez. Performance evaluation of adaptive routing algorithms for k-ary
n-cubes. In Kevin Bolding and Lawrence Snyder, editors, Parallel Computer Routing and
Communication, volume 853 of Lecture Notes in Computer Science, pages 45-59. Springer

Berlin, Heidelberg, 1994. ISBN 978-3-540-58429-2.

Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. A Multiple LID Routing Scheme for
Fat-Tree-Based InfiniBand Networks. In IPDPS, 2004.

M. Karol, M. Hluchyj, and S. Morgan. Input vs. Output Queueing on a Space-Division
Packet Switch. Communications, IEEE Trans. on, 35(12):1347-1356, 1987. ISSN 0090-
6778. doi: 10.1109/TCOM.1987.1096719.

J.C.R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not pathological net-
work behavior. Networking, IEEE/ACM Trans. on, 7(6):789-798, dec 1999. ISSN 1063-
6692. doi: 10.1109/90.811445.

N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-
queued switch. In INFOCOM ’96. Fifteenth Annual Joint Conference of the IEEE Com-
puter Societies. Networking the Next Generation. Proceedings IEEE, volume 1, pages 296—
302 vol.1, mar 1996. doi: 10.1109/INFCOM.1996.497906.

W.J. Dally. Virtual-channel flow control. Parallel and Distributed Systems, IEEE Trans-
actions on, 3(2):194-205, mar 1992. ISSN 1045-9219. doi: 10.1109/71.127260.

Roberto Pefiaranda, Crispin Gémez, Marfa Engracia Gémez, Pedro Lépez, and José Duato.
IODET: A HoL-blocking-aware Deterministic Routing Algorithm for Direct Topologies.
In ICCS, pages 702-703. IEEE Computer Society, 2012. ISBN 978-1-4673-4565-1.

Maria Engracia Gémez, José Duato, Jose Flich, Pedro Lépez, Antonio Robles, Nils Agne
Nordbotten, Tor Skeie, and Olav Lysne. A New Adaptive Fault-Tolerant Routing Method-
ology for Direct Networks. In Luc Bougé and Viktor K. Prasanna, editors, HiPC, volume
3296 of Lecture Notes in Computer Science, pages 462—473. Springer, 2004. ISBN 3-540-
24129-9.

Roberto Penaranda, Crispin Gémez, Maria Engracia Gdmez, Pedro Lépez, and José Duato.
HoL-blocking Avoidance Routing Algorithms in Direct Topologies. In HPCC, pages 11—
18. IEEE Computer Society, 2014. ISBN 978-1-4799-6123-8.

244

References

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Roberto Pefiaranda, Crispin Gémez Requena, Maria Engracia Gémez, Pedro Lépez, and
José Duato. A New Family of Hybrid Topologies for Large-Scale Interconnection Net-
works. In NCA, pages 220-227. IEEE Computer Society, 2012. ISBN 978-1-4673-2214-0.

Mellanox Store. http://www.mellanoxstore.com.

Brian Towles and William J. Dally. Worst-case traffic for oblivious routing functions. In
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and archi-
tectures, SPAA °02, pages 1-8, New York, NY, USA, 2002. ACM. ISBN 1-58113-529-
7. doi: 10.1145/564870.564872. URL http://doi.acm.org/10.1145/564870.
564872.

Suchendra M. Bhandarkar and Hamid R. Arabnia. The Hough Transform on a Reconfig-
urable Multi-Ring Network. J. Parallel Distrib. Comput., 24(1):107-114, 1995.

Roberto Pefiaranda, Ernst Gunnar Gran, Tor Skeie, Marfa Engracia Gémez, and Pedro
Lépez. A New Fault-Tolerant Routing Methodology for KNS Topologies. In 2076
2nd IEEE International Workshop on High-Performance Interconnection Networks in
the Exascale and Big-Data Era (HiPINEB), pages 1-8. IEEE, 2016. doi: 10.1109/
HIPINEB.2016.9. URL http://ieeexplore.ieee.org/stamp/stamp. jsp?

arnumber=7457761.

Jose Flich, Tor Skeie, Andres Mejia, Olav Lysne, Pedro Lopez, Antonio Robles, Jose
Duato, Michihiro Koibuchi, Tomas Rokicki, and Jose Carlos Sancho. A Survey and
Evaluation of Topology-Agnostic Deterministic Routing Algorithms. [EEE Transac-
tions on Parallel and Distributed Systems, 23(3):405-425, 2012. ISSN 1045-9219.
doi: 10.1109/TPDS.2011.190. URL http://ieeexplore.ieee.org/stamp/

stamp. jsp?arnumber=5953590.

Chien-chun Su and Kang G. Shin. Adaptive Fault-Tolerant Deadlock-Free Routing in
Meshes and Hypercubes. IEEE Transactions on Computers, 45:672-683, 1995.

Mithuna Thottethodi, Alvin R. Lebeck, and Shubhendu S. Mukherjee. BLAM: A High-
Performance Routing Algorithm for Virtual Cut-Through Networks. In Proceedings of the
17th International Symposium on Parallel and Distributed Processing, IPDPS °03, pages
45.2—, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1926-1. URL
http://dl.acm.org/citation.cfm?1d=838237.838513.

References 245

[75]

[76]

[77]

(78]

[79]

[80]

Andrew Chien. A Cost and Speed Model for k-ary n-cube Wormhole Routers. In Hot

Interconnects 93, 1993.

Li-Shiuan Peh and William J. Dally. A Delay Model and Speculative Architecture
for Pipelined Routers. In Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, HPCA °01, pages 255—, Washington, DC, USA,
2001. IEEE Computer Society. ISBN 0-7695-1019-1. URL http://dl.acm.org/

citation.cfm?i1d=580550.876446.

Roberto Pefiaranda, Crispin Gémez Requena, Maria Engracia Goémez, and Pedro
Lopez. XORAdap: A HoL-Blocking Aware Adaptive Routing Algorithm. In
Masoud Daneshtalab, Marco Aldinucci, Ville Leppédnen, Johan Lilius, and Mats
Brorsson, editors, PDP, pages 48-52. IEEE Computer Society, 2015. ISBN
978-1-4799-8491-6. URL http://dblp.uni-trier.de/db/conf/pdp/
pdp2015.html#PenarandaRGL15; http://doi.ieeecomputersociety.
org/10.1109/PDP.2015.50;http://www.bibsonomy.org/bibtex/
2b8839a14d1al6c9734cb94d893feb51d/dblp.

Carmen Carrién, Ramén Beivide, José—Angel Gregorio, and Fernando Vallejo. A
flow control mechanism to avoid message deadlock in k-ary n-cube networks.
In HiPC, pages 322-329. IEEE Computer Society, 1997. ISBN 0-8186-8067-
9. URL http://dblp.uni-trier.de/db/conf/hipc/hipcl997.
html#CarrionBGV97;http://doi.ieeecomputersociety.org/10.
1109/HIPC.1997.634510;http://www.bibsonomy.org/bibtex/
22f7390b3349%bcd42bab7a64234feaf9a5/dblp.

Luis Gravano, Gustavo D. Pifarré, Pablo E. Berman, and Jorge L. C. Sanz. Adaptive
Deadlock- and Livelock-Free Routing with All Minimal Paths in Torus Networks.
IEEE Trans. Parallel Distrib. Syst., 5(12):1233-1251, 1994. URL http://dblp.
uni-trier.de/db/journals/tpds/tpds5.html#GravanoPBS94; http:
//doi.ieeecomputersociety.org/10.1109/71.334898;http://www.
bibsonomy.org/bibtex/2806d2f295c635a86b3e788c3019e9b2e/dblp.

Keith D. Underwood and Eric Borch. A Unified Algorithm for Both Randomized
Deterministic and Adaptive Routing in Torus Networks. In IPDPS Workshops, pages
723-732. IEEE, 2011. ISBN 978-1-61284-425-1. URL http://dblp.uni-trier.
de/db/conf/ipps/ipdps201llw.html#UnderwoodBll; http://doi.

246

References

[81]

[82]

[83]

[84]

[85]

ieeecomputersociety.org/10.1109/IPDPS.2011.214;http://www.
bibsonomy.org/bibtex/292473ee8b95cc7c2a8526816c237db52/dblp.

Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. GOAL: A Load-
Balanced Adaptive Routing Algorithm for Torus Networks. In Allan Gottlieb and Kai
Li, editors, ISCA, pages 194-205. IEEE Computer Society, 2003. ISBN 0-7695-1945-
8. URL http://dblp.uni-trier.de/db/conf/isca/isca2003.html#
SinghDGTO03;http://doi.acm.org/10.1145/859618.859641;http://
www.bibsonomy.org/bibtex/28a8bbcf9d0a4b3d4alb053b59130ec43/
dblp.

Leslie G. Valiant and Gordon J. Brebner. Universal Schemes for Parallel Com-
munication. In STOC, pages 263-277. ACM, 198l. URL http://dblp.
uni-trier.de/db/conf/stoc/stoc8l.html#ValiantB81;http:
//doi.acm.org/10.1145/800076.802479;http://www.bibsonomy.

org/bibtex/262620662b32e54ddblc3dblbfd8d4954/dblp.

José Duato, Jose Flich, and Teresa Nachiondo Frinds. A Cost-Effective Tech-
nique to Reduce HOL Blocking in Single-Stage and Multistage Switch Fab-
rics. In PDP, pages 48-53. IEEE Computer Society, 2004. ISBN 0-7695-
2083-9. URL http://dblp.uni-trier.de/db/conf/pdp/pdp2004.
html#DuatoFN04; http://doi.ieeecomputersociety.org/10.
1109/EMPDP.2004.1271426;http://www.bibsonomy.org/bibtex/

26f79ccd4f262b291644£218ce7b5e66eb/dblp.

Tor Skeie, Olav Lysne, and Ingebjgrg Theiss. Layered Shortest Path (LASH) Routing
in Irregular System Area Networks. In /6th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL, USA, CD-
ROM/Abstracts Proceedings, 2002. doi: 10.1109/IPDPS.2002.1016559. URL http:
//dx.doi.org/10.1109/IPDPS.2002.1016559.

P.Duato J. Lépez. Deadlock-Free Adaptive Routing Algorithms for the 3D-Torus: Limita-
tions and Solutions. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE’93,
Parallel Architectures and Languages Europe, volume 694 of Lecture Notes in Computer

Science, pages 684-687. Springer Berlin, Heidelberg, 1993. ISBN 3-540-56891-3.

References 247

[86] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Multistage switches are
not crossbars: Effects of static routing in high-performance networks. In CLUS-
TER, pages 116-125. IEEE Computer Society, 2008. ISBN 978-1-4244-2640-9.
URL http://dblp.uni-trier.de/db/conf/cluster/cluster2008.
html#HoeflerSL08;http://doi.ieeecomputersociety.org/10.
1109/CLUSTR.2008.4663762;http://www.bibsonomy.org/bibtex/
22652142a6500976bbc7b96062ee81fbdb/dblp.

